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ABSTRACT Although deep learning models dominate time series forecasting, they still struggle with long-
sequence processing due to the challenges of extracting dynamic fluctuations and pattern features as input
length increases. To address this challenge, we propose a framework – LG-MSMixer—to enhance long-term
time series forecasting through three key steps: multi-scale dual decomposition, local-global information
extraction, and fusion prediction. Specifically, we first conduct multi-scale dual decomposition of the long
input sequence to derive a seasonal-trend component combination. To capture a more comprehensive effec-
tive informationwithin the components, we then utilize a customized patch-based triple attention local-global
information extractor that models both temporal feature information and variable dependencies, alongside
an MLP-based feature interaction iterator facilitating interactions among multi-scale information to guide
macro-level predictions. Finally, we integrate the predictions from the multi-scale sequences to leverage their
complementary advantages. In our experiments, we demonstrate the effectiveness of LG-MSMixer across
various real-world long-term forecasting tasks, significantly outperforming previous baselines.

INDEX TERMS Deep learning, long-term time series forecasting, information extraction, local-global,
multi-scale decomposition.

I. INTRODUCTION
Long-term time series forecasting, a technique that relies
on historical observation data to predict several steps into
the future [1], has demonstrated extensive practicality in
crucial fields such as energy applications [2], transportation
planning [3], climate modeling [4], and financial decision-
making [5]. Significant progress has been made in time
series forecasting through the application of deep learning
models such as Convolutional Neural Networks (CNNs) [6],
[7], Recurrent Neural Networks (RNNs) [8], [9], Transform-
ers [10], [11], [12], and Multi-layer Perceptron s (MLPs)
[13], [14]. Among them, transformers have attracted research
interest in this field due to their unique self-attention mech-
anism, which can deeply extract the feature information of
time series data [15]. In addition, many linear models have
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provided researchers with new perspectives on time series
analysis [16].

However, one fatal weakness, that has hindered models
based on the above studies from being applied in broader
application scenarios, is the lack of the model’s ability to
effectively handle the complex dynamic fluctuations present
in real-world time series.

To enhance the capability of deep models in processing
long sequences, prior research has primarily concentrated on
two approaches: multi-scale analysis [17] and local-global
modeling [6]. The objective of multi-scale analysis is to
leverage unique fluctuations across various temporal scales
to enrich feature representations and boost predictive perfor-
mance. However, the most effective scale partitioning is often
task-specific, which complicates the optimization process.
Furthermore, some studies indicate that multi-scale analysis
may detrimentally affect the prediction fusion stage due to
suboptimal feature extraction [12].
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Another approach for long time series processing is
local-global modeling, which enhances predictive accu-
racy by integrating local features with global contextual
information while capturing dependencies across diverse
temporal scales [8]. Although this strategy has demon-
strated substantial effectiveness, a critical challenge lies
in addressing its high reliance on finely-tuned adaptable
architectures.

Additionally, sequence decomposition methods represent
an effective strategy for time series analysis. Deep learn-
ing models that integrate decomposition techniques can
partition complex temporal patterns into distinguishable
components [18]. By capturing distinct information from
each component, these models enhance predictive accuracy.
Researchers have also employed sophisticated decomposi-
tion methods to separate mixed temporal variations into
independent components with different periodicities, thereby
extracting richer feature representations [1], [19].

The aforementioned theoretical methods, each as a concep-
tual framework rather than a fixed method implementation,
have been widely applied in the field of time series forecast-
ing. However, to the best of our knowledge, no work has yet
achieved a comprehensive integration within a single model
framework, resulting in incomplete feature extraction for time
series.

To comprehensively extract and leverage patterns and
feature information from time series, addressing perfor-
mance limitations in long-term forecasting, we propose an
innovative local-global multi-scale pattern feature extraction
architecture – LG-MSMixer. This model decomposes the
sampled multi-scale observation sequences into seasonal and
trend components, thereby enriching the feature space. Each
component employs tailored information extractors, followed
by fusion prediction utilizing feature representations across
multiple temporal scales.

For seasonal pattern extraction, we implement a patch-
based triple attention local-global information extractor,
effectively modeling temporal features and variable inter-
dependencies. For trend pattern extraction, we introduce
a multi-layer perceptron (MLP)-based iterative interaction
structure, promoting interaction among multi-scale represen-
tations to guide macro-level predictions.

In the forecasting phase, we integrate prediction lay-
ers based on these multi-scale observations, maximizing
their complementary predictive strengths. Experimental
results indicate that LG-MSMixer consistently outperforms
existing benchmarks in long-term time series forecasting
tasks, demonstrating exceptional performance across diverse
benchmark tests. The contributions of this paper are as
follows:

• Building on previous work, we propose an innova-
tive framework for time series forecasting that aims
to achieve accurate predictions through a profound
analysis of the intrinsic features of time series data.
The framework effectively integrates the advantages

of various forecasting strategies, including multi-scale
analysis, seasonal and trend pattern recognition, patch
division, and local-global modeling theory, through
an implementation method that differs from existing
works, rather than just one or two. This is rare through-
out the entire time series forecasting field.

• We propose LG-MSMixer as an effective model for
long-term time series forecasting, aiming to enhance
forecasting performance. To the best of our knowledge,
our work represents the most comprehensive extrac-
tion and utilization of various temporal information
and pattern features in time series. In our approach,
dual decomposition at multiple scales enables the
model to capture both seasonal and trend patterns.
The local-global mixer, based on patch division and a
triple-attention mechanism, captures short-term local
dynamics and long-term global trends while simulta-
neously modeling temporal dependencies and cross-
variable relationships. The feature iteration interactors
based on MLP adjust the macro long-term trends,
which enhances forecasting accuracy. The final fusion
prediction structure integrates rich information across
multiple scales, further improving the prediction per-
formance.

• Our method has been extensively evaluated on various
real-world datasets, consistently achieving state-of-
the-art performance in long-term time series forecast-
ing tasks. It also demonstrates exceptional efficiency
across a wide range of benchmark assessments.

II. RELATED WORK
A. LONG-TERM TIME SERIES FORECASTING
The prediction of long-term time series, a crucial aspect in
time series analysis, has garnered extensive research attention
in recent years.

Diverging from traditional TCN methodologies [7], mod-
ern CNN approaches, characterized by their unique designs,
continue to hold prominence in the field of time series
forecasting. The MICN model conducts decomposition pro-
cessing on input sequences, followed by the integration of
local-global information for modeling and prediction [6].
Meanwhile, ModernTCN employs a pure convolution struc-
ture with large convolution kernels to augment receptive
fields, consequently significantly enhancing the performance
of TCN models [20].

Benefiting from its robust modeling capability for long
sequences, Transformer models have recently demonstrated
exceptional performance in long-term time series forecast-
ing [21]. Informer enhances the attention mechanism by
selectively choosing key components to improve compu-
tational efficiency and predictive performance [22]. Auto-
former proposes an auto-regressive mechanism to replace
traditional self-attention, providing amore effective approach
for modeling temporal dynamics [23]. FEDformer effectively
captures long-term patterns in time series using frequency
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domain enhancement techniques [17]. PatchTST intro-
duces patch segmentation and channel-independent methods,
paving the way for new directions in Transformer mod-
els [21]. Some generative pre-trained models have also
demonstrated exceptional capabilities in this field [24].

Notably, some simple models have also performed well in
this field [25]. In particular, Multi-layer Perceptrons (MLPs)
have gained widespread recognition for their straightfor-
ward structure and superior performance [26]. LightTS
converts time series data into a two-dimensional format using
lightweight sampling techniques, thereby employing MLP
architectures to extract temporal features crucial for modeling
purposes [13]. TiDe implements a dense MLP encoding-
decoding structure, ensuring optimal performance while
substantially mitigating computational complexities [27].

Furthermore, certain Graph Neural Networks (GNNs)
methodologies, particularly those modeling spatial depen-
dencies, have also played a pivotal role in advancing the
frontier of long-term time series forecasting [28], [29].

B. INFORMATION EXTRACTION OF TIME SERIES
In tasks necessitating high precision in time series fore-
casting, the effective extraction and utilization of feature
information have been proven to be paramount [30].

Autoformer integrates a time series decomposition mod-
ule, dissecting intricate temporal patterns into components
abundant in seasonal and trend information, subsequently
subjecting these patterned data to modeling [23]. Times-
Net transmutes one-dimensional temporal inputs into two-
dimensional spatial constituents via multi-period analysis,
thereby capturing multi-period features through convolu-
tion [1]. Scaleformer proposed a highly generalized multi-
scale time series forecasting framework, enhancing predictive
performance by integrating multi-scale temporal feature
information [12]. Pyraformer introduced pyramid attention
to extract sequence information at different time resolu-
tions [11]. FED-former utilized frequency-domain enhance-
ment methods, employing Fourier transformation to remove
redundancies in time feature information, for refining the
extraction of long-term regularity features in time series
data [17]. MICN extracted temporal dynamic information
from the perspective of local-global comprehensive mod-
eling. Crossformer employed dual-stage attention, model-
ing capturing both temporal correlations and inter-variable
dependencies [31].

These methods achieve good predictive performance, yet
they do not comprehensively extract and utilize feature infor-
mation beneficial for prediction. Our proposed model, based
on multi-scale decomposition and local-global modeling,
aims to address these limitations by offering a more compre-
hensive approach to information extraction.

III. METHODOLOGY
The precision of time series prediction crucially hinges upon
the effective extraction and utilization of intricate patterns
and feature information inherent within the data. Herein, we

introduce LG-MSMixer model, a novel framework embed-
ding a multi-scale local-global pattern feature extraction
architecture. This model adeptly extracts and amalgamates
intricate mixed temporal features, harnessing the synergis-
tic predictive potentials of multi scale sequences to achieve
superior forecasting performance. In Table 1, we provide
a summary of the abbreviations and terms involved in this
study.

TABLE 1. The summary of abbreviations and terms involved in this study.

As depicted in Figure 1, LG-MSMixer predominantly
comprises multiple down sampling stages, stacked Histori-
cal Local-Global Information Extraction (HL-GIE) blocks,
and Multi-Scale Fusion Prediction (MSFP) blocks. As noted
earlier, time series data at varying scales manifest diverse
attributes, where finer scales predominantly capture local
intricacies, while coarser scales emphasize macroscopic
trends [5]. Thus, harnessing the distinct predictive capacities
of multi-scale time series often proves more efficient in mod-
eling complex temporal dynamics [32].

Initially, we conduct average pooling on the observation
sequence X ∈ RH×C to generate M scales, resulting in a
set of multi-scale time series, X = {x1, . . . ,xM }, xm∈ R

H
2m×C

for m ∈ {1, . . . , M}. Here, H represents the original input
sequence scale, and C signifies the number of variables.
Subsequently, we employ a stacked architecture of HL-GIE
blocks to extract feature information from each scale of the
observation sequence. For the l-th layer, with X l−1 as the
input, the operation of HL-GIE can be formalized as follows:

Xl
= HL − GIE(Xl−1), l∈{1, . . . ,L}. (1)

where L represents the total number of layers, Xl
= {x l1,

. . . , x lM}, x lm∈ R
H
2m ×C denotes the output representation with

C channels. For the prediction phase, we employ the MSFP
block to merge the extracted multi-scale temporal feature
information XL and then producing our prediction results,
formalized as:

Pred = MSFP(XL). (2)

Here, Pred ∈ RF×C represents the final prediction results,
where F denotes the prediction length of the sequence.
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FIGURE 1. Overall architecture of LG-MSMixer, which consists of HL-GIE
and MSFP.

As mentioned above, the design of LG MSMixer was
implemented. The specific structure and details are detailed
in the subsections below.

A. HL-GIE BLOCK
Existing research has demonstrated that time series in
real-world settings commonly display intricate mixed-mode
characteristics irrespective of their scale. Notably, seasonal
and trend components exhibit unique attributes in time series
forecasting tasks [33], corresponding to stationary and non-
stationary dynamics, respectively.

Thus, we introduce stacked HL-GIE blocks to segregate
the decomposed seasonal and trend components for tailored
information extraction based on their inherent characteristics,
followed by subsequent integration. Specifically, for the l-th
HL-GIE block, we decompose the multi-scale time series XL

into seasonal components S = { s1, . . . , sM}, sm∈ R
H
2m ×C and

trend components T = {t1, . . . , tM}, using the DualDecomp
block.

We then perform dimensional expansion and deep projec-
tion on the seasonal components S l to make S lm∈ R

H
2m ×C×dm,

followed by inputting S l into the Local-Global Extraction
(L-GE) block. The trend components are embedded and pro-
jected into deep features T l = {t l1, . . . , t

l
M}, t lm∈ R

H
2m ×dm,

which serve as the input to the Trend Mixing Guidance
(TMG) block. The final output of the HL-GIE block is the
sum of these two component outputs. In summary, the l-th
HL-GIE block can be formalized as:

slm, t lm =DualDecomp(x lm), m∈{1, . . . ,M},

Sout = L-GE(
{
slm

}M
m=1

),

Tout = TMG (
{
t lm

}M
m=1

),

Xl
= Xl−1

+ ProjS (Sout ) + ProjT (Tout ). (3)

Here, ProjS (·) and ProjT (·) denote linear mapping functions
for the seasonal and trend components, respectively, with
output dimensions of R

H
2m ×C .

We will provide a detailed description of the aforemen-
tioned structural modules. To simplify notation, we will omit
the layer index in the relevant formulas, with ‘l’ assumed as
the default layer.

1) DUAL-DECOMPOSE BLOCK
To more effectively extract and utilize the intricate fea-
tures of time series, we employ a dual decomposition block
to decompose them into seasonal and trend components
and process them separately, rather than directly modeling
them.

Regarding the seasonal decomposition, we utilize the Dis-
crete Fourier Transform (DFT), denoted as DFT (·) [34],
to convert the time series from the time domain to the
frequency domain, thereby extracting detailed periodic char-
acteristics. The input X is decomposed into Fourier bases,
and we selectively retain the top K bases with the highest
amplitudes to preserve sparsity in the frequency domain.
Subsequently, our seasonal component S is obtained through
inverse DFT, denoted as IDFT (·). This process can be for-
malized as follows:

S = IDFT(f1, . . . , fk ,A, φ). (4)

Here,φ andA represent the phase and amplitude, respectively,
while (f1, . . . , fk ) denotes the frequencies corresponding to the
selected K largest amplitudes.

The trend decomposition involves applying moving aver-
age pooling with various kernel sizes to the input X to extract
trend pattern information. The trend component is obtained
through weighted aggregation of the results obtained from
different pooling kernels:

T = SoftMax (L (X)) (Avgpool (X)kernel1 , . . . ,

Avgpool (X)kernelN ). (5)

in this formulation, Avgpool(X )kerneli denotes the function
associated with the i-th pooling kernel, with a total of N
pooling kernels. The function SoftMax(L(·)) computes the
weights corresponding to the outcomes produced by different
pooling kernels.

2) L-GE BLOCK
The seasonal component of time series data harbors signif-
icant periodic information critical for accurate forecasting.
The extraction and utilization of these insights often dictate
the success of forecasting endeavors. To tackle this challenge
effectively, we introduce the L-GE Block—Local-Global
Information Extraction block. This block conducts compre-
hensive extraction and processing of historically significant
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FIGURE 2. The architecture of the L-GE block, illustrated in the structural diagram, employs three distinct attention mechanisms to extract
feature information. Intra-Attention focuses on extracting local details within individual patches, while Inter-Attention captures global
dependencies between patches, collectively capturing temporal dependencies. Var-Attention models the interactions between variables.

information, incorporating both local details and global per-
spectives, to cater to our prediction tasks.

Structurally, as depicted in Figure 2, the L-GE Block
primarily integrates three distinct attention mechanisms for
information extraction from time series data: Intra-Attention
layer, modeling dependencies between time steps within each
patch; Inter-Attention layer, capturing dependencies between
patches; and Var-Attention layer, facilitating the interaction
of information among variables. Implementation-wise, our
approach is inspired by patch partitioning, a widely adopted
practice in contemporary studies. For brevity, we illustrate
this process using univariate time series data in this section,
with the understanding that it readily extends to multivariate
scenarios. For the seasonal component sequence S = {s1,
. . . , sM}, sm∈ R

H
2m ×dm, m ∈ {1, . . . , M}, at any given scale,

the sequence is divided into P patches of size W (P =
H

2m×W ).
Thus, sm ∈ RP×W×dm. The processed S is then concurrently
fed through Intra-Attention and Inter-Attention. The outputs
from tow attentions are then captured and fused by Var-
Attention to yield the final output of the L-GE block. The
process can be formalized as:

Attnintra = Intra-Attention(
{
slm

}M
m=1

),

Attninter = Inter-Attention(
{
slm

}M
m=1

),

Sout = Var-Attention(Attnintra + Attninter ). (6)

The final output Sout∈ R
H
2m ×dm.

The specific implementation details of the multi-
attention mechanisms will be presented in subsequent
sections. We will use sm∈ RP×W×dm, m ∈ {1, . . . ,
M}, from the patch-divided S, as the focus for this
introduction.

3) INTRA-ATTENTION LAYER
The Intra-Attention layer captures the temporal depen-
dencies within each patch. Specifically, for any scale of
sm∈ RP×W×dm, we focus on the i-th patch Y iintra∈ RW×dm,.
Initially, we subject it to trainable linear transformations
to derive the keys and values for attention computation,
denoted as K i

intra, V
i
intra∈ RP×W×dm, respectively. Addition-

ally, we employ a trainable query matrix Qiintra∈ R1×dm to
integrate contextual information. Subsequently, the cross-
attention between Qiintra, K

i
intra and V i

intra, is computed to
model the local details within the i-th patch (i ∈ {1, . . . , P}):

Attniintra = SoftMax(Qiintra(K
i
intra)

T
/√

dm)V i
intra,

Attnintra = Concat(Attn1intra, . . . ,Attn
P
intra). (7)

Here, Attnintra ∈ R1×dm denotes the output after undergoing
the Intra-Attention process for the i-th patch. The concate-
nation of outputs from all patches results in the final output
Attnintra∈ RP×dm for this block, characterizing the local
details between neighboring time steps in the time series.

Furthermore, to facilitate integration with the output of
Inter-Attention layer, we perform a linear transformation on
the patch length dimension of this output, ranging from 1 to
W, thereby reshaping it into Attnintra∈ RP×W×dm.

4) INTER-ATTENTION LAYER
The Inter-Attention layer establishes relationships between
patches to capture global correlations. For sm∈ RP×W×dm,
to aggregate all time steps within the same patch, we combine
the dimensions of patch length (W) and feature embedding
(W), resulting in sminter∈ RP×D, D = W × dm. Subsequently,
we apply a learnable linear mapping to sminter to obtain Qinter ,
Kinter , Vinter∈ RP×D, and employ a self-attention mechanism
to model dependencies between patches, thus representing
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the global correlations in the time series:

Attninter = SoftMax(Qinter (Kinter )T
/√

dm)Vinter . (8)

Here, Attninter ∈ RP×D and it will become Attninter∈
RP×W×dm after flattening the dimensions.
We perform an element-wise addition betweenAttnintra and

Attninter , resulting in a variable Attntime∈ R
H
2m ×dm, thereby

effectively amalgamating the local intricacies and global cor-
relations of the time series. It can be formalized as:

Attntime = Attnintra + Attninter . (9)

5) VAR-ATTENTION LAYER
In multivariate time series forecasting, the interplay between
variables is crucial for accurate predictions [3], [20]. Con-
sequently, we extend Attntime to accommodate a multivariate
context, represented as Attntime∈ R

H
2m ×C×dm, and model the

inter-variable dependencies by Var-Attention layer. To man-
age computational and memory demands in datasets with
extensive variable dimensions, we implement the rout-
ing attention mechanism based on multi-head self-attention
(MSA) as proposed in Crossformer [31], which can effec-
tively mitigate the complexity of computation and memory
usage. In Figure 2, we allocate a predefined set of learnable
vectors (Z ≪ C) as routers for each time step. Initially, these
routers function as queries, while vectors across all vari-
able dimensions (C) are designated as keys and values. The
Multi-Head Self-Attention (MSA) mechanism aggregates
information from all variable dimensions. Subsequently, the
routers use variable vectors as queries, with the aggregated
information serving as keys and values. The MSA then redis-
tributes the integrated information across the C dimensions.
The operation is conducted sequentially for each time step
within Attntime, with parameters being consistent across all
time steps (1 ≤ j ≤

H
2m ). The formalization for the j-th time

step is as follows:

Mid j = MSA1(Rj,Attn
j
time,Attn

j
time), 1 ≤ j ≤

H
2m

,

Attnjvar = MSA2(Attn
j
time,R

j,Rj), 1 ≤ j ≤
H
2m

,

Sout = Concat (Attn1var, . . . ,Attn
H
2m
var ). (10)

Within this framework, Rj∈RC×dm denotes the learnable
vector, or router, specific to the j-th time step, which serves to
mediate the attention mechanism. Here,Mid j∈RC×dm encap-
sulates the consolidated information derived from all vari-
ables. The output is denoted as a variable Sout∈R

H
2m ×C×dm.

For integration with the processed trend component, we con-
catenate the variable dimension C and the feature dimension
dm, culminating in the final output of the HL-GIE block:
Sout={s1, . . . ,sM }, where sm∈R

H
2m ×dm.

B. TMG BLOCK
When dealing with the trend component, capturing overly
granular variations may introduce noise into the modeling of

overarching trends. Therefore, we leveragemacro-level infor-
mation from coarser time scales to guide the trend modeling
of finer time series. Coarser scales are typically consid-
ered to possess more comprehensive and clearer macro-level
insights.

In practice, as depicted in Figure 3, we process the multi-
scale trend components T= {t1, . . . , tM}, where tm∈ R

H
2m ×dm

form∈ {1, . . . ,M}, using the TrendMixingGuidance (TMG)
block in a residual framework. This process sequentially
facilitates information exchange from coarser to finer scales
across the multi-scale series, producing an output series
guided by macro-level trend information:

from : M → 1 do : tm−1 = tm−1 + TMG(tm). (11)

In this formulation, TMG(·) represents a dual-layer MLP
incorporating a GELU activation function. The input dimen-
sion is H

2m and output dimension is H
2m−1 . Following the

completion of the outlined process, the TMG block yields the
final output Tout = {t1, . . . , tM}, with tm∈ R

H
2m ×dm.

FIGURE 3. Function of the information interaction linear layer in the TMG
block.

Overall, the HL-GIE block excels in capturing and inte-
grating the local and global pattern information of the
seasonal components in time series data by leveraging various
attention mechanisms within the L-GE block. Concurrently,
it facilitates cross-scale information exchange for trend com-
ponents through the TMG block, resulting in trend sets that
provide global guidance.

By merging these components, the model produces fused
information that exhibits pronounced temporal characteristics
and significantly enhances prediction accuracy.

C. MSFP BLOCK
After processing through L HL-GIE blocks, we obtain the
output XL

= {xL1 , . . . , x
L
M}, where xLm∈R

H
2m ×C . To fully lever-

age multi-scale information, we integrate predictions from
different scale sequences through the MSFP block, resulting
in the final prediction. This process can be represented as:

Predm = Predictorm(xLm), Pred =

∑M

m=1
Predm. (12)

Here, Predm ∈ RF×C represents the prediction for the
m-th scale sequence, and the final output is Pred ∈ RF×C .
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TABLE 2. Summary of relevant information for datasets used in Our experiments.

Predictorm(·) denotes the predictor for the m-th scale
sequence, composed of a two-layer MLP with H

2m hidden
units and a GELU activation function. The MSFP block
is a collection of these predictors, where each predic-
tor’s output corresponds to the temporal feature informa-
tion extracted from observed sequences at various scales,
enabling MSFP to integrate the complementary predictive
abilities of multi-scale sequences for enhanced forecasting
performance.

IV. EXPERIMENTS
A. EXPERIMENTS SETTING
1) DATASETS
We conducted comprehensive experiments on nine repre-
sentative real-world datasets to evaluate the performance of
the LG-MSMixer. The datasets encompass various domains
such as power transmission, weather forecasting, and traf-
fic management [20], [35], [36]. These datasets include
ETT (ETTh1, ETTh2, ETTm1, ETTm2), WTH (Weather),
ELC (Electricity), Traffic, ILI, and Exchange. We summa-
rize the information, characteristics, and differences of these
datasets in Table 2 to offer a clearer and more intuitive
understanding.

2) BASELINES AND METRICS
We selected several state-of-the-art models in the field of
long-term time series forecasting as baselines, including
PatchTST [21], NLinear [16], TiDe [27], Scaleformer [12],
Pyraformer [11], FEDformer [17], and Autoformer [23].
To ensure fairness in our experiments, we fixed the input
length of all experiments to 96 (for the ILI dataset, the input
length was set to 36). We used two commonly employed
metrics in deep learning-based time series forecasting tasks
to quantify the experimental results: Mean Absolute Error
(MAE) and Mean Squared Error (MSE). These metrics are
intuitive and computationally efficient, making them partic-
ularly suitable for large-scale deep regression tasks aimed at
minimizing prediction errors. Additionally, we urge readers
to recognize the importance of using information criteria,
such as AIC and SBIC, to balance model complexity and
performance.

3) IMPLEMENTATION DETAILS
We employed the pytorch framework for our experi-
ments [37], which were conducted on a server with a single
NVIDIA RTX 4090 24GB GPU. The learning rate was set
to 10−3, and the L1 Loss function was utilized. Moreover,
the patch length W was judiciously adjusted based on the
varying scales of the time series to achieve a balance between
performance and efficiency.

B. RESULTS
Table 3 illustrates the comparative results of LG-MSMixer
against other baseline models across all long-term time
series forecasting benchmarks. Among the 72 experimen-
tal cases, LG-MSMixer achieved the top performance in
53 cases and ranked second in 12 cases. Compared to the
second-best baseline, PatchTST, LG-MSMixer demonstrated
significant advantages, reducing MSE by 15% for ELC and
by 15.7% for ILI. The results fully demonstrate that our
work is highly effective for long-term time series prediction,
attributable to the reasonable extraction and utilization of
various patterns and feature information. When compared
to sequence decomposition-based models like FEDformer
and Autoformer, LG-MSMixer exhibited marked perfor-
mance enhancements, lowering MSE by 27.9% and MAE by
17.4%, underscoring the criticality of comprehensively utiliz-
ing decomposed pattern information. In addition, compared
to multi-scale models such as Scaleformer and Pyraformer,
LG-MSMixer reduced MSE by 31% and MAE by 20.7%,
indicating the efficacy of time feature extraction based
on local-global modeling theories and multi-scale fusion
forecasting methods. Moreover, LG-MSMixer also showed
favorable performance compared to the current robust linear
models NLinear and TiDE, which underscores the necessity
of capturing variable dependency information through an
attention mechanism-based approach.

C. MODEL ANALYSIS
1) ABLATION STUDIES
To assess the contributions of different modules within the
LG-MSMixer, we conducted ablation experiments on the
dual decomposition, the L-GE block, and the TMG block.
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TABLE 3. Summary of results for long-term time series forecasting. We standardized the input length for all experiments to 96 (with the input length for
the ILI dataset set to 36). Lower values of MSE or MAE indicate superior model performance. The best results are highlighted in bold, and the second-best
results are underlined.

TABLE 4. Ablation studies on the ILI and ETTh2 datasets.

In Table 4, to highlight the unique contributions of each
module, we use two challenging datasets, ETTm1 and ILI,
in the time series forecasting task. These datasets differ in
scale and characteristics, yet they are well-suited to the objec-
tives of our work. The experimental results indicate these
modules are crucial to our task. Particularly, the L-GE block,
which is based on a multi-attention mechanism, demonstrates
a notably significant impact. This finding highlights the

importance and efficacy of comprehensively modeling both
cross-variable dependencies and temporal dependencies in
time series forecasting tasks. Additionally, the dual decompo-
sition module’s capability to decompose the observed series
into seasonal and trend components effectively isolates and
extracts complex pattern information, thereby enhancing the
capture of the dynamic temporal characteristics of the input.
The TMG block processes trend component interactions and
plays a pivotal role in macro-level regulation during the sub-
sequent prediction stages.

2) HYPER-PARAMETER SENSITIVITY STUDY
We evaluated the impact of two hyper-parameters on the
ETTm1 dataset: the number of scales (the number of
sequences of different lengths after down sampling, M) and
the number of routers (Z in the MSA of Var-Attention layer).
Number of Scales: As illustrated in Figure 4(a), we tested
the MSE for different prediction windows with the num-
ber of scales ranging from 1 to 5. With increasing M, the
performance improvement for shorter prediction windows
quickly plateaued; however, for longer prediction windows,
the model’s performance continued to improve.
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Hence, we set M to 2 for short-term predictions and 4 for
long-term predictions to balance performance and efficiency.
Number of Routers: As shown in Figure 4(b), we varied
the number of routers (Z) from 3 to 18, and examined its
effect on prediction performance across different prediction
window lengths. When the prediction length was 96, model
performance remained stable; for lengths of 192 and 336, per-
formance exhibited significant fluctuations; and for a length
of 720, the MSE was higher at Z=3, subsequently decreasing
and stabilizing. Ultimately, we set Z to 10 to balance perfor-
mance and efficiency.

FIGURE 4. Hyperparameter sensitivity analysis. (a) MSE for the
hyperparameter router number Z in Var-Attention on the ETTm1 dataset.
(b) MSE for the hyperparameter scale number M on the ETTm1 dataset.

FIGURE 5. The experiment results of the prolonged look-back window on
ELC. It illustrates the performance of the model across four different
window length.

3) PREDICTIONS VISUALIZATION OF PROLONGED
LOOK-BACK WINDOWS
In our long-term time series forecasting study, we systemati-
cally examined the effect of extending the look-back window
length (H) on forecasting performance using the ELC dataset,

while keeping the prediction window length constant at 96.
The look-back windowwas varied from 96 up to 720 to assess
its impact.

As illustrated in Figure 5, we observed that when H≤

336, the forecasting accuracy significantly improved with
longer look-back windows. However, a notable decline in
performance occurred at H = 720. We believe this could
be attributed to the fact that longer lookback windows
encompass richer dependency information, thus benefiting
prediction. However, overly extended look-back windows
introduce redundant pattern information and heightened fluc-
tuations, leading to a decline in performance.

V. CONCLUSION
We introduce LG-MSMixer, an advanced model designed
for time series forecasting, featuring a robust multi-scale
local-global pattern extraction framework. By integrating
multi-scale decomposition with patch-based local-global pat-
tern modeling, the model proficiently captures intricate
temporal features. Moreover, it harnesses the complementary
predictive strengths ofmulti-scale sequences, leading to supe-
rior performance in long-term time series forecasting.

In 72 forecasting experimental cases, LG-MSMixer
achieved the best performance in 53 cases and second-
best performance in 12 cases. Compared to the second-best
baseline, PatchTST, LG-MSMixer demonstrates a significant
advantage: the MSE of ELC is reduced by 15%, and the
MSE of ILI is reduced by 15.7%. Additionally, our model
performed excellently in ablation studies and hyperparameter
analysis, further validating the contributions of our work.

The comprehensive experiments demonstrate that LG-
MSMixer consistently achieves state-of-the-art results across
a spectrum of long-term forecasting tasks.
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