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ABSTRACT Due to the limited availability of training data, the diverse shapes of brain tumors among
different patients, inter-class similarity, and intra-class variation, achieving high recognition accuracy
and speed in deep learning-based brain tumor recognition remains challenging. To address these issues,
we propose a Dual-Branch Ensemble and Gated Global-Local Attention network based on EfficientNetV2S
and ConvNeXt (GGLA-NeXtE2NET) to improve identification accuracy and model interpretability. For
inter-class and intra-class problems, we designed a Gated Global-Local Attention (GGLA) mechanism that
captures dependency information of query points in both horizontal and vertical directions, thereby obtaining
global information indirectly. Simultaneously, local information is captured through multiple convolutions
with a gating layer. The gating mechanism within the GGLA dynamically balances the contributions of
global and local information, enabling the model to adaptively focus on the most relevant features for
accurate classification. Furthermore, we introduce a dual-branch ensemble network to address the issue of
image variety. This network uses two branches to extract image features at different resolutions for fusion,
thereby expanding the network receptive field. Additionally, we utilized an Enhanced Super-Resolution
Generative Adversarial Network (ESRGAN) to generate images that balance MRI data and implemented
multiple preprocessing techniques to tackle inherent noise in MRI images. These techniques enhance the
clarity of MRI images while preserving essential details. This results in a clear improvement in the identi-
fication of tumor boundaries, crucial for accurate surgical planning and treatment strategies. We evaluated
GGLA-NeXtE2NET on 3-class and 4-class brain tumor datasets and achieved 99.06%, and 99.62% overall
accuracy on both datasets respectively.

INDEX TERMS MRI brain tumor, deep learning, image processing, medical image analysis, attention

mechanism.
I. INTRODUCTION field and radio waves to produce intricate images of
Magnetic Resonance Imaging (MRI) is a non-invasive med- internal body structures, including the brain [1]. This ver-
ical imaging technique that utilizes a powerful magnetic satile modality has become integral in modern medicine,

providing detailed information about the size, location,
The associate editor coordinating the review of this manuscript and type, and grade of tumors [2]. Additionally, MRI offers
approving it for publication was Abedalrhman Alkhateeb . insights into the impact of tumors on surrounding brain
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tissue and blood vessels, making it a fundamental tool
for precise diagnosis and treatment planning in clinical
practice [3].

An essential component of MRI technology is the MRI
scanner, a sizable cylindrical tube housing a potent magnet.
During an MRI procedure, the patient reclines on a mobile
bed that smoothly moves into the tube. Positioned around the
patient’s head is a specialized coil, responsible for transmit-
ting and receiving radio waves. This coil generates a magnetic
field, momentarily aligning the hydrogen atoms within the
body. After the radio waves cease, the atoms revert to their
original positions and emit signals, which the coil captures.
These signals are then meticulously processed by a computer,
culminating in the formation of a detailed image represent-
ing a cross-section of the brain [4]. By capturing multiple
slices from diverse angles, the scanner constructs a compre-
hensive three-dimensional depiction of the brain’s internal
structures [5].

MRI stands as a primary diagnostic tool for identifying
brain tumors, facilitating the differentiation of various brain
lesions, including primary tumors such as gliomas, menin-
giomas, and pituitary tumors. Meningiomas, benign growths
originating from the brain and spinal cord membranes, man-
ifest as rounded masses with a distinctive bright rim, visible
on the right side of the image [6], [7]. These tumors compress
and displace nearby brain tissue. Gliomas, malignant tumors
arising from glial cells that support and shield brain neu-
rons, present as irregular masses with darker regions, evident
on the left side of the image. They infiltrate and damage
the surrounding brain tissue [6], [8]. Additionally, pituitary
tumors, benign growths emerging from the pituitary gland
at the brain’s base, appear as rounded masses with bright
centers, located in the lower part of the image. These tumors
can disrupt hormonal balance and lead to vision problems
(61, [71.

In recent years, Deep learning [9] has emerged as a solution
in the field of medical imaging [10], [11], [12] with the
examination of brain tumor MRI images [13], [14]. Deep
learning methods like convolutional neural networks (CNN)
have shown promise in tasks such as tumor detection [15],
segmentation [16], [17], classification [18], and treatment
response assessment in MRI images of the brain. Although
CNN architecture has improved the accuracy of diagnosis of
medical images but still improvement required in the field
of brain tumor detection. One primary issue is the difficulty
in obtaining abundant training samples. CNN architectures
require millions of images for training, but most datasets
in medical imaging consist of only thousands of images,
which is a common problem [19]. While pre-trained mod-
els can address the issue of small datasets, they are less
effective for brain tumor images due to the structural dif-
ferences between brain images and the images used to train
the pre-trained models. Consequently, the performance of
brain tumor identification needs to be improved to handle the
complexities of clinical situations. Another significant chal-
lenge in brain tumor recognition arises from the considerable
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intra-class variation and inter-class similarity within MRI
images. Tumors within the same class, such as gliomas,
frequently exhibit significant diversity in shape, size, and
intensity, and may occupy different regions in an MRI
image, sometimes appearing as a small section of the overall
scan. These characteristics make it difficult to consistently
locate and accurately identify tumors. Additionally, high
inter-class similarity between certain types of tumors, such
as glioma and meningioma, further complicates the ability to
effectively distinguish between tumor types. The combined
issues of high variability within tumor classes and subtle
distinctions between classes make accurate classification par-
ticularly complex. Traditional feature extraction techniques
often fail to capture these nuanced differences effectively.
This situation highlights the necessity for advanced clas-
sification models and attention mechanisms that can adapt
to the diverse presentations within each tumor type while
discerning the subtle features that differentiate various tumor
classes.

To address the complex challenges in brain tumor recogni-
tion, we propose the GGLA-NeXtE2NET model, which com-
bines EfficientNetV2S and ConvNeXt architectures through
a Dual-Branch Ensemble (DBE) and incorporates a novel
Gated Global-Local Attention (GGLA) mechanism. Effi-
cientNetV2S is known for its computational efficiency and
scalability, which allow it to achieve high accuracy with
fewer parameters. This is essential in medical applications
where training data can be limited, as EfficientNetV2S
optimizes feature extraction without requiring large-scale
data. On the other hand, ConvNeXt complements this by
providing strong representation learning with its advanced
convolutional operations, which capture spatial details crucial
for MRI image analysis. Additionally, the GGLA mecha-
nism introduces an innovative approach to processing local
and global patterns in brain tumor images. While standard
attention methods typically emphasize either global or local
feature extraction but struggle to balance the two effectively,
especially in cases of high intra-class variation and inter-
class similarity. Our GGLA mechanism introduces a novel
gating strategy that dynamically balances global and local
dependencies, allowing the network to adaptively focus on
the most relevant features based on tumor-specific char-
acteristics. This is critical for brain MRI analysis, where
tumor features can vary widely across patients and even
within the same tumor class. By capturing these differences
more precisely, the GGLA module improves both classifica-
tion accuracy and model interpretability, offering significant
advancements over traditional attention mechanisms. This
combination of dual-branch ensemble learning with adaptive
gating distinguishes our approach, marking it as a novel
and necessary contribution to the field of medical imaging.
The summarized contribution of our research can be seen
below:

o Considering the problem of brain tumor image variety,

we propose the Dual-Branch Ensemble (DBE) network
that leverages complementary receptive fields to capture
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both fine-grained details and broader contextual patterns
simultaneously compared to traditional models.

e The GGLA utilizes dedicated convolutional layers to
generate query, key, and value matrices, followed by an
innovative scaled dot-product attention that dynamically
adjusts based on input characteristics to identify relevant
features and tumor regions. This is complemented by a
Local Attention module that further refines the attention
weights through multi-scale processing, while an adap-
tive gating mechanism dynamically balances global and
local information, ensuring optimal feature selection for
accurate tumor detection despite limited training data.

e Our new denoising strategy combines multiple tech-
niques, including patch-based denoising, wavelet
decomposition, and selective noise reduction. This
Strategy adeptly addresses challenges such as blur-
ring, noise, and subtle contrasts, resulting in images
that highlight abnormalities and structural details. The
enhanced images are invaluable for both radiologists and
deep learning models, as they facilitate more accurate
diagnosis, treatment planning, and research.

o Finally, the Super-Resolution Generative Adversarial
Network (ESRGAN) based data augmented technique
further boosts up the model performance to avoid
overfitting problems.

Il. RELATED WORK

A. DEEP CONVOLUTIONAL NEURAL NETWORKS (DCNN)
FOR BRAIN TUMOR CLASSIFICATION

Recently, CNN like deep learning models has been very
helpful in classifying brain tumor images and provides
excellent results than traditional machine learning methods.
Huang et al. [20] presented the CNNBCN, an innovative
approach utilizing randomly generated graph algorithms to
optimize network structure with unique activation functions.
This novel approach demonstrated impressive performance,
with a classification accuracy of 95.49%, surpassing other
models, and boasts lower test loss than established mod-
els like ResNet, DenseNet, and MobileNet. The authors,
Rizwan et al. [21] developed a customized Gaussian Convo-
lutional Neural Network (GCNN) approach for classifying
brain tumors from non-invasive MRI scans. They applied
various filters for image pre-processing and find the Gaus-
sian filter provided the best performance. Using two MRI
datasets, they achieve classification accuracies of 97.14% for
tumor type and 99.8% for tumor grade. Wang et al. [22] intro-
duced a modified version of the Vision transformer model
and achieved 98.86% accuracy on the brain tumor dataset.
Mehmood et al. [23] developed advanced techniques for
automatic detection, colorization, and classification of tumor
regions in MRI images to identify abnormalities early. Using
T1-CE MRI datasets, methods like Pix2Pix Conditional
GAN Networks (Pix2Pix-cGANs) were shown promising
results and improved classification accuracy of 92.4% post-
colorization with NASNet-Large. Both Anaya-Isaza et al.
[24] and Reyes and Sanchez [25] used multiple pre-trained
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CNN models to examine the model’s performance on the
MRI dataset. Incir and Bozkurt [26] combined pretrained
EfficientNetV2M and Inception-V3 networks to enhance the
performance of individual models and achieved 98.41% over-
all accuracy. Furthermore, Khan et al. [27] and Patil and
Kirange [28] combined pretrained VGG16 with the pro-
posed CNN model to improve the decision-making power of
both models. Moreover, integrating CNN architecture with
machine learning models can enhance the performance of
brain tumor image detection. For example, Senan et al. [29]
and Haq et al. [30] implemented CNN models for feature
extraction and SVM models for classification, demonstrat-
ing remarkable results on multi-class brain tumor datasets.
According to Islam et al. [31] and Shanthi et al. [32], adding
the LSTM layer at the end of the CNN model provided better
results.

B. ATTENTION MECHANISMS

Recently, incorporating attention mechanisms into CNN
architectures has yielded improved results in classifying brain
tumor datasets and more efficiently localizing tumor areas
compared to standalone CNN models. Alzahrani et al. [33],
[34] and Pandi et al. [35] added the self-attention [36] mech-
anism in its models to classify the brain tumor images.
Self-Attention mechanism is very popular due to its ability
to capture global information and long-range dependencies
in the image. On the other hand, CBAM [37] and BAM
[38] like attention mechanisms focus on local information
in the image. Tang et al. [39] used positional attention block
with global attention mechanisms in the Spinal Convolutional
Attention Network and achieved 99.28% overall accuracy
on the MRI brain tumor dataset. Pacal et al. [40] integrated
the channel and global attention mechanisms in the effi-
cientnetV2 model to further enhance the model’s abilities.
According to Apostolopoulos et al. [41], spatial attention,
and global average pooling-based attention mechanisms can
provide better performance on MRI brain tumor datasets.
Methods for obtaining global information, such as simple
Global Average Pooling (GAP), often result in the loss of
valuable information. This makes it challenging for the net-
work to accurately identify images with high similarity and
small tumor areas. Rasheed et al. [42] integrated both spatial
and channel attention mechanisms in its models to classify
the brain tumor images on the MRI dataset.

C. ENHANCED SUPER-RESOLUTION GENERATIVE
ADVERSARIAL NETWORK (ESRGAN)

ESRGAN [43] is a deep architecture that builds upon the
concept of Generative Adversarial Networks (GANs) and
employs a generator-discriminator architecture to achieve
its goal. It takes low-resolution images and produces high-
resolution images. Both Alalwan et al. [44] and Yaqub et al.
[45] used GAN architecture to balance the MRI dataset
to further enhance the model ability. The mathematical
presentation of GAN architecture is as follows:
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The generator first takes a low-resolution image X;r as
input and aims to generate a high-resolution image Xgg. It can
be represented as a deep neural network.

Xur = G(X1r; 0G) ()

where G represents the generator function, and 6g are the
parameters of the generator neural network. The discrim-
inator’s role is to distinguish between real high-resolution
images Xpr and generated high-resolution images Xfa ¢
It provides feedback to the generator by indicating how
realistic its generated images are.

D(Xyr; 6p) — Preal 2)
DXL 0p) = pake 3)

Here D represents the discriminator function, 6p are the
parameters of the discriminator neural network, p,.q is the
probability that Xgg is a real high-resolution image, and pe
is the probability that Xf wr 18 a generated high-resolution
image. Perceptual loss measures the difference between the
feature representations of the generated image and the ground
truth image using a pre-trained feature extraction network F.

v () 1]

N

Here N is the number of layers in the feature extraction
network, and F represents the feature extraction network. The
adversarial loss is based on the GAN framework, encouraging
the generator to produce images that are difficult to distin-

guish from real images according to the discriminator.

Lperceptual = 1 ‘ ‘F Xur)i— F

k
—log(D(X"; Op) §)
Content loss measures the pixel-wise difference between the
generated high-resolution image and the ground truth high-
resolution image.

Ladvermrial

Xf ©)

The overall loss for training the generator is a combination of
perceptual loss, adversarial loss, and content loss.

Lcontent = HXHR —

Liotal = Lperceptual + Aadv * Ladversarial + Acontent )

where Aggy andAconsens are hyperparameters controlling the
importance of adversarial loss and content loss. By iter-
atively updating the generator and discriminator using
their respective loss functions, ESRGAN learns to generate
high-resolution images with enhanced details and textures.

D. SCOPE OF DEVELOPMENT
The classification of brain tumor images using Deep Con-
volutional Neural Networks (DCNNs) has shown significant
advancements. However, despite the impressive progress,
several areas still require further exploration to improve the
accuracy, efficiency, and generalizability of these models.
The self-attention mechanism can be effective at cap-
turing global information within an image. However, its
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implementation in models can be computationally expen-
sive and may lead to information loss when used within
hybrid models. The integration of channel and spatial
attention mechanisms in the model may not consistently
capture global dependencies effectively, potentially over-
looking crucial contextual information in brain tumor data.
Furthermore, the challenge of balancing attention across
multiple dimensions could lead to overfitting, particularly
when the dataset is limited in size or diversity. The reviewed
studies offer the same kind of architectures in ensemble
modeling, which can constrain the model’s ability to effec-
tively handle brain tumor datasets that contain high-level
information and complex patterns. Moreover, reviewed stud-
ies overlook the quality of MRI images and apply them
directly to the model, which can limit the model’s capac-
ity to accurately classify brain tumor images. Lastly, the
reviewed studies predominantly concentrate on enhancing
accuracy, with limited attention given to the explainabil-
ity and interpretability of the models. A notable gap exists
in developing approaches that improve the transparency
and comprehensibility of these complex models for clinical
application.

IIl. MATERIALS AND METHODS

In our study, we systematically outlined the research frame-
work. In Section A, we provided an in-depth exploration
of the dataset, presenting comprehensive details. In Section
B, we delved into the intricacies of denoising strategies,
elucidating their significance in our approach. Subsequently,
Section C expounded upon the application of the ESRGAN
method, elaborating on its implementation. Lastly, Section D
with its subsections was dedicated to the meticulous construc-
tion of our model, detailing each component and technique
utilized.

A. MRI BRAIN TUMOR DATASET
For experimentation, openly accessible MRI Brain Tumor
datasets were utilized. The first dataset was sourced from the
Kaggle repository [46] and is referred to as the ““4-class MRI
Brain tumor dataset.”” This dataset encompasses four distinct
classes, specifically “glioma,” ‘“‘meningioma,” *“pituitary
tumor,” and ‘“‘no tumor.” Each class within this dataset com-
prises a substantial number of samples, as detailed in Table 1.
Additionally, another dataset [47] known as the “ 3-class
MRI Brain tumor dataset ” was comprised of 3064
T1-weighted contrast MR images. These images involve
233 patients with “meningioma”, “glioma”, and “pituitary
tumors”’, along with 73 patients exhibiting different grades
of glioma. The images in this dataset possess a resolution of
512 x 512 pixels and are captured with a voxel spacing size of
0.49 x 0.49 mm?. These images are oriented in axial (trans-
verse plane), coronal (frontal plane), or sagittal (lateral plane)
planes. There was an imbalance in the sizes of certain classes
within Dataset 2 compared to others. To address this dispar-
ity, we employed the Enhanced Super-Resolution Generative
Adversarial Network (ESRGAN) technique to enhance the
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TABLE 1. Publicly available multi-class MRI brain tumor dataset.

Dataset MRI Type Classification Number of Images ESRGAN
Labels and split generated images
Brain Tumor MRI T1-weighted Glioma tumor 1321/300 train/test 356
Dataset (4-class Meningioma tumor 1339/306 train/test 355
dataset) Pituitary tumor 1457/300 train/test 196
No tumor 1595/405 train/test -
7023 total 807 total
Figshare (3-class T1-weighted Glioma tumor 1426 -
MRI Brain Tumor Meningioma tumor 708 696
Dataset) Pituitary tumor 930 476
3064 total 1072 total
balance of 4-class and 3-class brain tumor datasets. ESRGAN image:
was leveraged to generate novel images by utilizing pre- M
existing images, as outlined in section C of this paper. Further D(x,y) = C(x.y) Zi:] w s v, Xi, yi) - 1 (i, yi) - (8)

information regarding the distribution of samples for each
class can be found in Table 1. The cropping function [48]
was also employed to eliminate extraneous regions within
the images. This function selectively retains the pertinent
and meaningful content, contributing to the refinement of the
dataset.

B. DENOISING IMAGE

MRI images can be susceptible to a variety of noise
sources, potentially impacting image quality. Notably, patient
motion, even subtle movements, during the MRI scan can
introduce artifacts and compromise image precision [49].
This challenge is particularly critical in brain imaging,
as motion-induced blurring can obscure the fine details essen-
tial for accurate tumor assessment. Another noise-related
phenomenon, aliasing, arises when the field of view is insuf-
ficient to fully capture the signal, leading to wraparound
artifacts [50]. In the context of brain tumor imaging, this can
result in the misplacement of brain regions within the image.
Furthermore, chemical shift artifacts may manifest at tissue
interfaces, as is often the case in brain imaging, contributing
to errors in the precise localization and characterization of
brain tumors [51]. Additionally, radiofrequency (RF) interfer-
ence stemming from external sources can introduce noise into
the MRI signal, impacting image quality [52]. In a broader
context, the presence of noise can even disrupt the accurate
classification of distinct tumor types, as the distinguishing
features between different tumor categories can be obscured
or distorted.

To enhance the image quality, we employed a compre-
hensive suite of noise reduction techniques on both brain
tumor datasets. These techniques encompassed a range
of methodologies, each strategically selected to address
distinct aspects of noise while preserving the critical fea-
tures essential for accurate diagnosis. “Equation 17 com-
putes the denoised pixel value for each pixel location
by considering the weighted average of corresponding
pixel values from similar patches [53] in the input MRI
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where D represents the denoised MRI image, C(x,y) is
the normalization factor (total weight) at the position (x, y),
which ensures that the output pixel value is properly scaled,
M is the total number of patches in the image. The weight
Where D represents the denoised MRI image, C(x,y) is
the normalization factor (total weight) at the position (x, y),
which ensures that the output pixel value is properly scaled,
M is the total number of patches in the image. The weight
w(x, y, X;, y;) quantifies the similarity between the patch cen-
tered at (x;, y;) and the patch centered at (x, y). The weight
is based on a Gaussian function that takes into account the
differences in pixel values within the patches [54]:

w ()C, Y, Xi, yl)
— €xp( 200 @)U +p,y+q)—1 (xi+p, yi+q))2)

h2
)

where h is a parameter that controls the decay of similarity
with increasing pixel distance within the patches and (p, q)
iterate over the pixels within the patch centered at (x, y).

The “Equation 10” decomposes the denoising image D
into different scales (or levels) of detail. Each level of detail
captures information about different frequency components
of the image [55]. This is particularly useful in medical imag-
ing, where certain structures (such as tumors) may appear at
different scales.

W(a,b) = /D (x) - Ya,p(x)dx (10)

Here, W(a, b) represents the wavelet coefficients obtained by
convolving the image D with the wavelet function v, , which
is scaled by a and translated by b. Thresholding [56] is a crit-
ical step in denoising. It involves setting small coefficients to
zero to remove noise while retaining important features. This
helps in reducing random noise present in the image, making
the tumor boundaries and structures more distinguishable:
W(mb):[W(a,b), if W(a,b) > hro an

0, otherwise
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Here, W(a, b) are the thresholded wavelet coefficients, A is
the threshold parameter and o is an estimate of the noise
standard deviation. After thresholding the coefficients, the
denoised image D' is reconstructed from the denoised wavelet
coefficients W(a, b) :

D' = Za’b W (a,b) - Vap(X) (12)

The Equation 13 further refines the denoised image D’ by
using statistical properties of the noise and the signal [57]:

%
S —fF! [H—(f) .
H (H)?

where S represents the noise-free estimated original image,
F denotes the Fourier transform, and F~! is the inverse
Fourier transform. The term H(f) is the frequency response of
the system in the frequency domain and H*(f) is the complex
conjugate of H(f). The term F{D'}(f) is the Fourier transform
of the wavelet-denoised image.

“Equation 14” encompasses the enhancement of local
contrast [58] across various regions within the image,
with a specific focus on accentuating the visibility
of both the tumor structure and brain tissues. This
enhancement takes into account the noise character-
istics that were mitigated through the application of
“Equation 13”.

P o] (13)

[(x,y) =T [Sinpur (x, )] (14)

The operator (T'[-]) involves several essential steps that simu-
late the adaptive histogram equalization process. These steps
are integrated into the unified equation as follows:

T [Sinput (x s Y)]

L—1xth y+5 .
= 7 Z,‘—xz_é Zj—yz_ﬁ H (Sinput (ls])) * Sinput (X, ¥)
— 2 - 2
(15)

where S refers to the size of the local neighborhood for
histogram analysis, L is the number of intensity levels, and
H is the histogram function. Finally, “Equation 16 further
accentuates the enhanced contrast and fine details, poten-
tially making features such as edges and textures [59] more
pronounced in the brain tumor MRI image.

E=1+yN (L (1)) (16)

where E is the final enhanced image, y is the weighting
parameter that controls the strength of the edge enhance-
ment effect, and N (L (X)) is the normalized function that is

computed as:
, L (1) —min (2 (1))
V()=o)
max (L (I)) — min (L (I))
where o controls the contrast of the normalized image,
controls the brightness of the normalized image.

According to Figure 1, the similarity between denoised
curve 1 and the original curve at the beginning, indicates

+B A7)
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the “Equation 8” denoising effectively retained the overall
structure of the image. The denoising curve 1 slightly dips
below the original curve in the mid-section. This could be due
to the denoising process removing some noise components,
which might have inadvertently affected certain features in
that region. After the mid-section denoising curve 1 rises
slightly above the original curve. This could be attributed to
the denoising algorithm enhancing certain details that were
previously buried in noise. In the end, both denoising curve 1
and the original curve combined them. The initial segment
of denoising curve 2 starts with denoising curve 1 and the
original curve. This indicates that ““Equation 8’ retained the
original image characteristics while reducing noise. Before
starting the mid-section denoising curve 2 slightly higher than
both denoised curve 1 and the original curve that indicates
“Equation 12 further enhances fine details and structures
that may have been subtly lost during previous denoising.
The curve’s increase indicates a more pronounced contrast
enhancement. The initial segment of the denoising curve 3
closely resembles the previous denoising image intensity
distribution. This is expected because “Equation 13”7 is
designed to preserve the existing image features while remov-
ing noise and blurring artifacts. Hence, it aims to maintain
the overall structure of the previous denoising image. After
the Initial Segment the denoising curve 3 rises above the
previous curves. This can be attributed to the “Equation 13
“amplification effect on certain pixel intensity values. The
denoising curve 3 enhances areas with low signal-to-noise
ratios, which could correspond to low-contrast regions in
the image. As a result, these regions experience a relative
intensity boost compared to the original. The initial segment
of the denoising curve 4, which aligns with the previous
image curves that indicate ‘“Equation 13" successfully pre-
served the initial image structure, and “Equation 15 has
not yet come into effect. The sharp decrease in the denoising
curve 4 after the initial segment that shows “Equation 15”
enhances the local regions, particularly those with relatively
lower contrast, it results in a more pronounced contrast distri-
bution, causing the curve to decrease sharply. Unlike previous
curves, the denoising curve 5 starts not at the beginning but
somewhere in the middle of the plot. This initial positioning
is indicative of the “Equation 24” influence on the image.
“Equation 16 is known for its emphasis on high-frequency
components, including edges and fine details. Consequently,
the curve commences at an intermediate point, reflecting
the enhanced details and edges. A notable characteristic
of this curve is its initial elevation above all previously
observed curves. This elevation signifies denoising curve 5
impact in enhancing edges and fine features. By accentuat-
ing regions with high gradients, “Equation 16” elevates the
pixel intensities, which is particularly evident in areas with
pronounced edges. The result is an enhanced contrast for
these edge-rich portions of the image. However, as the curve
progresses, a marked decline becomes evident. This sharp
descent is a result of a trade-off inherent to the ‘““Equation 17
operation.
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FIGURE 1. First image illustrates pixel intensity levels after applying the each denoising strategy, while second image depicts two parts: (A) the original
image and (B) the denoised image obtained by applying equations 8 to 17 along with the cropping function.

C. DATA AUGMENTATION WITH GAN

Data augmentation is crucial in medical imaging tasks like
MRI brain tumor classification because it helps mitigate the
issue of limited datasets by generating additional training
samples. The impact of data augmentation can be substan-
tial, and using GANs (Generative Adversarial Networks)
for this purpose offers several advantages over traditional
augmentation methods. First, GAN can produce highly accu-
rate and varied artificial images that closely mimic real
MRI scans, potentially enhancing model generalization better
than traditional augmentation techniques. Secondly, Using
GAN-augmented data in training can make models more
robust to variations and artifacts in real-world data, leading to
improved performance on new, unseen data. Lastly, GAN can
capture and replicate complex features and patterns in MRI
scans that traditional methods might overlook.

According to Figure 2, the generator network starts by
taking the input image I € RPXWXC 1t first applies a con-
volutional layer with 64 filters and a kernel size of 9 x 9,
followed by a ReLU activation function. This produces an
intermediate tensor x1. This x; is then fed into a residual dense
block, which consists of multiple layers, each performing
convolution, batch normalization, and ReLLU activation. For
each layer /, the output is concatenated with its input to form
dense connections. After processing through these layers,
the tensorxy 4 is obtained, where L is the number of layers
in the residual dense block. Following the dense block, the
tensor x7 41 goes through additional convolutional layers with
128 filters and a kernel size of 3 x 3, each followed by batch
normalization and ReLU activation and produces the tenors
x> and x3. An upsampling operation with a factor of 2 x 2 is
applied to x3 to produce x4, which is then passed through a
final convolutional layer with 3 filters and a kernel size of
9 x 9, using a tanh activation function to generate the output
image O.

On the other hand, the discriminator network processes an
input image I € RHXWXC and aims to output a probability p
indicating whether the image is real or generated. It starts with
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a convolutional layer that uses 64 filters and a kernel size of
3 x 3 with LeakyReLU activation. This initial step produces
tensor y1. The y; is then passed through a series of additional
convolutional layers with increasing filter sizes, where each
layer is followed by batch normalization and LeakyReLU
activation. Specifically, y; is downsampled through strides
of 2 x 2 in the subsequent convolutional layers, resulting
in tensors y», y3 and y4. Each of these tensors is processed
similarly, with normalization and activation steps applied.
After these layers, the y is then fed into a dense layer with
a sigmoid activation function, producing a final probability
p that indicates the likelihood of the input image being real.
We used VGG19 model to compute the perceptual loss on
augmented images. Then, we modify the equation 4 as:

Lperceptual

_ le > |F gt _i - F (Augxly) i E
(18)

Here N is the number of layers in the VGG19 network, and
F represents the feature extraction network Aug denotes the
data augmentation function.

D. PROPOSED MODEL

We have proposed the GGLA-NeXtE2NET that has spatially
designed for multi-class brain tumor datasets. In the pro-
posed model, the GGLA block improves the model capability
by using global and local attention. Furthermore, we have
introduced an FE-GGLA block that refines the features in
MRI images and enhances the classification accuracy. Lastly,
our Dual-Branch Ensemble (DBE) network is designed to
extract features from MRI images with different receptive
fields. One branch is used fixed-size receptive field for fea-
ture extraction and fusion. On the other hand, the second
branch uses different receptive fields to perform the same task
and improve recognition accuracy with different conditions.
Fig 3. Illustrates the architecture of the GGLA-NeXtE2NET.
The individual detail of each module is described below.
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FIGURE 3. Complete overview of proposed GGLA-NeXtE2NET network.

1) DUAL-BRANCH ENSEMBLE NETWORK

A single CNN architecture might not be ideal for classifying
brain tumor images because these images often have complex
patterns and similar types of tumor lesions, making classifi-
cation challenging. To address this challenge, we introduce a
Dual-Branch Ensemble (DBE) network that consists of Effi-
cientNetV2S [60] and ConvNeXt [61] models. In the DBE
network, EfficientNetV2S utilizes a fixed 3 x 3 receptive
field to extract features. Conversely, the ConvNeXt model
employs receptive fields ranging from a minimum of 3 x 3
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to a maximum of 27 x 27 to extract features in different
ways. Both primary branches are trained simultaneously and
in parallel. We then introduce a parameter-sharing scheme,
wherein the extracted feature values from the two main
branches at different levels are passed to the FE-GGLA
block for further refinement. The specific values of param-
eters in the parameter-sharing scheme are determined by
the chosen backbone network. This approach enhances
the model’s compatibility with a multi-class brain tumor
dataset.
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2) FE-GGLA MODULE FOR FEATURE EXTRACTION

The classification of brain tumor images is still difficult
due to both intra-class differences and inter-class similar-
ities in multi-class brain tumor images. Due to the slight
differences in shape, texture, and color in various MRI
images, it’s crucial to thoroughly extract global features.
Additionally, there’s significant variation among patients
within each type of brain tumor, often in specific areas
of the lesions. Therefore, extracting local information is
crucial.

Conventional attention localization methods often priori-
tize either global or local information, failing to leverage the
synergies between the two. In response to these limitations,
we draw upon the concept of the Global Local Attention
(GLA) module [62] and enhance it to introduce the Gated
Global Local Attention (GGLA) module. In the GGLA mod-
ule, the global branch extracts broader contextual patterns,
while the local branch focuses on fine-grained tumor details,
such as texture and border irregularities that are essential
for tumor type differentiation. For example, while gliomas
and meningiomas may present overlapping intensities, subtle
distinctions in texture and shape provide crucial classification
cues. The GGLA module not only amalgamates global and
local information for feature extraction but also incorporates
novel gated layers that enable the network to selectively
enhance or suppress specific features acquired at different
processing stages. This dynamic balancing of global and
local features allows the model to prioritize the most relevant
information for each tumor class, effectively addressing the
challenges posed by intra-class variability, inter-class simi-
larities, and dynamic lesion localization in multi-class brain
tumor images.

a: GATED-HORIZONTAL ATTENTION

The proposed Gated-Horizontal Attention (GHA) module
serves as a core element within the GGLA framework,
specifically engineered to capture horizontal dependencies
pertinent to query points. To accommodate small-sample
learning scenarios, the GHA module is meticulously crafted
to prioritize computational efficiency across four key dimen-
sions. First, the input feature maps undergo dimensionality
reduction and subsequent expansion to capture horizontal
dependency information efficiently. Specifically, horizontal
dependence information is extracted following the initial
dimension reduction. Second, the resulting feature map is
downscaled to half of its original size, reducing the number of
pixels associated with each query point to enhance computa-
tional efficiency. Next, the scaled dot-product mechanism is
included to enhance the HA module abilities. Furthermore,
information is only obtained from points sharing the same
row index as the query point. Finally, to augment the module’s
capabilities, a gated layer is introduced at the conclusion
of the GHA module. This gated layer acts as a regulatory
mechanism, allowing for selective modulation of information
flow within the network.
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As shown in Fig 4., the GHA module begins by apply-
ing layer normalization to the input tensor X, denoted as
Xnorm = LayerNorm(X). Here, both X and X, share
identical dimensions (N, H, W, C). The normalization is
succeeded by convolutional operations that produce the query
Q, key K, and value V tensors. These tensors are then
subjected to a series of operations to implement the atten-
tion mechanism. Both the query convolution Q and the key
convolution K are generated with a reduced number of fil-
ters C/r, where r denotes the reduction ratio. The value
convolution V maintains the original channel dimension C.
Following the convolutional operations, Q undergoes mean
pooling across the spatial dimensions, resulting in a tensor
with dimensions N X (%) . The mean pooling operation for
Q is mathematically represented as:

1 H-1 W-1 N xHxWx <
HxW 2 Zj:l OR ,
(19)

Next, the scaled dot-product attention mechanism is applied.
The affinity matrix A1 is computed by performing a dot prod-
uct between Q and the transpose of K, followed by scaling
with the square root of the dimensionality of K. The softmax
function is then applied to obtain the attention weights.

S\« (C exp (affinityn i j

A e BV(E)x(5) Z - ‘E(ﬁ y””j’)_
2 =1 2=t &Xp (affinityni.m)
Meanwhile, the value tensor V is subject to average pooling
along the height dimension, followed by transposition to

prepare for element-wise multiplication with the attention
weights:

0 e RV =

(20)

c 1 H-1
E e RNVHXG) = — ; 21
¢ g2 Y @n
Subsequently, the attention feature tensor F is derived, where
each feature is a weighted combination of values based on
attention weights:

c €1
F e R%) = Zj;1 Ay % Ej (22)

To reintegrate F into the original spatial dimensions of the
input tensor X, F is replicated along the reduction dimension
and then resized to match the height and width of x. The
resulting tensor, denoted as Y1, is generated by combining the
original input tensor x with the adjusted attention features G
using a learnable parameter «. This operation is expressed as:

Y1 =a0G + X (23)

Additionally, a gating mechanism is applied to modulate the
information flow within Y;, governed by a sigmoid activa-
tion function (o). Finally, the gated output is obtained by
element-wise multiplication between the gate tensor and Y7,
and the dimensions remain consistent with Y;:

Cc—-1
gate) = O’(Zizo Yy Wgatec_,-) 24
Outputyqeq = gaeiOY) (25)
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b: GATED-VERTICAL ATTENTION (GVA)
Our GVA module is most likely to GHA module but focuses
on capturing vertical relationships within the input fea-
ture map that can be seen in Figure 5. After convolutional
transformations, Q and K undergo mean pooling to reduce
their spatial dimensions. Then, the attention mechanism is
implemented by computing the affinity matrix A2 through
matrix multiplication between Q and K using the dot prod-
uct. Subsequently, softmax activation is applied along the
last dimension to obtain normalized attention weights. The
affinity operation is computed as:

C

1 €
— > * K 26
scaling_factor Zk:l On.i (26)

Simultaneously, the value tensor V undergoes average pool-
ing along the width dimension, followed by transposition in
preparation for element-wise multiplication with the attention
weights:

affinity =

1 w-1
E € RVXH*(5) — W ijl V. 27)

This step yields the attention feature tensor F, where each
feature represents a weighted combination of values based
on attention weights. To reintegrate F into the original spatial
dimensions of the input tensor x, F is replicated along the
reduction dimension and then resized to match the height and
width of x. The resulting tensor, denoted as Y», is generated
by combining the original input tensor x with the adjusted
attention features G, using a learnable parameter . This
operation is expressed as:

Y2 c RNXHXWXC — ﬂ@Gz—i—X (28)

Furthermore, a second gating mechanism is applied to mod-
ulate the information flow within Y», governed by a sigmoid
activation function o

c-1
gatey =0 (Vo Weae,)  (29)
outputeareqr = gate2OY, 30)

c: GATED HORIZONTAL VERTICAL ATTENTION (GHVA)
Although the Gated-Horizontal Attention (GHA) module
or Gated-Vertical Attention (GVA) module can effectively
capture long-distance dependency information in various
directions, they inherently focus on acquiring local infor-
mation. This limitation arises from the inability to establish
connections between pixel points along rows or columns.
To address this issue, we propose the Hybrid Gated
Horizontal-Vertical Attention (GHVA) module, which inte-
grates both GHA and GVA modules sequentially as can be
seen in Figure 6 and Algorithm 1.

d: GATED-LOCAL ATTENTION (GLA)

To extract local spatial information from brain images,
we introduced the Gated-Local Attention Module. It attains
this by applying spatial attention mechanisms, which focus
on specific regions of interest within the brain tumor image.
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According to Figure 7, the GLA module first applies two
distinguish max pooling (M) and average pooling (A) opera-
tions over the channels of the input tensor / € RFXWXC A and
M are then stacked together along a new channel dimen-
sion and creating a combined tensor § € RIXWXZ Next,
S undergoes a series of convolutional layers with a swish
activation function to create a transformed tensor T. From T,
the module calculates attention weights W using a softmax-
based transformation. In parallel, the module computes gate
values G from T using a sigmoid-based transformation. The
final step involves calculating the gated attention weights W,
by performing element-wise multiplication of the attention
weights W and the gate values G. Finally, the original input
tensor I is multiplied element-wise with the gated attention
weights W, producing the output tensor O € RHXWXC

e: FE-GGLA MODULE

We further embed the Gated Global-Local Attention (GGLA)
within the Feature-Enhanced (FE) FE-GGLA module to bet-
ter address inter-class and intra-class variability in the brain
tumor dataset which can be seen in Figure 3. The FE-GGLA
module initially takes inputs from two EfficientNetV2-S and
ConvNeXt branches, independently. These inputs are passed
through a batch normalization layer. The batch-normalized
outputs are then fed into the GGLA module to extract global
and local features. Subsequently, the FE-GGLA module pro-
cesses the features through another batch normalization layer,
followed by a separable convolution layer with a 3 x 3 kernel
and a Swish activation function. Finally, a residual connection
is added using a 1 x 1 convolution layer. The embedded
GLA scheme can accurately locate brain tumors and focus
on comprehensive information, such as tumor boundaries and
contours. This results in more enriched and accurate extracted
features.

3) PROPOSED GGLA-NeXtE2NET

In this paper, we present the GGLA-NeXtE2NET model tai-
lored for the classification of multi-class brain tumor images.
Our proposed model, as depicted in Fig. 3, offers a com-
prehensive design that not only enhances model accuracy
but also maintains consistency with the parameters of both
EfficientNetV2 and ConvNeXt models. At the heart of our
architecture lies the Gated Global Local Attention (GGLA)
mechanism, which facilitates the sequential extraction of
global and local features. Within the GGLA module, we ini-
tiate the Gated Horizontal and Vertical Attention (GHVA)
to capture global features inherent in brain tumor images.
Subsequently, the Gated Spatial Attention (GSA) is employed
to focus on tumor-specific information locally. Initially,
we extract fixed layers from the blocks of the DBE network
and feed them into our FE-GGLA module. Following this,
we introduce a separable convolutional layer with a 1 x 1 ker-
nel size and a stride rate of 2, through which the FE-GGLA
layer is processed which enables it to capture spatial infor-
mation effectively while down-sampling the feature maps.
Similarly, we repeat this procedure with the second layer from
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Similarly, the GVA module creates an attention map with H weights. By sequentially passing through the GHA and GVA modules, each pixel in 12 can
indirectly acquire dependency information from all other pixels. To simplify the explanation, steps like the Value branches and other operations have

been omitted.

the second block of the BBE network, passing it through the
FE-GGLA module. Subsequently, we aggregate the informa-
tion from the first and second layers using the concatenation
function. This step ensures that the features extracted from
different blocks of the DBE network, enhanced by the GGLA
mechanism and refined by the separable convolutional layer,
are effectively combined to enrich the overall feature rep-
resentation. This approach is iterated for each block of the
EfficientNetV2S and ConvConXt models, ensuring the com-
prehensive integration of the FE-GGLA mechanism across
the architecture.
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IV. EXPERIMENTS

A. EXPERIMENT SETTING

The Multi-Class Brain Tumor dataset was partitioned into
three sets: a training set, a validation set, and a test set.
The training set contained 80% of the images, the validation
set contained 10% of the images, and the test set contained
10% of the images. The learning rate was set to 0.001,
with 20 epochs and a batch size of 8. The learning rate
was reduced by a factor of 0.5 with a patience value of 1.
We used the categorical cross-entropy loss function, which is
well-suited for multi-class classification tasks as it penalizes
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Algorithm 1 Gated Horizontal-Vertical Attention (GHVA) Module

Input:

10: Input feature map

I1, I2: Intermediate feature maps
Output:

12: Final feature map with horizontal and vertical dependencies

1. Operation:
a. GHA Module:
- Input: 10
- Output: I1
- I1 = GatedLayer(HA(I0))
b. GVA Module:
- Input: I1
- Output: I2
- 12 = GatedLayer(VA(I11))
2. Information Propagation:

-Functions f] and f> define the information propagation between spatial positions of feature maps.

3. Definitions:

-Letq = (qx, qy) € RH/2XW/2 be any spatial position of the feature map mapped by Io.

H W
Wx(7><7

-A’ eR
4. Horizontal Dependency Information (GHA Module):
-Operation f7 :
For Vi € RY, A} = fi(A’, kCHA kOHA g, qy),

H W
and A” e R ( 2%2 ) are the attention maps from the GHA and GVA modules, respectively.

where kGHA(kaH%, kyGHA) € RY is a position in the same row as query point ¢ in the horizontal structure, while
Function f; multiplies query point ¢ with the corresponding horizontal structure k%4, mapping the results to elements in A’.

5. Vertical Dependency Information (GVA Module):
-Operation f5:
For¥j € RA, A7 = (A", kSYA kYA, 41, qy),

, Ty
where kCVA (kf] K

, k;; VA) e R is a position in the same column as query point ¢ in the vertical structure. While,

Function f> multiplies query point ¢ with the corresponding vertical structure k", mapping the results to elements in A”.

6. Gated Layer:
-GatedLayer(I) applies a gating mechanism to selectively
7. Return 12 as the output of the GHVA module.

propagate information in the input tensor 1.

incorrect predictions based on their confidence scores. This
helps ensure precise classification by encouraging the model
to produce accurate probability distributions for each class.
We train the model using the Adamax optimizer, which builds
on the Adam algorithm by using an infinity norm, making it
robust for handling sparse gradients and allowing for stable
convergence in high-dimensional feature spaces. The best
results were saved in the model using the validation set. The
TensorFlow platform was used to perform all experiments
with Python version 3.10. The multiple metrics were used to
measure the model performance. These metrics are defined
in equations 31 to 34.

1 n ~
Accuracy = — > 10 =3)) (31)
lf’_ I ;= 1 d Vi = 1
Precision = Zl_lz():,l 16’?’1 ly)l ) (32)
i=1 L
Recall = 2= 101 =1andji =1 33
2 10i=1)
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2

Fl —score = ————— (34)

Precision + Recall

where I(x) is the indicator function that returns 1 if X is true
and O otherwise. y; be the actual label of the i-th observation,
and y; be the predicted label of the i-th observation, and N be
the total number of observations.

B. RESULTS

Table 2 presents the results of the GGLA-NeXtE2NET
model on two different brain tumor datasets. For the 4-
class Brain tumor dataset, the model achieved an accuracy
of 98.98% for Glioma, with a precision of 99.49%, recall
of 98.99%, and an F1-Score of 99.24%. Meningioma was
classified with perfect accuracy, recall, and FI1-Score of
100%, and a precision of 99.50%. The No Tumor class
also had perfect scores across all metrics. Pituitary tumors
were classified with an accuracy of 99.48%, precision of
99.49%, recall of 99.49%, and an F1-Score of 99.49%.
On the 3-class Figshare Brain tumor dataset, the model’s
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Algorithm 2 GGLA-NeXtE2NET

Input: Image X

QOutput: Predicted class probabilities

For each image X
Extract feature maps Fef, , Fetr, , Feft;, Feft, , Fetfs , Fefts
Fetr,,, using EfficientNetV2S.

Extract feature maps Fcony, , Fconv, » Fconvs s Fconvs» Fconve, using ConvNeX(.

Apply attention mechanisms:
Fori=1to6:
Apply FE-GGLA (H;) on Fegf,.
Apply FE-GGLA(H,,) on Fcony;-
Apply separable convolution layers:
Fori=1to5:
Ifi=1:
Apply sep_conv, on H;.
Apply sep_conv, on H,,.
Else:

Let Heoneat = Zj;% anz_ll (Sj, Sn) // Concatenation of feature maps from FE-GGLA mechanisms.

Apply sep_conv; on Heoncat.

Let Feoncat = 2oy > o (H;, Hy,) // Concatenation of all H; and H,,,.
Concatenate Fcony,,, and Feg,,, using Concatenate Layer (8) :
Let Ffinal = [Feoncat; Fconvey 1 Feffyy, J// Concatenation of Feoncar and Feony,,, With Fegr, .

Apply global average pooling («) on Fipar:

Let o = 1/(H % W) // Normalization factor where H is the height and W is the width of Fyp,y.
Let g (Ffina) = Zflzl Z}ll Ftinalli, j] * « // Global average pooling operation.

Apply the classifier layer («) for final classification.

performance was slightly different. Glioma was classified
with an accuracy of 98.60%, precision of 99.30%, recall of
98.60%, and an F1-Score of 98.95%. Meningioma had an
accuracy of 99.28%, precision of 97.89%, recall of 99.29%,
and an F1-Score of 98.58%. Pituitary tumors were clas-
sified with an accuracy of 99.29%, a perfect precision of
100%, a recall of 99.29%, and an F1-Score of 99.64%. The
GGLA-NeXtE2NET network impressive performance on key
classification metrics like accuracy, precision, recall and
F1-score highlight its ability to learn robust discriminative
features from the MRI data. This enables highly accurate dis-
crimination between complex tumor types as well as rejection
of normal images. The model shows promise for real-world
clinical usage for automated screening and diagnosis of brain
tumors.

7246

“Figures 8 and 9 illustrate the confusion matrix and
ROC-AUC curve for the novel GGLA-NeXtE2NET network
on 4-class and 3-class brain tumor Datasets respectively. The
confusion matrix shows the counts of true positive, true nega-
tive, false positive, and false negative predictions. The matrix
is divided into rows and columns, where each row represents
the instances of an actual class, and each column represents
the instances of a predicted class. The confusion matrix
indicates exceptional performance on 4-class brain tumor
dataset in figure 8(a), with only 2 misclassified cases for the
glioma and 1 misclassification for the pituitary class. The
meningioma and no tumor classes achieved perfect results,
with no misclassifications. For the 3-class brain tumor dataset
in Figure 9(a), our GGLA-NeXtE2NET network correctly
predicted 141 cases and misclassified 2 cases as meningioma.
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TABLE 2. Both brain tumor datasets result with GGLA-NeXtE2NET.

Dataset Classes Accuracy Precision  Recall F1- Dataset  Classes Accuracy Precision Recall F1-
Score Score
4-class Glioma 98.98% 99.49% 98.99%  99.24%  3-class Glioma 98.60% 99.30% 98.60%  98.95%
Brain oy ingioma  100% 9950%  100%  99.75% BrAM TN iigioma  99.8%  97.89%  99.9%  98.58%
tumor tumor
dataset  No Tumor 100% 100% 100% 100% dataset  Pituitary 99.29% 100% 99.29%  99.64%
Pituitary 99.48% 99.49% 99.49%  99.49% - - - - -
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FIGURE 8. GGLA-NeXtE2NET results on 4-class brain tumor dataset (A) Confusion matrix (B) ROC-AUC curve.
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FIGURE 9. GGLA-NeXtE2NET results on 3-class brain tumor dataset (A) Confusion matrix (B) ROC-AUC curve.

For meningioma, it correctly identified 139 cases but mis-
classified 1 case as glioma. For pituitary tumors, the model
correctly classified 140 cases, with 1 case misclassified as
meningioma. Overall, the confusion matrix demonstrates the
GGLA-NeXtE2NET model competency in accurately cate-
gorizing cases into the correct classes.

The ROC-AUC  curve further  verifies the
GGLA-NeXtE2NET model effectiveness. The Figures 8(b)
and 9(b) show the Receiver Operating Characteristic (ROC)
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curve along with the Area Under the Curve (AUC) values
for each class. The ROC curve is a graphical representation
that illustrates the diagnostic ability of a binary classifier
system. For 4-class and 3-class brain tumor datasets, the
curves for glioma, meningioma, and pituitary tumors all
show perfect performance with an AUC of 100%, indicating
that the GGLA-NeXtE2NET model can perfectly distinguish
between the positive and negative classes for each type of
tumor without any errors. The GGLA-NeXtE2NET model
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TABLE 3. Performance comparison of different variations with GGLA-NeXtE2NET.

Model Brain tumor dataset Data Accuracy Precision Recall F1-Score Loss
EfficientNetV2S 4-class 97.73% 97.73% 97.74% 97.72% 0.078
3-class 96.93% 96.96% 96.94% 96.93% 0.089

DBS-NeXtE2NET 4-class 98.23% 98.24% 98.25% 98.24% 0.064
3-class 98.35% 98.38% 98.36% 98.35% 0.050

GGLA-E2NET 4-class 98.61% 98.61% 98.62% 98.62% 0.074
3-class 98.11% 98.14% 98.11% 98.10% 0.048

GGLA- 4-class 99.62% 99.60% 99.62% 99.62% 0.014
NeXtEZNET 3-class 99.06% 99.05% 99.05% 99.06% 0.015

also attained an overall ROC-AUC score of 99.99% for both
4-class and 3-class brain tumor Datasets.

C. COMPARISON RESULTS OF DIFFERENT VARIATIONS
WITH GGLA-NeXtE2NET
We embedded the DBS module and FE-GGLA module in the
proposed GGLA-NeXtE2NET model with the backbone Effi-
cientNetV2S and ConvNeXt models. Further, we conducted
the ablation study to verify the each module effectiveness
with original EfficientNetV2S, DBS model with original
EfficientNetV2S and ConvNeXt(DBS-NeXtE2NET), GGLA
module with EfficientNetV2S(GGLA-E2NET). This study
highlights the impact of each module on overall perfor-
mance by selectively removing individual modules from
the GGLA-NeXtE2NET architecture. Table 3 provides a
comprehensive comparison of the performance metrics for
GGLA-NeXtE2NET with its variations on the 4-class and
3-class brain tumor datasets. EfficientNetV2S shows an accu-
racy of 97.73% on the 4-class dataset and 96.93% on the
3-class dataset, with corresponding precision, recall, and F1-
scores being very similar to its accuracy. Its loss values
are 0.078 for the 4-class and 0.089 for the 3-class dataset.
DBS-NeXtE2NET improves upon these results, achieving an
accuracy of 98.23% on the 4-class dataset and 98.35% on the
3-class dataset, with slightly better precision, recall, and F1-
scores, and lower loss values of 0.064 and 0.050 respectively.
GGLA-E2NET further enhances the performance, attaining
an accuracy of 98.61% on the 4-class dataset and 98.11%
on the 3-class dataset. Its precision, recall, and F1-scores are
consistent with its accuracy, and the loss values are 0.074 for
the 4-class and 0.048 for the 3-class dataset. The GGLA-
NeXtE2NET model demonstrates the highest performance,
achieving a remarkable accuracy of 99.62% on the 4-class
dataset and 99.06% on the 3-class dataset. Its precision,
recall, and F1-scores are nearly identical to its accuracy, and
it exhibits the lowest loss values of 0.014 for the 4-class
dataset and 0.015 for the 3-class dataset. This indicates a
clear trend of performance improvement with each successive
model variation.

The confusion matrix and ROC-AUC curve analysis of
GGLA-NeXtE2NET variations can be seen in figure 10,
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figure 11, figure 12 and figure 13 respectively. Our GGLA-
NeXtE2NET architecture clearly outperformed its variants
and only misclassified 4 and 3 cases for 4-class and 3-class
brain tumor datasets that can be seen in Figure 8(a),
figure 9(a), figure 10 and Figure 12. Similarly, our proposed
model maintained superior performance in Roc-AUC curve
analysis compared to its variants.

D. COMPARISON RESULTS WITH AUGMENTED DATA AND
WITHOUT AUGMENTED DATA

Figure 14 illustrates the comparative performance of the pro-
posed GGLA-NeXtE2NET architecture when trained with
GAN-based augmented, simple augmented pipeline and
non-augmented data. The results indicate that the model
performance is significantly enhanced when using data aug-
mented with Generative Adversarial Networks (GANs) and
a simple augmented pipeline. Without augmented data, the
model accuracy is lower as can be seen in Figure 14. How-
ever, with GAN-based augmented data, the model achieves a
2.75% and 2.64% higher accuracy for the 4-class and 3-class
brain tumor datasets against non-augmented data, respec-
tively. On the other hand, a simple augmented pipeline also
improves the accuracy of the model but is slightly shorter than
GAN-based augmented data.

In addition to improved accuracy, the use of augmented
data also enhances the GGLA-NeXtE2NET performance
across other metrics. The precision, recall, and F1-scores
are all significantly improved, indicating that the augmented
technique helps the model recognize brain tumor images
more effectively. Furthermore, the GAN-based augmentation
introduces variability and diversity in the training data, which
enhances the model’s ability to generalize to new, unseen
images. This leads to more robust and reliable classification
performance, making the GGLA-NeXtE2NET model more
effective in practical medical imaging applications.

E. VISUALIZATION WITH GRAD-CAM AND BOUNDING
BOX

“Figure 15 and Figure 16 depict the complete overview of
how well our model performs in the input image to high-
light the most important part and also predict the particular
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class using this highlighted tumor region. The first step of
our approach in the “figurel5 and Figure 16 involves the
application of Grad-CAM to the input image. Grad-CAM is
a well-established method used for visualizing the regions
in an image that exert the most significant influence on
a neural network’s prediction, particularly in classification
tasks. To achieve this, we passed the input image through
our proposed network and computed the gradients of the
target class with respect to the final convolutional layer’s
feature maps. Following the Grad-CAM heatmap generation,
we proceed to create a heatmap that vividly highlights the
areas of the input image that bear the greatest relevance to
the network’s prediction for the target class. The heatmap is
produced by weighting the feature maps in the final convolu-
tional layer with the obtained gradients. Subsequently, higher
values within the heatmap signify regions in the image that
exerted a more substantial impact on the network’s prediction,
thereby pinpointing the areas of interest.
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To facilitate further analysis and interpretation, we convert
the Grad-CAM heatmap into a binary mask in figure 16. This
transformation is achieved by applying a predefined threshold
to the heatmap. Pixels with values exceeding this threshold
are set to 1, indicating their significance, while those falling
below the threshold are set to 0, indicating their relative
insignificance. The choice of the threshold value can be tai-
lored to the specific requirements of the application, allowing
for different levels of sensitivity in identifying important
regions.

Finally, our strategy culminates in the creation of bounding
boxes around the crucial regions identified in the origi-
nal image. To achieve this, we analyze the binary mask
and identify connected components within it. Each con-
nected component represents a coherent, contiguous region
of importance within the image. For each such component,
we calculate a bounding box that encloses the region. These
bounding boxes effectively serve as a visual representation
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FIGURE 14. Comparison results of GGLA-NeXtE2NET with augmented and non-augmented data.
of the most significant regions within the input image, model to focus on the tumor areas and identify the type of
as determined by the Grad-CAM heatmap. tumor more accurately. In this section, we will discuss our
approach in more detail and explain why it is better than

V. DISCUSSION previous methods.

It is difficult and time-consuming to classify brain tumors

into different types, because MRI images can vary so much.

We have developed a new way to classify brain tumors that is A. COMPARISON RESULTS WITH EXISTING

more accurate than previous methods. Our approach starts by STATE-OF-THE-ART CNN MODELS

denoising the images to make them clearer. Then, we intro- The table 4 compares various models for brain tumor clas-
duced the GGLA-NeXtE2NET network which makes it better sification with our proposed GGLA-NeXtE2NET model
at extracting information from the images. This allows the with preprocessing techniques, highlighting significant
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FIGURE 15. Grad-Cam analysis with (A-D) Ground Truth (B-E) EfficientNetV2S (C-F) GGLA-NeXtE2NET.

FIGURE 16. (A) Ground Truth image (B) predicted most important part in
the image using heatmap (C) predicted binary mask of heatmap image
using predefined threshold value (D) create bounding box with predicted
accurate class name using binary mask in the original image.

performance differences. Wang et al. [22] used a modified
version of the Vision Transformer model, achieving 80.78%
accuracy and 80.00% recall for 4-class and 71.08% and
64.23% for 3-class classification. If we compare our tech-
nique to the vision transformer, our proposed model captures
both local and global information simultaneously by using
efficientNetV2S and ConvNeXt models and improves the
accuracy by almost 19%, and 28% higher on 4-class and
3-class datasets. Mehmood et al. [23] used Pix2Pix-cGANs
and NasNetLarge models for 3-class brain tumor datasets.
Pix2Pix-cGANs is a novel approach but our models indi-
vidually gave better results for image classification tasks on
the imagenet database compared to NasNetLarge traditional
model. Anaya-Isaza et al. [24] and Reyes and Sdnchez [25]
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only used single models InceptionResNetV2 and Efficient-
NetB3 respectively for brain tumor classification. These
models traditionally perform well for image classification
tasks but brain tumor images contain complex, high-level
information that these models struggle to capture due to
the localized nature of convolutional layers. In contrast,
our advanced model addresses this limitation by effectively
capturing both local and global information, resulting in
superior handling and classification of brain tumor images.
Patil and Kirange [28], Incir and Bozkurt [26], Khan et al.
[27] and Rizwan et al., [21] utilized traditional CNN models
within ensemble networks that tend to collect similar types of
information. In contrast, our model gathers richer information
and more precisely highlights tumor areas, resulting in more
accurate and detailed brain tumor classification. Senan et al.
[29], and Hagq et al. [30] utilized hybrid models (CNN +
SVM) that struggle with feature representation and scalabil-
ity, as it require separate training stages and may not fully
leverage complex patterns in brain images. In contrast, our
model integrates advanced feature extraction and classifi-
cation in a unified framework, and achieves almost 4.50%,
and 1.50% higher accuracy than both models respectively.
CNN + LSTM [31], [32] models may struggle with capturing
spatial and temporal dependencies effectively in brain tumor
images, as LSTMs are typically designed to capture temporal
dependencies in sequential data rather than complex spatial
patterns. In these models, convolutional layers can extract
local spatial features from brain tumor images, but they are
limited in their ability to model long-range dependencies
across the image.

While our GGLA-NeXtE2NET model focuses on brain
tumor classification, recent advancements in semi-supervised
medical image segmentation, such as the EVIL framework
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TABLE 4. Comparison results of state-of-art-models with our proposed model.

Image, GAN based Data
Augmentation

Ref. Classes Preprocessing techniques Model Accuracy Recall
Wang et al.[22] 4 classes Data augmentation Modified Vision transformer 80.78% 80.00%
3 classes 71.08% 64.23%
Mehmood et al.[23] 3 classes Tumor Region Colorization, image Pix2Pix-cGANSs, NasNetLarge 92.4% 92.3%
resizing
Andres et al.[24] 3 Classes Data Augmentation InceptionResNetV2 97.22% 98.15%
Reyes et al.[25] 3 Classes Data Augmentation EfficientNetB3 98.72% 98.71%
4 classes 97.50% 97.20%
Patil et al.[28] 3 Classes Normalized Image, Augmentation EDCNN (VGG + CNN) 97.77% 96.66%
. Incir et al.[26] 4 Classes Data Augmentation, croping InceptionV3 + 98.41% 98.5%
DenseNet+EfficientNetV2
Khan et al.[27] 3 Classes Data Augmentation VGG16 + CNN 97.8% 96.4%
Rizwan et al.,[21] 3 Classes Gaussian Filter, Augmentation GCNN 97.14% 97.50%
Huang et al.,[20] 3 Classes Resize Image CNNBCN (CNN + Graph) 95.49% -
Senan et al.[29] 4 Classes Normalize image, Mean Filter, Hybrid Model (Alex-Net + SVM) 95.10% 95.25%
Laplacian Filter, Augmentation
Hagq et al.[30] 3 Classes Image Resizing, Image Registration Deep CNN+SVM-RBF 98.3% 98.1%
Islam et al.[31] 2 classes Data augmentation Ensemble Model + LSTM 98.82% 98%
Shanthi et al.[32] 2 Classes Data Augmentation CNN +LSTM 97.50% 97.30%
Our Proposed 4 Classes patch-based denoising, wavelet GGLA-NeXtE2NET(Dual Branch 99.62% 99.62%
decomposition, Fourier transform, Ensemble Network (EfficientNetV2+
CLAHE, Laplacian Edge ConvNeXt) + FE-GGLA module)
3 classes Enhancement, Crop lmage_, GAN 99.06% 99.05%
based Data Augmentation
TABLE 5. Comparison results of attention-based network with proposed attention-based network.
Ref. Classes Preprocessing techniques Model Accuracy Recall
Alzahrani et al. 4 classes Data Augmentation, rescaling ConvAttenMixer (self-attention & 97.94% 96.65%
[33] external-attention)
Alzahrani et al. 3 Classes Data Augmentation Student-Teacher model with multi- 80.34% -
[34] head self-attention module
pandi et al.[35] 3 Classes Data Augmentation Self-attention based GAN network 99.29% -
. Tang et al.[39] 2 Classes Data Augmentation SpCaNet (Spinal Convolution 99.18% 98.95%
Attention Network)
Ioannis et al.[41] 3 Classes Image resizing VGG16 + Gobal Avg pooling + 95.65% 95.4%
Spatial attention module
Rasheed et 4 Classes Image resizing CNN + Channel and Spatial 98.33% 98.30%
al.[42] Attention
Our Proposed 4 Classes  patch-based denoising, wavelet ~ GGLA-NeXtE2NET(Dual Branch 99.62% 99.62%
decomposition, Fourier Ensemble Network
transform, CLAHE, Laplacian  (EfficientNetV2+ ConvNeXt) + FE-
3 classes Edge Enhancement, Crop GGLA module) 99.06% 99.05%

[19], emphasize uncertainty-aware techniques to improve
segmentation reliability under limited supervision. The EVIL
framework utilizes the Dempster-Shafer Theory of Evidence
to generate reliable pseudo-labels by quantifying uncertainty,
which is highly effective in segmentation tasks but primar-
ily targets label-scarce environments. In contrast, our model
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addresses challenges specific to fully supervised brain tumor
classification, including high intra-class variation and inter-
class similarity in MRI images, by employing the Gated
Global-Local Attention (GGLA) mechanism and dual-branch
ensemble design to enhance feature extraction and adaptabil-
ity. Unlike EVIL, which emphasizes uncertainty estimation
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TABLE 6. Training efficiency comparison of previously used hyperparameters with our hyperparameters.

Ref. Optimizer  Activation Function Loss Function Classification Training
Function Epochs

Wang et al.[22] SGD GELU Categorical Cross-entropy - 50
Andres et al.[24] Adadelta ReLU Categorical Cross-entropy SoftMax 50
Patil et al.[28] Adam ReLU - - 30
Reyes et al.[25] Adam ReLU Categorical Cross-entropy SoftMax 30
Shanthi et al.[32] - ReLU Categorical Cross-entropy SoftMax 80
Khan et al.[27] Adam ReLU Categorical Cross-entropy SoftMax 80
Rizwan et al.,[21] SGD ReLU Categorical Cross-entropy SoftMax 300
Huang et al.,[20] - GeLU + ReLU - 100
Hagq et al.[30] Adam ReLU Categorical Cross-entropy SoftMax 100
Mehmood et al.[23] Adam ReLU, leaky ReLU Categorical Cross-entropy SoftMax 100
Islam et al.[31] - ReLU - 30
Alzahrani et al. [33] Adam GELU Categorical Cross-entropy SoftMax 30
Rasheed et al.[42] Adam ReLU Categorical Cross-entropy SoftMax 50
Our Proposed Adamax Swish Categorical Cross-entropy SoftMax 20

and pseudo-labeling, GGLA-NeXtE2NET prioritizes feature
refinement for more precise classification.

B. COMPARISON RESULTS WITH EXISTING
ATTENTION-BASED MODEL
Further, table 5 compares various attention-based mod-
els for brain tumor classification with our proposed
GGLA-NeXtE2NET model. The proposed model stands
out in several aspects. In terms of architecture, the
GGLA-NeXtE2NET utilizes a dual-branch ensemble net-
work combining EfficientNetV2 and ConvNeXt, along with
an FE-GGLA module. This sophisticated design appears to
leverage the strengths of multiple advanced architectures.
The performance of the proposed model is exceptional,
achieving 99.62% accuracy and recall for 4-class classifi-
cation, surpassing all other models in the comparison. For
3-class classification, it maintains high performance with
99.06% accuracy and 99.05% recall. These results represent a
significant improvement over other recent models, including
those using attention mechanisms and specialized architec-
tures like ConvAttenMixer [33] and SpCaNet [39], CNN +
CBAM [42], Self-attention-based GAN network [35], and
Student-Teacher model with a multi-head self-attention
module [34].

C. TRAINING EFFICIENCY COMPARISON WITH
PREVIOUSLY USED HYPERPARAMETERS

Table 6 compares our proposed model with others, emphasiz-
ing training efficiency components like optimizer, activation
function, loss function and training epochs. While many
prior studies rely on the Adam optimizer, our model uses
Adamax, which offers enhanced stability and convergence
speed in the presence of large gradients. Most previous mod-
els also utilize ReLU or GELU activation functions; however,
we opted for Swish, which facilitates better gradient flow
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and faster convergence than ReLLU and GELU. Notably, our
model achieves convergence in just 20 epochs, highlighting
a significant improvement in training efficiency compared
to others, which often require up to 100 epochs or more.
This reduction in training time indicates substantial gains in
computational efficiency without sacrificing accuracy.

D. DENOISING STRATEGY

Original MRI images often exhibit noise, making it chal-
lenging to precisely delineate tumor boundaries within the
brain. We employed a comprehensive set of preprocessing
techniques that contribute to the model’s high performance
by enhancing the quality and diversity of input data.

“Figure 17 showcases the results and analysis of denois-
ing a brain MRI image. The first set of images focuses on the
frequency spectrum of both the noisy and denoised images,
while the second set illustrates the visual comparison between
the noisy, denoised, and different images, along with their
corresponding histograms.

Starting with the frequency spectrum analysis, the left
image represents the magnitude spectrum of the Fourier
Transform of the noisy image. In this spectrum, bright spots
indicate the presence of high-frequency components, which
are typically associated with noise. The central bright spot
represents the low-frequency components, corresponding to
different images. The noisy image, displayed on the left,
clearly shows the presence of noise as random speckles
or variations, particularly noticeable in the homogeneous
regions of the brain MRI. This noise obscures fine details and
can complicate the interpretation of the image. The middle
image in the top row is the denoised version of the original
image. Here, the noise is significantly reduced, resulting in
a smoother and clearer image. The fine details of the brain
tumor and surrounding tissue are better preserved, making the
image more suitable for diagnostic purposes. The rightmost
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FIGURE 17. In first row, frequency spectra of the noisy (left) and denoised (right) brain MRI images show reduced high-frequency noise after denoising,
while preserving essential image features. In second and third row, Visual and histogram analysis of noisy (left), denoised (middle), and difference (right)
brain MRI images highlights effective noise reduction and preservation of critical image details.

image in the top row is the difference image, which repre-
sents the absolute difference between the noisy and denoised
images. This difference image highlights the areas where the
most significant noise reduction has occurred. Bright areas
in this image indicate regions where the denoising algorithm
made substantial changes, effectively removing noise. Darker
areas show where the denoising algorithm made minimal
changes, preserving the original image details.

The bottom row of the second set of images provides the
histograms of the noisy, denoised, and different images. The
histogram of the noisy image, shown on the left, reveals a
wide distribution of pixel values, indicative of high variance
due to the presence of noise. Peaks within this histogram
correspond to both noise and image features. In contrast, the
histogram of the denoised image, displayed in the middle,
shows a more concentrated distribution of pixel values. This
narrower distribution indicates reduced variance, suggesting
that much of the noise has been removed. The peak around
lower pixel values is particularly noticeable, signifying that
the denoising process effectively targeted and reduced the
noise. The histogram of the difference image, on the right,
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shows the distribution of pixel intensity differences between
the noisy and denoised images. A high peak at low values
indicates that most of the differences are small, meaning
that the denoising process primarily removed noise without
drastically altering the underlying image structure.

VI. LIMITATIONS AND FUTURE WORK
Although the model can process a range of image
qualities, it performs optimally when both low- and
high-resolution images are available. In practice, high-quality
images may not always be accessible, potentially limiting
the model’s accuracy. Currently, the GGLA-NeXtE2NET
model is designed for centralized learning setups, which
may restrict its application in collaborative environments
across multiple institutions. This limitation also introduces
potential privacy concerns, as sensitive patient data would
need to be transferred to a central location for model
training.

The proposed GGLA-NeXtE2NET model could bene-
fit from integration with distributed learning frameworks
to support privacy-preserving, collaborative learning across
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institutions without sharing sensitive data. For example,
federated learning paradigms such as HyperFed [63],
which combines hypernetwork-based personalization with
physics-driven global sharing, could allow each participat-
ing institution to personalize the model based on its unique
data distribution, improving model accuracy across var-
ied settings. Additionally, a hybrid approach like Dynamic
Corrected Split Federated Learning [64] would allow us
to incorporate homomorphic encryption for enhanced data
privacy while supporting a split-learning structure to dis-
tribute computational demands. DC-SFL’s dynamic weight
correction could further stabilize training across heteroge-
neous medical datasets, which is often the case with MRI
data Future exploration of these integrations could make the
GGLA-NeXtE2NET model more robust in privacy-sensitive
environments, improving both scalability and accessibility in
multi-institutional studies.

In the future, the YOLO (You Only Look Once) model can
also be effectively applied for brain tumor detection. YOLO is
a popular object detection framework that excels at real-time
identification and localization of objects within images. In the
context of brain tumor recognition, the YOLO model can be
utilized to not only classify the tumor type, but also accurately
delineate the tumor boundaries within the MRI scans. This
dual capability of classification and segmentation is crucial
for clinical applications, as it provides valuable information
to assist with surgical planning and treatment strategies. The
ability of YOLO to rapidly process images also makes it
a viable option for deployment in time-sensitive medical
workflows.

VII. CONCLUSION

We present the GGLA-NeXtE2NET model in this paper that
is based on the Dual-Branch Ensemble (DBE) network and
Gated Global-Local attention (GGLA) module to classify
the brain tumor images. Our GGLA module successfully
captures both global and local information in the brain tumor
images simultaneously. Further, our DBE network allows
the model to capture the information of brain tumor images
by using different receptive fields that improve the model
performance at different levels. We also embedded the GGLA
module in the FE-GGLA block to extract features more accu-
rately. Moreover, we have introduced a powerful denoising
strategy that effectively reduces noise in MRI images, leading
to clearer and more precise tumor boundary identification.
We used the 3-class and 4-class brain tumor datasets to
assess the proposed model performance and attained more
remarkable results than previous studies. Furthermore, our
work has addressed critical challenges in medical imaging,
including the need for precise tumor boundary delineation,
accurate classification of tumor types, and improved inter-
pretability of deep learning models. These advancements
hold the potential to revolutionize clinical decision-making,
enabling more accurate diagnoses, treatment planning, and
patient monitoring.
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