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ABSTRACT The construction of smart cities contributes to promoting residents’ life convenience and
sustainable energy development. Despite these advancements, the challenge of fully analyzing and under-
standing residents’ energy usage behaviors leads to inefficient energy use and potential economic losses.
Current resident anomaly detection technologies rely on single-source energy data, lacking detailed behavior
pattern analysis. Hence, this paper proposes a method to detect abnormal residential water and electricity
usage by incorporating multi-source information. Specifically, the correlation between water and electricity
usage of residential customers is analyzed based on real metering data and the use of the Copula distribution
function, followed by the integration of two innovative data mining techniques to form an anomaly
detection framework. The distance correlation coefficient algorithm is used to measure the relevance of
users’ water and electricity usage data. Then, the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) algorithm is utilized to cluster the distance correlation coefficient for users and detect
abnormal users whose distance correlation coefficient curves deviate from the normal user clusters. This
multi-source approach avoids single-source bias by improving the data accuracy over one-dimensional
methods. Experiments are implemented in a real low-voltage transformer area to prove the validity of the
proposed method.

INDEX TERMS Advanced metering infrastructure, behavior analysis, distance correlation coefficient,
multi-source information, smart cities.

I. INTRODUCTION
Smart cities improve the construction of urban infrastructure
by applying information and communication technology to
create an efficient, convenient, and eco-friendly management
system. It aims to fulfill residents’ economic, cultural, and
social needs, leading to sustainable development in social,
economic, and ecological aspects [1], [2], [3]. The smart grid
acts as the foundation and support for smart city development
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and provides energy security for smart cities. As the new trend
of power grid development in today’s world, smart grid not
only has superior resource allocation capabilities, but also can
realize the interaction of multi-source information and multi-
business systems, which holds considerable importance for
the establishment and growth of smart cities [4].
In the context of smart cities, abnormal detection of res-

idential water and electricity consumption has become an
important task. Public utility companies suffer from huge
economic losses and safety hazards due to energy theft,
metering errors, abnormal energy use, etc. For example,
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according to the statistical data from the Northeast Group, the
losses for energy companies covering 125 countries around
the world have reached 96 billion dollars [5]. Furthermore,
research in the field indicates a projected rise in world-
wide consumption of water and energy by 55% and 80%
respectively by themid-21st century [6]. Therefore, abnormal
detection of water and electricity is needed to help ensure
the efficient use of resources and prevent resource waste
or over-consumption. In this context, Advanced Metering
Infrastructure (AMI), as a pivotal part of smart cities, gathers,
relays, and displays data on the consumption of electricity,
water, gas, and heat. This is achieved through the widespread
deployment of smart meters, along with advanced wireless
communication and data management technologies. AMI not
only revolutionizes the mode of energy services but also
offers extensive data support for a comprehensive analysis
of consumer behavior. The implementation of AMI enhances
resource management efficiency and lays the groundwork for
promoting a more sustainable urban lifestyle.

Sincewater and electricity are the twomost frequently con-
sumed resources in residents’ daily lives, abnormal detection
of their data is crucial to ensuring the sustainable opera-
tion of the city and the quality of residents’ lives. Most
existing research therefore focuses on the detection of abnor-
mal data in water or electricity using artificial intelligence
techniques [7]. The methods can be mainly divided into
machine learning and deep learning. To address the chal-
lenge of high data labeling costs, Kou et al. developed an
anomaly detection method based on a contrastive learning
network, which effectively utilizes unlabeled data to detect
abnormal power consumption [8]. Wang et al. proposed
an improved Canopy-K Means unsupervised algorithm to
tackle the difficulty of classifying similar power consump-
tion patterns among users. By combining the Canopy-K
Means algorithm with the isolation forest algorithm, they
jointly constructed an abnormal power consumption detec-
tion model that leverages multi-layer fused feature data
analysis [9]. In response to issues related to dimensional-
ity and low data resolution, Ghamkhar et al. introduced a
method for detecting abnormal water meter data by inte-
grating DBSCANwith Lempel-Ziv complexity features [10].
Moghaddass and Wang design a model based on smart meter
data to detect user-level abnormal events [11]. This model
categorizes abnormal events into different levels, thereby
better-assisting utility companies in planning and mainte-
nance. Taking the fact that users may adjust the voltage
coils to realize electricity theft into consideration, Leite and
Mantovani use the voltage information recorded by smart
meters to identify abnormal electricity usage based on voltage
anomalies [12]. Zhu et al. introduce a method for network
detection that leverages a hybrid-order approach to represen-
tation learning [5], while Yang et al. establish an innovative
method for detecting anomalous electricity usage patterns,
utilizing normalized covariant measures to assess the linkage
between non-technical loss and electricity consumption [13].

In addition, Shin et al. combined the XG Boost and Light
GBM algorithms based on machine learning to develop a
model for predicting indoor water leakage in urban areas,
which provides a decision-making basis for water leakage
problems [14].

It is worth noting that most current methods only rely on a
single electricity or water consumption information, which
limits the comprehensiveness and reliability of anomaly
detection. For example, residential users exhibit significant
differences in their electricity usage behavior due to fac-
tors such as family size, occupation, and lifestyle habits.
In addition, the electricity usage patterns of normal users can
resemble those of certain abnormal users [12]. Therefore, the
information contained in the electricity usage data is limited,
and it may be difficult to accurately distinguish abnormal
electricity consumption behavior from normal electricity
consumption fluctuations based on meter data alone [15].
Similarly, a single water consumption data may also be
insufficient to differentiate between seasonal changes in nor-
mal water use and water leakage events. In addition, these
methods usually ignore the possible correlation between
water and electricity consumption behaviors, thus limiting a
deeper understanding and research on the energy consump-
tion behavior of residential users. Therefore, user behavior
analysis and anomaly detection research that integrates water
and electricity data can help to more comprehensively under-
stand and reveal residents’ energy consumption patterns,
provide a more reliable basis for resource management in
smart cities, and help achieve a more efficient and sustainable
operation mode for cities.

Thus, this paper proposes a method for anomaly detection
using water and electricity metering data collected by AMI.
Firstly, a qualitative analysis of users’ usage behavior is
conducted using daily and hourly scale water and electricity
metering data. Then, the bivariate joint distribution of daily
water and electricity usage data is quantitatively analyzed
using the Copula distribution function to further determine
the correlation of daily water and electricity metering data.
Based on the correlation analysis, a method for detecting
abnormal water and electricity usage behavior of residen-
tial users is proposed. The method mainly combines two
data mining methods, the distance relationship coefficient
algorithm and DBSCAN. The distance correlation coeffi-
cient curve is plotted by calculating the distance correlation
coefficient between electricity usage and water usage in the
transformer service area (TSA), while DBSCAN is used to
cluster the user distance correlation coefficients and detect
abnormal behavior users. Finally, a practical example within
the low-voltage TSA domain substantiates the applicability
of the suggested approach. The proposed method combines
information from multiple sources to avoid the biases of
relying on a single data source, thereby increasing accuracy
and better detecting abnormal behaviors of users. Themethod
not only reduces energy waste, but also provides a more
precise decision-making basis for urban resource allocation
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and services to support more efficient and eco-friendly man-
agement of resources within smart cities.

The rest of this paper is organized as follows. In Section II,
the correlation analysis of water and electricity usage
behaviors is presented. Section III presents the detection
framework and methodology for abnormal behavior users.
Section IV presents the results of numerical simulations.
In Section V, the conclusions and future works are pointed
out.

II. CORRELATION ANALYSIS OF WATER AND
ELECTRICITY USAGE
Compared to relying solely on a single data source, inte-
grating multi-source measurement data including water and
electricity allows for a more comprehensive capture of usage
details and their underlying correlations, thereby depicting
user behavior patterns more accurately. To conduct a more
detailed analysis of the correlation, quantitative and qualita-
tive analyses are performed using real TSA data collected by
smart meters.

A. QUALITATIVE ANALYSIS OF WATER AND ELECTRICITY
CORRELATION
The data for this study is gathered by State Grid Corporation
of China (SGCC) smart meters and originates from the inte-
grated demonstration area of multiple meters in China [16].
Accumulated minute-level water and electricity usage data of
a residential user in the demonstration area from January 1,
2021, to March 31, 2021, are used to obtain hourly and daily
water and electricity usage data, as shown in FIGURE 1.

FIGURE 1. Users’ water and electricity usage at different time scales.
(a) Hourly usage. (b) Daily usage.

In FIGURE 1(a), the hourly electricity usage primarily
lies in the range of 0.5 kW·h to 3 kW·h, while the hourly
water usage primarily lies in the range of 0 L to 60 L.
It is evident that the water usage curve exhibits a clear
period of zero usage during nighttime hours, contrasting
with the electricity usage curve which lacks an equivalent
zero-usage period, attributable to factors such as the standby
operation of electrical appliances. Furthermore, the patterns
of fluctuation in electricity and water usage exhibit notable
discrepancies, with the amplitude of variation significantly
diverging. Residential electricity usage is relatively stable,
whereas water consumption can increase dramatically due
to residents’ water usage behaviors being concentrated in
specific periods. Therefore, the correlation between water
and electricity usage behavior on the hourly time scale is not
obvious.

In FIGURE 1(b), the daily electricity usage primarily lies
in the range of 10 kW·h to 40 kW·h, while the daily water
usage primarily lies in the range of 100 L to 1200 L. The
daily water and electricity usage exhibit a certain periodicity,
with the line chart showing noticeable synchronization and
a roughly proportional fluctuation amplitude. It’s clear that a
distinct relationship exists between daily water and electricity
usage among low-voltage residential users. This suggests the
potential of utilizing this correlation to detect abnormal water
and electricity usage. The results show that the correlation
between water and electricity usage among residential users
varies at different time scales. The correlation between hourly
water and electricity consumption is weak, while the cor-
relation becomes stronger at the daily scale. Although the
users’ consumption patterns remain unchanged, the observed
time scale can lead to different results in the correlation
between water and electricity usage. To further validate the
correlation between daily water and electricity consumption,
a quantitative analysis will be conducted using distribution
functions.

B. QUANTITATIVE ANALYSIS OF WATER AND ELECTRICITY
CORRELATION
To delve deeper into the relationship between users’ water
and electricity consumption patterns, this section utilizes a
distribution function for a quantitative analysis of the joint
bivariate distribution concerning both water and electricity
usage data. The data utilized in this research is obtained
through SGCC smart meters in China’s multi-meter integra-
tion demonstration zone, including data on daily electricity
and water consumption for 50 standard household customers,
spanning from October 1, 2020, through September 30, 2021
[16].

The copula function outlines the interdependence charac-
teristics between variables and has been effectively applied in
the fields of statistics and finance in recent years [17], [18].
The bivariate Copula function C(u, v), which corresponds
to the joint distribution of two random variables, is defined in
the work by reference [19]. The copula distribution function
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is employed to analyze the relationship between the daily
consumption of water X and electricity Y .

1) DETERMINATION OF MARGINAL PROBABILITY
DISTRIBUTION FUNCTIONS FOR WATER AND ELECTRICITY
To determine the distribution types of daily water usage X
and daily electricity usage Y, a non-parametric approach is
employed to estimate the cumulative distribution function
of daily electricity and water usage [20]. The empiri-
cal distribution function can effectively approximate the
actual distribution function, the related results are shown
in FIGURE 2. As can be seen, the difference between the
results of the non-parametric estimation and the empirical
distribution function is very slight.

FIGURE 2. The distribution functions of X and Y. (a) Daily water usage X.
(b) Daily electricity usage Y.

2) COPULA FUNCTION SELECTION
After determining the empirical distribution and kernel dis-
tribution estimation of X and Y , the appropriate Copula
function structure can be selected according to the shape of
the bivariate frequency histogram(Ui,Vi)(i = 1, 2, · · ·, n)
shown in FIGURE 3. The frequency histogram can be used as
an estimate of the (U , V ) joint density function (i.e., Copula
density function). Copula functions can be classified into five
distinct categories [21]. Since (U , V ) joint density function

(i.e., Copula density function) has a symmetric tail, either
the bivariate normal Copula or the t-Copula can be chosen
to describe the correlation structure of daily water usage X
and electricity daily usage Y [18].

3) PARAMETER ESTIMATION AND MODEL EVALUATION
Based on the historical data of daily water usage X and elec-
tricity usage Y , the maximum likelihood method is utilized
for estimating the parameters of bivariate normal Copula and
bivariate t-Copula. Table 1 shows the parameters obtained
by model estimation. ρ is the linear correlation coefficient
between the variables, and k is the degree of freedom.

FIGURE 3. Frequency histogram of X and Y.

TABLE 1. Parameters by maximum likelihood estimation.

To ascertain the most fitting Copula function for the joint
distribution of water and electricity usage, the concept of the
empirical Copula function and the square Euclidean distance
index for goodness-of-fit detection are introduced [22].

Let (xi, yi)(i = 1, 2, · · ·, n) be the sample selected from the
two-dimensional sequence (X , Y ). Also, denote the empirical
distribution functions of X and Y as Fn(x) and Gn(y), and
define the sample empirical function Copula as follows:

Cn(u, v) =
1
n

n∑
i=1

I[Fn(xi)≤u]I[Gn(yi)≤v], u, v ∈ [0, 1] (1)

where I[·] is an indicative function, when Fn(xi) ≤ u,
I[Fn(xi)≤u] = 1, otherwise I[Fn(xi)≤u] = 0.
Euclidean distance of bivariate normal Copula(CGa) and

bivariate t-Copula(Ct) with empirical Copula(Cn) using the
following equation:

d2Ga =

n∑
i=1

∣∣Cn(ui, vi) − CGa(ui, vi)
∣∣2

d2t =

n∑
i=1

∣∣Cn(ui, vi) − Ct(ui, vi)
∣∣2 (2)
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The square of Euclidian distance between the bivariate
normal Copula and the empirical Copula is 4.0722, and the
square of Euclidian distance between the bivariate t-Copula
and the empirical Copula is 3.4272. Therefore, it can be
judged that the bivariate t-Copula and empirical Copula
model can better fit the correlation between daily water usage
X and daily electricity usage Y .

According to the bivariate t-Copula distribution function
and its distribution parameters, the fitting probability density
function C(u, v) of the joint distribution of water and elec-
tricity usage for residential users can be drawn, as shown
in FIGURE 4. In the bivariate t-Copula probability density
distribution diagram, coordinates u and v are the cumula-
tive distribution function of daily water usage X and daily
electricity usage Y respectively. Also, coordinates C(u, v) is
the probability density under daily water usage X and daily
electricity usage Y . In order to facilitate identification, the
combination of electricity and water with a higher probability
density is marked as fuchsia, while the combination with a
lower probability density is marked as blue.

In FIGURE 4(a), most observation points fall on both
sides of the main diagonal of daily electricity usage and
water usage, indicating a strong positive correlation between
electricity usage and water usage sequence. The left and right
ends show an obvious warping trend. When the residential
users leave home, the corresponding performance is a syn-
chronous reduction of water and electricity usage on the left
end. When many people are resting at home, it is easy to
show synchronous expansion of water and electricity at the
right end. Because the number of such days is relatively
concentrated, it is easy to show the bulge on the bivariate
probability density map.

In FIGURE 4(b), apart from the diagonal bulge, the left
and right sides drop rapidly, indicating a strong correlation
in the daily water and electricity usage among normal users.
Furthermore, the probability of two combinations with high
electricity and low water usage, or high water and low elec-
tricity usage, is very low. This observation further supports
the positive correlation between electricity usage and water
usage among normal users.

Based on the above analysis of the strong correlation and
synchronization between the daily water and electricity usage
behavior of residential users, the strong correlation between
the two can be used to detect whether there is abnormal water
and electricity usage behavior.

III. DESIGN OF WATER AND ELECTRICITY ABNORMAL
USAGE BEHAVIOR DETECTION SCHEME
In this paper, the distance correlation coefficient and density
clustering are used to detect the abnormal usage behavior
of water and electricity. According to the analysis results
in Section I, the analysis involves computing the distance
correlation coefficients between individual electricity and
water usage for all users within the high-loss TSA, after-
wards the distance correlation coefficient curve is drawn.
Thereafter, DBSCAN is used for clustering, identifying those

FIGURE 4. Bivariate t-Copula probability density distribution. (a) Front
view. (b) Side view.

individuals as anomalous users whose distance correlation
coefficients significantly diverge from the cluster of regular
users, indicating a weak correlation in their water and elec-
tricity consumption patterns.

A. DISTANCE CORRELATION COEFFICIENT
The distance correlation coefficient is enhanced by the
Pearson correlation coefficient, which can measure the
nonlinear correlation between variables [23], [24], [25].
To assess the correlation between water usage X and elec-
tricity usage Y, the distribution function F(Y ) of Y can be
compared with the conditional distribution function F(Y |X )
of Y under X. The higher the similarity between the two,
the less electricity usage is influenced by water usage and
the weaker the correlation between water usage and elec-
tricity usage. To facilitate easier calculation, the following
characteristic function is used to replace the distribution
function:

fXY (s, t) = E exp [i ⟨s,X⟩ + i ⟨t,Y ⟩] (3)

fX (s) = fXY (s, 0) = E exp [i ⟨s,X⟩] (4)

fY (t) = fXY (0, t) = E exp [i ⟨t,Y ⟩] (5)

where E is the mathematical expectation; i is an imaginary
number unit; s and t are real vectors; ⟨⟩ is the dot product.
If and only if fXY (s, t) − fX (s)fY (t) = 0, X and Y are not
correlated, and vice versa.

The value range of the distance correlation coefficient
is [0, 1]. As the distance correlation coefficient reflect-
ing the relationship between water and electricity usage
approaches 1, it indicates an increasingly strong link-
age between the two. On the contrary, the closer the
coefficient is to 0, the weaker the relationship between
water and electricity consumption. Considering the strong
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correlation between water and electricity usage in normal
users, anomalous behaviors in water and electricity con-
sumption will reduce the coupling strength between the two,
leading to a decrease in their correlation. Consequently, the
distance correlation coefficient for users exhibiting abnor-
mal behaviors tends to be lower than that for normal
users.

Given a sufficiently large sample size, the distance cor-
relation coefficient can describe the association between
variables and capture a broad spectrum of relationships with-
out constraining the relationship to a specific form. The
distance correlation coefficient allows for the independent
assessment of the direct coupling strength between a user’s
electricity and water usage when identifying abnormal users,
without taking into account the impact from other users.
This methodology has extensive applicability in the field of
engineering [26]. It is worth mentioning that there are some
drawbacks to identifying abnormal hydro users only through
the distance correlation coefficient. Variations in abnormal
time periods of water and electricity usage, coupled with the
duration of creep, can cause fluctuations in the distance corre-
lation coefficient of users. Consequently, it is challenging to
simply set a specific threshold for distinguishing abnormal
users. Besides, when a large user base is connected to the
platform, a large number of distance correlation coefficient
curves overlap with each other, making it difficult to iden-
tify abnormal users through curves. Therefore, incorporating
clustering becomes necessary to differentiate and filter abnor-
mal users.

A wide array of clustering algorithms exists, such as sys-
tematic, partition, hierarchical, and density-based clustering.
Notably, the DBSCAN algorithm (Density-Based Spatial
Clustering of Applications with Noise) stands out among
density clustering methods. Its unique feature is the ability to
determine the cluster count without a preset number, adapting
automatically based on sample density in the given space,
making it suitable for data sets of any shape [27]. For detailed
definitions of sample points within DBSCAN, one may
consult [28].

B. COMBINED DETECTING FRAMEWORK
Taking the water and electricity usage data in TSA as an
example, the identification process of abnormal users with
water and electricity in combination with FIGURE 5 is
described as follows:

(1) Gather data on water and electricity usage from users
via smart meters, and pre-process the water and electricity
usage data of access users. The processed electricity usage
data sequence is defined as Yi and the water usage data
sequence is defined as Xi, where i is the i-th user.
(2) Establish a distance correlation coefficient model for

the water and electricity usage data of all users in TSA, so as
to be able to calculate the distance correlation coefficient
between electricity and water usage in different time periods.

(3) Utilizing the DBSCAN algorithm, users are clustered
based on distance correlation coefficients to subsequently

detect potential anomalous users with weak correlations in
their water and electricity usage patterns.

FIGURE 5. Detection framework of the combined method.

IV. ANALYSIS OF NUMERICAL EXPERIMENTS
Within this segment, a real usage dataset of TSA smart meters
is used and the data is preprocessed. The data is collected by
SGCC from a comprehensive multimeter demonstration area
in China. The TSA connects to 42 residential users with a
power loss of approximately 8.9%.Dailywater and electricity
usage data is collected for 95 days from January 1, 2021,
to April 5, 2021 [16].

A. CONSTRUCTION OF DISTANCE CORRELATION
COEFFICIENT MODEL
For users numbered from 1 to 42, daily consumption of
electricity and water is characterized by the time series Y1
to Y42 and X1 to X42, respectively. The distance correlation
coefficient model is constructed for the water and electricity
usage of the users. To better capture the information of user
data across various time intervals, the distance correlation
coefficient model is obtained from different time lengths.
Time series lengths range from 1 to 30 days, 1 to 35 days,
1 to 40 days, and so forth. In the form of the time window
of 14 time periods on the 1st to 95th day. This model is then
used to calculate the distance correlation coefficient between
the user’s electricity usage Y1-Y42 and water usage X1-X42,
and draw the result of the distance correlation coefficient as
shown in FIGURE 6.

FIGURE 6. Correlation coefficient curve of water and electricity distance.
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The consumer electricity usage Y1-Y42 and water usage
X1-X42 fluctuatewith the passage of time, and the correspond-
ing distance correlation coefficient also fluctuates. Also, the
calculation results tend to be stable with the increase in
the calculation interval. In general, some users in the TSA
will reduce the water usage due to the occasional dining
out and other factors, resulting in a drop of the distance
correlation coefficient. Nonetheless, such incidental elements
are insufficient to notably lower the entire distance corre-
lation coefficient, thereby categorizing the individual as an
outlier.

The curve of user 12 deviates from that of most users.
The range of distance correlation coefficient of most users
is [0.7, 0.9], while the distance correlation coefficient of
user 12 fluctuates around 0.6. Hence, it can be preliminarily
judged that user 12 has the possibility of abnormal electricity
usage. Meanwhile, the curve of user 2 has a high distance
correlation coefficient in the first six periods, while there is a
sudden drop from the 6th period and stabilizes at 0.7 or below
after the 8th period. This may be caused by normal electricity
usage in the first period and abnormal electricity usage in the
later period.

If the user did not exhibit abnormal behavior, its distance
correlation coefficient does not gravely deviate from the nor-
mal users, artificial according to such easy to confuse the
user experience based on the curve from 2 users. In addition,
different time periods and durations of abnormal power use
will cause a difference in the distance correlation coefficient
of abnormal users, and it is difficult to set a definite threshold
to distinguish abnormal users. Hence, integrating a clustering
approach is essential to differentiate and filter out abnormal
users.

B. DBSCAN CLUSTER ANALYSIS
According to the description in Section II, the distance cor-
relation coefficients between electricity usage Y1-Y42 and
water usage X1-X42 are taken as data sets for DBSCAN
clustering. The minimum number of samples required for
cluster formation, MinPts, is set as 3. The k-dist curve is
used to obtain the neighborhood radius Eps. The distance of
the nearest k neighbors is selected and sorted from largest
to smallest, and the k-dist curve is obtained as shown in
FIGURE 7. The distance of 0.1 corresponds to the inflection
point of the curve is set as Eps The distance correlation
coefficient calculated between electricity usage Y1-Y42 and
water usage X1-X42 over various time periods is utilized as
the feature. Moreover, Kernel principal components analysis
is adopted to reduce it to 2 dimensions, and after dimensional
reduction to a dimensionless feature space, the horizontal and
vertical coordinates represent the transformed characteristic
quantities. The clustering visualization results obtained are
shown in FIGURE 8.
Cluster 1 in FIGURE 8 identifies normal users, while

noise points identify suspected abnormal users. User 2 and
User 12 are identified as users with abnormal water and elec-
tricity usage, which is consistent with the on-site inspection

results. Compared to FIGURE 6, the analysis presented in
FIGURE 8 offers clearer and more explicit results. This
enhanced clarity facilitates the accurate identification of
abnormal users, particularly in scenarios with a high volume
of users or challenging identification conditions.

FIGURE 7. Distance correlation coefficient k-distance curve diagram of
each user.

FIGURE 8. The results of the DBSCAN clustering results of each user’s
distance correlation coefficient.

C. COMPARATIVE EXPERIMENT
To further validate the advantages and performance of the
multi-source information-based anomaly detection method,
this section uses the real high-loss TSA from Chapter 4,
Sections A and B, as the detection target. Two single-source
information methods are selected for comparative experi-
ments. References [12] and [29] present electricity consump-
tion data-based detection methods, which perform anomaly
detection by analyzing the potential relationship between
power loss and users’ electricity consumption data, and have
been widely applied in practical engineering.

In [12], the correlation between power loss and electricity
consumption is quantified using maximum mutual informa-
tion. The correlation degree between variables is positively
correlated with the maximum mutual information value. The
greater the value, the larger this value is, the greater the
suspicion of anomaly in the corresponding user. Conversely,
the smaller the value, the lesser the suspicion of anomaly.
Figure 9 displays the calculated maximum mutual informa-
tion value between the overall power loss and the electricity
data of all users.

By comparing FIGURE 8, FIGURE 9, and the previous
analysis, it is evident that when applying themethod proposed
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in [12] to identify abnormal users within the high-loss TSA,
the maximum mutual information value of user 32 is the
highest, followed by user 31. User 2 has the lowest maximum
mutual information value, and user 12 is in the lower middle
level, so the correlation appears to be weak. Thus, the method
erroneously classified users 32 and 31 as abnormal users.

FIGURE 9. Result chart of mutual information coefficient.

TABLE 2. Granger test results of power loss in TSA.

Reference [29] used the Granger attribution method to
build a model between power loss and electricity usage to
identify users with abnormal behavior. The results are shown
in Table 2, for the hypothesis that ‘‘User 2 is not the Granger
cause of power loss and User 12 is not the Granger cause
of power loss’’, none of their significance levels met the
condition of less than 0.05, so the change of user 2 and
user 12 is not the cause of the change of power loss. The
results indicate that this method did not successfully detect
two users with abnormal behavior.

In conclusion, compared to the two aforementioned meth-
ods that rely solely on electricity usage information for
anomaly detection, the multi-information detection method
proposed in this paper is effective in identifying abnormal
water and electricity usage. It provides a clearer understand-
ing of residents’ energy consumption patterns and offers
effective support for ensuring the efficient use of resources
and preventing resource wastage.

V. CONCLUSION
To cope with the challenge of limited information in resi-
dents’ energy usage detection in the context of smart cities,
an abnormal usage behavior detection method of residential
water and electricity usage by incorporating multi-source
information is proposed, which lays a solid foundation for
in-depth analysis of user behavior to further improve energy
usage efficiency. The results showed that there were obvious

synchronous fluctuations and correlation characteristics in
the daily-scale water and electricity usage data. By utilizing
the Copula distribution function, a strong correlation and
synchronization of residential water and electricity usage
behaviors are further demonstrated. This result not only elu-
cidates the intrinsic connections in residential energy usage
patterns but also holds significant importance for understand-
ing and optimizing residential energy consumption. Based on
this characteristic, a combinedmethod for detecting abnormal
behavior of resident users using both the water and elec-
tricity metering data is proposed. This method employs the
distance correlation coefficient to characterize the strength
of the correlation between water and electricity consumption.
Clusters the distance correlation coefficients of users through
DBSACN,which can effectively identify abnormal users who
deviate from the normal group. A case study based on real
data further verified the effectiveness of the method. Com-
pared with anomaly detection methods that only use a single
metering data, the proposed method can detect abnormal user
behavior more accurately, thus reducing the risk of false
negatives and false positives.

Although the proposed method for detecting abnormal
behavior by integrating multi-source information shows sig-
nificant results, it still has certain limitations. In some areas,
residential properties are used for non-residential purposes,
such as offices, storage, or educational training. These sit-
uations may cause changes in water and electricity usage
patterns and their correlations, thus affecting the accuracy
of the model. Future work can consider further enriching
the multi-source information by incorporating natural gas
energy data and analyzing the relationships between water,
electricity, and gas. Additionally, more correlation patterns
between water and electricity should be explored to fur-
ther improve detection accuracy and expand application
scenarios.
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