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ABSTRACT Accurate, non-destructive classification of maize diseases is crucial for efficiently managing
agricultural losses. While existing methods performwell in controlled environment dataset like PlantVillage,
their accuracy often declines in real-world scenarios. In this work, ResNet50 is enhanced by integrating
a dynamic convolution module and triplet attention modules. This method adaptively recalibrates the
convolution kernel weights, establishing dependencies across spatial and channel dimensions through tensor
rotation and residual transformations. The proposed method surpasses state-of-the-art alternatives, reaching
98.79% validation accuracy on the PlantVillage maize dataset and 97.47% on the Corn Leaf Disease Dataset
through cross-validation. Even with complex backgrounds, it attains an average accuracy of 88.33% for
classifying six types of maize diseases. Experimental results confirm its effectiveness in maize disease
detection.

INDEX TERMS Attention mechanism, dynamic convolution, fine-grained visual classification, maize leaf
disease, residual network.

I. INTRODUCTION
Maize contributes significantly to global food security and is
widely cultivated across the Americas, Africa, and Asia. The
intensification of maize cultivation requires rapid, accurate,
and non-destructive methods for classifying maize diseases,
which is crucial for effective loss management. Deep learning
has proven to be an effective method for plant disease
classification due to its strong ability to extract features and
recognize patterns [1], [2].

However, most existing models rely on samples collected
under controlled laboratory conditions. Unlike laboratory
environments, field conditions introduce complexities such
as varied backgrounds, inconsistent lighting, and diverse
feature stages. Consequently, these models must recognize
the variable disease symptoms of size, color, and shape
and capture the correlations between spatial and channel
features. In the field, two main challenges arise in identifying
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maize leaf diseases: 1) Disease symptoms on maize leaves
vary widely in size, shape, and severity, making accurate
classification by models challenging. 2) The features of
diseased maize leaves are often influenced by varying
backgrounds, which introduce visual noise and make it more
difficult for models to identify key disease features, reducing
their accuracy.

To address these challenges, models must effectively
capture the correlations among spatial and channel features.
Researchers have proposed attention mechanisms, such as
the Convolutional Block Attention Module (CBAM) and the
Squeeze-and-Excitation (SE) module, to enhance the ability
to capture dependencies in spatial and channel features.
Additionally, the increase in the model’s width or depth
has been proven to enable the recognition of more complex
features. However, handling cross-dimensional interactions
remains challenging, and increasing model width and depth
often results in higher computational complexity.

This study presents a novel ResNet50-based model variant
designed to improve the accuracy of classifying maize
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diseases from field images. The proposed model improves
the representation and generalization ability of the original
ResNet50 by integrating dynamic convolution and triplet
attention modules. Specifically, dynamic convolution [3]
provides a superior non-linear representation by adapting
the kernel weights for each image without expanding the
network’s architecture. Additionally, the triplet attention
module [4] strengthens the detection of cross-dimensional
relationships by employing rotational and averaging strate-
gies to combine spatial attention, thus reinforcing the
interaction between channel and spatial dimensions. As a
result, the enhanced model performs robustly in detecting
complex disease features in real-world backgrounds, even
with limited data availability.

1) A new structure is presented by enhancing the ResNet50
model, which is used to identify healthy and five-class maize
diseases. This model achieves higher classification accuracy
than all other compared models.

2) To enhance the representational abilities of the model,
dynamic convolution modules have been integrated within
the residual connections of the ResNet50 model. This
adaptation allows for the convolutional kernel weights to be
fine-tuned responsively to the image content, thereby enhanc-
ing model performance without expanding the network’s
depth or width.

3) The DY-Tri-ResNet50 model also features a triplet
attention module, which increases classification accuracy by
efficiently capturing cross-dimensional interaction data.

4) The proposed model was tested on both public and cus-
tom datasets. The results demonstrate that themodel performs
consistently well across a range of background conditions,
outperforming state-of-the-art models in accuracy.

II. RELATED WORK
Deep learning is widely used in plant disease classifica-
tion, with models such as Inception [5], ResNet [6], and
DenseNet [7]. These methods empower farmers to make
timely decisions during the early stages of disease develop-
ment through effective classification and pattern recognition.
These models generally adopt a two-module architecture,
comprising a feature extractor and a classification head,
as shown in [8] and [9]. Zhao et al. [10] employed the
ResNet50 architecture as the base model and proposed an
image-based Plant Disease Severity Estimation Network,
achieving an average accuracy of 98% across all classes
in the PlantVillage dataset. Waheed et al. [11] conducted
experiments on selected grape diseases from the PlantVillage
dataset using AlexNet, MobileNet, and ShuffleNet. Their
results showed that AlexNet achieved the highest accuracy of
99.01%, while MobileNet, which has fewer parameters and is
easier to train, achieved an accuracy of 95.34%. Wang et al.
[12] proposed a convolutional neural network (CNN) that
integrates Inception and residual structures, along with an
enhanced Convolutional Block Attention Module (CBAM).
Experimental results showed classification accuracies of
97.96%, 99.43%, and 95.20% for maize, potato, and tomato

diseases, respectively, in the PlantVillage dataset. Fan et al.
[13] introduced an optimized DenseNet architecture for
classifying maize leaf diseases. Their study reported an
average accuracy of 98.06% for identifying three maize
leaf disease categories and one healthy category in the
PlantVillage dataset.

In practice, the performance of these models may sig-
nificantly decrease when applied to field environments.
For instance, Xiong et al. [14] reported that an enhanced
ResNet101’s classification accuracy decreased from 98.91%
to 75.06% when applied outside laboratory conditions. The
decline in accuracy can be attributed to environmental
factors that obscure the disease symptoms in images.
Additionally, plant diseases exhibit both large-scale features
and fine-grainedwhich complicate the detection process [15].
Attention mechanisms can help the network to focus on
disease-relevant features while suppressing irrelevant ones,
thereby enhancing its robustness and classification accuracy
in challenging environmental conditions.

Qi et al. [16] extended the public dataset PlantVillage
by adding real-world disease samples from the internet and
actual agricultural sites. The authors proposed an improved
MobileNet network. Experimental results indicated that the
model achieved an accuracy of over 80% on the PlantVillage
dataset mixed with field samples. Masood et al. [17] pro-
posed an improved version of the EfficientNet architecture
for classifying cucumber leaves into four categories using
field-collected data. The modified network achieved a mean
average Precision (mAP) of 85.52% on the test set. Feng et al.
[18] proposed an optimized ResNet architecture, SE-ResNet,
and evaluated it on a late blight potato dataset containing
15,360 images. The proposed architecture achieved an
accuracy of 73.9% on the test dataset.

Recent studies have focused on enhancing the ResNet
architecture for plant disease classification, successfully
mitigating the vanishing and exploding gradient problems
commonly encountered in deep neural networks. Notably,
models such as MaizeNet [19], ResNet-CBAM [20], and
PDICNet [21] mainly focus on modifying the fundamental
components of ResNet to customize their designs for specific
classification tasks. Incorporating attention mechanisms has
proven advantageous for ResNet in terms of efficiency and
performance, as evidenced by studies on CS-ResNet [22],
FA-ResNet [23], and ResNet-Dropped [24].

III. MATERIALS AND METHOD
A. BASE FRAMEWORK
In this work, an enhanced ResNet50 model is proposed for
the identification of maize leaf diseases. A key feature of
the ResNet [6] architecture lies in its ‘‘residual blocks.’’
Each of these modules consists of at least two convolutional
layers and includes skip connections that enable the input to
bypass intermediate layers and flow directly to the output,
creating an effective ‘‘shortcut.’’ This innovative design not
only improves feature reuse but also mitigates the vanishing
gradient problem. ResNet50, which consists of 50 layers,
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FIGURE 1. The network architectures for ResNet50.

enables more effective gradient flow through the network,
a crucial factor for training deeper networks efficiently.
Recent studies have demonstrated that ResNet50 and its
variants achieve exceptional performance in a variety of plant
disease classification tasks. A detailed visual representation
of the ResNet50 architecture is provided in Fig 1.

B. DYNAMIC CONVOLUTIONAL
In traditional Convolutional Neural Networks, the convo-
lution operation is commonly defined as y = g

(
W T x+b

)
.

W represents the convolutional weight matrix, b represents
the convolutional bias vector, and represents the activation
function. In such networks, the weightsW and biases b of the
convolutional kernels are learned during the training process
and remain constant throughout the forward and backward
propagation of the network. Thismeans that the convolutional
kernel’s weights and biases are static and do not change in
response to variations in the input data.

Dynamic convolution, also called to as conditional con-
volution. In this type of convolution, the weights of the
convolutional kernel can dynamically change based on input
data. An example of thesemethods is Dynamic Convolutional
Networks [8]. Unlike static convolutional kernels, dynamic
convolution adapts its convolutional kernel by dynamically
altering both the weights Ŵk (x) and biases b̂k (x) according
to variations in each input x. The overall process of dynamic
convolution is illustrated, as in (1).

y= g
(
Ŵ T (x)x+ b̂(x)

)
Ŵk (x) =

k∑
i=1

AiWi, b̂k (x) =

k∑
k=1

Aib̂i

i=k∑
1

Ai = 1 Ai ∈ [0,1] (1)

To simplify calculations, the impact of the bias term is
neglected in this paper. Therefore, the simplified dynamic

FIGURE 2. Dynamic convolutional layer.

convolution is expressed, as in (2).

y= g
(
Ŵ T (x)x

)
(2)

Here, the convolutional kernel weights for dynamic
convolution are defined by aggregating multiple (k) linear
functions, as in (3).

Ŵk (x) =

k∑
i=1

AiWi

(
i=k∑
1

Ai = 1,Ai ∈ [0,1]

)
(3)

The aggregation of dynamic convolutional kernels rep-
resents an effective strategy to enhance the network’s
expressive capability while maintaining control over the
model size. This approach does not introduce additional
parameters by increasing the depth or width of the network.
Instead, it enhances the model’s representational power
without significantly adding to the computational burden,
by employing parallel kernel aggregation and shared output
channels. The structure is illustrated in Fig 2.

C. TRIPLET ATTENTION
Triplet attention mechanism consists of three simultaneous
branches, two of which are responsible for understanding
interactions across different dimensions between the channel
dimension, C, and any other spatial dimension. The remain-
ing branch, similar to CBAM [23], is used for creating focus
on spatial features. Fig 3 illustrates the structure.

Given an input tensor χ ∈ R(C×H×W ), which is fed into
three branches referred to as χ = χ in

1 = χ in
2 = χ in

3 , the
first branch aims to create a relationship between the height
dimension H, and the channel dimension C. To this end, χ in

1
is initially rotated 90◦ counterclockwise along the H axis
to yield χ ′

1 ∈ R(W×H×C). χ ′

1 is then dimensionally reduced
through Z-pool to obtain χ ′′

1 ∈ R(2×H×C). Subsequently, χ ′′

1 is
passed through a standard convolutional layer with a kernel
size of k×k, followed by a Batch Normalization (BN) layer,
resulting in χ ′′′

1 ∈ R(1×H×C). Tensor χ ′′′

1 is then transmitted
through a sigmoid activation layer, σ

(
χ ′′′

1

)
, to produce

attention weights for tensor χ ′

1, producing χ∗

1 ∈ R(W×H×C).
Finally,χ∗

1 is rotated 90
◦clockwise along the H axis to achieve

χout
1 ∈ R(C×H×W ).
In the second branch, the objective is to build interaction

between the width dimension W, and the channel dimension
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FIGURE 3. Illustration of the triplet attention which has three branches.

C.χ in
2 is rotated 90◦counterclockwise along the W axis to

obtain χ ′

2 ∈ R(H×C×W ). χ ′

2 is then reduced in dimension
via Z-pool to get χ ′′

2 ∈ R(2×C×W ). Afterward, χ ′′

2 is passed
through a standard convolutional layer with a kernel size
of k×k, followed by a BN layer, to obtain χ ′′′

2 ∈ R(1×C×W ).
Tensor χ ′′′

2 is subsequently sent through a sigmoid activation
layer σ

(
χ ′′′

2

)
, to produce attention weights for tensor

χ ′

2, resulting in χ∗

2 ∈ R(H×C×W ). Lastly, χ∗

2 is rotated
90◦clockwise along the W axis to derive χout

2 ∈ R(C×H×W ).
In the third branch, χ in

3 is reduced in dimension by Z-pool
to obtain χ ′′

3 ∈ R(2×H×W ). Then χ ′′

3 is sent through a standard
convolutional layer with a kernel size of k×k, followed by
a BN layer, resulting in χ ′′′

3 ∈ R(1×H×W ). Next, tensor χ ′′′

3 is
passed through a sigmoid activation layer σ

(
χ ′′′

3

)
, to generate

attention weights for tensor χ ′

3, leading to χout
3 ∈ R(C×H×W ).

The Z-pool process is articulated in (4):

Z −pool(χ ) =
[
MaxPool0d (χ ),AvgPool0d (χ)

]
(4)

D. PROPOSED DY-TRI-RESNET50
ResNet50 is a widely recognized and powerful architecture in
plant disease classification tasks, known for its outstanding
performance in classification. Its modular design allows
for flexible modifications, making it a solid foundation
for further enhancements. Furthermore, Chen et al. [24]
demonstrated the efficacy of dynamic convolutional modules
in enhancing MobileNetV2, MobileNetV3, and ResNet-18
models, showcasing their ability to aggregate information
in a non-linear fashion for improved image recognition.
Jiang et al. [25] further leveraged dynamic convolution
modules and self-attention mechanisms to refine BERT and
its derivatives, achieving comparable performance metrics
while significantly reducing model complexity and training
expenses. Huang et al. [26] introduced an enhanced SD-CNN
model incorporating dynamic convolutions for brain disorder
identification. This modification resulted in a 3% and 2%
improvement in classification accuracy on two real-world
datasets compared to models without dynamic convolutions.
Huang et al. [26] optimized the DGLNet model by incor-
porating dynamic convolutions, achieving a classification
accuracy of 99.62% on the PlantVillage dataset, representing
a 0.6% improvement over the previous model. Building on
these advancements, dynamic convolutions are integrated

into the ResNet50 architecture to enhance the recognition
of complex features, without increasing its depth or width.
By replacing static convolutions with dynamic ones, the
model can adaptively adjust the convolutional weights for
each input sample, thereby improving its ability to capture
intricate patterns. This innovation enables the model to
more effectively handle a diverse range of features, thereby
improving the accuracy of disease classification in field
conditions.

Additionally, the proposed improved model introduces
a triplet attention module after each stage in ResNet50.
This module is specifically designed to capture complex
dependencies in the spatial and channel dimensions, aiding
the model in better distinguishing between different types
of plant diseases. This enhancement leads to an overall
improvement in classification accuracy. To avoid increasing
the depth of the model, the number of residual blocks in
ResNet50 has been reduced. Specifically, in this work, the
original ResNet-50 architecture, which consists of residual
blocks in a 3, 4, 6, 4 configuration, was modified to a
lighter version with a 3, 4, 4, 3 structure. This adjustment
reduces the number of residual blocks in each stage while
maintaining the overall hierarchical design of the network.
Such a modification aims to balance model complexity. Key
improvements have been introduced to the residual blocks of
ResNet50. Specifically, static convolutions are replaced with
dynamic convolutions, allowing the convolutional kernels
to adapt to the input data. This incorporation of non-linear
information enhances the model’s feature representation
capabilities. By addressing the complex characteristics of
maize diseases in real-world conditions, the model becomes
more adaptable to diverse features, leading to improved
classification accuracy. The framework of the proposed
Dy-Tri-ResNet50 model is illustrated in Fig 4.

In summary, the DY-Tri-ResNet50 model is designed
for maize disease classification. By integrating dynamic
convolution and triplet attentionmechanisms into the residual
blocks, the model enhances its generalization capabilities,
facilitating more accurate identification of maize diseases,
particularly in real-field conditions. This approach allows the
model to capture local features while preserving sensitivity
to global information, making it highly effective for precise
plant disease diagnosis in agricultural applications.
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FIGURE 4. The proposed Dy-Tri ResNet50 architecture.

E. MODEL EVALUATION INDEXES
Numerous metrics can be utilized to assess the performance
of models. In this study, Precision (P), Recall, and F1 Score
were selected to evaluate the models for Maize disease and
pest identification. Precision (P) refers to the percentage of
correctly predicted samples relative to all samples in the
model, as shown in (5):

P(%) =
TP

TP+FP
×100 (5)

Here TP (True Positive) represents the number of samples
correctly classified as positive, TN (True Negative) as nega-
tive, FP (False Positive) as incorrectly classified as positive,
and FN (False Negative) as incorrectly classified as negative.
Recall measures the proportion of positive samples that are
correctly classified. The formula for calculating Recall is
shown in (6):

Recall(%) =
TP

TP+FN
×100 (6)

In certain contexts, such as medical diagnosis or anomaly
detection, Recall is more critical than Accuracy because the
primary concern is to accurately identify the positive samples
rather than just the proportion of correct classifications of
the model. F1 Score is the harmonic mean of Precision and
Recall. It takes into account both the accuracy and recall of
the model. The formula for calculating the F1 Score is shown
in (7):

F1(%) =
2TP

2TP+FP+FN
×100 (7)

IV. RESULTS AND ANALYSIS
A. TEST PLATFORM AND PARAMETER SETTING
The experimental platform used in this study is composed
of the following hardware and software environments: the
hardware includes an Intel Core i7-12700H processor and an
NVIDIA RTX A2000 8G Laptop GPU, while the software

environment is based on theWIN11 operating system, Python
3.7, and the PyTorch deep learning framework.

B. DATASET
In this section, three datasets are used for the experiments:
PlantVillage, maize Leaf Disease, and a self-constructed
dataset. PlantVillage [28] is a publicly available database
widely recognized as a benchmark for testing algorithms
in plant disease classification. The maize Leaf Disease
dataset [29], provided by Sandi Indika Saputra (Kaggle,
2023), contains images of maize leaves categorized into four
classes. Additionally, a self-constructed dataset, character-
ized by challenges such as data imbalance and insufficient
samples, is included. These datasets collectively encompass
six categories of maize leaf diseases. Among them, Cer-
cospora Leaf Spot (CLS), Northern Leaf Blight (NLB), and
Common Rust (CR) are the most prevalent. NLB, caused by
the pathogen responsible for maize leaf blight, presents as
yellow to brown spots on the leaves that gradually enlarge,
potentially leading to leaf death. CLS, caused by the fungus
Cercospora zeaemaydis, initially appears as round to oval
pale yellow or brown spots, which darken to purple or
brown as the disease progresses. CR, caused by the fungus
Puccinia sorghi, results in small, circular rust-colored or dark
brown spots on maize leaves, which may cause leaf fall in
severe cases. In addition, Phaeosphaeria Leaf Spot (PLS),
a relatively uncommon fungal disease in maize, causes round
to oval lesions on maize leaves, often surrounded by distinct
yellow halos as the disease progresses. Zinc Deficiency (ZD),
a common nutrient deficiency in maize leaves, results in
interveinal chlorosis on maize leaves, particularly at the tips
and margins.

C. EXPERIMENTS ON THE PUBLIC DATASET
1) EXPERIMENTS ON THE MAIZE DATASET FROM THE
PLANTVILLAGE
To evaluate the performance of the proposed method,
we extracted maize-related data from the PlantVillage
dataset, forming a maize dataset with four categories: CLS,
NLB, CR, and healthy leaves. However, the extracted dataset
exhibited an imbalance, with a significantly lower number
of CLS images compared to the other categories. To address
this issue, standard offline augmentation techniques were
employed to balance the dataset.

Specifically, a portion of the original images from all four
categories was randomly selected as a validation set formodel
evaluation. Then, 50 CLS images and 20 NLB images were
randomly chosen and augmented using techniques such as
flipping, rotation, cropping, random erasing, and resizing to
increase the number of images in these categories. Following
augmentation, the total maize dataset consisted of 5,796
images, including 1,349 CLS images, 1,421 CR images,
1,528NLB images, and 1,498 healthy leaf images. All images
were resized to a uniform dimension of 256 × 256 pixels.
A detailed overview of the dataset is provided in Table 1.
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TABLE 1. Detailed dataset the maize dataset from the PlantVillage.

Model training and validation were conducted on the
Maize dataset using the proposed Dy-Tri-ResNet50 archi-
tecture. Additionally, to further verify the effectiveness of
the proposedmethod, we conducted comparative experiments
with six influential CNN architectures, such as DenseNet [5],
InceptionV3 [3], Xception [30], InceptionResNetV2 [31],
MobileNetV3 [32], and ResNet [4]. Moreover, TheMaizeNet
model, an enhanced version of ResNet50 proposed by
Masood et al. [17], was also included for comparison.
To optimize performance based on the experimental

hardware, a batch size of 8 was used. The model was
trained for 20 epochs, with the best-performing model being
saved automatically. The cross-entropy loss function was
employed, and a learning rate of 0.001, commonly used for
small tomedium-sized datasets, was applied. The training and
validation loss curves are shown in Fig 5.

Figures 5(f) and 5(h) show that the proposed model
and InceptionResNetV2 demonstrate the most stable and
consistent performance, with closely aligned training and
validation loss curves and minimal signs of overfitting.
This demonstrates the proposed model’s strong ability to
capture the nonlinear features of plant diseases, validat-
ing its effectiveness in addressing complex plant disease
classification tasks. The model is particularly effective at
identifying the intricate features of maize disease images,
which often have subtle inter-class differences and intra-class
similarities. Similarly, InceptionV3 and MaizeNet showed
relatively stable validation loss trends and balanced training
progress.

In contrast, the ResNet50, DenseNet121, and Xception
models demonstrated clear signs of overfitting, as indicated
by the divergence between their training and validation loss
curves after 10 epochs. While training losses continued to
decrease, validation losses fluctuated or increased, indicating
strong performance on training data but poor generalization
to unseen validation data. This overfitting can be attributed
to the complex nature of maize disease images, which
feature overlapping characteristics across different disease
categories and considerable variability within the same
category. ResNet50 and DenseNet121 appeared to focus on
memorizing specific details of the training data, hindering
their ability to differentiate subtle inter-class variations and
maintain consistency within classes. Although Xception
initially performed well, the instability in its validation loss
suggests difficulty in learning the fine-grained texture and
structural features of disease images, likely due to its reliance
on deep separable convolutions, which are highly sensitive to
such details.

TABLE 2. The results of different model training and testing on the public
dataset.

Additionally, a comparison was made with methods
reported for maize disease classification on the PlantVillage
dataset. Liu et al. [15] proposed the RIC-Net network,
which utilizes three simplified RI-Block modules, achieving
a classification accuracy of 97.69% on the maize disease
subset of the PlantVillage dataset. Based on the experimental
results obtained from the extracted maize dataset and the
reported performance of the RIC-Net network, the proposed
model demonstrates superior test accuracy compared to all
previously reported models. The test accuracies of different
methods are summarized in Table 2.

The results presented in Table 2 indicate that the proposed
model achieved a training accuracy of 98.85% and a testing
accuracy of 98.79%, with both values closely aligned.
It outperformed all other compared models on the unseen
test set, achieving the highest accuracy of 98.79%. This
demonstrates the model’s strong generalization capability.
The minimal gap between training and testing accuracy
further emphasizes its stability and ability to adapt effectively
to unseen data.

2) CROSS-VALIDATION ON THE CORN LEAF DISEASE
DATASET
In this subsection, K-fold cross-validation is employed to
evaluate the performance of these models. This method
effectively mitigates the issue of model overfitting while
providing a more reliable performance assessment for
the proposed model. The same cross-validation folds and
training-validation splits are applied consistently across all
models in this study.

The Corn Leaf Disease dataset, used for evaluation,
contains images of healthy leaves and three common disease
categories: CLS, NLB, and CR, with 1,000 samples per
class, totaling 4,000 images. All images were resized to
256×256 pixels and normalized to ensure consistency in
the model input. Data augmentation techniques, including
random rotation, flipping, and cropping, were applied during
training to enhance the model’s generalizability.

Commonly used values for K in cross-validation are 5 or
10. Considering the dataset size and hardware limitations,
the data was divided into five equally sized folds. Each fold
was sequentially used as the validation set (20% of the data),
with the remaining 80% reserved for training. For each fold,
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FIGURE 5. Training and validation loss curves of 8 trained models.

the model was trained for 20 epochs with a learning rate of
0.001, and a weight decay of 0.0001 was applied to mitigate
overfitting. A cosine annealing learning rate scheduler was
used to dynamically adjust the learning rate during training.
The model’s performance was evaluated after each epoch
using the corresponding validation fold. The cross-validation
results were averaged across the five folds to provide a final
assessment of the model’s performance, ensuring consistency
across different data subsets. The test results for the various
methods are summarized in Table 3.

TABLE 3. Results of cross-validation on the Corn Leaf Disease dataset.
Here, ‘Av’ represents the average best accuracy, and all values in the table
are rounded to two decimal places. The values are in %.

As shown in Table 3, the proposed model outperformed
all other models, achieving the highest average accuracy of
97.47% across five folds. This demonstrates the model’s
strong generalization ability and robustness across different

data splits. Its best performance was in Fold 5, with an
accuracy of 98.00%, highlighting its stability and reliabil-
ity. While InceptionV3, InceptionResNetV2, and MaizeNet
showed competitive results with average accuracies of
97.17%, 96.98%, and 96.70%, respectively, their perfor-
mance was less consistent. ResNet50, MobileNetV3, and
DenseNet121 achievedmoderate accuracy but fell short of the
proposed model. The lowest average accuracy was recorded
for Xception at 94.10%, reflecting its limitations in handling
the complexities of the Corn Leaf Disease dataset. These
results confirm that Dy-Tri-ResNet50 is highly effective in
capturing essential features and managing the variability of
the dataset, making it the most robust and reliable model for
maize disease classification.

D. EXPERIMENTS ON THE COLLECTED DATASET
The effectiveness of the proposed model on real-world field
samples was evaluated using data samples for five types of
maize diseases, which were collected from online sources.
These include 78 samples for NLB, 77 for CLS, 144 for
PLS, 63 for CR, and 166 for ZD. Additionally, 149 images
of healthy maize leaves were gathered to form the collected
dataset. The combined dataset contains images of NLB, CLS,
and CR from both laboratory and field environments, whereas
the samples for the PLS, ZD, and healthy categories are
exclusively derived from field images. This dataset highlights

6840 VOLUME 13, 2025



F. Tang et al.: Identification of Maize Diseases Based on Dynamic Convolution and Tri-Attention Mechanism

three common challenges encountered in field applications
of plant disease classification tasks: (1) data imbalance,
(2) insufficient sample numbers per class, and (3) complex
backgrounds and lighting conditions. Examples of these
categories are illustrated in Fig 6.

FIGURE 6. Images of maize leaf diseases.

Given the limitations of the dataset, this study deviates
from the commonly used 80% training and 20% testing
split. Instead, 50 raw images were randomly selected from
each test category to form the validation set for model
evaluation. This balanced test set approach is commonly
used in disease classification tasks [33], [34]. Offers several
advantages. First, it minimizes bias by ensuring each category
contributes equally to performance evaluation, thus reducing
the influence of categories with larger sample sizes. Second,
it allows for a fair comparison by maintaining consistent
representation across categories, leading to an unbiased
assessment of the model’s performance. Table 4 shows
the distribution of maize disease types and their respective
sample sizes in both the training and test sets.

TABLE 4. Detailed information of the self-built dataset. Here, the data in
parentheses represents the number of samples with real field
backgrounds.

Data augmentation can be classified into online and offline
methods. Online augmentation, which modifies data during
input to the model without increasing the original dataset
size, is typically used for large datasets. In contrast, offline
augmentation, which is more appropriate for smaller datasets,
increases the data volume by applying various geometric
transformations. In this study, offline augmentation tech-
niques were employed to address the limitations of the
sample size. These techniques included random brightness
adjustments to simulate varying lighting conditions, thereby

improving the model’s robustness to lighting variations.
Random erasing was also applied to reduce reliance on
specific image details, enhancing the model’s ability to
handle occlusions andmissing segments. Furthermore, image
flipping was used to increase the diversity of the dataset.
These augmentation methods expanded the dataset size. The
experimental parameters in this section were consistent with
those used in Section III-C, and all methods, including the
proposed model and comparison models, were tested under
the same conditions. The results are summarized in Table 5.

TABLE 5. Comparison of the results of different models on the collected
dataset.

The superior performance of the proposed model, achiev-
ing 88.63% Precision, 88.33% Recall, and 88.28% F1-score,
can be attributed to its strong generalization, enhanced by
dynamic convolution and tri-attention mechanisms. Dynamic
convolution enables adaptive focusing on key spatial features,
while tri-attention effectively captures spatial and channel
dependencies, addressing subtle inter-class differences and
complex backgrounds. Furthermore, data augmentation tech-
niques, including random brightness adjustments, random
erasing, and image flipping, enhance the model’s robustness
to lighting variations and occlusions. The higher Recall,
compared to InceptionV3, reflects improved sensitivity
to true positives, which is essential for accurate disease
detection. In contrast, models like ResNet50, DenseNet121,
and Xception face challenges in handling fine-grained details
and complex backgrounds. Overall, the proposed model
outperforms others in real-world maize disease classification
due to its advanced architectural components and the effective
use of data augmentation strategies.

E. ABLATION STUDY
To better assess the contribution of each component in the
proposed model, we progressively incorporated the triplet
attention mechanism and Dynamic Convolution into the orig-
inal ResNet50 architecture. As described in Section III-D,
we reduced the number of residual blocks in ResNet50
when incorporating the triplet attention layers to avoid
increasing the model’s depth. This ensures that the observed
performance improvements are not attributed to changes in
the model’s depth or width. The detailed experimental results
are presented in Table 6.

The confusion matrix is an essential tool for evaluating
the performance of classification models, as it provides
insights into the model’s ability to correctly classify different
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TABLE 6. Table 1: Detailed configurations of different model variants.
Here, Dy represents dynamic convolution, and Tri represents the triplet
attention mechanism.

FIGURE 7. Confusion matrices of 4 models.

categories and identifies areas of strength and error [35].
In the context of maize disease classification, each row
of the matrix represents the true class, while each column
corresponds to the predicted class. The diagonal values
indicate the percentage of correctly classified instances,
while the off-diagonal values represent misclassifications.
By comparing the confusion matrices of models with and
without the Dy and Tri components, we can visually assess
the performance of each model on the test dataset, as shown
in Fig 7 (a) to (d).

In this ablation study, we assessed the performance of
ResNet50 and its variants across six categories. Fig 8 shows
the classification accuracy for each category under identical
experimental conditions.

The baseline ResNet50 demonstrated strong performance,
particularly in CLS, CR, and ZD, with accuracy values of
88%, 94%, and 92%, respectively. The Dy-ResNet50 model
improved performance across most classes, achieving 98%
in CR and 96% in ZD. The Tri-ResNet50 model showed
enhanced results in the Healthy and ZD categories, with
accuracy reaching 86% and 96%, respectively. The combined
Dy-Tri-ResNet50 approach achieved the highest accuracy in
PLS at 88%, along with strong performance in healthy and
CR at 86% and 98%, respectively. However, it showed a slight
decrease in CLS 74%, indicating that the integration of both
dynamic convolution and triplet attention may complicate
feature extraction in some cases.

FIGURE 8. Accuracy of each class.

The Dy-Tri-ResNet50 model employs dynamic convo-
lution to adaptively adjust its convolutional kernels in
response to varying inputs, thereby enhancing its ability to
focus on critical areas of the image. This adaptability is
crucial for disease detection in complex backgrounds, as it
reduces background noise and enables the model to focus
on the key features of maize disease images. Moreover, the
triplet attention mechanism refines the model’s focus by
controlling attention allocation across different regions and
analyzing relationships between various image features. This
mechanism helps the model avoid learning from irrelevant
areas, enabling it to allocate more computational resources to
extracting disease-relevant features.

Overall, the proposed Dy-Tri-ResNet50 model, which
integrates dynamic convolution with multi-dimensional
attention, excels in identifying and diagnosing maize disease
areas, particularly in complex backgrounds. This combined
approach significantly improves recognition precision by
reducing errors caused by background noise and enhancing
the model’s ability to differentiate disease-specific features,
thus boosting overall performance compared to models that
rely on a single strategy.

V. CONCLUSION
This work presents a novel network for maize leaf disease
classification, built on residual connection blocks and
incorporating dynamic convolution and a triplet attention
mechanism to enhance the model’s ability to capture fine-
grained features. This approach facilitates effective cross-
dimensional interactions, thereby improving classification
accuracy and training stability. Dynamic convolution enables
themodel to adjust kernel weights for each image, providing a
nonlinear representation that outperforms static convolutions.
Furthermore, the triplet attention mechanism strengthens
the detection of cross-dimensional relationships, improving
synergy between channel and spatial dimensions.

To evaluate the model’s performance, we used maize
images from the PlantVillage dataset. The data was split
into training and testing sets, with data augmentation
applied. Compared to seven models, including InceptionV3,
Xception, ResNet50, and Inception-ResNetV2, our model
achieved an accuracy of 98.79%, surpassing the reported
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accuracy of 97.96% for RIC-Net under the same experimental
conditions. Cross-validation on the Corn Leaf Disease dataset
yielded an average best accuracy of 97.47% across five
folds. Additionally, testing on a real-world maize dataset
with realistic background conditions showed that our model
outperformed the comparison models, achieving an accuracy
of 88.33%.

In future work, we will focus on three primary objectives:
optimizing data collection methods to ensure diverse and
representative disease samples, developing the framework
for multi-disease collaborative detection to improve overall
performance, and enhancing fine-grained disease region
localization to precisely identify infected areas. These efforts
aim to improve detection accuracy and facilitate the broader
application of models in real-world agricultural settings.
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