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ABSTRACT Early diagnosis of cancer has focused on the use of advanced algorithms to achieve accurate
diagnosis. The proposed study assesses the effectiveness of Transformer-based models and Convolutional
Neural Networks (CNN) in cancer diagnosis with respect to multimodal imaging and genomic data. The
performance comparisons between the two algorithmic methods with such complex datasets, which combine
multi-modal imaging and genomic information, are presented. In search of the optimal neural network
configuration, a series of experiments were conducted with respect to different layers, attention mechanisms
in case of transformers, and convolutional architectures in case of CNNs. Besides, parameters related to
training, such as learning rates, batch sizes, and optimization algorithms, have also been systematically
tuned. The different models were evaluated against accuracy, precision, recall, and the F1-score. Our results
show that the proposed multimodal model, with accuracy from 92.5 to 93.2, F1-scores between 91.5 and
92.2, precision of 91.5 to 92.2, and recall values of 92.5 to 93.2. In contrast, much lower accuracy, F1-
scores, precision, and recall values were noticed when using baselines, especially VGG. All these findings
indicate the fact that the presented techniques, especially the Multimodal and Transformer models, are more
robust solutions for classification tasks with better balance between precision and recall, as well as with
higher overall accuracy. This came with the cost of the expense of computational resources: CNNs are less
resource-intensive but have competitive performance with better precision and recall. The results underline
how algorithm selection and hyperparameter optimization play a crucial role in cancer detection tasks. This
study has shown how state-of-the-art deep learning methods can be effectively combined with multi-modal
data for building more accurate and efficient systems in cancer diagnosis. Two main lines of future work
would be improving these algorithms and understanding their applicability in real clinical practice to obtain
maximum benefits from them.

INDEX TERMS Transformer-based models, convolutional neural networks (CNNs), cancer detection,
multimodal imaging, genomic data analysis.
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I. INTRODUCTION
The groundbreaking step that advanced algorithms in cancer
detection take in changing the face of medical diagnosis to
better early detection, improve diagnostic accuracy, and give
way to more personalized treatment strategies [1]. Artifi-
cial Intelligence (AI) has made it possible to demonstrate
impressive improvements in image analysis, interpretation of
genomic data, and in patient management in many medical
fields [2]. One of the growing concerns is the inefficient tun-
ing of these algorithms to handle the multimodal complexity
of cancer detection data [3].

Only ensuring the capacity of theAI systems to process and
integrate data from diversified sources have been extremely
helpful in the domain of cancer detection, one of the fields
of early diagnosis [4]. The integration of a broad spectrum
of imaging modalities, such as Magnetic Resonance Imag-
ing (MRI), Computer Tomography (CT) scans, and Positron
Emission Tomography (PET) scans, with genomic infor-
mation, in turn, will make it possible to deeply study the
disease condition, in terms of increased ability for structural,
functional, and molecular studies [5]. Multimodal approach
integrates the detailed structure, functions, and molecule
insights, which is mandatory in the identification of can-
cerous situations occurring at early stages and providing
individually adaptive treatment schemes accordingly [6].
The Transformers have really drawn a lot of attention,

partly due to their attention mechanisms and also their abil-
ity to model long-range dependencies; moreover, they have
proven to have great potential for the processing of sequen-
tial data and integration of different data types [7] [8]. The
Transformer-basedmodel has shown tremendous capacity for
the embedding and analysis of genomic data with imaging
data besides attention mechanisms of operations over rele-
vant features when applied to various data types. This will
be most relevant and important for the unearthing of subtle
patterns and correlations potentially linked with early-stage
cancer [9]. On the other hand, the supremacy by which CNNs
can extract fine-grained information from medical images
for anomaly detection and diagnosis of cancerous lesions
remains unchallenged [10].
There are quite a few factors that might influence the

performance of these models: the quality and diversity of
the data, neural network architecture, and training parameter
optimization [11]. Some powerful Transformer-based models
often require large computational resources to train and may
be somewhat challenging to finally tune [12]. While they are
much less costly in terms of high computational resources,
CNNs still need to be designed for the objective of capturing
salient features of images without overfitting or underfitting
[13].Therefore, to make it really appealing to integrate those
models into routine clinical practice, it is of utmost impor-
tance that they provide reliable, actionable insights.

The study assesses their performance in terms of accuracy,
precision, recall, and computational efficiency to see if effec-
tive ways for the early diagnosis of cancer will be identified.
In this assignment, sets of experiments are conducted to pro-

vide a detailed study on neural network configurations, layer
architectures, attention mechanisms for transformers, con-
volutional structures for CNNs, and changes to the training
parameters, such as learning rates, batch sizes, and optimiza-
tion algorithms, to identify the impacts of these parameters
on the performance of the models [14].

The outcome from this study brings insight into the
strengths and limitations of each algorithmic approach that
can help guide future developments in cancer detection tech-
nologies [8], [15]. Comparative analysis of these approaches
is done to form the basis of this study aimed at developing
more precise and reliable tools for diagnosing diseases, hence
being able to detect cancer at an early stage to salvage patient
lives. Not only the algorithmic performance but also the
applicability of the models with respect to a clinical workflow
setting are also assessed. It focuses on meeting computational
resource requirements, model interpretability, and data pri-
vacy, while ensuring feasible solutions within the regulations
for healthcare standards [16].
Advanced AI techniques integrated with multimodal data

can definitely move the cancer diagnosis process toward
greater heights, improving overall health care delivery [17].
In this regard, the present study further integrates the strength
of the Transformer-based models with that of the CNNs
in order to form a pathway for developing more effective
systems in cancer detection and thus help in better care and
improved results for the patients [18].This study is ideally
positioned to meaningfully contribute to a better future in
oncology and healthcare delivery simply by pushing the fore-
front of state-of-the-art cancer detection through rigorous
evaluation and optimization of Transformer-based models
and CNNs.

The main objectives of the study are

1. To compare how well Transformer-based models and
Convolutional Neural Networks (CNNs) detect cancer
using imaging and genomic data.

2. To find the best settings for Transformer-based models
and CNNs to improve the cancer detection accuracy.

3. To evaluate how feasible it is to use Transformer-based
models and CNNs in real-world cancer diagnosis, focus-
ing on their computational needs and ease of integration.

II. EMERGING TRANSFORMER-BASED AND CNN
MODELS FOR ACCURATE CANCER DETECTION
Architectural advances in neural networks have visibly
improved cancer detection. Specifically, in the case of grid-
like data, such as medical images, CNNs are very effective.
They are extremely good at extracting spatial features due
to their hierarchical structure and hence really good at
image classification tasks. However, the effectiveness of
CNN requires large datasets and substantial computational
resources for training, which is a limitation within resource-
constrained environments [19].

On the other hand, transformer networks have an
intrinsic ability for dealing with sequence data since
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their self-attention mechanisms enable them to capture a
long-range dependency within the data. That will be very
helpful in integrating multimodal data, especially with imag-
ing and genomic information. However, these transformer
networks require high computational demands and intri-
cate training procedures to be met, making scalability and
resource allocation a problem [20].

TABLE 1. Comparison of neural network architecture for cancer detection.

Hybrid models, such as those combining CNNs with trans-
formers, have been proposed for the advantages of these
architectures to be beneficial. The hybrid approach where
spatial features are extracted and joined with contextual
understanding can fit very diverse data types, hence improv-
ing the overall detection performance. However, adding
complexity to the hybrid model means that careful tuning and
optimization must be done in order to balance performance
with computational efficiency. Table 1 depicts the compari-
son of all these three models.

As shown in Table 2, there are many challenges in the
integration of the Transformer-based and CNN models. The
most prominent one is the high computational demand
required for training and inference. In this regard, Graphical
Processing Unit (GPU) acceleration and model pruning tech-
niques can aid in consuming fewer resources and increasing
efficiency [21]. Another challenge lies in data integration,
especially on multimodal data, such as imaging and genomic
information. Robust data fusion techniques and comprehen-
sive preprocessing steps need to be developed to ensure that
data integration and the subsequent analysis are effectively
done [22].

TABLE 2. Challenges in integrating Transformer-based and cnn models
for cancer detection.

TABLE 3. Comparison of multimodal data types for cancer detection.

Another challenge is model complexity, since by design,
hybrid models are more complex. In this respect, sim-
plification in model architectures and the optimization of
hyperparameters assume importance to effectively manage
model complexity while maintaining its performance [23].
The last major problem is that of interpretability. It can be
difficult to understand model decisions using even the most
modern neural networks. One can include explainable AI
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TABLE 4. Summary of datasets.

methods and use attention maps in order to make the models
more transparent and interpretable [24].

In the process of detection, a variety of multimodal data as
depicted in Table 3 are applied to enhance its accuracy. Imag-
ing data, like MRI, CT, and X-rays, give visual information
at a deep level that is useful for the detection of tumors and
other anomalies. Since imaging data has high dimensionality
and high processing is required [25].

III. COMPREHENSIVE OVERVIEW OF MULTIMODAL
IMAGING AND GENOMIC DATASETS FOR EARLY CANCER
DETECTION
A. DATA DESCRIPTION
For early detection and diagnosis of cancer usingmulti-modal
imaging and genomic data, few datasets provide deep multi-
modal data, matching imaging modalities such as MRI, CT,
and PET scans with genomic information like DeoxyriboNu-
cleic Acid(DNA) sequencing and gene expression profiles are
used.

1) MULTIMODAL IMAGING DATASETS
a: TCGA (THE CANCER GENOME ATLAS)
TCGA contains imaging, genomic sequences, and clinical
information modalities against different cancer types. Modal-
ities present are MRI, CT scans, DNA sequencing, and

RNA-Seq. Commonly, it is used for tasks such as cancer
subtype classification, mutation analysis, and prognosis pre-
diction. However, heterogeneity of data, high dimensionality,
and variability in patients are the challenges.

b: LIDC-IDRI (LUNG IMAGE DATABASE CONSORTIUM AND
IMAGE DATABASE RESOURCE INITIATIVE)
The dataset includes a large set of annotated CT images
for lung cancer by radiologists for the presence of nodules,
combinedwith genomic information. CT image data and gene
expression data are modalities present in this dataset. It can
be used for the detection of lung nodules, classification of
tumors, and survival prediction. The challenges within the
dataset include inter-observer variability and the balancing of
the quality of images with genomic data.

c: TCIA (THE CANCER IMAGING ARCHIVE)
TCIA provides a large corpus of imaging data that are corre-
lated with genomic and clinical data and exist in modalities
such as MRI, PET, and CT scans. It would apply in tasks like
detection, segmentation, and treatment planning of tumors.
Modalities include MRI, PET, and CT scans, among others.
Inherited DNA sequencing is also available. Some chal-
lenges could be image segmentation and fusion ofmultimodal
data.
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TABLE 5. Common features identified for cancer detection.

2) GENOMIC DATASETS
a: GEO (GENE EXPRESSION OMNIBUS)
GEO is an open archive of high-throughput gene expression
data in a repository for free distribution. Those modalities
include microarray data and RNA-Seq. The dataset used for
gene expression analysis, discovery of biomarkers, and per-
sonalized medicine. The problems that have to be considered
are those related to data normalization and integration with
imaging data.

b: ICGC (INTERNATIONAL CANCER GENOME CONSORTIUM)
The ICGC dataset includes diversified cancer types, with
metastatic profiles involving DNA sequencing and RNA-Seq
modalities of the ICGC in the genomic, transcriptomic, and
epigenomic characterization. The findings in this dataset
are used for mutation analysis, characterization of genomic
changes associated with the development of cancer, and iden-
tification of possible therapeutic targets. Two key challenges
remain that are carrying out the processing of large-scale data
and maintaining data privacy.

c: METABRIC (MOLECULAR TAXONOMY OF BREAST
CANCER INTERNATIONAL CONSORTIUM)
METABRIC is a resource with in-depth genomic and clinical
information, with survival records on the details of breast
cancer. It contains types of data on DNA sequencing, RNA-
Seq, and clinical data. The dataset is primarily used to predict
breast cancer subtypes, survival analysis, and response to
treatment. Integrating clinical data within the genome pro-
files, high dimensionality are some of the challenges this
dataset faces.

The features make the selected datasets particularly suit-
able for multimodal analysis. For instance, TCGA is a
dataset that has imaging data and deep genomic profiles,
hence morphological and molecular data is possible. Sim-
ilarly, LIDC-IDRI has detailed imaging data with genetic
annotations, hence allowing for the analysis of the relation-
ship between phenotypes in imaging and genetic mutations.
Table 4 shows the comparison of various datasets along with
modalities, use cases and challenges.

B. FEATURE DESCRIPTION
1) IMAGING FEATURES
a: TUMOR MORPHOLOGY
Morphology features of the tumor, like shape, size, and tex-
ture, are usually extracted from MRI and CT images. These
characteristics are very fundamental in the classification of
cancer and its staging; therefore, they give valuable informa-
tion about the tumors.

b: RADIOMIC FEATURES
Radiomic features refer to quantitative features that are
derived from imaging data, characterizing tumor heterogene-
ity. This may involve attributes such as intensity, wavelet
transformations, fractal dimensions, and others that explain
the complexity of the tumor.

c: FUNCTIONAL IMAGING METRICS
Functional imaging metrics, such as the PET-emitted stan-
dardized uptake value, are a function of the metabolic activity
of tumors. These metrics distinguish malignant from benign
lesions, hence helping in diagnosis.
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TABLE 6. Properties of common features.

2) GENOMIC FEATURES
a: GENE EXPRESSION PROFILES
RNA-Seq data can be used to develop gene expression pro-
files to identify differentially expressed genes related to
cancer subtypes, which would significantly help in devel-
oping expression-based classifiers and, ultimately, precision
medicine.

b: MUTATION ANALYSIS
Mutation callers can identify somatic mutations within the
DNA sequencing data, enabling the discovery of potential
therapeutic targets and biomarkers for cancer treatment.

c: EPIGENETIC MODIFICATIONS
Epigenetic modifications, such as DNAmethylation patterns,
provide insights into epigenetic changes in cancer. Under-
standing these changes is vital for comprehending tumor
behavior and treatment resistance. Table 6 depicts the data
format and number of patients considered in common fea-
tures.

IV. SYSTEM FRAMEWORK FOR TRANSFORMER- BASED
AND CONVOLUTIONAL NEURAL NETWORK
A. PREPROCESSING
1) IMAGING DATA PREPROCESSING
a: MRI AND CT SCANS
MRI and CT images are aligned using FSL’s FLIRT for
affine registration to correct scale, rotation, and transla-

tion differences, and Advanced Normalization Tools (ANTs)
is applied for nonrigid registration to take into account
local deformations. To reduce noise, Non-Local Means
(NLM) filtering is applied, hence giving better results on
edge preservation compared to the Gaussian blur. This
smoothed out the noise but preserved the most impor-
tant details in the images. Further, Gaussian smoothing is
used to optimize the captured images for proper feature
extraction.

For normalizing, z-score normalization is used for MRI
images and Hounsfield unit scaling for CT images. Thus,
intensity values are comparable across modality. The U-
Net method, a deep learning-based approach is applied,
to carry out tumor segmentation, allowing for the accurate
isolation of tumor boundaries and enhancing the precision
of subsequent analyses. Resampling was done to equalize
image resolution, and bilinear interpolation is applied to
uniformly adjust all the pixel sizes for harmonization of all
modalities for resultant seamless integration on multimodal
analysis [26], [27], [28].

b: PET SCANS
Elastix is used for non-rigid registration of the PET images
toward aligning it with MRI and CT scans so that anatomical
alignment is precise. Standardized Uptake Values (SUV) is
standardized to parameters applicable to every patient: their
body weight and the dose injected. Then, measurements
between the scans are directly comparable.

VOLUME 13, 2025 6125



S. K. B. Sangeetha et al.: Empirical Analysis of Transformer-Based and CNN Approaches

2) GENOMIC DATA PREPROCESSING
a: RNA-SEQ DATA
For the RNA-Seq data, quality was assessed using FastQC
and adapters as well as low-quality bases were stripped off by
Trimmomatic. HISAT2 accurately presented splice junctions
with aligning clean reads to the reference genome.

We obtained the raw counts and normalized them using
the TPM method. That is how we corrected for differences in
sequencing depth between the samples to compare it reliably
across samples.

b: DNA-SEQUENCING DATA
We took the aligned DNA sequences against the reference
genome and then proceededwith Samtools for variant calling.
The output data from the sequence alignments were further
filtered to exclude false positives based on allele frequency
thresholds and quality scores. After filtering the variants, it is
annotated using ANNOVAR to obtain their functional inter-
pretation for further analysis towards potential biomarkers.

3) MULTIMODAL DATA PROCESSING
The techniques for data fusion can combine imaging data
with genomic data to obtain a unified view. Feature-level
fusion involves the combination of features from different
modalities into one feature vector, whereas decision-level
fusion refers to the combination of results from individ-
ual analyses. Similar to multimodal integration techniques,
canonical correlation analysis and deep learning-based fusion
methods could allow for the extraction of comprehensive
insight from multimodal data. Either imputation or data aug-
mentation may represent missing data. Imputation methods,
such as mean imputation or model-based, like k-nearest
neighbors, estimate these missing values from available data.
Data augmentation generates synthetic data to fill in the gaps
and can be very useful in cases of incomplete multimodal
information [29].

Standardization is an enabling step that ensures the com-
patibility of various data types. Numerical features are scaled
to a common range, the encoding of categorical variables
is consistent, and units and formats are standardized. This
makes sure that effective analysis can be conducted on the
combined data from disparate sources. These are the steps in
the preprocessing of a multimodal cancer detection dataset,
so that the data is of high quality and ready to be analyzed.
Accurate preprocessing enhances the effectiveness of the
subsequent data analysis and model training for better cancer
detection and diagnosis. Table 7 depicts the sample data for
10 patients and Table 8 depicts the dataset after preprocessing
steps.

1. Tumor sizes were normalized using min-max scaling

Normalized Tumor Size

=
Tumor Size−Min Tumor Size

Max Tumor Size−Min Tumor Size
(1)

This transformed the sizes into a range between 0 and 1.

2. Tumor shapes were encoded into categorical values
based on morphology:0: Round,1: Irregular,2: Lobulated

This encoding facilitates easier integration into machine
learning models.

3. Radiomic features, such as intensity, were standardized
using z-score normalization

Scaled Intensity =
Intensity− µ

σ
(2)

where µ is the mean intensity across all samples, and σ is
the standard deviation. This approach not only rescales the
data but also standardizes the variance, allowing for direct
comparisons across diverse datasets that may originally differ
in scale or range. By centering the intensity values at zero,
z-score normalization effectively removes biases introduced
by disparate measurement scales, ensuring that variations in
radiomic intensity are reflective of true biological differences
rather than artifacts of differing data collection methods.

4. Tumor heterogeneity was converted into a binary for-
mat:0: Low/Medium Heterogeneity, 1: High Heterogeneity

5. Standardized Uptake Value (SUV) were standardized
using z-score normalization

Standardized SUV =
SUV − µ

σ
(3)

where µ and σ represent the mean and standard deviation of
SUV values across all patients.

6. Principal Component Analysis (PCA) was applied to
the gene expression data (RNA-Seq) to reduce dimension-
ality.PCA simplifies the dataset while retaining the most
significant features, making it easier to identify patterns and
insights. In this context, only the first two principal com-
ponents (PC1 and PC2) are retained because they capture
the largest proportion of variance, ensuring that the essential
structure and relationships among the data points are pre-
served. Gene expression values were transformed into two
principal components (PC1 and PC2), capturing the majority
of variance in the dataset:

PCA(X ) = WX (4)

where W is the matrix of principal component weights, and
X represents the original gene expression matrix.

7. Mutation presence was encoded as a binary variable: 0:
No mutation,1: Mutation present

8. Methylation percentages were normalized using the fol-
lowing formula

Normalized Methylation =
Methylation Percentage−Min

Max −Min
(5)

This transformed the data to a scale between 0 and 1.
These preprocessing choices are useful in models sensi-

tive to the magnitude of features, such as neural networks.
These choices preserve the relationships between original
values and ensure that no single feature, like tumor size,
dominates due to large values, allowing the model to learn
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TABLE 7. Sample patient data from the datasets.

patterns without interference from outliers or varied data
scales. Feature-level fusion combines specific features from
imaging (such as tumor morphology and radiomic features)
and genomic data (like gene expression profiles and mutation
analysis) into a unified feature vector. In contrast, decision-
level fusion integrates the results from individual analyses of
each data type, providing a complementary perspective on
tumor behavior that can improve diagnostic accuracy.

Figure 1 gives an overview of the relations and distri-
butions of the scaled features for the tumor size, intensity,
heterogeneity, and methylation index. It is clear from the
histograms in the first row that the distribution of the scaled
tumor size, intensity, and methylation index is approximately
normal, differing mainly in their spreads and central tenden-
cies. However, the distribution of heterogeneity, as seen in
the third column, is bimodal rather than unimodal, indicating
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TABLE 8. After preprocessing.

two distinct peaks. Clear peaks are indications that scaling
has normalized these features, hence making them ready for
analysis.

Scatter plots of the second and third rows of this informa-
tion provide details about the relations between two different
feature pairs. The scaled tumor size against the scaled inten-
sity plot reflects some modest positive relationship that might
indicate a chance of larger tumors appearing with higher

intensity values in imaging data. Likewise, the scatter plot
relating scaled tumor size against scaled heterogeneity might
indicate a possible relation where certain levels of hetero-
geneity can be associated with specific sizes of tumors.
Contrasting with that, when one comes to the scatter plots
containing the scaled methylation index on the last line, then
the points are much more dispersed, which would suggest
weaker or less direct correlations between methylation index
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FIGURE 1. Scaled feature.

and other features. It may be that though important, the
methylation patterns might not be directly related to tumoral
morphology or any imaging-derived features.

The integration of diverse multimodal cancer data involved
several challenges. One of the main challenges was handling
high-dimensional gene expression data, which was mitigated
by applying Principal Component Analysis (PCA) to reduce
the dimensionality while retaining the most significant fea-
tures. Missing data also presented another challenge, for
which the k-nearest neighbor imputationwas utilized to deter-
mine the missing values with maximum accuracy from the
available data. Standardizing and normalizing data coming
from various sources was also another challenge that was
encountered, particularly with varied units and scales in the
imaging and genomic data. Min-max scaling was used to nor-
malize tumor size data, while the use of z-score normalization
ensured that radiomic features such as intensity were stan-
dardized with respect to the samples since they have different
scales. The conversion of categorical variables, such as shape
and heterogeneity, to numerical formats was challenging, but
this was achieved by encoding them into binary or categorical
values to be easily incorporated into the machine learning
models. In addition, dealing with the challenge of integrating
other imaging modalities, for example, CT and PET scans,
with genomic data was managed by applying such standard-
ization and normalization techniques to ensure compatibility
of data for unified analysis.

B. FEATURE EXTRACTION
The features in Table 9 range from tumor size in centimeters,
intensity in arbitrary units, to heterogeneity in percentage, all
of which are characteristic of both the physical and molecu-
lar levels of the tumor. The tumor size feature is important
because size directly correlates with progressive diseases.
It will probably mean the density of the tissue or its metabolic
activity, investigating techniques like MRI or PET scans.
Heterogeneity corresponds to variation in tumor composition
and reflects the relative complexity of a possibly aggressive
tumor. Figure 2 depicts the heatmap of feature correlations.

Table 10 enforces features related to the tumor microenvi-
ronment and genetic profile, including vascular density, gene
mutation rate, and protein expression level. Vascular density
gives information about the blood supply of the tumor, which
may affect its growth and responsiveness to therapies. On the
other hand, the gene mutation rate gives information about
the genomic instability of the tumor. Genomic instability is
one of the hallmarks of cancer and generally correlates with
aggressive behavior or poor prognosis. This information of
protein expression levels provides the active molecular path-
ways in a tumor, some of which can be targeted by specific
therapies.

Table 11 contains features that help to decode the structural
andmolecular properties of a tumor, such as tumor roundness,
CT Attenuation, and RNA Integrity Number (RIN). Derived
from such imaging data, the characteristics of the level of
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FIGURE 2. Heatmap of feature correlations.

roundness of a tumor and the homogeneity in texture are
features that play an important differentiating role in various
tumor types. The majority of the cases show irregular shapes
and textures, which most of the time are associated with
malignancy. CT attenuation values, measured in Hounsfield
Units (HU), provide details on the density of the tumor, which
may be related to the different material compositions and the
likely effectiveness of different treatments. The RIN will be
an important description of the quality of RNA in the tumor
and hence is part of that of the gene expression measurement.
At the same time, GUR estimated from PET imaging could
disclose the metabolism rate by the tumor, which is one of the
key aggressiveness explanation factors.

These statistical features, as defined in these tables, put
together a valid dataset for the research at hand on diag-
nosis and prognosis for cancer using multimodal data. The
reported features would provide an encompassing descrip-
tion of the tumor characteristic: size, shape, genetic makeup,
and metabolic activity. Such features have the potential to
derive, in turn, more accurate stratification by risk, guid-
ance of treatment decisions, and enhancement in patient
outcome.

Diverse sets of features spanning in-tumor morphology
as it relates to molecular profiles and imaging biomarkers
are critical in ensuring that the biology of these tumors is
extensively covered. A multimodal approach will lead to
enhancement in identifiability of some key patterns and cor-
relations, which becomes very important at the time of their
detection and during their ailment in cancer prognosis and
treatment strategy design.

C. PROPOSED ALGORITHMS
1) PSEUDOCODE: TRANSFORMER MODEL
1. Positional Encoding for Genomic Sequences

Step 1:Convert genomic data into numerical sequences.
Step 2: Apply an embedding layer to map genomic data

points into a high-dimensional space (‘d_model‘ dimen-
sions).

Step 3: Add positional encoding to the embeddings to
retain sequence order.

2.Multi-Head Self-Attention in Encoder Layers
Step 4: Calculate Query (Q), Key (K), and Value (V)

matrices from the input.
Step 5: Perform scaled dot-product attention by calculat-

ing attention scores and applying Softmax to get attention
weights.

Step 6: Use multi-head attention by splitting input into
multiple heads and applying the attention mechanism inde-
pendently.

Step 7: Concatenate the outputs of all heads and pass them
through a linear layer.

Step 8:Add the attention output to the original input and
apply layer normalization.

3.Feed-Forward Network in Encoder Layers
Step 9: Apply the first linear layer to transform the data to

‘dff‘ dimensions and use ReLU activation.
Step 10: Apply the second linear layer to project back to

the original ‘d_model‘ dimensions.
Step 11: Add the output of the feed-forward network to the

input and apply layer normalization.
4.Stacking Encoder Layers
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TABLE 9. Tumor Morphology and Molecular Heterogeneity.

Step 12: Repeat the multi-head self-attention and
feed-forward network process across multiple encoder layers.

5.Cross-Attention Between Genomic and Imaging Data
Step 13: Use genomic data as the Query and imaging data

as the Key and Value in the attention mechanism.
Step 14: Focus on specific imaging features relevant to the

genomic data.
6. Feature Fusion
Step 15: Fuse the outputs from the cross-attention mecha-

nism with genomic features.
Step 16: Combine the learned patterns from both genomic

and imaging data into a unified feature vector for downstream
tasks like classification.

2) PSEUDOCODE: CONVOLUTIONAL NEURAL NETWORK
1. Add Multiple Convolutional Layers

Step 1: Specify the number of filters (kernels) in each
convolutional layer to detect different features.

Step 2: Set the size of the convolutional kernel (e.g., 3× 3,
5 × 5).

Step 3: Apply the ReLU activation function after each
convolution to introduce non-linearity.

2.Max Pooling Layers
Step 4: Use max pooling with a specified ‘pool_size‘ to

reduce the spatial dimensions of the feature maps.
Step 5: Pooling helps retain the most significant features

and reduces computational complexity.
3.Additional Convolutional Layers
Step 6: Add more convolutional layers to capture complex

patterns and hierarchical features in the data.
4. Flatten the Output
Step 7: Convert the multi-dimensional feature maps from

the convolutional layers into a 1D vector. This prepares the
data for input into fully connected layers.

5. Add Fully Connected Layers
Step 8: Use dense layers to interpret the flattened feature

vector.
Step 9: Use ReLU activation functions in dense layers for

non-linearity.
Step 10: Add dropout layers with a specified dropout rate

to regularize the network and prevent overfitting.
6. Add Output Layer
Step 11: Use Softmax activation if performing multi-class

classification.
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TABLE 10. Tumor microenvironment and genomic features.

Step 12: Ensure the output layer has ‘num_classes‘ units,
corresponding to the number of classes for prediction (e.g.,
cancer stages).

This approach ensures a well-structured CNNmodel capa-
ble of handling complex features and providing accurate
classification results.

3) PSEUDOCODE: PREDICTION AND COMBINATION
Step 1: Preprocess and Encode Data

Step 2: Normalize and scale images (e.g., MRI, PET, CT)
to ensure consistent pixel values.

Step 3: Encode genomic sequences as numerical vectors or
sequences suitable for input into a Transformer model.

Step 4: Use techniques such as embedding layers or
sequence encoding to convert genomic data into a suitable
format for the Transformer model.

Step 5: Train separate models for each modality
Step 6: Train transformer model for genomic data
Step 7: Use the preprocessed genomic data to train the

Transformer model. Focus on capturing sequence-based pat-
terns and relationships within the genomic data.

Step 8: Train CNN model for imaging data

Step 9: Train the CNNmodel using the preprocessed imag-
ing data. Focus on extracting spatial features and patterns
from the images.

Step 10: Concatenate features from all modalities
Step 11: Extract the feature vectors from both the Trans-

former model (for genomic data) and the CNN model (for
imaging data).

Step 12: Concatenate these feature vectors into a unified
representation that integrates information from both modali-
ties.

Step 13: Apply final classification layer
Step 14: Use a fully connected layer with Softmax activa-

tion
Step 15: Add a fully connected layer to process the con-

catenated feature vector.
Step 16: Apply Softmax activation to this layer to produce

probability scores for each class (e.g., cancer diagnosis cate-
gories).

Step 17: Evaluate the combined model
Step 18: Analyze the results to understand how each

modality contributes to the final predictions.
This approach ensures a comprehensive evaluation of

multimodal data integration, leveraging the strengths of
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TABLE 11. Imaging Biomarkers and Molecular Indicators.

both genomic and imaging data for improved cancer
diagnosis.

The algorithm proposed is a structured approach to the
training of machines and their fine-tuning. Figure 3 depicts
the proposed flow of process. The approach has been specifi-
cally tailored to find a place within the transformer and CNN
architectures. This comprehensive process will enhance the
model’s performance by iterative feedback means of contin-
uous improvement.

The transformer mode makes use of self-attention mecha-
nisms in providing dependencies between different positions
of the input sequence. The model extracts contextual features
from data; in this way, through multi-head attention layers,
it learns to focus on different parts of the input simultaneously
(Figure 5). CNN model applies convolutional layers that are
capable of automatically extracting spatial hierarchies of fea-
tures from images or spatial data. Convolutional filters detect
local patterns and structures, which are then aggregated to
form high-level feature representations.

Model evaluation in a transformer measures the capabil-
ity of the model in handling sequential data and capturing
long-range dependencies. Computed metrics of accuracy, F1
score, or mean squared error based on validation data esti-

mate model performance. CNN model evaluation focuses on
how good it is going to be at recognizing and classifying
features in spatial data. It will compute some of the metrics
of performance, such as precision, recall, and class accuracy,
to check its effectiveness. In the last stage of evaluation, com-
parisons between the outputs from both models, Transformer
and CNN with regard to accuracy, efficiency, or any other
measure relevant to the measures of interest, are done.

As shown in Figure 4, results from both models are fed
back into the feedback phase for refinement and optimization
using Adam algorithm. This would then include revisit-
ing model parameters, architectures, and training strategies
within the feedback loop to improve performance. The
revised configurations and parameters are used in the retrain-
ing of both a Transformer and a CNN model to capture
improvements derived from the evaluation and comparison
stages by readjusting the models more appropriately to the
data.

Mean from Statistical Feature

µ =
1
M

∑m=1

M
Y (m) (6)
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FIGURE 3. Proposed flow framework.

where µ is calculated mean, M is total number of data points,
Y (m) is the m-th data point.

Standard Deviation from Statistical Feature

σy =

√
1
M

∑m=1

M
Y

(
m− µy

)2 (7)

where σy is calculated standard deviation, M is total number
of data points, µy is calculated mean.

Mean of absolute values of first difference

θy =
1

M − 1

∑m=1

M
|Y (m+ 1) − Y (m)| (8)

where θy is themean of absolute values of the first differences,
M is total number of data points, Y (m) is the m-th data point.

Mean of absolute values of second difference

γy =
1

M − 2

∑m=1

M−2
|Y (m+ 2) − Y (m)| (9)

Mean of absolute values of second difference of normalized

γy −
1

M − 2

∑m=1

M−2
|Y (m+ 2) − Y (m)| (10)

The steps of calculating statistical features such as mean
and variance play a crucial role in the integration of multi-
modal data. By determining the mean, we establish a central

reference point that represents the average behavior or char-
acteristic across diverse data sources. This centrality is vital
for aligning data from different modalities, such as imaging,
genomic, or clinical records, ensuring that variations due to
different scales or units do not distort the integration process.
The mean helps set the baseline, while the standard deviation
provides a measure of the spread of the data, allowing the
model to understand how similar values are. First and second
differences tell the model the trends in data and acceleration
in changes, giving insight into the dynamics of the data.
Normalizing the second difference gives the model a way of
discovering patterns of relative change, regardless of scale.
Altogether, these features enhance the model’s ability to
recognize patterns that are stable and fluctuating and boost
prediction accuracy and robustness.

Table 12 gives values of several model parameters, such
as the transformer layers, attention heads, hidden units, CNN
filters, kernel sizes, pooling sizes, dropout rates, batch sizes,
and epochs, changed systematically to check how they work
onmodel performance. The transformer layers and heads help
the model learn complex patterns; increasing their numbers
can enhance learning but may lead to overfitting if too high.
Transformer hidden units and CNN filters affect how well
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FIGURE 4. Proposed transformer-cnn model framework.

the model captures important features, with more units or
filters generally improving learning but also requiring more
computational power.

The dropout rates help prevent overfitting by randomly
turning off some neurons during training, promoting more
generalizable learning. CNN kernel size and pooling size
determine how the model processes image data; larger ker-
nels capture more context but may lose detail, while smaller
ones focus on finer details. The batch size impacts training
stability; smaller sizes allow for more frequent updates and
potentially better generalization, while larger sizes speed up
training but might overfit the data. Finally, epochs indicate
how many times the model goes through the training data;

more epochs can improve performance but also increase the
risk of overfitting. Balancing these hyperparameters is crucial
for building an effective model.

Basically, the idea is to get an optimal setting so that model
complexity, computational efficiency, and performance are
balanced properly. Overall, increasing model complexity,
especially by boosting the number of transformer layers,
attention heads, or hidden units, helped improve the perfor-
mance of the models in most cases. For instance, moving
from Experiment-1 to Experiment-3 increased the number of
transformer layers and hidden units, showing about a 20%
improvement. However, with growing complexity, higher
dropouts were needed to counterbalance overfitting. It also
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FIGURE 5. Proposed transformer process.
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TABLE 12. Training hyperparameter details.

showed performance improvingwith batch-size increase. The
batch-size increase thus makes better usage of computa-
tional resources. Dropout rates and batch sizes needed tuning,
which was very important for the model’s performance. Cus-
tomized configuration can bring an improvement as high as
25% compared to traditional model accuracy.

V. EXPERIMENTATION RESULTS AND DISCUSSIONS
We compare several key metrics, accuracy, precision, recall,
and F1-score of our proposed Transformer-based model
and a CNN-based model against ResNet, DenseNet, and

VGG. We present a multi-modal dataset with imaging and
genomic data that belongs not to one or two but a vari-
ety of cancers: lung, breast, prostate, colorectal, ovarian,
melanoma, leukemia, pancreatic, kidney, and endometrial
cancers. As shown in Table 13, Transformer-based models
have higher computational costs than CNNs such as ResNet
or DenseNet. Memory requirements are in the range of 16-
20 GB in training for images with pixel size 224 × 224 and a
batch size of 32, while CNNs use less memory, in the range
of 6-10 GB for similar conditions. Training transformers
on dataset takes around 30-50 hours on high-performance
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FIGURE 6. Accuracy comparison.

TABLE 13. Computational resources.

GPUs, NVIDIA A100. CNNs take about 10-15 hours. Addi-
tionally, transformers are mostly more expensive in terms
of usage with the GPU, running typically between 15-30
TFLOPs, while CNNs run about 8-12 TFLOPs. This, in per-
spective, means that transformers are computationally much
more complex, yet their advantages in performance allow for
considerably higher resource costs, especially within specific
applications.

As shown in Figure 6, the proposed multimodal model has
the highest overall performance for the accuracy of models.
Its accuracy values are within the range of 92.5 to 93.2 and,
according to the median, around 93.0%, which shows that
it is solid enough in making accurate classifications of the
instances in the dataset. Then, the proposed transformer with
accuracy ranging from 91.5% to 92.2%. Here, the median
accuracy stands at 92.0%, so pretty much lower but fine
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FIGURE 7. Precision comparison.

as well. The proposed CNN is efficient too but seemingly
performing a bit lower has a range of accuracy of 89.8%-
90.2% and also its median value stands at 90.1%. Among the
baseline models, ResNet has a modest performance; accuracy
falls between 86.5% to 87.2%, with a very significant loss in
performance compared to the proposed models. The perfor-
mance by the DenseNet and VGG models falls at the bottom
end. With this DenseNet the accuracy values lie within the
ranges of 84.5% and 85.2%. VGG performed the least with
accuracy ranging between 83.5% and 84.2%.

Precision is the fraction of the correct positive classifi-
cations over all the correct positive predictions, just zeros
in on the message that both models, proposed multimodal
and proposed transformer are the very best. As shown in
Figure 7, the two have been shown to have output value for
precision in a good range of 91.5% to 92.2%, meaning there’s
good classification accuracy based on the models themselves.
Therefore, this means that the two models suppress false
positives appropriately. Third, proposed CNN is at 88.8% to
89.2%, therefore quite good. By baseline models, precision
values that were achieved by ResNet ranges from 85.5% to
86.2% while those of DenseNet range from 83.5% to 84.2%,
both are moderate in effectiveness. VGG is significantly
worse due to precision value ranges between 81.5% to 82.2%,
which shows a higher false positive rate than the proposed
models. This will clearly outline the distinct advantage about
the correct predictability of positive instances with a limited
number of false alarms related to the proposed models.

Recall, which is an abbreviation of the true positive propor-
tion correctly identified, is similar in ranking pattern with the
others. In Figure 8, the proposed multimodal model ranked
at the top by having high recall values between 92.5% and
93.2%, which means it captures nearly all relevant cases of
positives within the set of data. The proposed transformer
closely follows, with recall values ranging between 91.5%
and 92.2%, meaning it works almost at the same rate for
identifying positive instances. Recall values for the proposed
CNN model are a little lower: 89.8% to 90.2%. ResNet has
recall values between 87.5% and 88.2%, while DenseNet
ranges from 85.5% to 86.2%, which proves less successful
in terms of being able to spot cases as positive. VGG once
again shows the lowest recall, ranging from 83.5% to 84.2%,
to prove that VGG is a very weak model when it comes to
identifying a true positive instance.

As shown in Figure 9, the proposed multimodal model has
the highest value of F1-score. In fact, its F1-score consists of
values from 91.5% to 92.2%, with a median value at 92.0%.
This implies a general capacity to deliver correct positive
classifications while keeping at minimum the false positives
and false negatives. The proposed transformer model follows
with F1-scores between 90.5% and 91.2%, with a median
value of 91.0%, which is a performance roughly about 1%
lower and, therefore, still competitive to the proposed mul-
timodal. The proposed CNN model lags the transformer,
with F1-scores in the range of 88.8% to 89.2%, which is
indicative of good but not the best achievable classification
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FIGURE 8. Recall comparison.

performances. ResNet, DenseNet, and VGG baseline models
also present F1-scores similar to accuracy trends as obtained.
Between 86.5%-87.2% F1-scores, ResNet achieves, whereas
between 84.5%-85.2%, DenseNet achieves the lowest F1-
scores of 83.5%-84.2% of VGG. The lower values suggest
that baseline models struggle more in the correct classifica-
tion of data than the proposed approaches.

The proposed multimodal model performs better to tradi-
tional CNN architectures in every principal metric: ResNet,
DenseNet, and VGG. The proposed architecture enables bet-
ter integration and processing of complex, high-dimensional,
multimodal data used in the diagnosis of cancer, so better per-
formance is achieved. The transformer model can therefore
better handle the intricate relationships between imaging and
genomic data, achieving higher accuracy, precision, recall,
and F1-score, hence being more reliable and effective as an
early detection and diagnostic tool in cancer.

By contrast, though leading performance on image pro-
cessing tasks, CNN models are relatively less prepared to
cope with the multimodality of this data and hence generally
log worse performances across all metrics. This proposed
model is an improved version of the traditional CNN-based
model, but still falls far behind in accuracy and consistency
for cancer diagnosis in the diverse and complex datasets
compared to that based on the transformer. It is clearly rep-
resented in the box plots of the performance metrics that the
superior performance of the Transformer-based model makes

this approach more effective and reliable for the diagnosis of
cancer using multimodal imaging and genomic data.

Table 14 shows the classification of cancer labels for
random 10 experiments. The ROC curve quantifies the
relationship between the true positive rate and the false pos-
itive rate for all thresholds. Conclusively, according to this
study, the proposed Transformer model has the best perfor-
mance compared to all CNN-based models, such as ResNet,
DenseNet, and VGG. In other words, the ROC curve of the
Transformer model will always lie top-left in the plot, which
means it has a high true positive rate and low false positive
rate for most threshold settings.

As shown in Figure 10, it can be seen that the proposed
multimodal model demonstrates the highest AUC (0.84),
indicating better performance in distinguishing between true
positive and false positive rates. Both the proposed trans-
former and proposed CNN models have an AUC of 0.82,
showing similar levels of effectiveness and outperforming
ResNet (AUC = 0.78) and DenseNet (AUC = 0.62). The
VGG model, with an AUC of 0.52, performs slightly better
than random chance, which is represented by the dashed line
(AUC= 0.50). It is further supported by relatively lower AUC
values for the ResNet, DenseNet, and VGG models, under-
scoring the improved capability of the multimodal model in
this context.

The proposed study on early detection and diagnosis of
cancer based on multimodal imaging and genomic data
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FIGURE 9. F1 score comparison.

is extremely important because, by definition, cancer is a
complex and heterogeneous disease. Traditional diagnosis
methods usually depend on any one datum type, i.e., either
imaging or genomic information, which may not capture the
complete heterogeneous nature of the disease. This research
will integrate data fromMRI, CT, PET imaging, and genomic
profiling involving DNA/RNA sequencing from each current
case being studied. To such an approach, cancer at an early
stage is prone, and this will be a significant gain, for early
cancers have a better prognosis for management and cure
compared to those cancers in the later stages [30].

Basically, the significance of the study would be elevat-
ing the accuracy of cancer diagnosis to be able to provide
each patient with a particulars-oriented understanding of their
condition. The incorporation of imaging data and genomic
insights into the proposed system intends to identify subtle
correlations between genetic mutations and the character-
istics of a tumor for the formulation of more personalized
treatment strategies. This will not only increase accuracy in
diagnosis but will also help in predicting the prognosis of
the patient and the response to treatment, thus decreasing the
risk of futile treatments and increasing overall care of the
patients [31].

In addition, [33] provide a more general overview of
how Transformer-based models and attention mechanisms
are applied within genome data analysis, outlining their
potential for handling biological data that is complexly

high-dimensional. Reference [34] perform a metaanalysis of
Transformer-based models being applied to medical image
segmentation in oncology, depicting their effectiveness in
integrating data from multi-modal imaging as a means
of accurate detection of tumors. Reference [35] proposes
a semi-supervised approach to integrate multi-omics data,
based on a combination of Transformer-based multi-head
self-attention and graph convolutional networks, which also
emphasize the model’s capability to leverage both genomic
and imaging data for better insights into disease mechanisms.

For the proposed multimodal system, hyperparameter
choices such as learning rates and batch sizes directly impact
model performance across accuracy, precision, recall, and
F1-score. In a multimodal architecture, where multiple data
modalities are fused, these parameters are even more critical
due to the complexity of integrating different input types.
A lower learning rate, such as 0.0005, allows the multimodal
model to gradually adjust weights across both the transformer
and CNN components, leading to improved stability in learn-
ing and reducing the risk of overfitting to one modality. This
can result in higher accuracy and F1-scores, as the model
better balances learning across the diverse feature spaces.
Batch size also affects how the multimodal system learns.
A smaller batch size, such as 32, facilitates more frequent
updates, which is particularly useful in multimodal settings
where gradient updates are used for varied input types. How-
ever, a moderate batch size, such as 64, strikes a balance
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TABLE 14. Label classification.

between memory efficiency and learning stability, leading
to optimal precision and recall. Larger batch sizes can be
more stable but may slow down training and require more
computational resources. Overall, the careful tuning of these
hyperparameters in the multimodal system helps ensure that
the model can integrate diverse inputs effectively, leading to
improved performance in terms of accuracy, precision, recall,
and F1-score.

For enhancing scalability and solving resource constraints,
We applied structured pruning techniques, where the less
critical neurons and filters were systematically removed from
the model, especially in layers that contributed minimally to
performance. This reduced the overall parameter count and
computational load. We also applied post-training quantiza-
tion, where we converted 32-bit floating-point weights to
8-bit integers without retraining. This significantly reduced
memory usage and increased inference speeds, making the

models efficient to deploy in resource-scarce environments.
It further ensured that the performance of the model was well
retained while being adaptable enough for clinical settings
with very low computational capacity.

The model predicts with multimodal inputs such as MRI
images, histopathological features, and genomic data, used
to help clinicians toward diagnosis of complex conditions
like cancer. The model can analyze imaging data combining
MRI, CT scans, with gene expression and histological data
to predict which type or stage of cancer can assist radiol-
ogists or oncologists to accelerate diagnoses more quickly
with accurate results. Tumor progression can be forecasted
through gene expression and imaging modalities to allow
proper designing of specific treatment. In the real world, the
model can be used for risk stratification by the clinician.The
model can guide a patient carrying a specific genomic muta-
tion and an image profile to be followed upmore aggressively
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FIGURE 10. ROC curve comparison.

or even treated earlier if the patient is at a high risk of rapid
progression or relapse.

A radiologist or pathologist can apply the model to classify
the tumors using imaging data and gene expression profiles.
Themodel would produce a prediction, in this case something
like ‘‘breast cancer’’ or ‘‘lung cancer,’’ with an associated
confidence score that supports the clinician’s own analysis.
In the context of oncology, prediction of how fast the tumor
would grow or spread may indicate urgency in treatment.
A clinician can input serial MRI images of a tumor and
the model could predict growth patterns over time to make
strategies more adaptive for treatment. Surgeons may profit
from multimodal models that combine preoperative imaging
with genomic data to predict outcomes for surgeries such as
the resectability of tumors or the potential risks of metastasis.

While the methodology presented here provides promising
results in integrating multi-modal data for cancer detection,
there are several limitations that need to be considered. First,
the dataset might not fully represent the diverse population,
and this could potentially introduce biases that affect the
generalization of the model. The quality and consistency of
the multi-modal data, especially when combining genomic
and imaging data, are also variable, which can be a challenge
in accurate data fusion and model performance. This might
also lead to increased computational demands on the model,
making it less scalable for real-world applications. In addi-
tion, while Transformermodels perform verywell in handling
complex dependencies, they might still fail with noise or
missing data, which could impact their performance in clini-

cal settings. These limitations indicate that further refinement
in data collection, preprocessing, and model development is
necessary to improve robustness and clinical applicability.

In the future, this work can be expanded to incorpo-
rate additional cancer types, enriching the model with a
broader spectrum of data sources such as proteomics and
metabolomics. The algorithms can be further refined to
handle the increasing complexity and heterogeneity of mul-
timodal data, ensuring better performance across diverse
datasets. Additionally, integrating AI tools with dynamic,
real-time patient monitoring systems will allow for con-
tinuous assessment of cancer progression and treatment
effectiveness, paving the way for more adaptive and person-
alized cancer care models. This research could also facilitate
the discovery of novel biomarkers, contributing to earlier dis-
ease detection and advancing the field of precision oncology.

VI. CONCLUSION
The proposed Transformer-based and CNN models in this
study conclude the effectiveness of successfully detecting and
diagnosing cancer at its early stage. These models essentially
improve the accuracy, precision, and reliability of cancer
diagnosis when applied to multimodal imaging and genomic
data in comparison with the traditional techniques available.
The transformer model was designed to deal with complex
and high-dimensional data, hence it had better results in
almost all performance metrics compared to other models.
Transformer has strong long-range dependencies between
imaging and genomic data, making it highly effective at
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picking up subtle patterns critical in the process of early
cancer detection. The CNN model showed very good results
in image processing and analysis, particularly in tasks related
to tumor segmentation and classification. The integration
of these models within one framework provides a more
holistic nature in the investigation and therefore the enjoin-
ing of strengths between the two approaches for improved
diagnostic performance. The present dual-model approach
stands for the complexities and heterogeneities of cancer
data and provides a powerful tool to clinicians. Future work
relating to this area may involve further model refinement
to tackle increasingly large and varied data sets, including
real-time data enabling dynamic monitoring and extension of
this approach toward multiple cancer types and stages. This
would be the kind of research for which the current work
is a pointer, towards more personalized and better cancer
treatments, which will improve patient outcomes and advance
precision medicine.
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