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ABSTRACT Side information fusion for sequential recommendation aims to mitigate the data sparsity
problems by leveraging the additional knowledge besides item ID. While most state-of-the-art methods
devised elaborate fusion methods to incorporate side-information, they overlooked that there are distinct
characteristics of the side-information, which can be grouped into two types: item attribute (e.g., category
and brand) and user behavior (e.g., position and rating). In this paper, we argue that attribute information and
behavior information are fundamentally different in relation to the item. The former is inherent to the item,
whereas the latter is not. Based on this intuition, we systematically analyzed the previous fusion approach
and introduced a comprehensive framework for two types of side information. Finally, we devise self-
supervised objectives fitting for each type of side-information in a multi-task training scheme. To validate
the effectiveness of our proposed method, we conduct experiments across various domains.

INDEX TERMS Side-information fusion, self-supervised learning, sequential recommendation.

I. INTRODUCTION
A sequential recommendation (SR) system aims to capture
users’ evolving preferences based on their past behaviors.
Given its extensive practical applications across online
platforms such as e-commerce and streaming services, this
research topic has emerged as a significant area of research.
Many scholars have strived to identify users’ dynamic
preferences within user interaction sequences. Followed by
the remarkable success of Transformer [1] in NLP, the
self-attention-based methods [2], [3], [4] showed impressive
performance in finding the users’ preferences. However,
the traditional SR models, which rely on item ID in item
sequence, have suffered from data sparsity problems [5], [6].
A common solution to the data sparsity problem is

integrating additional knowledge (referred to as side-
information) into a sequential recommendation system. The
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FIGURE 1. An illustration of two types of side-information, where both
users purchased the same item (i.e., MacBook). The item attribute
remains static relative to the item ID, whereas user behavior can vary.

primary assumption is that the additional information will
help the system understand the contextual meaning of both
the item and user besides collaborative signal from user-item
interaction, ultimately leading to better recommendations.
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To effectively incorporate the side-information many
researchers [7], [8], [9], [10], [11], [12] have proposed
fusion strategies. This strategy often involves maintaining
an independent representation for individual side-information
and later fusing themwith item ID and other side-information
within the neural network. While this branch was explored
thoroughly, they have not yet been fully explored in the
direction of the side-information’s characteristics.

In this paper, we argue that the side-informationcan be
categorized into two types1 (item attribute and user behavior),
each having a different relationship with the item. Figure 1
illustrates these properties. For example, item attributes, such
as brand and categories, demonstrate item ID homogeneity.
This homogeneity implies that the item ID will always
have the same information when the item ID is the same.
Meanwhile, user behavior, including rating and position,
exhibits item ID heterogeneity. This heterogeneity signifies
that the type contains unique semantic information evenwhen
the item IDs are identical.

To exploit the property, we propose COMprehensive
framework for side-Information Fusion for Sequential Rec-
ommendation (COMIF). We analyze state-of-the-art fusion
strategies and categorize them into embedding-level and
attention-level fusion. Specifically, we found that embedding-
level fusion architecturally causes the correlation between
item ID and involved side-information while attention-level
fusion does not. Based on the findings, we select the
optimal fusion for each type of side-information. We utilize
the embedding-level fusion for item attributes to apply its
homogeneous nature. In contrast, we use the attention-level
fusion for user behavior to employ its heterogeneous nature.
Also, to effectively learn user representation from the side-
information, we devise a self-supervised objective fitting
for each type of side-information and construct a multi-task
training environment.

To validate the proposed method’s effectiveness, we con-
ducted extensive experiments on three real-world recom-
mendation datasets in different domains. Our experimental
results show that our method outperforms several competitive
methods and helps alleviate the cold-start problem.

In summary, our key contributions are as follows:

1) We provide a novel view of distinguishing item
attributes and user behavior in terms of how they are
related to the item ID. We also analyze the existing
fusion approaches and select optimal fusion for each
type of side-information in terms of correlation between
item ID and side-information.

2) Based on this analysis, we propose a holistic fusion
approach to exploit the nature of side-information.
Furthermore, we devise two distinct self-supervised
objectives fitting for the separation of side-information.

1Some previous studies [13], [14] have covered another type of side-
information, user demographic. However, this information (such as age,
occupation, and sex) is omitted due to privacy issues.

3) We have conducted experiments on various datasets of
different domains, showing our method’s superiority.
We have also found that our strategy exhibits notable
strength in alleviating cold-start problems compared to
the state-of-the-art baselines.

II. PRELIMINARIES
This section formalizes our research problem, provides the
base architecture required for our method, and categorizes the
state-of-the-art fusion methods into two types.

A. PROBLEM DEFINITION
We first elaborate on the main objective of sequential
recommendation with side-information. Let U , I, and V
denote a set of users, items, and interactions. Each user u ∈ U
has her/his chronological sequence: [v1u, v

2
u, . . . , v

n
u], where v

j
u

represents the j-th interaction that the user u has made. This
interaction becomes: vku = [idk , sk ] where idk denotes item
ID of k-th interaction, and sk represents side-information of
k-th interaction. Given n historical interactions of user u, our
goal is to predict the item id that the user uwill likely interact
with.

B. SELF-ATTENTION FOR SR
Since our framework is built on the self-attention mechanism,
we briefly introduce it, taking the SASRec [2] as an example.
This model consists of three parts: 1) embedding layer, 2)
stacked self-attention blocks, and 3) prediction layer.

At the embedding layer, item ID look-up embedding
table MI ∈ R|I |×d is maintained. When given a user
interaction sequence of length n, an item ID embedding
matrix Eid ∈ Rn×d is retrieved by look-up operation. The
learnable position embedding matrix P ∈ Rn×d is added
to the item ID embedding matrix to construct an integrated
embedding matrix Ei = Eid + P, which enters the first self-
attention block.

The sequence encoder is stacked with several self-attention
blocks. Each block consists of a self-attention layer and a
feed-forward network. The self-attention layer aggregates
items of different relevance in sequence, using dot-products
between the items to calculate their relevance. The relevance
calculations are done as follows:

Attn = (HWQ)(HWK ),

SA = softmax
(
Attn
√
d

)
(HWV ) (1)

where WQ,WK .WV ∈ Rd×d are learnable weight matrices,
and H ∈ Rn×d is the input for the self-attention block. This
self-attention layer is followed by a feed-forward network,
which introduces the non-linearity into the self-attention
block. The self-attention mechanism of Eq.1 can be extended
to multi-head attention [1], while other components in the
Transformer are also used, including residual connection,
layer normalization, and dropout.

At the prediction layer, relevance scores r(u,i) get calculated
with the user u’s interaction sequence of length n and the
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FIGURE 2. Two types of side-information fusion.

candidate item i. We take the hidden states of the final block
and use n-th hidden state hn as user sequence representation.
This can be formulated as:

r(u,i) = ei · hn⊤ (2)

C. SIDE-INFORMATION FUSION FOR SR
Since side-informationcan help the recommendation system
understand user preferences, various methods were proposed
to introduce them, including fusion approaches. We inves-
tigated previous side-information fusion approaches and
categorized them into embedding-level and attention-level
fusion in terms of the moment of fusion in an attention-based
neural network.

1) EMBEDDING-LEVEL FUSION
Embedding-level fusion integrates side-information embed-
ding with the item ID embedding. Intuitively, combining
them can enhance item representation by injecting the
contextualized semantic into the representation. In this case,
side-information look-up embedding tables additionally need
to be retained.

Specifically, given user interactions with item ID and its
side-information, it constructs item ID embedding matrix Eid
and side-information embedding matrices Es by applying a
look-up operation. Those embedding matrices get integrated
with the fusion operation described in Figure 2.a. The
fusion operation Femb consists of addition, concatenation,
and gating, which are studied in [15] and can be described
as: Ei = Femb (Eid ,Es). The fused embedding matrix will be
fed into the sequence encoder.

The embedding-level fusion can be regarded as extension
of positional encoding used in Transformer [1]. This is
because it becomes equivalent to the positional encoding
when the involved side-information is limited to the position
of an item within a sequence and the fusion operation is
addition.

The recent researches [11], [12] have expanded this fusion
method to the prediction layer. Embedding-level fusion at
the layer integrates side-information with the target item ID
before calculating the relevance score. This process can be
defined as: r(u,i) = ei · hn⊤ and ei = Femb(eid , es).

2) ATTENTION-LEVEL FUSION
Attention-level fusion separately computes attention score
matrices for each side-information and item ID, which will
then be aggregated as shown in Figure 2.b. This method
claims that the separate calculation constructs elaborate
attention matrices. Specifically, DIF-SR [10] observed that
embedding-level fusion limits the expressiveness of the
attention score matrices and demonstrated that it causes com-
pound embedding space, where combined embeddings from
distinct information sources inevitably attend to unrelated
information. Although these various fusion methods show
effectiveness for incorporating the side-information, they do
not distinguish the types of side-information: homogeneous
and heterogeneous information. Thus, naively choosing
one among the two fusion methods will result in missing
opportunities to explore the potential of the two factions.

III. THEORETICAL ANALYSIS FOR FUSION
To fully understand which fusion method can exploit the
best of both types of side-information, we first analyze
the two fusion methods in terms of how correlations2 are
made between the item ID and its side-information. Then,
according to the homogeneous and heterogeneous nature of
side-information, we confirm the appropriate fusion for both
types of side-information.

A. CORRELATION AT SELF-ATTENTION LAYER
We can derive that embedding-level fusion method
strengthens the correlation between item ID and side-
information based the finding of Ke et al. [16]. They found
that positional encoding in vanilla Transformer [1] brings
a correlation between word embedding and positional
embedding during attention calculation. Extending this
finding to embedding-level fusion methods, we can obtain
that the fusion method plays a similar role.

Specifically, consider the calculation of the attention score
αjk between j-th and k-th interaction using embedding-level
fusion:

αjk =

((
ejid + ejs

)
WQ

) ((
ekid + eks

)
WK

)T
√
d

=

(
ejidWQ

) (
ekidWK

)T
√
d

+

(
ejidWQ

) (
eksWK

)T
√
d

+

(
ejsWQ

) (
ekidWK

)T
√
d

+

(
ejsWQ

) (
eksWK

)T
√
d

(3)

where ekid , e
k
s are the item ID embedding and the

side-information embedding of k-th interaction. For simplic-
ity, we choose addition as the fusion operation in this section.3

2The term ‘‘correlation’’ mainly refers to the dot product between item
and side-information.

3We also derive the same analysis for the other two fusion operations in
the Appendix.

VOLUME 13, 2025 8841



S. Choi et al.: Exploring the Side-Information Fusion for Sequential Recommendation

When investigating the equation 3, we can infer that
the embedding-level fusion architecturally reinforces the
correlation. The second and the third terms in equation 3
represent the dot product of the item ID and the side-
information. Thus, these two terms enable the correlation
between an item and side-information to participate in
the self-attention operation. In contrast, the attention-level
fusionmethod weakens the correlation because it removes the
correlation by separately computing the attention scores.

B. CORRELATION AT PREDICTION LAYER
Moreover, we have found that embedding-level fusion also
can increase the correlation at the prediction layer. Taking
inspiration from the findings of Yang et al. [17], we derive
the followings from equation 2:

r(u,i) = ei · hn⊤

= (eid + es) ·

(
m∑
k=1

ekidW
k
X +

m∑
k=1

eksW
k
X +

L∑
l=1

blW l
B

)⊤

= eid · (
m∑
k=1

ekidW
k
X )

⊤
+ eid · (

m∑
k=1

eksW
k
X )

⊤

+ es · (
m∑
k=1

ekidW
k
X )

⊤
+ es · (

m∑
k=1

eksW
k
X )

⊤

+ (eid + es) · (
L∑
l=1

blW l
B)

⊤ (4)

where bl denotes the parameter of additive bias at the l-
th layer of the model, ekid denotes k-th item ID embedding,
and eks denotes embedding of the k-th side-information.
W k
X and W l

B is the linear transformation matrix for k-th
item embedding and additive bias at l-th layer, respectively.
We can see that embedding-level fusion increases correlation
between item ID and side-information in prediction layer
because the dot-product similarity between item ID and side-
information exists in relevance score calculation.

We have analyzed that embedding-level fusion reinforce
correlation between item ID and side-information while
attention-level fusion does not. Thus, to improve the homo-
geneity, we should employ embedding-level fusion with item
attributes while attention-level fusion should be applied for
user behavior to handle the heterogeneous information.

IV. METHODOLOGY
In this section, we propose a comprehensive fusion method
based on our analysis of optimal fusion approaches for
each type of side-information. We introduce the method
into SASRec [2], a representative example of self-attention-
based architecture. Initially, we apply the embedding-level
fusion approach for the item attribute, fusing the side-
information with the item ID at both the embedding and pre-
diction layers. We adopt the attention-level fusion approach
for user behavior information, computing separate attention
scores for item ID and user behavior and aggregating them.

FIGURE 3. Overall framework.

Moreover, we introduce two self-supervised learning tasks
specific to these two types of side-information.

A. SEQUENCE ENCODER
According to our intuition in Fig. 1, we split side-information
s into two parts: attribute a and behavior r . For simplicity,
we utilize a single type of attribute and behavior. We can
extend a single type to multiple types. Separate look-up
embedding matrices are maintained for the item ID id , item
attribute a, and user behavior r . Given a user interaction
sequence, we construct the embedding matrix for the item ID
and each type of side-information associated with the user
sequence.

1) EMBEDDING-LEVEL FUSION FOR ITEM ATTRIBUTE
Integrating item attributes with embedding-level fusion can
be demonstrated as follows:

Ei = Femb (Eid ,Ea) (5)

After the integrated item embedding matrix Ei is constructed,
it enters the sequence encoder with the behavior embedding
matrices. However, while the former gets an update at each
transformer block, the latter remains unchanged.

2) ATTENTION-LEVEL FUSION FOR USER BEHAVIOR
Instead of the original self-attention layer of SASRec,
we introduce the attention-level fusion method to the
self-attention layer but restrict its participant to the user
behavior. The relevant equations are:

Attni = (HiW
Q
i )(HiW

K
i )⊤,

Attnr = (ErWQ
r )(ErW

K
r )⊤,

Attnfusion = Fattn(Attni,Attnr )

SAfusion = softmax
(
Attnfusion

√
d

)
(HiWV ) (6)

where Hi,Er stands for integrated item representation matrix
and behavior embedding matrices. At first transformer
blocks, we set Hi = Êi. As mentioned earlier, applying
multi-head attention to attention-level fusion is also possible.

B. NEXT-ITEM PREDICTION
Owing to the use of embedding-level fusion with the item
attribute information, the target items are integrated with their

8842 VOLUME 13, 2025



S. Choi et al.: Exploring the Side-Information Fusion for Sequential Recommendation

FIGURE 4. Illustration of positive pair and negative pair in both
self-supervised learning tasks.

attributes as:

r(u,i) = ei · hn⊤

ei = Femb(eid , ea) (7)

Therefore, the cross-entropy loss Lrec for recommending
ground-truth item i to each user u can be expressed as:

ŷ(u,i) =
exp(r(u,i))∑
i′∈I exp(r(u,i′))

Lrec = −Eu∈U [y(u,i) log(ŷ(u,i))] (8)

C. SELF-SUPERVISED LEARNING FOR SIDE-INFORMATION
Even though side-information fusion aids SR models in
understanding user preference, the models may still suffer
from data sparsity problems. Since next-item prediction, the
only training task, depends on interaction density, the models
might struggle to capture user preference when the training
data is sparse. To address this issue, we have employed two
additional self-supervised learning tasks.

1) ITEM-ATTRIBUTE ALIGNMENT
The first task focuses on the item attributes, which possess
a homogeneous trait to the item ID as illustrated in
Figure 1. We propose Item-Attribute Alignment (IAA) to
strengthen further the correlation between the item ID and
its associated attribute in representation space. Unlike prior
work [8], which utilized the output of transformer encoder
as item representation, we use pure item embedding because
noisy items(e.g., accidental interactions or false positive
interactions) may exist in the same sequence [18], [19], [20],
[21]. For a given item id and its corresponding attributes
a, their embeddings are derived by inputting item i into the
designated embedding layer. The loss function for IAA is
defined as:

LIAA = Ei∈I

[
− log

exp
(
eid · e⊤a

)∑
ã∈A exp

(
eid · e⊤ã

)] (9)

where A denotes attribute set of entire items.

2) USER PREFERENCE ALIGNMENT
To utilize the user behavior in self-supervision tasks,
we propose User Preference Alignment (UPA). A fun-
damental intuition behind our approach is that behavior
information contains crucial knowledge for user preference,
affecting next-item interaction [9], [22], [23]. Therefore,
when behavior information in an item sequence changes

from the original one, it may show different preferences
accordingly. Specifically, We treat the original sequence as a
positive sample and the random sequence as a negative. Our
objective then becomes predicting the positive sample within
the set of k random behavior sequences plus the original
sequence based on the subsequent item. The formulation for
this self-supervised loss is given by:

LUPA = Eu∈U

[
− log

exp(ei · hpos⊤)

exp(ei · hpos⊤) +
∑k

j=1 exp(ei · hj
⊤)

]
(10)

where ei denotes integrated representation of next-item, and
hpos, hj denote representation of original sequence and rep-
resentation of the j-th sequence among k random sequences,
respectively. In conclusion, our training schema involves a
total of three loss functions, consisting of recommendation
loss Lrec and two SSL losses (LIAA, LUPA). We define our
joint objective L with the balancing parameters (λ1, λ2):

L = Lrec + λ1LIAA + λ2LUPA (11)

V. EXPERIMENTS
In this section, we discuss the following research questions:

• RQ1: (Empirical fusion analysis) Does our fusion
analysis have an empirical background?

• RQ2: (Overall performance) Does our method outper-
form the state-of-the arts basic SR methods and SR
methods with side-information?

• RQ3: (Ablation study) How do the different components
and hyperparameters affect our model?

• RQ4: (Cold-start problem) Could our method alleviate
the cold-start problem and show consistent effectiveness
on different groups of users?

• RQ5: (Computational Efficiency) Does our method
accomplish state-of-the-arts performance with compa-
rable computational efficiency?

A. DATASET
Our experiments were conducted with the publicly available
and widely used recommendation dataset.

• Amazon Beauty, Sports: These datasets [24] were
created with the reviews posted over the famous
e-commerce platform Amazon. For the two datasets,
we used user-item interaction and two side information:
brands for item attribute information and position for
user behavior information.

• Yelp: Yelp is a collection of reviews for businesses
such as restaurants, cafeterias, etc. Because of its large
size, we experimented on only the transaction records
after Jan. 1st, 2019. we utilize the city of businesses as
item attribute information and position as user behavior
information.

Following the pre-processing method of [8] and [10], items
and users with interaction of less than five were removed.
We also treated all interactions as implicit feedback. The
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TABLE 1. Statistics of dataset after preprocessing.

detailed statistics of all three datasets that went through
pre-processing are summarized in Table 1.

B. EVALUATION METRICS
We used the leave-one-out strategy for evaluation, following
the prior works [2]. This strategy selects the final two items
of the interaction sequence for validation and testing data,
while the rest are used to train the recommendation models.
The baselines are scored and compared by top-K Recall
(R@K) and top-K Normalized Discounted Cumulative Gain
(NDCG@K) with K chosen from {10, 20}. We calculated
the ranking of the ground-truth item in an item set ordered
by its relevance score. Following [15], which observed that
a negative sampling strategy might result in severe bias,
we evaluate our model performance in a full-ranking manner.

C. IMPLEMENTATION DETAILS
All the baselines and ours, excluding STOSA and DLFS-
Rec, are implemented based on the popular recommendation
framework RecBole [25]. For STOSA4 and DLFS-Rec,5 we
use the code provided by the corresponding authors. We train
all the methods, excluding STOSA, with Adam optimizer
for 200 epochs. Exceptionally, we train STOSA with Adam
optimizer for 500 epochs because of an underfitting issue.
We adopt the early stopping strategy that model optimization
stops when the validation Recall@20 does not increase
for ten epochs, with a batch size of 512 and a learning
rate 1e-4. The fusion operation is chosen from addition,
concatenation, and gating from NOVA [15]. We choose
addition for embedding-level fusion and concatenation for
attention-level fusion based on empirical experiments. The
hidden size of our model and other baselines are all set to
128. For other hyper-parameters, we apply grid-search to
find the best configuration for our model and baseline that
involves the following hyper-parameters. The search space
is: number of layers ∈ {2, 3, 4}, number of heads ∈ {2, 4, 8}
and balance parameter λ1, λ2 ∈ {0.4, 0.8, 1.2, 1.6}.

D. BASELINES
We compare our method with two groups of Sequential
Recommendation(SR) baselines: SR models without side-
information and SR models with side-information. Taxon-

4https://github.com/zfan20/STOSA
5https://github.com/zxiang30/DLFS-Rec

TABLE 2. Taxonomy of the baselines and proposed method.

omy for baselines with side-information and our proposed
method are represented in Table 2.

• SR models without side-information
- - GRU4Rec [26]: A session-based recommendation

system that uses Gated Recurrent Units to capture
sequential patterns.

- - SASRec [2]: A method that firstly adopts a
self-attention mechanism for sequential recommen-
dation.

- - BERT4Rec [3]: A sequential recommendation
method that utilizes bi-directional self-attention
employing Cloze task.

- - STOSA [27]: A self-attention-based method for
sequential recommendation task, which represents
each item as a Gaussian distribution and utilizes
Wasserstein self-attention to characterize item transi-
tion patterns.

• SR models with side-information
- - S3-Rec [8]: A self-supervised sequential recommen-

dation model to learn relationships among items,
attributes, subsequences, and sequences with four
auxiliary self-supervised objectives.

- - SASRecF: An embedding-level fusionmethod, which
extends SASRec. Using concatenation operation,
it integrated item attributes with item ID at the
embedding layer.

- - NOVA [15]: An embedding-level fusionmodel where
the item attribute is fused at the embedding layer
before the attention score calculation. The fused
representation is used for Query and Key, while the
item ID representation is used for Value.

- - DIF-SR [10]: A attention-level fusion model that
operates decoupled self-attention, where attention
score for item embedding and side information gets
calculated separately.

- - DLFS-Rec [12]: An embedding-level fusion model,
which embeds item ID and side-information as
stochastic distribution.

- - MSSR [28]: An embedding-level fusion model,
which exploits association between item ID sequence
and side-information sequence by calculating multi-
sequence integrated attention scores.

E. EMPIRICAL FUSION ANALYSIS (RQ1)
We theoretically analyzed each fusion method’s traits
and concluded that user behaviors are appropriate for
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TABLE 3. Overall performance. The best and second-best results are bold and underlined, respectively. ‘‘Improve.’’ is the relative improvement against the
second-best baseline performance.

TABLE 4. Performance of fusion method for both types of
side-information. The metric is Recall@20.

attention-level fusionwhile item attributes are for embedding-
level fusion. To validate our statement, we experiment with
three datasets. For the item attributes, we have conducted
experiments using categories and brands. We use cities
instead of brands in the Yelp dataset. For user behaviors,
we used the position of interaction within its sequence.

As shown in Table 4, embedding-level fusion method for
integrating item attributes outperformed all the other three
method’s metrics. It achieved more than 10% higher in
both R@10 and R@20. Besides the attribute part of side-
information paired with embedding-level fusion, we can see
that attention-level fusion is superior to other fusion methods
when dealing with behavior information. This observation
represents the empirical results supporting our analysis.

F. OVERALL PERFORMANCE (RQ2)
Table 3 illustrates the overall performance of all the baselines,
showing the different side-information fusion methods’
ability in recommendations. Within the four basic baselines,
the attention-based method showed better performances in
most metrics than GRU4Rec, implying the superiority of
the attention mechanism when it comes to a sequential
recommendation. Unlike other attention-based methods,
BERT4Rec is behind GRU4Rec on many metrics, which was
already seen in prior works [8], [10], [29] that BERT4Rec
does not show strong performances against SASRec under
the full-ranking evaluation setting.

We can also witness that the introduction of the side
information overall helps find the users’ sequential patterns.
One notable mention is the performance difference between
SASRec and SASRecF, which suggests that a simple
introduction of the side information does not guarantee
an increase in performance. This implies that sophisticated
methods are almost mandatory.

As we have witnessed through previous experiments,
the difference in the fusion approaches determines the

TABLE 5. Performance comparison of each side-information.

recommendation performance. Baselines that utilized the
embedding-level fusion method, DLFS-Rec and MSSR,
showed better overall performance than those that utilized
attention-level fusion, DIF, suggesting that using only
attention-level fusion is less effective in recognizing the
side-information. Another interesting fact is that almost
all the fusion-utilizing baselines outperform S3-Rec, which
indicates that direct fusion is better at leveraging side-
information than self-supervised learning.

Finally, our proposed method gave the best next-item
prediction results by a wide margin over others. This shows
that our method of fusion, which involves splitting the side
information into two, is valid. Our strategy ensured the
enrichment of the item attribute while limiting the chance of
causing undesirable correlations between item ID and user
behavior at the attention calculation.

G. ABLATION STUDY (RQ3)
We analyze the effectiveness of the side-information types
and the modules in the proposed model.

1) CONTRIBUTIONS OF DIFFERENT SIDE-INFORMATION
To discover the effect of each side-information, we exper-
imented on four scenarios where some side-information is
absent. Specifically, Table 5 shows the recommendation
performance when the models are trained with position,
categories, and brand information, without the brand, without
brand and categories, or with no side information at all.
We can see that each introduction of the side information
leads to better performance. Specifically, Beauty and Sports
received less improvement when introducing only the user
behavior(i.e., position) than the Yelp dataset.

We hypothesize that the average interaction length of users
in the dataset contributes to this occurrence. An increase
in average interaction size likely enables the model to
learn more various types of patterns, thereby enhancing
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FIGURE 5. Recall@10 performance on different item popularity on all datasets.

FIGURE 6. Recall@20 performance on different sequence lengths on all datasets.

TABLE 6. Performance of each module on Recall@20.

recommendation performance. As detailed in Table 1, the
Yelp dataset exhibited the highest average interaction length
compared to other datasets, supporting our hypothesis.

2) EFFECTIVENESS OF EACH COMPONENT
We experimented on models with each module removed to
evaluate our modules’ effectiveness. Table 6 demonstrates
that the complete model outperforms all others. Most notably,
the existence of the fusion strategies played a crucial
role in the model’s performances. Furthermore, using only
attention-level fusion for both types of side-information
resulted in the poorest performance. Proving our analysis’s
validity and showing that distinguishing side-information by
its different properties enables the model to exploit them
fully. Also, removing self-supervision tasks resulted in poor
performance, making us conclude that both tasks are a great
asset when using side-information.

3) HYPER-PARAMETER STUDY
Figure 7 presents the results of a grid search for loss
hyperparameters λ1 and λ2 on three different datasets.
Darker colors indicate higher performance in terms of R@20.
The performance is mostly higher at below 0.8 in λ2.
We attribute this pattern to the shorter interaction length

of every dataset. Because LUPA is based on the negative
sampling of random behavior sequence, the interaction length
affects the quality of negative samples. It is worth noting
that the lowest-performing settings are still comparable to or
outperforming the best-performing baselines.

H. EFFECTIVENESS ACROSS DIFFERENT GROUPS (RQ4)
To see our method’s abilities in different groups of users and
items, we compared with three baseline methods, SASRec
(with no side information), DIF-SR (attention-level fusion),
and DLFS-Rec (embedding-level fusion), on their average
recommendation performances with the cold item and user.
We partitioned items based on their number of appearances
in the training dataset, while users were partitioned based on
their interaction size. To demonstrate the performances for
each partition, the mean R@20 score was used.

1) PERFORMANCE IN TERMS OF ITEM POPULARITY
Figure 5 illustrates that the overall next-item prediction task
becomes easier when the target items have been spotted more
frequently while decreasing when dealing with unpopular
items. However, compared to SASRec, the introduction of
side-information showed improvements on cold items inmost
of the dataset. Our method also follows this trend while
making comparable recommendation results at the extreme
cold-item partition to the best-performing baselines.

Using side information, our method improved in every
demographic on all three datasets compared to those that did
not. From these observations, we successfully alleviated the
cold-item problems and showed excellent stabilities, while
the other side-information using baselines did not.We believe
this was obtained due to our separation on side-information.
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FIGURE 7. Heatmaps of hyperparameters λ1 and λ2 on Recall@20.

Compared to our method, DIF-SR and DLFS-Rec could not
maintain the upper hand against SASRec on all partitions,
indicating that the different item popularity requires different
side-information understanding.

2) PERFORMANCE IN TERMS OF SEQUENCE LENGTHS
We have compared how well models capture sequential
patterns on different groups of users based on item inter-
action length. Both DIF-SR and DLFS-Rec perform better
than SASRec, demonstrating that the introduction of side-
information helps find the user preference in short sequences.
From Figure 6, we can see that our method showed
dominance over all partitions, showing the superiority of
our fusion strategy even in the smallest sizes of interaction
sequences. Like the cold-item case, our method again
outperformed SASRec, which does not use side-information,
once again showing off our method’s stabilities in handling
different groups of users.

I. COMPUTATIONAL EFFICIENCY (RQ5)
Table 7 presents the computational efficiency comparison
of various methods evaluated on an A5000 GPU with
24GB memory. All models are configured consistently with
three layers and four attention heads, maintaining identical
hyper-parameters as detailed in Section V-C. The results in
Table 3 and Table 7 demonstrate a clear trade-off between
performance and computational resources among recent
sequential recommendation models. While state-of-the-art
models DLFS and MSSR achieve competitive recommen-
dation performance, they incur substantial computational
overhead. In contrast, our proposed method achieves superior
recommendation performance while maintaining moderate
computational requirements. This efficiency is particularly
noteworthy compared to DLFS’s memory usage (4.6×
higher) and MSSR’s training time (1.5× longer).

VI. RELATED WORK
A. SEQUENTIAL RECOMMENDATION
Early works [30], [31], [32], [33], [34] attempted to model
the item-item transition patterns based on the Markov Chain
andmatrix factorization, accomplishing their superiority over
the traditional top-k recommendation [33], [35]. After the
success of deep learning, many attempts based on various
architectures were made to capture the complex sequential
patterns. CNN [36], [37] looked at the sequence’s local
pattern with the kernels, while RNN [26], [38], [39], [40]
considered the flow of the items. However, these architectures

TABLE 7. Comparison of the computational efficiency on the Beauty
dataset, which involves measuring GPU memory usage (GB), the training
time per epoch (s/epoch), and the inference time for all test users in
seconds (s). For DLFS, we decrease the batch size from 512 to 64 at
inference because of OOM issue.

could not capture the long-term sequential pattern, restricting
their effectiveness to the locally adjacent parts of the
sequence. To counter this drawback, self-attention-based
methods, such as SASRec [2] and BERT4Rec [3], are
proposed. Self-attention mechanism [1] could attend to
the relevant items of the sequence, simultaneously solving
the locality issues. Even with these dedications, sequential
recommendation systems were oriented only to user-item
interactions, leading them to suffer from data sparsity issues
[5], [8].

B. SEQUENTIAL RECOMMENDATIONS WITH
SIDE-INFORMATION
To cover the data sparsity problem, several researchers
have suggested fusion strategies to incorporate side-
information such as title, brand, and category. The fusion
method involves managing separate embedding for each side-
information, which later gets fused in the neural network.
An early work, FDSA [7], suggested using two separate
self-attention blocks for item ID and side-information
sequences and fusing them in the prediction layer. S3-Rec [8]
proposed attribute prediction tasks based on self-supervised
learning to enrich the item ID representation. However, both
methods make it challenging for side information to directly
interact with item ID in the self-attention mechanism, leading
to limited utilization of side-information in self-attention
operation.

Thus, two research branches are introduced to directly
leverage side-information in self-attention architecture. The
first branch, embedding-level fusion, attempts to fuse the
side-information with item ID at the embedding layer,
intending to inject its contextual information into item
representation. NOVA [15] calculates the attention score with
Query, Key for this integrated representation but Value for
pure item embedding. DLFS-Rec [12] represents the item
and side information by stochastic Gaussian distribution
to handle the uncertainty of item sequence. MSSR [28]
exploits the association between item ID sequence and side-
information sequence with intra and inter-sequence attention
scores to enhance user representation. Another branch,
attention-level fusion, suggested changing the fusion stage
from the embedding layer to the self-attention layer. DIF [10]
point out that embedding-level fusion cause degradation of
expressiveness regarding the rank of attention matrix and
demonstrate that attention-level fusion solve the problem.
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VII. CONCLUSION
In conclusion, we considered that item attribute side-
information and user behavior side-information show differ-
ent properties with respect to item ID, while previous works
would regard them as equal. We analyzed previous fusion
architectures in terms of the correlation between an item
and the side-information and confirmed that embedding-level
fusion is optimal for attribute and attention-level fusion is for
behavior. Furthermore, we suggest two self-supervised learn-
ing tasks for two types of side-information, which properly
consider their properties. We validate the effectiveness of the
proposed method across various domains. In future research,
we aim to explore the advanced fusion method to adaptively
differentiate effective and non-effective side-information.

APPENDIX A FINDING ABOUT HIDDEN
REPRESENTATION OF TRANSFORMER
Yang et al. [17] found that any hidden states in the
ReLU-activated Transformer are equivalent to a summation
of linear projections of input vectors and additive bias of the
linear layer. This is represented as:

hn =

m∑
k=1

ekiW
k
X +

L∑
l=1

blW l
B

=

m∑
k=1

ekidW
k
X +

m∑
k=1

eksW
k
X +

L∑
l=1

blW l
B (12)

where eki denotes the k-th integrated item embedding, bl

denotes the parameter of additive bias at the l-th layer of the
model, ekid denote k-th item ID embedding, and eks denote
embedding of the k-th side-information. W k

X and W l
B is the

linear transformation matrix for k-th item embedding and
additive bias at l-th layer, respectively

APPENDIX B MORE ANALYSIS ON FUSION
In this section, we introduce two fusion operations: gating
and concatenation. Then, we demonstrate that they, beyond
addition operations, also contribute to the correlation in
the self-attention module. Finally, we show that these two
operations, like the addition operation, increase correlation
at the prediction layer.

Firstly, we explain the concatenation and gating operation.
As explored in [15], we define the concatenation operation
to concatenate all side information, followed by a fully
connected layer to uniform the dimension:

Fconcat (f1, . . . , fm) = [f1∥ . . . ∥fm]W

= [f1∥ . . . ∥fm][W1∥ . . . ∥Wm]⊤

= f1W⊤

1 + · · · + fmW⊤
m (13)

where f1, . . . , fm ∈ R1×d are input features, W1, . . . ,Wm ∈

Rd×d are learnable weight matrix, and ∥ denotes con-
catenation. The concatenation operation applies a linear
transformation to each input feature individually and adds up

the results. We also define gating operation as:

Fgating(f1, . . . , fm) =

m∑
i=1

G(i)fi

= G(1)f1 + · · · + G(m)fm
G = softmax(FWF ) (14)

where F is matrix form of given feature [f1, . . . , fm] ∈ Rm×d

and WF
∈ Rd×1 is a learnable vector. G ∈ Rm×1 is a vector

and G(i) is i-th scalar element of the vector. In short, the
gating operation also results in a sum of input features being
weighted by scalar transformations.

Now, we show that the two operations introduce the
correlation in the self-attention module. When we apply
concatenation operation for embedding-level fusion, attention
score αjk is described as:

αjk

=

(
Fconcat (ejid , e

j
s)WQ

) (
Fconcat (ekid , eks )WK

)⊤
√
d

=

((
ejidW

⊤

1 + ejsW⊤

2

)
WQ

) ((
ekidW

⊤

1 + eksW
⊤

2

)
WK

)⊤
√
d

=

(
ejidW

⊤

1 WQ

) (
ekidW

⊤

1 WK
)⊤

√
d

+

(
ejidW

⊤

1 WQ

) (
eksW

⊤

2 WK
)⊤

√
d

+

(
ejsW⊤

2 WQ

) (
ekidW

⊤

1 WK
)⊤

√
d

+

(
ejsW⊤

2 WQ

) (
eksW

⊤

2 WK
)⊤

√
d

(15)

where ekid , e
k
s ∈ Rd are the item ID embedding and the

side-information embedding of k-th interaction, WQ,WK ∈

Rd×d are learnable weight matrix. When we apply gating
operation for embedding-level fusion, attention score αjk is
described as:

αjk =

(
Fgating(ejid , e

j
s)WQ

) (
Fgating(ekid , eks )WK

)⊤
√
d

=

((
Gj(1)e

j
id + Gj(2)e

j
s

)
WQ

) ((
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k
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s

)
WK
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√
d

=
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j
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+

(
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j
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) (
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) (
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k
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√
d

(16)
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We can see that the second and third term in both
equations introduces the correlation between item ID and
side-information.

Furthermore, we show that embedding-level fusionwith the
two operations increases the correlation between item ID and
side-information like the one with addition operation. The
relevance score with concatenation operation is computed as:

r(u,i) = ei · hn⊤

= ei ·

(
n∑

k=1

ekiW
k
X +

L∑
l=1

blW l
B

)⊤

= Fconcat (eid , es)

·

(
n∑

k=1

Fconcat (ekid , e
k
s )W

k
X +

L∑
l=1

blW l
B

)⊤

= (eidW⊤

1 + esW⊤

2 ) ·

( m∑
k=1

ekidW
⊤

1 W
k
X

+

m∑
k=1

eksW
⊤

2 W
k
X +

L∑
l=1

blW l
B

)⊤

= eidW⊤

1 · (
m∑
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⊤

1 W
k
X )

⊤
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1

· (
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k
X )

⊤
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2 · (
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k
X )

⊤
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2

· (
m∑
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eksW
⊤

2 W
k
X )

⊤

+ (eidW⊤

1 + esW⊤

2 ) · (
L∑
l=1

blW l
B)

⊤

The relevance score with the gating operation is computed as:

r(u,i) = ei · hn⊤

= ei ·

(
n∑

k=1

ekiW
k
X +

L∑
l=1

blW l
B

)⊤

= Fgating(eid , es)

·
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k
X +

L∑
l=1

blW l
B

)⊤
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l=1

blW l
B)

⊤

We can see that embedding-level fusion with above two
operations also increases the correlation between item ID and
side-information in prediction layer since the first four terms
in relevance score calculation are dot-product similarity terms
between them.
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