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ABSTRACT Long left ignored by the digital computing industry since its heyday in 1940’s, analog
computing is today making a comeback as Moore’s Law slows down. Analog CMOS has power efficiency
advantages over digital CMOS for low-precision applications in edge computing, scientific computing, and
artificial intelligence/machine learning (AI/ML) verticals. Driven by observed non-trivial improvements
in performance over digital processors while solving linear partial differential equations (PDEs), this
paper presents experimental results and analysis from a single-chip CMOS analog computer for solving
nonlinear PDEs. The chip integrates a 15-point fully-parallel spatially-discrete time-continuous (SDTC)
finite difference time-domain (FDTD) solver for acoustic shock wave equations with radiation boundary
conditions. The design was realized in TSMC 180 nm CMOS technology. It has an active area of
7.38 mm×4.64 mm and consumes 936 mW while delivering an equivalent FDTD temporal update rate
of 80 MHz and an analog bandwidth of 2 MHz. The paper discusses the challenges and associated design
trade-offs in realizing such high-performance CMOS analog computers, including sensitivity to process,
voltage, and temperature (PVT) variations, sensitivity to bias and voltage regulation, errors associated with
noise, difficulties with calibration; it also outlines possible approaches for mitigating these challenges.

INDEX TERMS Analog computing, finite-difference time domain (FDTD), acceleration, CMOS, nonlinear,
partial differential equations (PDEs).

I. INTRODUCTION
Analog computing is gaining renewed attention due to its
potential for high efficiency in low- to moderate-precision
tasks, outperforming digital computing in speed and power
consumption, especially for applications requiring real-time
processing [1], [2], [3]. As digital computers approach phys-
ical and power-efficiency limits, analog solutions become
increasingly appealing, particularly for applications like
AI/ML and scientific computation at the edge, where
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low-latency and power efficiency are critical [4], [5], [6], [7],
[8].

Modern integrated circuit (IC) realizations of analog
computers finds a plethora of applications in the AI
community, particularly in deep learning (DL) [9], [10], [11]
and spiking neural networks [4], [5]. Analog implementations
for compute-in-memory (CIM) systems and neuromorphic
designs using memristors and ReRAM have demonstrated
power efficiency in AI applications like convolutional neural
networks (CNNs) [6], [7], [8], [12], [13], [14], underscor-
ing the potential of analog systems in edge computing.
The energy efficiency benefits of analog/neuromorphic
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computing ICs render them an attractive option for edge AI
and potentially for generative AI applications as well [15],
[16], [17].

Analog computer ICs have also been proposed for
solving scientific computing problems involving linear
and nonlinear partial difference equations (PDEs). Unlike
digital systems, which rely on sequential operations, analog
systems process information in a continuous-time domain,
enabling parallel computation with minimal latency. This
continuous processing approach offers substantial advantages
for solving differential equations, which are foundational
in modeling various physical phenomena. Special-purpose
analog ICs have been shown to efficiently solve both
differential and integral equations, achieving computational
performance metrics competitive with or superior to those
of digital architectures [3], [18], [19], [20], [21], [22],
[23], [24].

Our work builds on this trend by presenting a CMOS-based
analog computer specifically for solving nonlinear partial
differential equations (PDEs). Nonlinear PDEs are vital
in areas such as fluid dynamics, electromagnetics, and
plasmonics. This analog IC employs a spatially discrete,
time-continuous (SDTC) approach, where each spatial point
in the PDE is processed by dedicated modules, allowing
for real-time updates across a spatial grid. Fig. 1 depicts a
comparison of analog computers that includes both partial
differential equation/ ordinary differential equation (ODE)
solvers [2], [3], [20], [22], [24], [25], [26] as well as analog
AI/ compute-in-memory (CIM) accelerators [7], [8], [17],
[27], [28], contextualizing our work within the broader field
of analog computing, particularly in terms of computation
frequency and implementation complexity.

In our previous work [29], we introduced the theoretical
framework for this analog PDE solver. Here we present
post-layout circuit simulations and measurement results from
the chip that implements building blocks of the proposed
analog computer. We include IC implementation, test setup,
measurement, verification, calibration, debugging, and eval-
uation of the test results, and also highlight the challenges
associated with high-performance analog computing IC
design for fast PDE solvers.

The remainder of this paper is organized as follows.
Analog computing algorithms for solving nonlinear PDEs are
discussed in Section II. Circuit simulations of the algorithms
are presented and analyzed in Section III. Section IV
describes the implementation of an analog IC to realize
the algorithms, while Section V presents the test setup
and measurement results from the chip. Finally, Section VI
discusses our contributions and concludes the paper.

II. ANALOG NONLINEAR PDE ALGORITHMS
The system of interest is modeled using a nonlinear
PDE, specifically the acoustic shock tube problem, which
has applications in areas like jet engine inlet design.
We employ a spatially-discrete, time-continuous (SDTC)
approach based on finite difference time domain (FDTD)

FIGURE 1. Comparison of analog computers: PDE/ODE solvers, analog
AI/CIM accelerators based on implementation complexity and
computation frequency. Implementation complexity of PDE/ODE solvers
are classified based on configurability of the solver (capability to solve
single vs multiple problems) and the dimensionality of the problem being
solved. Complexity of analog AI accelerators are classified based on
neural network configurablility and compute macro size.

algorithms. These algorithms are derived and implemented
using continuous-time delay elements, which can be approx-
imated using all-pass filters [29], [30], [31]. For details
on the derivation of the SDTC algorithm and its mapping
to analog circuits, please refer to [29]. Our focus in this
paper is on the IC implementation of key building blocks
for solving nonlinear PDEs like the shock tube problem.
This architecture is programmable and can be adapted
to solve other linear and nonlinear conservation-law-based
PDEs [29].

The following subsections describe the architecture of
a fully-parallel analog CMOS accelerator for solving the
acoustic shock wave tube PDEs by using MacCormack’s
method in continuous-time [29], [32], [33].

A. ANALOG COMPUTING PLATFORM
Fig. 2(a) presents an overview of the proposed analog
computing platform. The analog computing core (CMOS
chip) is mounted on a board with supporting circuitry. Inside
the chip, all computations are performed in continuous-time,
and the core is interfaced to input and output signals via
impedance-matched transmission lines. The outputs consist
of time-varying voltages that are defined by the PDE, initial
conditions, and boundary conditions. A time varying input
excitation signal, which defines the source (left) boundary
condition of the PDE, is created using a signal generator.
A field-programmable gate array (FPGA) can also be used for
this purpose. The output waveforms computed by the analog
solver are digitized and post-processed by a FPGA. In this
implementation, we utilize ADCs integratedwithinXilinx RF
system-on-chip (RFSoC) devices [34] for digitizing analog
outputs. In addition, the analog solver chip is programmed
and calibrated using a microcontroller (MCU). The chip
is calibrated to improve its accuracy; this process involves
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FIGURE 2. (a) Overview of the proposed analog computing platform. (b) The analog computing architecture that solves nonlinear acoustic shock wave
equations. Boundary modules (BMs) and internal modules (IMs) are connected in a systolic array architecture, with each module producing a
time-varying voltage that corresponds to the solution of the PDE at a particular spatial location (as indicated on the discrete x axis). Block diagram of
(c) the f(8) circuit, and (d) the APF circuit. This figure is an illustration depicting the connection between Figures 2,3, 5, and 6 from [29].

comparing its output signals with a reference FDTD-based
PDE solver implemented inMATLABand then programming
the chip to minimize the error between the two.

B. ANALOG SOLVER ARCHITECTURE
Fig. 2(b) represents the signal flow graph (SFG) of our analog
computing architecture described in [29]. Fig. 2(b) maps
SDTC equations into an array of identical analog circuits
known as internal modules (IMs) [29]. The internal module
IMi computes the continuous-time solution of the nonlinear
PDE at x = i1x. The continuous-time delay operator τ of
the numerical method is implemented as the total time delay
within each IM, given by τ = 2τ1+τ2+τ3+τ4. Here, τ1 - τ4 are
realized using all pass filters (APFs) with a Laplace-domain
transfer function φ(s) ≈ e−sτ [20], [30]. The APFs at the
inputs of each subsystem of the parallel analog computer are
also used to compensate for propagation delays in different
signal paths. In addition, specialized boundary modules
(BMs) are used to implement the boundary conditions.
The input vector αi contains all parameters needed to
calculate the coefficients of f(8) at x = i1x. Flux operators
ft−τ
i−1 and f pi+1 are fed by the neighboring IMs at x = (i −

1)1x and x = (i + 1)1x, respectively. Similarly, output
flux operators ft−τ

i and f pi feed the neighboring modules to
produce their outputs. Fig. 2(c) shows the SFG for evaluating
an expression of the form f (u, ρ) = α1,0 u + α2,0 u2 +

α0,1 ρ + α0,2 ρ2
+ α1,1 uρ. Voltage mode circuits based

on summing and scaling op-amps are used to realize this
system, thus computing f(8). Here, the coefficients α1,0 −

α1,1 map to mean flow coefficients us, ρs, and cs from
the acoustic shock tube PDE given in [29] and [32]. They
are tuned using binary-weighted capacitor arrays. Fig. 2(d)
shows the block diagram of the 3-stage APF that is used
to realize continuous-time delay terms. Further analysis of

the proposed analog computing architecture, including circuit
design details, is provided in [29].

III. CIRCUIT SIMULATIONS AND ANALYSIS
The proposed IC for modeling the acoustic shock wave tube
problem was designed and fabricated in the TSMC 180 nm
CMOS process. Based on the parasitic extracted post-layout
simulation results of the chip, this section analyses the impact
of various circuit nonidealities such as circuit parasitics,
PVT variations, and device mismatches on the proposed
analog solver, in sub-sections B, D, and E, respectively. The
performance of the proposed analog solver IC, which is based
on the all-pass delay approximation (APDA) architecture is
dependant on the performance of the allpass filter, and also
is susceptible to supply and bias voltage variations across the
chip [19]. Therefore, subsections C and F discuss the impact
of APF performance and the sensitivity of the chip to voltage
variations, respectively.

A. TRANSISTOR-LEVEL SIMULATIONS
Initially, the system was designed for 33 modules (31 IMs
and 2 BMs), and pre-layout simulations were performed to
characterise the analog solver in terms of accuracy, input
range, dynamic range, and noise sensitivity, as presented
in [29]. In this work, to test a simplified building block of the
proposed analog solver, only 15 modules (13 IMs and 2 BMs)
were included in the fabricated chip. Multiple chips could be
cascaded to improve the spatial accuracy for a given PDE.
The continuous-time delay term τ of the analog solver is
chosen to represent the total time delay in the signal flow
path of an IM [29], and is set to τ = 12.5 ns. Parasitic-
extracted post-layout simulations were performed to verify
the functionality of individual circuit blocks (op-amp, APF,
multiplier, and single IM), as well as the complete solver.
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FIGURE 3. Space-time variation and the corresponding MSD and γi
variation of acoustic density from post-layout simulations (after
calibration) at (a) typical-typical, (b) slow-slow, and (c) fast-fast process
corners.

1) QUANTIFYING ACCURACY VIA MEAN SQUARED
DIFFERENCE
The accuracy of the analog solver was quantified by
comparing post-layout simulation results with the standard
FDTD solution using two metrics: 1) the mean squared
difference (MSD), and 2) the normalized MSD, γ (in dB).
The reference FDTD solution was obtained from aMATLAB
implementation of the two-stepMacCormack’s method using
double-precision arithmetic. The discrete-time step-size of
the FDTD solution was chosen to match the continuous-time
delay τ of the analog solver. Since the value of MSD varies
with the spatial location, MSDi was computed for each
location, and is defined as

MSDi =
1
Nt

Nt−1∑
n=0

[UF (i, n1T ) − UA (i, n1T )]2 , (1)

where UF (i, n1T ) and UA (i, n1T ) are the solutions of the
FDTD and analog solvers, respectively, at spatial position i
and time t = n1T . Also, Nt is the total number of time
samples and 1T is the temporal step size of the FDTD
simulation. Similarly, the normalized MSD γi is expressed
as

γi = 10 log10

Nt−1∑
n=0

[UF (i, n1T ) − UA (i, n1T )]2

Nt−1∑
n=0

UF (i, n1T )2

. (2)

The average normalized MSD γavg over the complete

spatial grid can now be expressed as γavg =
1
Nx

Nx−1∑
i=0

γi, where

Nx is the number of spatial grid positions.

2) TYPICAL PROCESS CORNER POST-LAYOUT SIMULATIONS
Simulations of the parasitic-extracted netlist (assuming ‘‘typ-
ical’’ process corner device parameters and no mismatch)
were performed to quantify the accuracy of the analog solver.
Figs. 3(a) shows the space-time acoustic density variation and
the corresponding MSD and γi variation obtained from the

simulations when the left boundary is excited with a 2 MHz
150 mVpp sinusoid (which prescribes the left boundary
value of acoustic density). These simulations agree with
the MATLAB model to reasonable accuracy: the average
normalized MSD of γavg = −11.5 dB is adequate for this
problem.

B. SENSITIVITY TO CIRCUIT PARASITICS
Circuit parasitics (parasitic capacitance and resistance) play
a significant role in determining the actual accuracy of the
analog solver. Post-layout simulations reveal that key solver
parameters, including 1) the tunable group delay and gain of
the APF, and 2) the tunable gain of the op-amp, deviate from
their pre-layout values by significant amounts (> 50%) [29].
The APF has the highest variability of all the circuit blocks,
with 60% gain variation and 40% group delay variation
between pre- and post-layout simulations. The post-layout
range of tunable APF gain is −3 dB to 3 dB (Fig. 4(a)),
which is significantly different from the pre-layout range of
−1.5 dB to 1.4 dB [29]. Similarly, the post-layout range of
APF group delay is 2.3 ns to 4.5 ns, which is significantly
larger than the pre-layout range of 1.5 ns to 2.5 ns. The main
source of these deviations is the parasitic capacitance of the
capacitor DACs that are used to control gains and delays
(Fig. 2(c)). Fortunately, this variability can be compensated
by calibrating the programmable gains and delays, thus
achieving acceptable accuracy across process corners as
shown in Fig. 3.

C. IMPACT OF APF PERFORMANCE ON ANALOG SOLVER
STABILITY
APFs are utilized to compensate for propagation delays of
the circuit blocks (e.g., op-amps and multipliers) as well as
to set the continuous-time delay of the analog solver. Thus,
they play a major role in determining the behaviour of the
solver.

1) SENSITIVITY TO APF GAIN AND GROUP DELAY
Each APF uses a 4-bit binary weighted capacitor array
to tune the group delay with a nominal resolution of
0.13 ns, while another 4-bit capacitor array is used to
tune the gain with a nominal resolution of 0.35 dB.
Based on Cadence Spectre simulations, single-bit changes
in APF gain and delay cause changes in final solver
accuracy (in terms of γavg) of 17.4% and 5%, respectively.
Such APF errors add up exponentially across the chip,
degrading the overall accuracy. Thus, to achieve only 0.5 dB
change in γavg (<5% variation per single-bit), the required
resolution in APF gain and delay are 0.25 dB and 0.12 ns,
respectively.

2) STABILITY OF THE ANALOG SOLVER
There are 12 APFs in each module, and ideally the gain of
eachAPF should be unity (0 dB). However, APF gain deviates
from unity due to layout parasitics, device mismatches, and
supply voltage variations. To study the impact of APF gain
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FIGURE 4. (a)-(b) Simulated (a) gain and (b) group delay variation of the
APF for different capacitor DAC configurations over a bandwidth of
20 MHz. (c)-(d) Simulated acoustic density from IM3 to IM6 (c) at medium
and (d) low APF gain configurations.

variations on the analog solver, we performed simulations
at different APF gain settings. Fig. 4(c) shows the output
(acoustic density) at IM3 - IM6 when APF gains are set to
within 0.1 dB from unity (referred to as the medium APF
gain configuration). The outputs are delayed and increase
in amplitude when going from IM3 to IM6, but decrease
in amplitude after IM7 (not shown in the figure). Also, the
shapes of these waveforms are not sinusoidal due to the
nonlinear nature of the PDE. Outputs from all the modules
(IM1 - IM15) in this configuration were plotted in 2D space-
time to obtain the graph in Fig. 3(a).
When the APF gains are set to a lower value, i.e., the

gains of at least 2 APFs in each module are reduced by
0.35 dB (minimum gain resolution), the output amplitudes
decrease from left to right (IM3 to IM6) as shown in
Fig. 4(d). This is because low-gain APFs act as attenuators
for the computation. On the other hand, when the gains of
at least 2 APFs in each module are increased by 0.35 dB,
the output amplitudes continue to increase until the op-amps
saturate, making the system unstable. Therefore, precise
calibration of APF gain is critical for the stability and
accuracy of the analog solver. Furthermore, theAPF gains can
be fine-tuned by improving the resolution of the gain-control
capacitor DACs.

D. SENSITIVITY TO PVT VARIATIONS
Accuracy of the analog solver is also dependent on variations
in 1) the IC fabrication process, 2) power supply and bias
voltages, and 3) die temperature.

1) PROCESS CORNER ANALYSIS OF THE ANALOG SOLVER
The impact of process corner variations was analyzed by
performing simulations at typical-typical (tt), slow-slow (ss)
and fast-fast (ff) process corners and then computing the
corresponding MSD and γ metrics. At the ‘‘tt’’ corner,

FIGURE 5. (a)-(b) APF (a) group delay and (b) gain variation from the
simulations with device mismatch models at different process corners.
(c)-(d) Gain and group delay variation of APF with (c) supply voltage
(Vdd ), and (d) die temperature.

γavg for acoustic density was −11.5 dB, but this increased
to 9.5 dB and −3.5 dB at the ‘‘ss’’, and ‘‘ff’’ corners,
respectively. Fortunately, higher accuracy can be achieved by
tuning the APF gains and delays. Figs. 3(b) and (c) show
the calibrated space-time acoustic density, MSD, and γi at
the ‘‘ss’’ and ‘‘ff’’ corners, respectively. APF calibration
improves γavg at these process corners to −11.9 dB and
−11.1 dB, respectively; these values are similar to those
obtained in the nominal (‘‘tt’’) case.

2) STUDY OF PVT ON APF GAIN AND GROUP DELAY
Since the analog solver is highly sensitive to APF parameters,
these parameters were analyzed as a function of PVT
variations. Multiple simulations were conducted at each
process corner (‘‘tt’’, ‘‘ss’’, ‘‘ff’’, and ‘‘sf’’) to quantify
APF gain and delay variations. As shown in Fig. 5(a),
APF group delay varied from 4.5 ns in the slow corner
to 1.6 ns in the fast corner, while APF gain (Fig. 5(b))
varied from −0.15 dB to 0.15 dB. As shown in Fig. 5(c),
supply voltage variations from 1.74 V to 1.81 V resulted in
significant APF group delay variations (from 3.4 ns to 2.3 ns)
while the gain remained almost invariant. The dependence
of APF group delay on supply voltage can be attributed to
the supply voltage-dependant propagation delay (PD) of the
output op-amp and the voltage buffers (NMOS-PMOS source
follower pair) utilized in the APF circuit (Fig. 2(e)). For
an example, when VDD is changed from 1.8 V to 1.74 V,
the simulated PD of the op-amp buffer increases by 100 ps,
while that of the source follower buffer increases by 200 ps.
Furthermore, the finite PD of the transmission gates used in
the capacitor DACs also affects the overall group delay of
the APF. Finally, both APF gain and group delay remained
quasi-constant versus temperature, as shown in Fig. 5(d).
Note that the gain variation is only 0.04 dB and the delay
variation is 120 ps, making the APF nearly invariant to
temperature fluctuations.
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FIGURE 6. (a)-(b) Average normalized MSD variation (a) with device
mismatches, and (b) with supply voltage. (c)-(d) Acoustic density from
post layout simulations showing (c) space-time variation, and (d) MSD
and normalized MSD variation along the spatial grid. (e)-(f) Simulated
variation of γavg with (e) Vbias1 and (f) Vbias4.

FIGURE 7. Schematic of the fully differential operational amplifier with
(a) two amplifying stages and (b) their common-mode feedback circuits.

E. SENSITIVITY TO DEVICE MISMATCHES
To study the impact of device mismatches on accuracy,
Monte Carlo simulations with device mismatch models were
conducted using Cadence Spectre for the complete analog
solver chip and the simulated acoustic density from each
run was analyzed to compute γavg as shown in Fig. 6(a).
The simulations show that device mismatch has a relatively
small effect on accuracy and thus can be ignored for this
design.

FIGURE 8. (a) Die photograph of the fabricated nonlinear PDE solver chip.
(b) Measured characteristics of the chip.

F. SENSITIVITY TO SUPPLY AND BIAS VOLTAGES
To further analyze the impact of supply voltage variations on
the analog solver accuracy, γavg was computed at different
supply voltages. As shown in Fig. 6(b), γavg varies over
a wide range (−1 dB to −15 dB) for relatively small
changes in the supply voltage (from 1.74 V to 1.81 V).
Note that layout resistances were not included in these
simulations, so no intra-die supply voltage variations were
modeled.

1) EFFECT OF SUPPLY VOLTAGE ON ANALOG SOLVER
In practical situations, significant intra-die supply voltage
variations can occur due to IR drops within the supply
voltage network. These variations affect the APF group delay
(Section III-D2). This in turn, degrades the accuracy of the
analog solver, as the circuit PDs are not being properly
compensated [29]. To capture the impact of intra-die supply
voltage variations, RC-extracted post-layout simulations
were performed using Cadence Spectre. Fig. 6(c) and (d)
show the corresponding acoustic density, MSD, and γi
variations. NormalizedMSD is significantly degraded (varies
over the range −8 dB to +2 dB, with γavg = −3.5 dB).
Fortunately, accuracy can be partially recovered (γavg =

−5.5 dB) via APF calibration. Note that the calibrated results
are not shown in the figure.

2) EFFECT OF OP-AMPS AND APF BIASES
External bias voltages (for the op-amp and APF) also affect
the accuracy of the analog solver. There are eight bias
voltages common to each module. Of these, 5 voltages
(Vbias1, Vbias2, Vbias3, Vbias4, and Vcm) are applied to
the op-amp, as shown in Fig. 7. From simulations after
perturbing each voltage, it was observed that two of the
op-amp bias voltages (Vbias1 and Vbias4) have the greatest
effect on solver accuracy. These voltages control the tail
current of the differential pair M1-M2. Changes in their
values cause variations in the op-amp closed-loop gain and
the PD (simulated with the op-amp connected in follower
configuration), resulting in overall gain and delay variations
in the analog solver. As shown in Figs. 6(e) and (f),
variation of Vbias1 and Vbias4 introduces a maximum γavg
variation of 6% and 42%, respectively. Therefore, stable bias
voltages are needed for generating repeatable and accurate
outputs.
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IV. IMPLEMENTATION AND TESTING OF THE CHIP
The analog computer for solving the acoustic shock tube
PDE consists of thirteen IMs and two BMs (left and right),
which were laid out in three rows. The chip contains a
total of 120 summing op-amps (post-layout gain-bandwidth
product ≈ 600 MHz), 180 APFs, and 90 multipliers. Each
IM occupies an area of 1.33 mm×1.27 mm, including
two op-amp buffers that enable off-chip readout of the
output voltages. Digital configuration bits are accessed
using a serial peripheral interface (SPI) bus, and power
was routed using the top metal layer. The chip features a
total of 314 pads, including power/ground and I/O pads for
the fully-differential analog outputs (acoustic density and
velocity). A die photograph of the fabricated chip (die area
of 7.38 mm×4.646 mm) is shown in Fig. 8.

A. MOTHERBOARD AND TEST SETUP
The chip was evaluated using a custom motherboard and a
MATLAB-based software interface. The experimental setup
consisted of the motherboard and additional supporting
instrumentation, as shown in Fig. 9. The evaluation board
consists of 30 off-chip buffers and 70 I/O connections in
total, which includes 30 output differential pairs of the
analog solver and additional I/O to debug the chip. There
are 3 DC power connections which supply power to the
analog chip (1.8 V), off-chip buffers (5 V), and set the
off-chip buffer output common mode voltage (1.2 V). These
voltages can either be supplied externally or generated via
on-board voltage regulators from themain supply connection.
Additionally there, are 12 DC power/signal connections
to supply external bias voltages to the chip and to select
between chip mode of operation (normal operating mode or
debug mode, where a single IM is tested). Finally, there are
3 connections to control the on-chip SPI block, which allows
chip calibration and configuration.

1) INTERFACING INPUT AND OUTPUT ANALOG
WAVEFORMS
The left-boundary input waveform for the PDE was supplied
from an external function generator. RF baluns were used
to generate the required differential input signals, while bias
tees provided the input commonmode voltage. Analog output
waveforms from the chip were ac-coupled to off-chip buffers
mounted on the evaluation board; these buffers amplify the
analog signals to the ADC full-scale prior to digitization
using a Xilinx RFSoC platform. Although not part of the
analog solver’s intrinsic power consumption, we note that
the external data converters (ADCs and amplifiers/buffers)
consume an additional 10.5 W [7.5 W (15 × RF-ADCs on
RFSoC)+3 W (30× AD8351ARMZ amplifiers)] [35]. Under
nominal operating conditions, the FPGA consumes another
30 W of power [34].

2) PROGRAMMING AND CALIBRATION INTERFACE TO THE
ANALOG COMPUTING CHIP
Each IM and BM has 91 tuning bits (realized using capacitor
arrays) that can be set using a three-wire SPI bus. An Arduino

microcontroller unit (MCU) was utilized to reconfigure
and calibrate the chip over SPI. Programmable parameters
include spatially-varying mean flow coefficients of the PDE,
APF gains, and APF group delays. Bias voltages for the
op-amps were supplied by an eight-channel 16-bit DAC
controlled by the same MCU via an I2C interface. The 16-bit
precision of the DAC allowed fine-grain optimization of the
bias points during setup and calibration. During this process,
the value of γavg (the average normalized MSD between
the measured results and the MATLAB FDTD model) was
minimized by varying both the tuning bits and the bias points.

B. DIGITAL AND SOFTWARE BACK-END
1) FPGA DIGITAL DESIGN
Output analog waveforms at each module (corresponding to
particular spatial grid positions) were digitized at 125 MS/s
using a 16-channel 12-bit ADC implemented on the Xilinx
ZCU-1275 RF-SoC development platform. The 12-bit res-
olution of the ADC allows digitization of small amplitude
(<5 mV) output waveforms, e.g., those generated close to the
right boundary module.

As shown in Fig. 10(a), the RF Data Converter IP core
supplied by Xilinx [35] was used to activate the 16 ADCs
on the RF-SoC platform, which are arranged in 4 tiles
with 4 ADCs per tile. The ADC clock was supplied by an
on-board phase-locked loop (PLL) running at 200 MHz, and
a decimation filter within the RF data converter IPwas used to
set the desired sampling rate (125 MS/s). An integrated logic
analyzer (ILA) debug core provided by Xilinx [36] was used
to capture and save the ADC outputs.

2) CALIBRATION SETUP
MATLAB scripts were utilized to automate data capture,
MCUprogramming, andMSD computations. Aflowdiagram
of the data capture and chip programming process is depicted
in Fig. 10(b). In the first step, the required bias voltages
were programmed from MATLAB by using the external
16-bit DAC. Next, the calibration configurations (APF gains,
delays and PDE coefficients) were programmed over SPI
and the resulting chip outputs captured using the RFSoC.
APython script (called fromMATLAB)was used to automate
ADC data capture. Captured data from each module was
compared with the outputs of the MATLAB FDTD model
to compute γavg. The entire process was then repeated to
minimize γavg.

C. CALIBRATION AND OPTIMIZATION
The procedure described above was used to calibrate the
variable gains, delays, and bias voltages of the analog
solver chip prior to normal use. The overall accuracy of the
analog solver (γavg) is chosen as the objective function for
calibration, since the accuracy of the solution depends on
the interconnected output of all individual blocks. In this
approach, the problem being solved is used as the test vector.
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FIGURE 9. (a) Evaluation board (consisting of 70 I/O connections and 15 DC power/signal lines) with analog chip and (b) the test setup used to
evaluate the functionality of the nonlinear PDE solver. An MCU was used to program the analog computer through its SPI bus. Computational outputs
at each spatial point are digitized using a 16-channel 12-bit ADC (sampled at 125 MS/s) implemented within a Xilinx ZCU-1275 RF-SoC [34].

FIGURE 10. (a) Digital design of the RFSoC’s 16-channel ADC. (b) Block
diagram of the calibration and measurement setup used to evaluate the
functionality of the nonlinear PDE solver chip.

Once calibrated, the state of calibration can be used in the
solution of the same PDE with different coefficients.

Calibration bits of the analog solver consists of; 24 4-bit
capacitor arrays for controlling APF gain and group delay
in each IM and BM, 4 4-bit capacitor arrays to compensate
for multiplier gain variations, and 35 capacitor arrays
(15 7-bit and 20 4-bit) to set the mean flow coefficients
required to solve the PDE. The modules also share 8 global
bias voltages, which includes bias voltages of the op-amp,
APF and the multiplier [29].

1) CALIBRATION PROCEDURE
Initially, all the calibration bits and bias voltages are pro-
grammed to their nominal values obtained from post-layout
simulations with typical (‘‘tt’’) device models. Next, the
measured value of γavg is defined as the objective function of
the calibration process. The goal of calibration is to minimize

this function. Note that only the acoustic density outputs
of the first 8 modules of the chip are considered in the
computation of γavg, since the outputs beyond module 8 were
too small (below the noise floor of themeasurement setup) for
an accurate comparison. APF gains and group delays have the
largest impact on the objective function, as described earlier.
Step 1: Optimum values for APF gain and group delay are

computed using an exhaustive search algorithm, implemented
using a software script to automate data capture. All other
variables are kept fixed at their initial values.
Step 2: Bias voltages are optimized using the simul-

taneous perturbation stochastic approximation (SPSA)
algorithm [20], [37], [38] while keeping the APF gains
and delays constant. The SPSA algorithm perturbs the
optimization parameters (i.e., the bias voltages) around their
initial values and then approximates the gradient of the
objective function (γavg) using only two measurements; this
minimizes the effects of measurement noise and also the
required number of iterations.
Step 3: The gains of the summing op-amps within the

IMs (which set mean flow coefficients of the PDE) are
calibrated by applying a scaling factor. This step compensates
for the parasitic capacitance of the gain-tuning capacitor
arrays.

2) ANALYSIS OF THE CALIBRATION RESULTS
We note that step 1 alone does not find an operating point
(APF gain and delay configuration) that provides γavg <

0 dB. Bias voltage optimization (Step 2) is thus necessary to
further reduce γavg. As shown in Fig. 11(a), itStep 2 reduces
γavg from 1.2 dB to 0.5 dB within 40 iterations. The
values of Vbias1 and Vbias4 at each iteration are shown in
Figs. 11(b) and (c), respectively. The impact of these two
bias voltages on analog solver accuracy is significantly higher
than the other bias voltages, as predicted from simulations
(Section III-F2).
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FIGURE 11. (a) Variation of the objective function (γavg) with each
iteration of the SPSA algorithm (regression line drawn in blue). Variation
of (b) Vbias1 and (c) Vbias4 with each iteration.

TABLE 1. Measured specifications of the primary circuit blocks.

V. CHIP MEASUREMENTS
The analog solver consumes 520 mA current from a 1.8 V
supply at its optimum operating point, with each identical
module consuming approximately 34.6 mA. Total current
consumption of the chip varies from 450 mA – 570 mA
over a supply voltage range of 1.74 V – 1.85 V. Prior to
calibration, primary building blocks of the chip (op-amp,
APF, and multiplier) were tested and measured individually
using a Tektronix MSO64 oscilloscope to verify their
functionality. Measurements were performed by importing
the data captured by the oscilloscope into MATLAB and
then processing it to extract parameters such as gain
and propagation delay. Measured critical parameters of
the primary circuit blocks at an operating frequency of
2 MHz are summarized in Table 1. Multiple measurements
were obtained under different configurations to study the
behaviour of the calibrated chip. The measurements show
that the IMs work correctly; however, the full analog solver
did not yield spatio-temporal computations with high enough
accuracy (measured γavg = 0.5 dB). This is attributed to
both circuit design issues and human errors during design and
layout, as explained next.

A. LAYOUT ERRORS
In the power supply net to one of the modules, sufficient vias
were not placed. This caused several modules beyond the
6th spatial point to be sub-optimally biased due to IR drops,
resulting in a significant loss of accuracy for some parts of
the computation.

We fixed the missing via by using focused ion beam (FIB)
chip editing [39], [40]. A tungsten via array with a resistance
of ≈ 1 � was deposited using FIB. However, the IR drop

FIGURE 12. Measured acoustic density variation from IM3 to IM6 (a) at
medium and (b) low APF gain configuration.

across the deposited via (≈ 35 mV) is still too large; IM6
operates at a lower supply voltage than the other modules,
degrading the overall accuracy. Nevertheless, the edited chip
could be tested over most of the desired spatial range.

B. IMPACT OF APF GAIN
Transistor-level simulations (Section III-C) predict that APF
gains have a significant effect on analog solver accuracy.
To further study the impact of APF gain on the fabricated IC,
we measured chip outputs at different APF gain settings.

1) MEDIUM APF GAIN CONFIGURATION
Fig. 12(a) shows the acoustic density waveforms at the
outputs of IM3 - IM6 when the APFs are at their medium
gain configuration and the left boundary is excited with a
150mV2MHz sinusoidal signal (which defines the boundary
value of acoustic density). Note that the output amplitudes
increase from IM3 - IM5, while the IM6 output is attenuated.
The measured output amplitude of IM6 is smaller than the
simulated output at similar APF gain settings (Fig. 4(c)).
Other IM outputs also differ slightly from the corresponding
simulated results in terms of signal amplitude and time delay.

These deviations are attributed to three main reasons:
1) lower supply voltage (and hence larger propagation delay)
at IM6 due to the FIB-deposited via; 2) APF gain calibration
errors due to insufficient tuning resolution (resulting from
circuit parasitics and process variations in the gain tuning
capacitor DACs); and 3) larger circuit propagation delays at
IM6 - IM10 due to lower supply voltage (20-30 mV below
other modules since they are laid out in the middle row, away
from the pads). The results can be improved by 1) increasing
the resolution of the capacitor DACs, and 2) reducing IR
drops by improving the layout of the power supply network.

2) APF GAIN VS STABILITY
Fabricated chip outputs either decay or oscillate depending
on the APF gain configuration, as expected from simulations.
When APF gains are low, the measured output waveforms
decay from left to right (going from IM3 to IM6) as shown in
Fig. 12(b). Such signal decay is caused by the low-gain APFs,
which act as attenuators. On the other hand, the measured
chip outputs saturate when the APF gains are set to higher
values.
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FIGURE 13. Measured results from the fabricated chip, (a)-(b) acoustic
density when the left boundary is excited with a (a) 1 MHz and (b) 2 MHz
sinusoidal signal, respectively. (c)-(d) Acoustic velocity when the left
boundary is excited with a (c) 1 MHz and (d) 2 MHz sinusoidal signal,
respectively.

C. MEASUREMENTS WITH BOUNDARY CONDITION
WAVEFORMS
To study the response of the chip to different input signals,
the left boundary, which defines the source boundary value
of acoustic density, was excited using sinusoidal signals with
varying amplitudes and frequencies. This section analyses the
corresponding measured results.

1) ACOUSTIC DENSITY AND VELOCITY
The proposed analog solver computes both the density
and the velocity of acoustic flow along the variable area
duct, as described by the acoustic shock tube equations
in [29] and [32] Figs. 13(a) and (c) show the correspond-
ing space-time variation of acoustic density and velocity,
respectively, when the left boundary is excited with a 1 MHz
input sinusoidal signal of amplitude 150 mV. Similarly,
Fig. 13 (b) and (d) show the acoustic density and velocity
variation, respectively, when the input frequency is increased
to 2 MHz. From the measured results, it is clear that the
analog solver outputs follow the input signal, as required by
the mathematical model of the acoustic shock equations [29],
[32]

It is important to note that the signal amplitude at IM6
for acoustic density (Fig. 13(b)) is more attenuated than the
corresponding acoustic velocity output (Fig. 13(d)). This can
be traced back to the reduced supply voltage in the density
computation section of IM6 caused by the FIB-deposited via.

2) TUNABILITY OF MEAN FLOW COEFFICIENTS
The time-invariant coefficients (us, ρs, and cs) of the
acoustic shock equations in [29] define the spatial profile
of the acoustic density and acoustic velocity terms. These
coefficients can be programmed by tuning the on-chip
capacitor arrays. To study this process, we programmed
the analog solver for different mean flow conditions (i.e.,

FIGURE 14. (a) Variation of mean flow velocity (us) along the shock tube.
(b) Measured acoustic density (from the chip) at IM5 with time.
(c)-(d) Space time variation of acoustic density with maximum values of
(c) us = 0.4 and (d) us = 0.2.

different us variations along the shock tube) as shown in
Fig. 14(a). Mean flow velocity us is highest at the middle of
the shock tube, where the area is lowest. Maximum value of
us, as indicated in the figure, are us = 0.7, us = 0.4, and us =

0.2. Other coefficients (ρs and cs) change with us, but this is
not shown in Fig. 14(a). The measured acoustic density at
i = 5 (i.e., IM5) is shown in Fig. 14(b) for all three scenarios.
Note the increase in acoustic density with the increase in us.
A top view of the space-time plot for the acoustic density
with maximum us = 0.7 is shown in Fig. 13(b), while the
corresponding acoustic density for us = 0.4 and us = 0.2 are
shown in Figs. 14(c) and (d), respectively. As expected from
simulations [29], the spatial variation of acoustic density (and
velocity) becomes relatively uniform at lower mean flow
velocities. Furthermore, these plots show the expected change
in measured analog solver outputs due to changes in mean
flow coefficients.

3) LINEAR VS NONLINEAR ANALOG SOLVERS
The mathematical model utilized in the proposed analog
solver is nonlinear. However, the nonlinear terms can be
turned off (by turning off the multipliers) to make the acoustic
equations linear. Thus, we define the solver with multipliers
switched off as linear and the normal operating mode (with
multipliers switched on) as nonlinear. Fig. 15(a) shows the
transient waveform at the output of IM5 for both linear
and nonlinear cases. Figs. 15(b)-(c) compare the output
power spectral density (PSD) of the two cases. Note the
presence of harmonics (f1 and f2) only in the nonlinear
output. However, the first harmonic (f1) is about 15 dB
lower than the fundamental (f0), which suggests that the
system is only mildly nonlinear. This fact is confirmed by
the near-linear dependence of IM5 output amplitude on input
signal amplitude, as shown in Fig. 15(d). For the nonlinear
case, the output is linear for small input signal amplitudes
(< 75 mV) because the magnitudes of the nonlinear terms
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TABLE 2. Performance comparison with the previously reported work.

FIGURE 15. Measured IM5 (a) transient output and the corresponding
PSD when the solver is (b) linear vs (c) nonlinear. (d) IM5 output
amplitude vs input signal amplitude for the two cases, when the solver is
linear and nonlinear.

(u2, ρ2, and uρ in the acoustic shock equations in [29]) are
relatively small, while some nonlinearity is visible at larger
input amplitudes due to the rapid growth in the nonlinear
terms. Overall, the mildly nonlinear nature of the measured
results can be attributed to low APF gains, which attenuate
the multiplier outputs (i.e., the nonlinear terms).

4) TWO-TONE INPUTS
The chip can be further tested for nonlinearity by: 1) applying
two different inputs; and 2) applying an input that is the sum
of these two inputs. Superposition does not apply for the
nonlinear system, so the sum of the twomeasured results from
1) can be different from the results of 2). Fig. 16(a) shows
the combined measured transient results (acoustic density)
when two sinusoidal inputs (0.78 MHz and 1.56 MHz) are
applied separately, while Fig. 16(b) shows the results when
their sum is simultaneously applied. The two results differ
from each other significantly in both phase and magnitude;
the measured mean RMS difference of 48.7 mVrms is 69% of
the RMS value of each input.

D. PERFORMANCE ANALYSIS
Our analog computing chip operates at a supply voltage of
1.8V and consumes a total power of 936mW, averaging

FIGURE 16. (a) Summation of measured results (acoustic density) when
1) a 0.78 MHz sinusoidal input (200 mVpp) or 2) a 1.56 MHz sinusoidal
input (200 mVpp) are separately applied to the analog solver.
(b) Measured results when the solver is supplied with the summed input
(0.78 MHz and 1.56 MHz).

62.4mWpermodule across its 15modules. The chip achieves
an analog bandwidth, denoted as Fcompute, of 2MHz and has
an equivalent temporal update rate of 80MHz. This high
Fcompute is a result of the propagation delay compensation
technique used in the chip’s architecture (APDA method),
which offers advantages over integrator-based continuous-
time computing methods. For instance, the analog bandwidth
of our chip is 100 times higher than that of the analog
computers reported in [2] and [26].

It is important to note that the compared works in [2]
and [26] are more general-purpose and can be configured to
solve a broader range of problems, including both linear and
nonlinear systems of equations. In comparison, the analog
bandwidth of our chip is 15 times lower than that of a linear
PDE-solving analog computer that also employs the APDA
architecture [20]. This disparity is due to the exponential
increase in complexity when solving nonlinear PDEs.

To benchmark our design against other reported analog
computers, we use the metric Fcompute/power (in MHz/mW),
which accounts for both the analog bandwidth and the
power consumption per module. Table 2 summarizes the
performance of our analog solver and compares it with
previous work. Accordingly, the performance of our chip
is three times better than that of [26], but approximately
3.75 times worse than [2], 1.3 times worse than [24], and
about 90 times worse than [20]. The reduced performance
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is attributed to our chip’s ability to solve a nonlinear PDE
as a coupled system of equations, which is inherently more
complex than linear PDEs.

Nevertheless, because the temporal update rate of our chip
is significantly higher than its analog bandwidth—by a factor
of 40—it benefits from the speedup advantages over digital
processors, as reported in [29].

VI. CONCLUSION
Our overall objectives are to i) explore continuous-time
analog computing methods [19], [20] for solving nonlinear
PDEs, and ii) identify the challenges and opportunities in
implementing complex analog PDE solvers. As an example,
this paper has presented a CMOS implementation of a
15-point analog computer for solving acoustic shock wave
equations. The chip implements SDTC algorithms for solving
nonlinear PDEs using analog circuits. This paper builds
upon our recently published work on the theory and circuit
implementation of such analog solvers [29] by presenting
and analyzing measurement results from a fabricated analog
solver IC.

The proposed analog solver chip was fabricated in TSMC
180 nm CMOS with a die size of 7.38 mm×4.64 mm.
Operating at a supply voltage of 1.8V, it consumes 936mW
of power, averaging 62.4mW per module across its 15 mod-
ules. The chip achieves an analog bandwidth of 2MHz and
an equivalent temporal update rate of 80MHz, resulting in
a performance metric (Fcompute/power) of 0.032MHz/mW.
While this metric is lower compared to recent linear
PDE-solving analog computers—which have metrics of
2.9MHz/mW [20] and 0.042MHz/mW [24]—it is important
to note that our chip solves a nonlinear PDE as a coupled
system of equations, which is inherently more complex and
leads to an exponential increase in computational complexity.
The chip was tested using a custom evaluation board with
supporting instrumentation. An FPGAwas utilized to capture
the computed analog results from the analog solver, while
a MATLAB-based software interface was used for post-
processing. The chip was tested over most of the desired
spatial range and the factors affecting the computation
accuracywere extensively analyzed using bothmeasurements
and simulations.

A key feature of the proposed analog computing method
is that it absorbs the propagation delays (PDs) of the
required circuit blocks (e.g., op-amps and multipliers) within
the continuous-time delay required by the SDTC update
equations. This in turn results in high temporal update
rate and analog bandwidth compared to general-purpose
digital processors, but at the cost of reduced accuracy and
susceptibility to intra-die process and voltage variations.With
exhaustive calibration and by tuning APF gains and delays,
it is possible to restore the required accuracy of the analog
solver. The identified challenges of the nonlinear analog
solver and the proposed solutions described in this article
will inform the design of software-defined massively parallel
analog computers for solving more complex nonlinear PDEs.
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