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ABSTRACT Fault tolerance refers to a system’s capacity to continue functioning as intended, even when
one of its components fails. Such a system is known as a fault-tolerant, self-stable system. The idea of
fault-tolerant resolving sets (FTRS) arises from the concept that removing any vertex from a resolving set
(RS) still results in another RS, hence designated as an FTRS. The minimum size of this set is called the
fault-tolerant metric dimension (FTMD). This paper extends the concept to edges by introducing the edge
version of the fault-tolerant resolving set (EVFTRS) and its corresponding edge version of the fault-tolerant
metric dimension (EVFTMD), which is based on edge distances in the network analysis. We calculate
the EVFTMD values for n-sunlet and cycle with chord networks, demonstrating that these values remain
constant. These findings illustrate the reliability of these network topologies in environments prone to edge
failures, offering valuable insights for designing resilient communication systems such as optical networks
and smart grids. By adopting an edge-based perspective, this study advances fault tolerance analysis in graph
theory and practical network design.

INDEX TERMS n-sunlet graph, cycle with chord graph, edge computing, fault-tolerance, metric dimension.

I. INTRODUCTION
In real-world situations, networks frequently experience
defects or failures in their edges or vertices for a variety
of reasons, including purposeful attacks, network outages,
and hardware problems. This encourages the research of
network fault tolerance, where defects are present yet the
network should nevertheless function and maintain its key
characteristics. FTMD is a notion associated with the study
of network fault tolerance and metric dimension (MD). The
degree to which a subset of vertices known as ‘‘landmarks’’
may be employed to distinguish a network’s vertices from one
another is known as the network’s MD.

Slater used the term ‘‘landmarks’’ for RSs in [1] and [2].
Moreover, another mathematician, Harary, independently
described the concept of RSs and MD with the help
of Melter [3]. It can be used in a number of fields,
including facility location and network design. The concept
of a resolving set (RS) finds diverse applications across
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computer networks, robot navigation, chemical structures,
and electric circuits. It plays a crucial role in identifying
intruders in indoor security systems, where a chain of sensors
(nodes) acts as a means of detection. Later, Chartrand
and Zhang [4] and [5] applied this notion in the fields
of chemistry and robotics. The study in [6] examined the
edge locating numbers and metric size of coffee chemical
structures to understand coffee molecules. It features a
network of their properties and highlights key compounds
like caffeine, cafestol, kahweol, chlorogenic acid, caffeic
acid, gallotannins, and ellagitannins. In [7], Koam examined
the edge MD of some convex polytope structures and
compares the results with previous resolvability parameter
cardinalities. Manuel et al. [8] and Wang et al. [9] used the
RSs as sensors (nodes) in computer networks.

However, in real-world situations, networks frequently
experience defects or failures in their edges or vertices
for a variety of reasons, including purposeful attacks,
network outages, and hardware problems. This encourages
the research of network fault tolerance, where defects are
present yet the network should nevertheless function and
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maintain its key characteristics. This problem was initially
solved by Hernando et al. [10], who also introduced the FTRS
invariant. That is, if the removal of any element from a RS
results in another RS, then such an RS is termed a FTRS, and
the minimum cardinality of the FTRS is referred to as FTMD.

Researchers have investigated the relationship between
fault tolerance and various network parameters, as well as
algorithms and approaches to compute or estimate FTMD.
Identifying how resilient a network is to maintaining its
metric properties in the face of errors is the goal of the
study of FTMD. It is used in fault-tolerant network design
and analysis, where secure communication and routing are
critical. To ensure the resilience and reliability of networks
during failures or disruptions, researchers and engineers can
construct fault-tolerant systems with a better understanding
of FTMD [11].

In communication networks like the internet or wireless
sensor networks, ensuring fault tolerance is crucial to
maintaining uninterrupted connectivity. The FTMD can help
in designing network topologies that can withstand node
or link failures without causing significant disruptions in
communication [12]. Similarly, in transportation systems
like railway networks or airline routes, fault tolerance is
essential to prevent widespread disruptions caused by acci-
dents, infrastructure failures, or natural calamities. FTMD
can assist in designing robust transportation networks that
can adapt to unforeseen circumstances. Power distribution
networks are critical to ensuring uninterrupted electricity
supply to consumers. To maintain high levels of reliability,
designers can use FTMD techniques to create robust power
grid architectures. These architectures can isolate faults
and reduce the impact of failures on the overall system
performance, as stated in [13]. Apart from power distribution,
FTMD can also be useful in other domains, such as
social networking platforms, healthcare networks, and other
areas where network reliability and resilience are crucial.
Organizations can ensure the continued operation of their
systems by incorporating fault tolerance into network design
and optimization processes, even in the face of unforeseen
events or failures.

FTMD has been studied for a variety of network
classes, including general networks, trees, and grids. Her-
nando et al. [10] pioneered the application of the invariant
FTMD by computing it for tree networks. They demonstrated
that the values of the FTMDare bound. This analysis was then
expanded to different network families by Prabhu et al. [14].
In another study, Zheng et al. [15] investigated the FTMD
of wheel-related networks. In [16] and [17], certain inter-
connection networks have been discussed for the FTMD
problem. Researchers in [18] and [19] investigated convex
polytopes, determining their FTMD. Furthermore, the FTMD
is thought to be important for studying other structures, such
as FTRSs of cycle networks [20], and the FTMD of King’s
networks studied in [21]. Basak et al. [22] made significant
contributions by computing FTMD for circulant networks.

In [23], Hussain et al. established constant FTMD for specific
families of gear networks.

The precise MD and FTMD values of linear phenylene,
linear heptagon, and cyclic hexagonal square chain struc-
tures were determined by Nadeem et al. in [24]. Also,
Ahmad et al. [25] found the FTRSs of certain chemical
structures. Laxman [26] precisely determined the exact value
of FTMD of the cube of paths. Raza et al. [27] com-
puted some bounds for the FTMD of anti-prism networks.
Guo et al. [28] contributed great effort in this invariant and
found constant FTMD for some families of the line networks.
Ahmad et al. [29] proved that the FTMD of the barycentric
subdivision of the Cayley network is constant. Ali et al. [30]
introduce the fault-tolerant mixed MD as a new parameter
for resolvability, comparing a lab network issue to designing
a circular lab for optimal device placement to ensure internet
connectivity.

The FTMDof the some families of networkswas computed
by Faheem et al. [31]. In the study [32], Nadeem et al. identify
the fault-tolerant beacon set for the hexagonal Mobius ladder
network H (α, β) and demonstrate that all variations of α

and β within H (α, β) maintain a constant FTMD. It was
discovered by Sharma and Bhat [33] that the families of
the double antiprism networks can be resolved with just
4 vertices. This invariant was found for the three types
of ladder networks by Wang et al. [34]. Several (edge)
metric-based theories for the construction of the hollow
coronoid were investigated in [35]. In a different study,
Ahmad et al. [36] examined the FTMD problem for the
P(n, 2)

⊙
K1, and Simic et al. [37] computed the FTMD for

grid networks. For the FTMD applications in engineering,
we refer [38] and [39].

The novelty and contribution of this paper lie in the
introduction of the concepts of EVFTRS and EVFTMD,
which utilize the edge distance within a network, for
details: (see [40], [41]). The introduction of EVFTMD as
an expansion of the FTMD establishes a novel framework
for examining edge resilience, distinguishing it from earlier
research that focused exclusively on vertices. Our findings
regarding n-sunlet and cycle with chord networks provide
new perspectives on the fault tolerance of networks subject to
edge perturbations, laying the groundwork for future studies
on different types of networks.

This research addresses a gap in the literature by focusing
on edge-based tolerance, which is significant for network
design, routing, communication in distributed networks,
electric circuits, and fault recovery in large-scale infrastruc-
ture systems [42]. By formulating the problem for these
specific network families, we enable the identification of
distinct combinatorial properties that have not been explored
previously, thereby expanding our understanding of both
theoretical graph theory and its practical applications.

Our research on EVFTMD enhances availability and relia-
bility by ensuring distinct edge identification despite faults.
While we emphasize mathematical modeling over system
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implementation, EVFTMD is crucial for failure detection
and recovery in network structures, facilitating accurate fault
localization. We simplify the design process by leveraging
effective combinatorial characteristics of structures, such
as n-sunlet and cycle with chord networks. Although the
study does not directly address cost or latency, it establishes
a theoretical basis for creating resilient networks. Overall,
our framework promotes structural robustness and supports
resilient network design, while influencing data consistency
and mitigating SPOF (single point of failure) issues.

The following sections provide a detailed discussion of
the remaining part of the article: Section 2 covers notations
and basic definitions that are useful in computing EVFTMD.
Moving on to Section 3, we delve into the computation of
EVFTMD for n-sunlet networks. In Section 4, we investigate
EVFTMD for cycles with chord networks. Section 5 is
dedicated to addressing the implications and applications
of our findings. Finally, Section 6 concludes this article by
offering an opinion.

II. PRELIMINARIES AND METHODOLOGY
Suppose G is a connected, undirected, and simple network
consisting of the set of vertices V (G) and E(G) is the set of
edges. Let v1, v2 ∈ V (G), then the distance d(v1, v2) is the
smallest path between v1 and v2. For every subset U ⊆ V (G)
is termed a RS of G if there exists a vertex u ∈ U such
that it resolves every pair of vertices v1, v2 ∈ V (G). The
metric basis of a RS is the RS having minimum cardinality.
The number of vertices in such a basis is referred to as its
MD, or β(G). The MD of the line network of a network is
called EVMD, introduced by Nasir et al. in [43]. In this paper,
we named the FTMD of the line network of a network the
EVFTMD of the network. Now, in order to investigate the
EVFTMD for certain networks, the following definitions are
useful:
Definition 1: Let G(V (G),E(G)) be an undirected and

connected network, where V (G) and E(G) are the sets
of nodes (vertices) and branches (edges), respectively. The
degree ‘‘dG(v)’’ of ‘‘v ∈ V (G)’’ is the cardinality of edges
that are incident to a vertex v.
Definition 2: Let v1 − v2 be a path for any v1, v2 ∈ V (G),

then the distance between v1, v2 ∈ V (G) is the minimum
cardinality of the edges in v1 − v2 path.
Definition 3: Let K = {k1, k2, . . . , kt } ⊆ V (G), then

the absolute difference code have t-vector (|dG(l1, k1) −

dG(l2, k1)|, . . . , |dG(l1, kt )−dG(l2, kt )|) for any l1, l2 ∈ V (G)
with respect to K , denoted by AD((l1, l2)|K ).
Definition 4: Let K = {k1, k2, . . . , kt } ⊆ V (G), then(
dG(l, k1), dG(l, k2), . . . , dG(l, kp)

)
be the distance code

r(l|K ) of order t for a node l ∈ V (G). If r(l1|K ) ̸= r(l2|K ) for
every different l1, l2 ∈ V (G), then K is known as RS of the
network G. Furthermore, K is called the RS if AD((l1, l2)|K )
for every different l1, l2 ∈ V (G) have at least one non-zero
in their t-vector. The MD, represented by β(G), is the least
cardinality of K .

Definition 5: A RS K ′
= {k ′

1, k
′

2, . . . , k
′
t } ⊆ V (G) is

known as a FTRS, if K ′
\ {k ′

} is again a RS, for each k ′
∈ K ′.

Furthermore, K ′ is called the FTRS if AD((l1, l2)|K ′) for
every different l1, l2 ∈ V (G) have at least two non-zeros in
their t-vector. The FTMD, represented by β ′(G), is the least
cardinality of K ′.
Definition 6: The line network L(G) of a network G,

whose vertices are the edges of G and two edges e1 and
e2 have a common end vertex in G if and only if they are
connected in L(G).
Definition 7: The minimum length of a path between

any two nodes e1, e2 ∈ L(G) is considered as the edge
distance between edges e1, e2 ∈ E(G) and it is denoted by
dE (e1, e2).
Definition 8: The edge version of absolute difference

code consists of a t-vector (|dE (e1, g1) − dE (e2, g1)|, . . . ,
|dE (e1, gt ) − dE (e2, gt )|) for any e1, e2 ∈ E(G) with respect
to KE = {g1, g2, . . . , gt } ⊆ E(G) and it is denoted by
ADE ((e1, e2)|KE ).
Definition 9: Let KE = {g1, g2, . . . , gt } ⊆ E(G), and

e1 ∈ E(G), then the t-tuple
(
dE (e1, g1), dE (e1, g2), . . . ,

dE (e1, gt )
)
is the edge version of distance code of e1 with

respect toKE and is denoted by rE (e1|KE ). If the edge version
of distance codes rE (e1|KE ) are distinct for every edge e1 ∈

E(G), then KE is known as the EVRS. On the other hand,
ifADE ((e1, e2)|KE ) has minimum one non-zero in its t-vector
for every e1 ̸= e2 ∈ E(G), then KE is known as the EVRS.
The least cardinality of the EVRS is known as the EVMD,
denoted by βE (G).
Definition 10: For the EVRS K ′

E , if K
′
E \ {g1} is also an

EVRS for any g1 ∈ K ′
E , then K ′

E is called the EVFTRS.
Moreover, if ADE ((e1, e2)|K ′

E ) has minimum two non-zeros
in its t-vector for every e1 ̸= e2 ∈ E(G), then K ′

E is known
as the EVFTRS. The least cardinality of K ′

E is known as the
EVFTMD, denoted by β ′

E (G).
For every network G, Estrado et al. determined some
important bounds, which are given below:

Lemma 1 ( [44]): Let G be any network, then β(G) <

β ′(G).
Lemma 2 ( [44]): Let G ̸= Pn be any network, then

β ′(G) ≥ 3.
Lemma 3: If β ′(G) = 3 for any network G and

{e1, e2, e3} ⊂ V (G) is a FTRS in G, then dG(e1) ≤ 3,
dG(e2) ≤ 3 and dG(e3) ≤ 3.
It should be noted that Lemmas 1, 2, and 3, also holds for
βE (G) and β ′

E (G).

A. METHODOLOGY
The process employed to determine the EVFTMD for
networks structured as n-sunlets and cycles with chords
involves several systematic steps. Suppose G is a connected,
undirected, and simple network. The EVFTMD for the
networkG will be calculated using the steps of the algorithm
outlined below:
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• The adjacency matrix of the network G, represented by
A = [aij] is constructed as under:

aij =


1, if yi and yj are adjacent edges in G;

0, if otherwise.

• Compute the edge distances (shortest path lengths
between each pair of edges in the network) of G from
the adjacency matrix A using MATLAB programming.

• Iteratively identify the EVFTRSs. Step 2 is repeated
if the EVFTRSs cannot be successfully identified,
changing the strategy or parameters as needed to find
the EVFTRSs. The cardinality of the smallest EVFTRS
is then used to calculate the EVFTMD.

• Generalization of the EVFTRSs and EVFTMD for the
class of network structures under consideration.

• Compute the distance codes for all the edges of the
networks relative to the corresponding EVFTRSs.

• Generalize the distance codes for the class of network
structures under consideration.

• Contradictions are used to confirm the minimality and
uniqueness of the EVFTRS, ensuring that it accurately
represents the EVFTMD.

III. THE EVFTMD FOR THE N−SUNLET NETWORKS
The n−sunlet network Sn, is constructed by adding n pendant
branches to a cycle network Cn. The family of n−sunlet
networks with edge set E(Sn) = {ei, fi : 1 ≤ i ≤ n} is shown
in Figure 1.

FIGURE 1. n−Sunlet Network (Sn).

Now the line network L(Sn) is needed to compute β ′
E (Sn).

The line networks of the family of n−sunlet networks L(Sn)
consists of an inner cycle of vertices {ei : 1 ≤ i ≤ n} and the
outer vertices {fi : 1 ≤ i ≤ n} as shown in Figure 2.

The known result of the EVMD for the family of n−sunlet
networks is presented below.
Theorem 1 ( [43]): For any integer n ≥ 4, we have

βE (Sn) =


2, if n is even;

3, if n is odd.

The results about the β ′
E (Sn) are presented below.

FIGURE 2. Line network of n-Sunlet network (L(Sn)).

Theorem 2: Let n ≥ 4 be any integer, then

β ′
E (Sn) =


3, if n = 6;

4, else.

Proof: To prove the stated theorem, we will calculate the
EVFTMD, denoted as β ′

E (Sn), specifically for the n-sunlet
network Sn. To ensure a comprehensive understanding of the
network’s properties, we proceed by examining the following
two cases based on the value of n:
Case 1: (when n is odd)
Take K ′

E = {e1, e2, e n+3
2

, e n+5
2

} ⊆ E(Sn) for odd integers
n ≥ 5. For the edges ep, the distance codes are shown in
Table 1.

TABLE 1. Distance codes for the edges ep, where 1 ≤ p ≤ n.

For the edges fp, where 1 ≤ p ≤ 5, the distance codes are
provided in Table 2.

TABLE 2. Distance codes for the edges fp, where 1 ≤ p ≤ 5.

The distance codes of the edges fp, where n ≥ 7 and 1 ≤

p ≤ n are provided in Table 3.
We can verify that for every e, f ∈ E(Sn), at least

two elements in the 4-vector ADE ((e, f )|K ′
E ) are non-zero.
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TABLE 3. Distance codes for the edges fp, where n ≥ 7 and 1 ≤ p ≤ n.

This shows that β ′
E (Sn) ≤ 4. Using the results of Lemma 1

and Theorem 1, we have β ′
E (Sn) ≥ 4. Hence β ′

E (Sn) = 4.
Case 2: (when n is even)
It can be seen that K ′

E = {e1, e2, e3, e4} ⊆ E(S4) and
K ′
E = {f1, f3, f5} ⊆ E(S6) are EVFTRS for n = 4 and n = 6,

respectively.
Take K ′

E = {e1, e2, e n+2
2

, e n+4
2

} ⊆ E(Sn) for even integers
n ≥ 8. For the edges ep, where 1 ≤ p ≤ n, the distance codes
are provided in Table 4.

TABLE 4. Distance codes for the edges ep, where 1 ≤ p ≤ n.

For the edges fp, the distance codes are provided in
Table 5.

TABLE 5. Distance codes for the edges ep, where 1 ≤ p ≤ n.

We can verify that for every e, f ∈ E(Sn), at least two
elements in the 4-vector ADE ((e, f )|K ′

E ) are non-zero. So,
β ′
E (Sn) ≤ 4. Now, in order to prove that β ′

E (Sn) ≥ 4 for n ̸= 6,
suppose contrarily that β ′

E (Sn) = 3 and using Lemma 3,
we present all the conditions:
Case A: (when n = 4)
There are four possibilities K ′

E1
= {f1, f2, f3}, K ′

E2
=

{f1, f3, f4}, K ′
E3

= {f1, f2, f4} and K ′
E4

= {f2, f3, f4} are the
subsets of E(S4). It can be easily verified that there is no
EVFTRS of cardinality 3.

Case B: (when n ≥ 8)
Let K ′

E = {fp, fs, ft } ⊆ E(Sn) with 1 ≤ p < s < t ≤
n
2 ,

then

ADE ((fn, en−1)|K ′
E ) =

{
(0, 0, 1), if t =

n
2
;

(0, 0, 0), if else.

So, K ′
E is not the EVFTRS.

Now, let K ′
E = {fp, fs, ft } ⊆ E(Sn) with 1 ≤ p < s < n

2 ≤

t ≤ n, then ADE ((fn, en−1)|W ′
E ) = (0, 0, 1). So, K ′

E is not the
EVFTRS.

Above absolute difference codes represent that there is
no EVFTRS with cardinality 3. So, β ′

E (Sn) ≥ 4. Hence,
β ′
E (Sn) = 4. □

IV. THE EVFTMD FOR THE CYCLES WITH CHORD
NETWORKS
The family of cycles with chord network C t

n is determined by
joining two nodes of the cycle network Cn at t distance. The
edge set of this family is E(C t

n) = {fi : 1 ≤ i ≤ n + 1},
as shown in Figure 3.

FIGURE 3. Cycles with chord network C3
10.

Now, to compute β ′
E (C

t
n), we need to convert the family of

cycles with chord networks into their line networks. The line
networks of the family of cycles with chord networks L(C t

n)
consists of vertices {fi : 1 ≤ i ≤ n+ 1} as shown in Figure 4.

FIGURE 4. Line network of cycles with chord network (L(C3
10)).

The known result of the EVMD of the network C t
n is

presented below.
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Theorem 3: For any integers 2 ≤ t ≤ ⌊
n
2⌋ and n ≥ 4,

we have βE (C t
n) = 2.

The results about the β ′
E (C

t
n) are presented below.

Theorem 4: For any integers 2 ≤ t ≤ ⌊
n
2⌋ and n ≥ 4,

we have

β ′
E (C

t
n) =


4, if t = 2 or 6 ≤ n ≤ 7, t = 3

or n = 8, t = 4;
3, else.

Proof: To prove the stated theorem, we will calculate the
EVFTMD, denoted as β ′

E (C
t
n), specifically for the cycle with

chord network C t
n. To ensure a comprehensive understanding

of the network’s properties, we proceed by examining the
following two cases based on the values of n and t:
Case 1: (when both n and t are even)
Let n = 4 and t = 2, take K ′

E = {f2, f3, f4, f5} ⊆ E(C2
4 ).

It is quite simple to verify that K ′
E is the EVFTRS.

Take K ′
E = {f2, f3, f4, fn+1} ⊆ E(C2

n ), where n ≥ 6 and
t = 2. The distance codes of the edges fp, for 1 ≤ p ≤ n+ 1,
are provided in Table 6.

TABLE 6. Distance codes for the edges fp, where 1 ≤ p ≤ n + 1.

We can verify that for every e, f ∈ E(C2
n ), at least two

elements in the 4-vector ADE ((e, f )|K ′
E ) are non-zero. So,

β ′
E (C

2
n ) ≤ 4.

Now to prove that β ′
E (C

2
n ) ≥ 4 for n ̸= 6, suppose

contrarily that β ′
E (C

2
n ) = 3 and using Lemma 3, we present

all the conditions:
Case A: (when n = 4, 6)
It is quite simple to demonstrate that there are no EVFTRs

that exist which have a cardinality of 3.
Case B: (when n ≥ 8)
(i) Let K ′

E = {f2, fi, fj} ⊆ E(C2
n ) for 3 ≤ i < j ≤ n+2

2 , then

ADE ((f1, f3)|K ′
E ) =

{
(0, 1, 0), if i = 3;
(0, 0, 0), if else.

So, K ′
E is not the EVFTRS.

(ii) Let K ′
E = {f2, fi, fj} ⊆ E(C2

n ) for 3 ≤ i ≤
n
2 <

j ≤ n + 1, then ADE ((f1, f2)|K ′
E ) = (1, 0, 0) for i = 3,

n+6
2 ≤ j ≤ n+ 1 and

ADE ((f1, f3)|K ′
E )

=


(0, 1, 0), if i = 3,

n+ 2
2

≤ j ≤
n+ 4
2

;

(0, 0, 0), if 4 ≤ i ≤
n
2
,
n+ 2
2

≤ j ≤
n+ 4
2

;

(0, 0, 1), if else.

So, K ′
E is not the EVFTRS.

Above absolute difference codes represent that there is
no EVFTRS with cardinality 3. So, β ′

E (C
2
n ) ≥ 4. Hence,

β ′
E (C

2
n ) = 4 for any n ≥ 4.

Now for n = 8 and t = 4, take K ′
E = {f2, f3, f4, f5} ⊆

E(C4
8 ). It is quite simple to verify that K ′

E is the EVFTRS.
Since there is no EVFTRS with a cardinality of 3, it follows
that β ′

E (C
4
8 ) = 4.

Take K ′
E = {f t+2

2
, f t+6

2
, fn+1} ⊆ E(C t

n), where n ≥ 10 and
t ≥ 4. The distance codes of the edges fp, for 1 ≤ p ≤ n+ 1,
are provided in Table 7.

TABLE 7. Distance codes for the edges fp, where 1 ≤ p ≤ n + 1.

We can verify that for every e, f ∈ E(C t
n), at least

two elements in the 3-vector ADE ((e, f )|K ′
E ) are non-zero.

So, β ′
E (C

t
n) ≤ 3. Using Lemma 2, β ′

E (C
t
n) ≥ 3. Hence,

β ′
E (C

t
n) = 3.

Case 2: (when t is even and n is odd)
Take K ′

E = {f1, f2, f3, fn+1} ⊆ E(C2
n ), where n ≥ 5 and

t = 2. For the edges fp, where 1 ≤ p ≤ n + 1, the distance
codes are provided in Table 8.

TABLE 8. Distance codes for the edges fp, where 1 ≤ p ≤ n + 1.

We can verify that for every e, f ∈ E(C2
n ), at least two

elements in the 4-vector ADE ((e, f )|K ′
E ) are non-zero. So,

β ′
E (C

2
n ) ≤ 4.
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Now to prove that β ′
E (C

2
n ) ≥ 4, suppose contrarily that

β ′
E (C

2
n ) = 3 and using Lemma 3, we present all the

conditions:
Case A: (when n = 5, 7)
It is easy to verify that there are no EVFTRS of

cardinality 3.
Case B: (when n ≥ 9)
(i) Let K ′

E = {f2, fi, fj} ⊆ E(C2
n ) for 3 ≤ i < j ≤ n+1

2 , then

ADE ((f1, f3)|K ′
E ) =

 (0, 1, 0), if i = 3;

(0, 0, 0), if else.

So, K ′
E is not the EVFTRS.

(ii) Let K ′
E = {f2, fi, fj} ⊆ E(C2

n ) for 3 ≤ i ≤
n−1
2 < j ≤

n+ 1, then ADE ((f1, f2)|K ′
E ) = (1, 0, 0) for i = 3, n+5

2 ≤ j ≤
n+ 1 and

ADE ((f1, f3)|K ′
E )

=


(0, 1, 0), if i = 3,

n+ 1
2

≤ j ≤
n+ 3
2

;

(0, 0, 0), if 4 ≤ i ≤
n− 1
2

,
n+ 1
2

≤ j ≤
n+ 5
2

;

(0, 0, 1), if else.

So, K ′
E is not the EVFTRS.

The above absolute difference codes represent that there
is no EVFTRS with cardinality 3. So, β ′

E (C
2
n ) ≥ 4. Hence,

β ′
E (C

2
n ) = 4 for any n ≥ 5.

Now take K ′
E = {f t+2

2
, f t+6

2
, fn+1} ⊆ E(C t

n), where n ≥ 9
and t ≥ 4. For the edges fp, where 1 ≤ p ≤ n+1, the distance
codes are provided in Table 9.

TABLE 9. Distance codes for the edges fp, where 1 ≤ p ≤ n + 1.

We can verify that for every e, f ∈ E(C t
n), at least

two elements in the 3-vector ADE ((e, f )|K ′
E ) are non-zero.

So, β ′
E (C

t
n) ≤ 3. Using Lemma 2, β ′

E (C
t
n) ≥ 3. Hence,

β ′
E (C

t
n) = 3.

Case 3: (when t is odd and n is even)
Take K ′

E = {f1, f2, f3, f4} ⊆ E(C3
6 ) for n = 6 and

t = 3. We can verify that for every e, f ∈ E(C3
6 ), at least

two elements in the 4-vector ADE ((e, f )|K ′
E ) are non-zero.

So, the EVRS K ′
E becomes a EVFTRS. Hence, β ′

E (C
3
6 ) ≤ 4.

Now to prove that β ′
E (C

3
6 ) ≥ 4, suppose that β ′

E (C
3
6 ) = 3.

It is simple to prove that no EVFTRS of cardinality 3 exists.
So, β ′

E (C
3
6 ) = 4.

Now for n = 8 and t = 3, take K ′
E = {f3, f6, f8} ⊆ E(C3

8 ).
It is quite simple to verify that K ′

E is the EVFTRS.
TakeK ′

E = {f t+3
2

, ft+3, f n+t+5
2

} ⊆ E(C t
n), where n ≥ 10 and

t ≥ 3. The distance codes of the edges fp, where 1 ≤ p ≤

n+ 1, the distance codes are provided in Table 10.

TABLE 10. Distance codes for the edges fp, where 1 ≤ p ≤ n + 1.

We can verify that for every e, f ∈ E(C t
n), at least two

elements in the 3-vector ADE ((e, f )|K ′
E ) are non-zero. So,

β ′
E (C

t
n) ≤ 3. Using Lemma 2, β ′

E (C
t
n) ≥ 3. Hence, β ′

E (C
t
n) =

3 for n ̸= 6 and t ̸= 3.
Case 4: (when both n and t are odd)
Take K ′

E = {f1, f2, f3, f4} ⊆ E(C3
7 ) for n = 7 and

t = 3. We can verify that for every e, f ∈ E(C3
7 ), at least

two elements in the 4-vector ADE ((e, f )|K ′
E ) are non-zero.

So, the EVRS K ′
E is a EVFTRS. Hence, β ′

E (C
3
7 ) ≤ 4. Now

to prove that β ′
E (C

3
7 ) ≥ 4, suppose that β ′

E (C
3
7 ) = 3. It is

simple to prove that no EVFTRS of cardinality 3 exists. So,
β ′
E (C

3
7 ) = 4

Take K ′
E = {f t+3

2
, ft+2, fn+1} ⊆ E(C t

n), where n ≥ 9 and
t ≥ 3. For the edges fp, where 1 ≤ p ≤ n + 1, the distance
codes are provided in the Table 11.

TABLE 11. Distance codes for the edges fp, where 1 ≤ p ≤ n + 1.

We can verify that for every e, f ∈ E(C t
n), at least

two elements in the 3-vector ADE ((e, f )|K ′
E ) are non-zero.

So, β ′
E (C

t
n) ≤ 3. Using Lemma 2, β ′

E (C
t
n) ≥ 3. Hence,

β ′
E (C

t
n) = 3 for n ≥ 9 and t ≥ 3. □

VOLUME 13, 2025 3607



M. Faheem et al.: Edge-Version of Fault-Tolerant Resolvability in Networks

V. APPLICATIONS, COMPARATIVE ANALYSIS AND
LIMITATIONS
In the field of network design and routing, the idea of FTMD
is ametric used to assess how resilient a network is to node (or
edge) failures while preserving effective routing capabilities.
One particular kind of network structure that is frequently
researched in the context of network design and routing
is the cycle with chord network, denoted as C t

n, for more
details: (see [42] and [45]). Consider the following example
to better understand the idea of EVFTMD and its application
in network design and routing: Assume we have a network,
C3
10, consisting of edges {fi : 1 ≤ i ≤ 10 + 1} arranged in a

cycle. Additionally, there is an extra chord that connects the
edges 2, 11 from one end and the edges 4, 5 from the other
end. It is important to note that these edges are not adjacent
to each other within the cycle. Here is a visual representation
of the C3

10 network as illustrated in Figure 5.

FIGURE 5. Network Design and Routing As C3
10.

Let us take a closer look at how the EVFTMD is utilized in
this context. The EVFTMD represents the minimum number
of edges required to uniquely identify all other edges in
a network, even in the event of edge failure. In essence,
it measures the network’s ability to maintain effective routing
despite edge failures. A C t

n network, which includes a
cycle and chord, presents fault-tolerant and effective routing
properties for network design and routing. Analyzing the
EVFTMD of C t

n can help determine the network’s resilience
to edge failures. Based on the EVFTMD, effective routing
algorithms can be developed, ensuring that the network can
continue to function and deliver messages successfully even
if certain edges fail.

Suppose that edge 3 in our C3
10 network fails. However,

this network can still route messages between any pair of
edges if it has the appropriate fault-tolerant routing algorithm
based on EVFTMD. The redundancy provided by the chord
and cycle topology allows the edges in the network to
collaborate and find alternative paths around the failed edge.
Therefore, to build robust and efficient networks that can

withstand edge failures while maintaining connection and
routing capabilities, the cycle with chord network C t

n and the
concept of EVFTMD are crucial.

A. APPLICATIONS IN NETWORK RESILIENCE
The EVFTMD in graph theory improves fault tolerance
in communication networks by assessing their ability to
maintain integrity during edge failures. An n-sunlet network
consists of a cycle with n vertices connected to pendant nodes.
The constant EVFTMDensures that evenwith edge deletions,
remaining nodes can be identified based on their distances
to an RS. This is crucial for local area networks (LANs)
to maintain device identifiability through alternative paths.
Networks like cycles with chords enhance fault tolerance in
metropolitan area networks (MANs) by ensuring connectivity
despite primary link failures. EVFTMD promotes redundant
pathways, resilient node identification, fault-tolerant back-
bones, and efficient resource distribution. In optical networks,
fiber optic rings with connecting chords allow sustained data
transmission through alternate routes during link failures,
leading to more robust designs.

1) CASE STUDY
The EVFTMD concept, applied to network structures like
n-sunlet and cycles with chord, significantly benefits
real-world network applications by enhancing fault tolerance
and resilience. Case studies from wireless mesh networks,
smart grid communication systems, and optical networks
illustrate the impact of these graph-theoretic structures on
network design and maintenance.

2) WIRELESS MESH NETWORKING
Wirelessmesh networksmostly use ring and spoke topologies
where nodes (devices) connect in a cycle to them with
additional links (chords) as redundant networks, closely
resembling a cycle with a chords network. In a wireless
mesh networks, each node serves as both a host and a router.
Devices are connected through multiple redundant paths to
ensure data can still be transmitted, even if there are link
or node failures. The EVFTMD is important in this regard
because it tells us that much of the network can withstand
link failures to avoid faulty and accurate routing [46].

For example, in city-wide Wi-Fi systems such as San
Francisco and Philadelphia, there are extra links between
non-adjacent nodes that provide network continuity through
localized failures via backup data paths to other access points
or connections if more than one primary endpoint goes
down. This model enables resilient link failures and rigorous
scalability without consuming too many resources for stable
service in large networks [47].

3) POWER GRID COMMUNICATION SYSTEMS
Smart grid systems are similar to n-sunlet networks, where
central hubs (substations) connect to outer nodes (distribution
points), and redundancy ensures that connectivity persists
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TABLE 12. Comparative analysis of EVFTMD with other distance related parameters.

even if a central link goes down. The fault tolerance
of the n-sunlet design guarantees that essential functions
in the grid remain connected, even during outages. For
instance, Southern California Edison’s smart grid config-
uration employs a structure such as n-sunlet, featuring
central substations alongside peripheral distribution nodes.
In the event of a central link failure, the network continues
to support communication, allowing for ongoing real-time
data flow and monitoring. This design enhances the grid’s
reliability, facilitating uninterrupted service delivery and
robust communication for critical operations, even amid edge
failures; for more details see [48] and [49].

4) OPTICAL NETWORKS
In the case of optical networks, especially in MANs
(metropolitan area networks) and long-distance systems,
cycle-based topologies with additional chords provide more
resilience to fiber cuts or equipment blowouts in a single loca-
tion. SONET/SDH rings exemplify this setup, where nodes
are arranged in a circular structure and interconnected with
extra fiber links (chords) to non-adjacent nodes. These chords
ensure network connectivity remains intact during multiple
fiber failures, such as natural disasters or accidents [50], [51].
For example, Verizon’s optical ring networks utilize
SONET/SDH rings with chordal links to ensure uninterrupted
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connectivity across cities, rerouting traffic through redundant
fibers if a primary link fails. With chordal cycles, optical
networks achieve high availability and cost-efficiency, as the
fault tolerance boosts reliability without high costs or
structural complexity. The implementation of chordal cycles
guarantees that the network can withstand several link
failures while maintaining connectivity between essential
data centers or backbone nodes. The stable EVFTMD of
cycles with chords allows the distance relationships among
nodes to be preserved, enabling routing algorithms to adjust
effectively to failures.

These case studies highlight the importance of graph-
theoretic structures, such as n-sunlets and cycles with
chords, in enhancing fault tolerance and reliability in
various networks, including smart grids and wireless mesh
communications. These structures ensure high availability
even during edge or node failures.

B. COMPARATIVE ANALYSIS
A concise comparative study distinguishing EVFTMD from
other related concepts in fault-tolerance and MDs as
discussed in Table 12.
As a result, EVFTMD integrates fault tolerance, edge

identification, and MDs in a unique way. It emphasizes edge-
specific robustness in contrast to MD or FTMD. Because it
places more emphasis on edge-to-edge fault tolerance than
EMD, FTEMD, or EVMD, it is essential for fault-prone
environments such as data infrastructure, transportation
systems, and communication networks.

C. LIMITATIONS
There are some limitations for the current study discussed as
under:

• The study is limited to n-sunlet and cycle networks with
chords, which may not reflect larger, diverse network
complexities.

• Theoretical results lack empirical validation and need
experiments or simulations for real-world relevance.

• It focuses primarily on edge fault tolerance with-
out considering interactions between vertex and edge
failures.

• There are scalability issues regarding the com-
putational complexity of applying EVFTMD to
larger networks, affecting its practicality in extensive
systems.

VI. CONCLUSION
This study presents a novel approach, called the EVFTMD,
which focuses on understanding how networks can endure
potential failures, particularly by examining the edges, and
the connections between various network points. By ana-
lyzing specific types of networks, such as n-sunlet and
cycle networks, the research identifies consistent values for
EVFTMD, which helps us understand how resilient these
edge-focused systems are. These findings are crucial for

designing communication networks that remain functional
and structurally sound even when some links fail.

The results presented in the study include comprehensive
computations that ensure the research is thorough and
precise. However, because it focuses on just a few kinds
of network types, the study does have some limitations.
Future studies could investigate different network types, such
as circulant networks or hierarchical structures, to broaden
the applicability of the EVFTMD concept. For instance,
hierarchical networks may demonstrate how to secure
multilayered systems, while circulant networks’ distinctive
characteristics may reveal novel approaches to managing
defects.

Considering the aforementioned limitations, this study
establishes the groundwork for designing robust networks.
The consistent EVFTMD values can lead to more effective
resource management, meticulous backup planning, and the
development of networks that can effectively handle failures,
particularly in rapidly evolving settings such as wireless
and optical systems. However, putting these findings to the
test through real-world examples or simulations remains
a challenge. Addressing this issue will enhance both the
theoretical insights and their practical use in network design.
Open Problem 1: Computing EVFTMD for the circulant

networks Cn(1, t) for all values of t ≥ 2.
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