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ABSTRACT This paper proposes an innovative single image dehazing framework, termed Regional
Saturation-Value Translation (RSVT), to address the color distortion problems commonly encountered in
bright regions by conventional dehazing approaches. The proposed RSVT framework is developed based on
two key insights derived from the HSV color space: first, the hue component shows negligible variation
between corresponding hazy and haze-free points; and second, in the 2D saturation-value coordinate
system, the majority of lines connecting hazy-clean point pairs tend to converge near the atmospheric
light coordinates. Consequently, haze removal can be achieved through appropriate translations within the
saturation-value coordinates. Additionally, a robust soft segmentation method that employs a morphological
min-max channel is integrated into the framework. By combining the soft segmentation mask with the
RSVT prior, a comprehensive single image dehazing framework is established. Experimental evaluations
across various datasets demonstrate that the proposed approach effectively mitigates color distortion
and successfully restores visually appealing images. Moreover, a case study involving actual flight test
demonstrates the feasibility and effectiveness of the proposed approach in real-world scenarios. The code is
available at https://github.com/tranleanh/rsvt.

INDEX TERMS Dehazing prior, haze removal, image defogging, image dehazing, image restoration.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs), also known as drones,
have emerged as powerful tools that provide high-resolution
imaging data across various remote areas that are difficult to
access, enabling researchers to monitor changes in ecosys-
tems, track deforestation, and assess biodiversity. However,
the rise of industrialization has led to air pollution all over
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approving it for publication was Ikramullah Lali.

the world, resulting in dust, smoke, and haze in the natural
atmosphere. As a result, aerial images captured by drones
often suffer from reduced visibility with a loss in contrast and
low color fidelity. This issue has posed challenges for various
vision tasks that involve UAV imagery, where accurate
scene interpretation is critical, such as object detection,
target navigation, disaster management, and environmental
monitoring. Therefore, drone-view image dehazing is a
crucial preprocessing step to ensure that vision-based algo-
rithms in aerial scenarios can operate effectively. Generally,
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FIGURE 1. Dehazing results of various approaches on hazy images
containing bright regions: (a) input, (b) DCP [2], (c) CEP [3], (d) NLID [4],
(e) RSVT (ours), and (f) clean image.

haze removal algorithms can be classified into two main
categories: prior-based and deep learning-based methods,
each genre has its own strengths and weaknesses. Prior-based
methods are effective for restoring visibility but they often
result in over-saturation and artifacts in the output, whereas
deep learning-based approaches have the potential to improve
the realism of the restored images yet heavily rely on training
datasets that necessitate hazy-clean image pairs from the
same scene which can be costly for data preparation [1].

This paper is primarily targeted toward addressing a
common issue faced by conventional prior-based dehazing
algorithms when dealing with hazy images captured by aerial
vehicles that usually comprise high-intensity regions such as
the sky or bright objects. Typically, such images consist of
two main parts: foreground and background. The background
typically consists of sky regions while the foreground
includes objects that are closer to the observer. While most
prevailing prior-based dehazing algorithms perform quite
well in restoring the visibility of the foreground regions, they
often struggle with color distortion in the background areas.
To address this issue, several approaches were proposed
which tried to separately process the sky regions [5], [6],
[7], [8]. However, it is very difficult or unattainable to
segment images captured under dense haze circumstances,
and in fact, hard segmentation may never yield accurate
results, particularly in dim areas where there is no distinct
boundary between the foreground and background regions.
Even when the sky region is not visible, color distortion
can still occur in the output due to bright objects like
water surfaces or whitish buildings, as can be observed
in Fig. 1b-1d. From those observations, we have analyzed
the relationship between hazy points and their respective
haze-free points within the high-intensity regions in the
HSV color space. This analysis has yielded two significant
findings. First, the difference in terms of hue component for

a pair of hazy-clean points is marginal, as shown in Fig. 2c.
This suggests that the impact of haze on the hue channel
is insignificant, and the pixel value variations caused by
haze may mainly occur in the saturation and value spaces.
Second, when considering the 2D coordinate system formed
by the saturation and value components, it is observed that
the majority of lines connecting corresponding pairs of hazy-
clean points, referred to as S-V lines, tend to converge near the
atmospheric light coordinates, as illustrated in Fig. 2d. Based
on these two observations, we can assume that the haze-free
pixel can be estimated by shifting the hazy point along the
corresponding S-V line by an appropriate amount. In order
to validate this hypothesis, various statistical analyses have
been conducted. Consequently, an innovative image dehazing
prior called Regional Saturation-Value Translation (RSVT)
is proposed to address the above-mentioned limitations of
existing dehazing methods. On the other hand, dark channel
prior (DCP) [2] is a widely recognized method due to its
capacity to yield favorable restoration outcomes in both
close-range and non-sky scenes. However, DCP struggles
with bright regions such as the sky or white objects, as these
areas naturally exhibit high-intensity pixels even in haze-free
scenes, thereby violating the assumption of DCP. To address
this limitation, an innovative dehazing framework is proposed
which combines the potency of the proposed RSVT prior in
dealing with the bright regions with the ability of DCP in
handling foreground areas.

In contrast to other approaches that adopt hard seg-
mentation to decompose a hazy image into background
and foreground regions [5], [6], [8], the proposed method
segregates the input image into three main components:
hard foreground (regions that are completely classified as
foreground), hard background (bright areas such as the day-
time sky or whitish objects), and middle ground (dim areas
that cannot be definitively classified as either background
or foreground). To this end, we adopt a soft segmentation
process using a morphological min-max channel. In our
proposed framework, the RSVT prior and DCP methods
handle the hard background and hard foreground regions,
respectively, while the restoration for the middle ground
is the weighted average solution of these two algorithms.
The proposed approach’s effectiveness is typically illustrated
through the result shown in Fig. 1e, which shows that
the proposed scheme significantly reduces color distortion
and successfully recovers visually appealing images when
compared with the other algorithms.

Part of this work was presented in [9] where the
preliminary idea of the RSVT prior was introduced. In this
paper, we improve the image decomposition process and
conduct further experiments to prove the effectiveness of
the proposed dehazing scheme as well as it applicability to
real-world scenarios through a case study. The remainder
of this paper is organized as follows: Section II presents
the background materials including the haze imaging model,
a brief review of single image dehazing research, and the
guided filtering algorithm. The assumptions along with
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FIGURE 2. Regional Saturation-Value Transition: (a) hazy image, (b) sky regions in hazy (top) and clean (bottom) images bounded in red color,
(c,d) Hue-Value and Saturation-Value perspectives, respectively: hazy and clean points are correspondingly indicated in blue and red, orange segments
connect respective hazy-clean pairs, (e) clean image, and (f) dehazed image by the proposed method.

statistical analyses for the verification of the proposed prior
are presented in Section III. In Section IV, a soft segmentation
method for decomposing an input image is introduced,
afterward a comprehensive single image dehazing framework
is proposed. Section V presents the experimental results and
comparisons. Section VI concludes the paper.

II. PRELIMINARIES
A. HAZE IMAGING MODEL
Generally, a hazy image can bemodeled as a per-pixel convex
combination between the actual scene radiance and the global
atmospheric light [10], this model is known as the scattering
atmospheric model or Koschmieder’s law [11]:

I (x) = J (x)t(x) + A(1 − t(x)), (1)

where I (x), J (x), A, and t(x) denote the observed intensity,
the scene radiance, the global atmospheric light, and the
transmission map, respectively. From Eq. (1), most of the
prior-based methods try to estimate the actual scene radiance
J (x) via the following function:

J (x) =
I (x) − A
t(x)

+ A. (2)

Relying on this recovering function, restored images can be
obtained by solving the unknowns t(x) and A. The value of A
is generally assumed to be a high and constant value, while
that of t(x) for the bright and distant regions is usually very
small and is typically set to 0.1 [2]. Consequently, a small
difference in the magnitudes of I (x) and A, for example,
|I (x)−A| = 10, can cause a shift of 100 intensity levels in the
restored image which yields noise and distorted color. Hence,
this hazy imaging model may be invalid for performing
dehazing on images that contain bright and sky areas.

B. BRIEF REVIEW ON IMAGE DEHAZING
As mentioned in Section I, haze removal algorithms can
be categorized into two groups: prior-based and deep
learning-based methods. Prior-based methods have been
developed based on strong prior knowledge or assumptions.

Meng et al. [12] introduced a boundary constraint and
contextual regularization (BCCR) method which enforces
constraints on the image boundaries and applies contextual
regularization to enhance the sharpness of dehazed images.
Zhu et al. [13] proposed a color-attenuation prior (CAP)
which models the scene depth of a hazy image and
learns the model parameters through supervised learning.
Berman et al. [4] introduced a non-local image dehazing
(NLID) prior based on the observation that hazy pixels in
RGB color space are distributed along lines passing through
the atmospheric light coordinates. Notably, dark channel prior
(DCP) [2], which is developed based on a key observation
that most local patches in haze-free outdoor images contain
some pixels with very low intensity in at least one color
channel, can directly estimate the haze thickness and recover
a haze-free image via Eq. (2) with certain predetermined
constraints. Although prior-based dehazing algorithms can
achieve acceptable results in various circumstances, they
are often incompetent in processing high-intensity regions
such as daytime sky and bright objects which are com-
monly involved in high-altitude images captured by UAVs.
Accordingly, drone-view image dehazing has emerged as
a niche research area that has also gained considerable
attention. Numerous studies have explored this research topic
by adopting a fundamental approach of decomposing a hazy
image into sky and non-sky regions. Wang et al. [6] proposed
to utilize the quad-tree method to identify a seed point for
the sky regions and employed region-growing segmentation
with a Gaussian filter applied afterward for image smoothing.
This approach, however, encounters difficulties when the
sky region is obstructed by structures such as trees or
buildings. Sebastiàn et al. [7] adopted a similar procedure
but replaced the quad-tree method with the local Shannon
entropy calculation. Nevertheless, growing-based techniques
necessitate accurate estimation of seed points and careful
control of the growth process, which can be time-consuming
in order to prevent under and/or over-segmentation [14].
In addition to conventional methods, several studies [15], [16]
have also incorporated neural networks for sky segmentation.
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FIGURE 3. Statistical analyses: (a) differences between the hue components of hazy and haze-free point pairs within the sky regions (each
bin stands for 10 distance levels), (b) distances between the intersections of S-V lines and the global atmospheric light coordinates in the
Saturation-Value coordinate system (each bin stands for 10 distance levels), and (c) distribution of the correlation between the S-V ratio and
the transmission.

However, it should be acknowledged that deep learning
models are more computationally expensive to apply to sky
segmentation which is not the primary objective of a dehazing
system.

On the other extreme, deep learning models have demon-
strated their remarkable ability to learn non-linear mappings
in image translation tasks. Various learning-based dehazing
approaches, such as [10], [17], [18], [19], [20], [21], [22],
[23], and [24], have been proposed that can directly estimate
t(x) or J (x) from a given input hazy image. These approaches
commonly adopt convolutional neural networks (CNNs) as
the primary backbone. However, the training process of
CNNs requires extensive datasets with pairs of hazy and
haze-free images captured in identical scenes which are
too difficult and/or unachievable to prepare under real-
world circumstances. A common approach to this issue is to
synthesize hazy image data using the haze imaging model,
but there always exists a certain gap between the synthetic
and real-world data.

Even though learning-based approaches are dominant in
the present era of deep learning, we believe that innovative
priors also hold significant importance owing to their con-
sistent statistical nature and strong underlying assumptions.
Moreover, data-driven and learning-based approaches often
entail expensive computational costs, which limit their appli-
cability in real-time tasks. In contrast, prior-based methods
offer greater simplicity and flexibility in deployment, making
them well-suited for implementation on edge devices, such
as companion computers integrated with drones. This has
inspired us to come up with a novel and robust prior in an
attempt to introduce a comprehensive image enhancement
framework for high-quality haze-free image restoration.

C. GUIDED FILTERING
Guided filtering [25] is an image processing technique for
edge-preserving image smoothing by utilizing a bilateral
filter to eliminate noise and unexpected texture artifacts.
The process takes a noisy image and a guidance image as
input signals, and yields a corrected image. Given a guidance
image G, an input image p, and an output image q, the

fundamental assumption of the guided filter is the existence of
a local linear model between the guidance G and the filtering
output q which can be determined as follows:

qi = akGi + bk , ∀i ∈ ωk , (3)

where i is the pixel index, k is the index of a local patchω, and
(ak , bk ) are linear coefficients assumed to be constant in ωk .
By minimizing the following cost function:

E(ak , bk ) =

∑
i∈ωk

((akGi + bk − pi)2 + ϵa2k ), (4)

where ϵ is a regularization parameter that controls the degree
of smoothness, the solution for (ak , bk ) is given by:

ak =

1
|ω|

∑
i∈ωk

Gipi − µk p̄k

σ 2
k + ϵ

, (5)

bk = p̄k − akµk , (6)

where µk and σk represent the mean and variance of G in ωk ,
respectively, while |ω| denotes the number of pixels in ωk .
Ultimately, the computation of the filtering output is carried
out as follows:

qi = GuidedFilter(pi,Gi) = āiGi + b̄i, (7)

where āi and b̄i correspondingly are the average of a and b on
the window ωi centered at i.

III. REGIONAL SATURATION-VALUE VARIABILITY
The proposed prior is formulated based on two key insights
derived from the bright areas of hazy-clean image pairs
in the HSV color space. First, the impact of haze on the
hue channel is found to be insignificant. Second, in the 2D
saturation-value coordinate system, it is observed that the
majority of S-V lines tend to converge near the atmospheric
light coordinates. To verify these findings, a selection of
1,000 hazy-clean image pairs containing high-intensity pixels
has been extracted from the RESIDE database [26] for
comprehensive statistical analysis. The high-intensity regions
are identified by applying image thresholding segmentation
utilizing a high threshold, followed by manual verification.
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These procedures lead to the formulation of three hypotheses
aimed at substantiating the correctness of the proposed prior.

A. THE 1st ASSUMPTION
The first assumption states that: the hue component of a pixel
in a bright region of a hazy image is relatively similar to that
of the corresponding pixel in a haze-free image, as depicted
in Fig. 2c. This assumption suggests that the changes in pixel
intensity induced by haze primarily occur in the saturation
and value spaces, as illustrated in Fig. 2d, and the dehazing
process for bright hazy regions may be executed without
considering the hue channel.

To validate this assumption, the absolute differences
between the hue components of hazy and haze-free point
pairs within the bright areas are measured. This measurement
yields a probability distribution as shown in Fig. 3, which
reveals that approximately 93% of the distances between the
hue components are below 10, thus confirming the validity of
our first assumption.

B. THE 2nd ASSUMPTION
The second assumption states that: when disregarding the
impact of haze on the hue space, it can be observed that the
majority of S-V lines, which represent the lines connecting
each pair of hazy-clean points, are likely to intersect near
the atmospheric light coordinates which are typically found
within the brightest pixels of a hazy image.

In order to verify this assumption, the following procedure
for each hazy-clean image pair is performed. First, the
intersection point, denoted as E , of all the S-V lines is
calculated. Subsequently, the Euclidean distance between E
and the estimated global atmospheric light A is measured,
where the estimation of A is achieved by randomly applying
DCP [2] and NLID [4] methods:

||E − A|| =

√
(SE − SA)2 + (VE − VA)2, (8)

where S and V denote the saturation and value components,
respectively. Note that S,V ∈ [0, 255], thus the maximum
distance is

√
2552 + 2552 ≈ 360. Note also that all the S-V

lines do not intersect perfectly at one single point, hence,
we collect every intersection of each pair of S-V lines and
E is computed as the average of all the intersections.

Fig. 3b illustrates the likelihood of the measured distances
between E and A. It is evident the majority of distances are in
proximity to small values, suggesting that the intersection is
typically near the atmospheric light. This statistical analysis
provides robust evidence in favor of the third assumption
presented in the next section.

C. THE 3rd ASSUMPTION
In the analysis presented in Fig. 2d, it can be observed that in
the HSV color space, a clean point c(x) is derived by shifting
the corresponding hazy point h(x) away from the intersection
E (indicated as a green point) by a magnitude that is directly
proportional to the distance between the hazy point and the
intersection, denoted as ||h(x) − E||. The challenge at hand

FIGURE 4. Morphological min-max channel: (a) hazy image, (b) min
channel with a large radius, (d) min channel with a small radius, (f) max
channel with a large radius, and (c,e,g) refined images of (b,d,f),
respectively.

is to establish the relationship between ||h(x) − E|| and any
potential indicators associated with the distribution of haze in
the input hazy image. Interestingly, upon revisiting the haze
imaging model, the transmission in the RGB color space is
represented as [2]:

t(x) =
||I (x) − A||

||J (x) − A||
, (9)

which implies that the proportion between the distance from
the hazy point to the atmospheric light point and the distance
from the haze-free point to the atmospheric light point in the
RGB color space directly represents the transmission. This
leads us to the exploration of a similar type of proportion
in the HSV color space. To this end, we initially eliminate
two types of lines: one consists of all the S-V lines where the
hazy or haze-free points have a value or saturation component
that is close to 0 or 255, as these points’ magnitudes may
have been truncated due to the 8-bit image property; and
the other category includes excessively short lines which can
be regarded as ‘‘outliers’’ when calculating the distribution.
Subsequently, a specific proportion, referred to as the S-V
ratio r(x) for each S-V line within the saturation-value space,
is computed:

r(x) =
||h(x) − E||

||c(x) − E||
, (10)

and we examine the likelihood of the correlation between the
S-V ratio and the transmission, denoted as R(x):

R(x) =
r(x)
tb(x)

, (11)

where tb(x) represents the transmission of the background
region. In order to compute tb(x), we refer to the method
described in [27] which utilizes the dark channel with a

8064 VOLUME 13, 2025



T.-D. Do et al.: Drone-View Haze Removal via RSVT and Soft Segmentation

FIGURE 5. Fused channel: (a) hazy image, (b) refined min channel,
(c) refined max channel, and (d) fused channel of (b) and (c) through
spatial-wise multiplication. The red and green boxes indicate oppositely
low-intensity and high-intensity image patches from two channels at the
same location, respectively.

small window size, i.e., 3 × 3, to initially estimate a coarse
transmission t̃b(x):

t̃b(x) = 1 − ω min
y∈p3×3(x)

( min
c∈(r,g,b)

Ic(y)
Ac

), (12)

where ω (0 < ω ≤ 1) denotes a predefined parameter to
optionally keep a small amount of haze for the distant objects
(ω is typically set to 0.95 [2]), afterward tb(x) can be obtained
by refining t̃b(x) using guided filtering:

tb(x) = GuidedFilter(t̃b(x), Igray), (13)

where Igray denotes the gray image of the input.
Fig. 3c illustrates the obtained distribution of R(x), which

shows that the highest frequencies for R(x) occur within the
interval [2.0, 5.0] with approximately 85-90% of cases. As a
rough assumption, we consider setting R(x) as a constant
for any input image such that the intensities of the restored
image are minimally affected when R(x) varies within the
range of its highest frequencies (this assumption is verified in
Section V). However, it is worth noting that this assumption
may not hold true in all circumstances, and in fact,R(x) can be
fine-tuned for each image to obtain an optimal result. In order
to partially compensate for this limitation, a justification
is presented in the following which explains the applicable
range of R(x).

By examining Fig. 2d, it can be observed that each clean
point c(x) is derived by shifting the corresponding hazy
point h(x) far away from the intersection E (marked as a
green point). That is, h(x) tends to be closer to E when
compared with c(x). Consequently, it can be concluded that
||h(x)− E|| ≤ ||c(x)− E||, indicating that the S-V ratio r(x)
is roughly less than 1:

r(x) ≤ 1. (14)

On the other hand, tb(x) is used to indicate the transmission
for the background regions. Typically, the minimum value
for tb(x) is set to 0.1 in most scenarios to represent the

FIGURE 6. Sigmoid stretching: the coarse soft segmentation masks and
their respective histogram before (top) and after (bottom) stretching
process.

transmission of sky regions: tb(x) ≥ 0.1 [2]. However, in our
situation, tb(x) not only represents the transmission for the
sky but also for certain nearby bright objects. Therefore, the
lower bound for tb(x) in our case can be adjusted slightly
higher, i.e., 0.2:

tb(x) ≥ 0.2 or 1/tb(x) ≤ 5. (15)

From Ep. (14) and Ep. (15), we have:

R(x) = r(x)/tb(x) ≤ 5. (16)

This constraint is intriguingly justifiable with respect to
the distribution shown in Fig. 3c, where the value of R(x)
is generally below 5. According to this constraint and the
distribution, we hypothesize that the potential values for R(x)
lie within the range of [2.0, 5.0] and we examine multiple
configurations of R(x) within this interval in Section V.

IV. THE PROPOSED DEHAZING METHOD
In this section, we first present a soft segmentation method
utilizing a morphological min-max channel to effectively
separate an input hazy image into three components: hard
foreground, hard background, and middle ground. Subse-
quently, we propose a robust framework for single image
dehazing that integrates the proposed RSVT prior with DCP.

A. MORPHOLOGICAL MIN-MAX CHANNEL
In this section, a straightforward yet efficient soft segmenta-
tion strategy, called morphological min-max channel, which
is inspired by dark/bright channel concepts [2], [29] is
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FIGURE 7. Refinement of fused channel: (a) hazy image, (b) coarse fused
channel, (c) inverse edge image, and (d) refined fused channel.

proposed. Specifically, two channels, namely the foreground
channel and the background channel, are extracted from a
given hazy image. These channels are computed to empha-
size the textures of their respective foreground/background
regions. Subsequently, the two channels are combined to
generate a unifiedmask that can effectually segment the input
image.

Fig. 4a shows an example of a hazy image that can
be roughly segmented into two main regions: sky and
non-sky. The non-sky region, which is considered the
foreground, typically consists of various types of object
textures and shows higher contrast compared to the sky
region. Consequently, the majority of non-sky regions should
be connected with the top lowest-intensity pixels. Moreover,
the foreground region usually contains floating bright pixels.
To address this, a pixel-level min operation followed by a
morphological erosion process is adopted to highlight the
foreground. The purpose of the morphological erosion is to
eliminate the floating bright pixels, thereby retaining only
the significant foreground object textures. The computation
of the coarse foreground channel Ĩfore(x) for an input hazy
image is as follows:

Ĩfore(x) = min
c∈RGB

Ic(x) ⊖ �f (x), (17)

where ‘‘⊖’’ represents the morphological erosion operator
while �f (x) denotes a circle-shaped structuring element
centered at x for the erosion operation. Afterward the refined
foreground channel Ifore(x) is obtained by using guided
filtering method:

Ifore = GuidedFilter(Ĩfore, Igray). (18)

In addition, to preserve the edge details and prevent the
occurrence of shadow artifacts between the background and
foreground areas, the radius of �f (x) is typically set to a
small value. In order to illustrate this effect of radius on the
outcome, an example is given in Fig. 4b and Fig. 4d which
show the coarse foreground channels with radius values of
30 and 3, respectively, while Fig. 4c and Fig. 4e depict
the refined foreground channels of Fig. 4b and Fig. 4d,

Algorithm 1 The Proposed Image Dehazing Framework
Input: Hazy image I (x), correlation value R(x)
Output: Haze-free image J (x)
1: # Soft-segmentation Mask Extraction:
2: Igray = rgb2gray(I ) ▷ RGB to gray
3: Iedge = 1 − sobel(Igray) ▷ inverse edge
4: Ĩfore(x) = minc∈RGB Ic(x) ⊖ �f (x)
5: Ifore = guidedfilter(Ĩfore, Igray)
6: Ĩback (x) = maxc∈RGB Ic(x) ⊕ �b(x)
7: Iback = guidedfilter(Ĩback , Igray)
8: Ifuse = sigmoid(IforeIback ) ▷ stretching

9: Ifuse(x) =

{
Ifuse(x), if Ifuse(x) ≥ τ

0, if Ifuse(x) < τ

10: M = min(λIedgeIfuse, 1) ▷ soft-seg mask
11:

12: # Saturation-Value Translation:
13: A = average(top 0.1%(∀M (x)|M (x) ̸= 1))

14: t̃b(x) = 1 − ωminy∈p3×3(x)(minc∈(r,g,b)
Ic(y)
Ac

)

15: tb(x) = guidedfilter(t̃b(x), Igray)
16: h = rgb2hsv(I ) ▷ RGB to HSV

17: δS,V (x) =
1 − R(x)tb(x)
R(x)tb(x)

||hS,V (x) − AS,V ||

18: Hc(x) = Hh(x)

19: Sc(x) =

{
Sh(x) + δS (x), if Sh(x) ≥ SA
Sh(x) − δS (x), if Sh(x) < SA

20: Vc(x) =

{
Vh(x) + δV (x), if Vh(x) ≥ VA
Vh(x) − δV (x), if Vh(x) < VA

21: D = hsv2rgb({Hc, Sc,Vc}) ▷ HSV to RGB
22:

23: # Restoration:
24: t̃(x) = 1 − ωminy∈p15×15(x)(minc∈(r,g,b)

Ic(y)
Ac

)

25: t(x) = guidedfilter(t̃(x), Igray)

26: J (x) =
I (x) − A(1 − t(x))
max(t0, t(x))

(1 −M (x)) + D(x)M (x)

respectively. It can be observed clearly that a small radius can
keep the details of objects while a large one can create shadow
artifacts around the edges and result in a loss in object details.

On the other hand, the majority of bright regions ought
to be associated with the top highest-intensity pixels which
can be obtained by adopting a pixel-wise max operation.
Furthermore, these bright regions typically lack object
textures and are spread out across a local region of an image.
Hence, morphological dilation with a substantial radius can
enhance the background characteristics in this context. As a
result, the coarse background channel, denoted as Ĩback (x),
is accordingly computed as:

Ĩback (x) = max
c∈RGB

Ic(x) ⊕ �b(x), (19)

where ‘‘⊕’’ denotes the morphological dilation operator
while �b(x) represents a circle-shaped structuring element
centered at x for the dilation operation. Then the refined
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FIGURE 8. Dehazing results when RSVT is combined with various segmentation methods: (a) hazy (top) and clean (bottom) images,
(b) the proposed morphological min-max channel method, (c) region growing-based method adopted in [6] and [7],
(d) GMM-based method used in [8], and (e) deep learning-based method using U2-Net [28]. The respective segmentation mask is
shown below each output.

background channel can be attained as:

Iback = GuidedFilter(Ĩback , Igray). (20)

Fig. 4f and Fig. 4g illustrate the coarse and refined
background channels, respectively. As can be observed from
Fig. 4e, the refined foreground channel can capture fine
details of object textures, but still contains some non-
dark areas. Interestingly, those corresponding regions in the
refined background channel, depicted in Fig. 4g, can be
leveraged in order to cover the uneven bright areas in the
refined foreground channel. Therefore, these two channels
are fused through spatial-wise multiplication, resulting in
a coarse soft segmentation mask that roughly separates
the sky and non-sky regions into bright and dark regions,
respectively, as illustrated in Fig. 5. However, the intervals
of the output values may be unsatisfactory due to the
spatial-wise multiplication step. Therefore, a sigmoid model
can be employed to stretch the values of the coarse mask:

Ifuse = Sigmoid(IforeIback ), (21)

where Ifuse denotes the fusion outcome. Here the sigmoid
model is adopted to stretch the foreground and background
regions to have their weight values closer to 0 and 1,
respectively. An illustration of this stretching process is
presented in Fig. 6.

B. MASK REFINEMENT
As can be seen from Fig. 6, the stretched mask can separate
an input hazy image into two parts of background and
foreground to a certain extent. However, it still contains
residual shadow halos at some regions between background
and foreground, as shown in red boxes in Fig. 7b. To address
this issue, a refinement process is carried out to attain
an improved and refined mask. Typically, the background
regions are spread out across a local area of the image
with a low variation of pixel intensities. To take advantage
of this property, the Sobel edge detection operator [30]
is adopted to compute the pixel gradients and extract the
basic edge image of the input, followed by an image
inverting step to bring the background intensities closer
to 1:

Iedge = 1 − Sobel(Igray), (22)

where Iedge denotes the obtained inverse edge image,
as shown in Fig. 7c.

On the other hand, from the stretched mask shown in
Fig. 7b, we observe that the regions having intensities closer
to 0 have a higher probability of being in the foreground.
Therefore, these regions with very low intensities can be
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FIGURE 9. Dehazing results by the proposed method (top: input image,
middle: restored image, bottom: soft segmentation mask).

considered hard foreground with a constraint:

Ifuse(x) =

{
Ifuse(x), if Ifuse(x) ≥ τ

0, if Ifuse(x) < τ
(23)

where τ is a very low threshold and is typically set to 0.01.
Subsequently, a spatial-wise multiplication is applied to the
stretched mask and the inverse edge image. In so doing, the
high intensity of the background in the inverse edge image
can amplify the background region while the lower intensity
of the stretched mask can down-weight the foreground
region. This particular procedure can be referred to as a
type of spatially varying detail enhancement [31] where the
detail layer and the amplification factor are represented by
the inverse edge image Iedge and the stretched mask Ifuse,
respectively. In practice, an outdoor input image may or
may not contain sky regions, and the certainty of a pixel
belonging to the foreground/background region can be con-
sidered random. Therefore, from the probability perspective,
we assume that the stretched mask can be regarded as a
random distribution, with element values ranging from 0 to
1 and a mean value φ = 0.5. Accordingly, the pixel-wise
product of the stretched mask and the inverse edge image
yields a darker image, as both input signals have values lower
than 1, and the overall brightness of the detail layer could
be degraded by φ. To handle this, we adopt a compensation
coefficient λ, with λ = 1/φ = 2, to counterbalance
the brightness degradation in the background. With the
effect of λ, the outcome may contain values exceeding 1,
which are then classified as hard background. To obtain a
refined and normalized soft segmentation mask, these pixel
values are limited to a maximum of 1. The remaining pixels
in the refined mask, which do not belong to either the
hard foreground or hard background, are referred to as the
middle ground. Ultimately, the refined mask M is obtained
as:

M = min(λIedgeIfuse, 1). (24)

FIGURE 10. Dehazing results with various configurations of R(x).

C. ATMOSPHERIC LIGHT ESTIMATION
In the DCP method, the estimation of atmospheric light is
carried out by selecting the pixels with the highest intensity
respective to the top 0.1% brightest pixels in the dark channel.
However, this strategy is not always valid and can lead to
color shift in the final output. In order to overcome this
limitation and achieve a more accurate selection of global
atmospheric light, we propose referring to the top 0.1%
brightest pixels in the middle ground. This approach can
avoid the selection of pixels that fall within excessively bright
regions which may be associated with bright or white objects.
The estimated atmospheric light is then computed as the
average of these selected pixels.

D. REGIONAL SATURATION-VALUE TRANSLATION
As stated in Section III-C, the haze-free point can be
estimated by translating the hazy point far away from the
atmospheric light by an amount directly proportional to its
distance to the atmospheric light. To determine the precise
amount of translation required for estimating the haze-free
point, from Eq. (10) we have:

||c(x) − A||

||h(x) − A||
=

1
r(x)

, (25)

note that the intersection E is replaced with the estimated
atmospheric light A based on the second assumption pre-
sented in Section III-B. Combining with Eq. (11), Eq. (25)
is equivalent to:

||c(x) − h(x)||
||h(x) − A||

+ 1 =
1

R(x)ts(x)
, (26)

and the translation quantity δ(x) can be calculated as:

δ(x) = ||c(x) − h(x)|| =
1 − R(x)ts(x)
R(x)ts(x)

||h(x) − A||. (27)
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FIGURE 11. Typical dehazing results of various approaches on SOTS-Outdoor dataset: (a) Hazy (top) and clean (bottom) images, (b-g) results by
CEP [3], DCP [2], BCCR [12], CAP [13], NLID [4], and the proposed RSVT method, respectively. The respective recovered transmission map for each
method is shown below every output.

As a result, the haze-free image is restored by the following
adjustments in the HSV color space:

Hc(x) = Hh(x), (28)

Sc(x) =

{
Sh(x) + δS (x), if Sh(x) ≥ SA
Sh(x) − δS (x), if Sh(x) < SA

(29)

Vc(x) =

{
Vh(x) + δV (x), if Vh(x) ≥ VA
Vh(x) − δV (x), if Vh(x) < VA

(30)

where (Hc, Sc,Vc), (Hh, Sh,Vh) denote three channels of the
restored image and the hazy image in the HSV color space,
respectively.

E. HAZE-FREE IMAGE RECOVERY
After acquiring the segmentation mask, the proposed RSVT
prior and the DCP approach process the hard background
and hard foreground regions, respectively. Meanwhile, the
restoration of the middle ground is achieved through a
weighted average solution derived from these two algorithms.
The proposed dehazing scheme can be expressed as follows:

J (x) =
I (x) − A(1 − t(x))
max(t0, t(x))

(1 −M (x)) + D(x)M (x), (31)

where t(x) is estimated by DCP and t0 (typically set to 0.1)
is a lower bound of t(x) [2], while D(x) is the dehazed image
produced by RSVT formatted in the RGB color space. The
Python-like pseudocode of the proposed dehazing framework
is illustrated in Algorithm 1.

V. EXPERIMENTS AND DISCUSSION
In this section, the effectiveness of the proposed framework
is examined in various experimental analyses. We first

TABLE 1. Ablation study on the values of R(x). The best and second-best
results are indicated in bold and blue, respectively.

present the experimental settings including the datasets used
in experiments as well as listing the methods utilized for
comparisons. The performance of scene segmentation stage
and the selection ofR(x) are then discussed. Subsequently, the
performance of the proposed dehazing method is compared
with other prevalent techniques in terms of both dehazing
effectiveness and computational efficiency. Lastly, a case
study is conducted to evaluate the practical applicability of
the proposed dehazing framework in real-world scenarios.

A. EXPERIMENTAL SETTINGS
For the sake of fair comparison, the proposed method has
been compared with three main types of other methods:
prior-based approaches (CEP [3], DCP [2], CAP [13],
NLID [4], CLAHE [32], BCCR [12]), lightweight CNNs
(AOD-Net [17], MSCNN [18], DehazeNet [19], GFN [33],
GCANet [20], D4+ [23], SDDN-T [24]), and upsupervised
CNNs (CycleDehaze [34], YOLY [21], RefineDNet [1]).
The experiments were conducted on four data sets selected
from the RESIDE benchmark [26], including two synthetic
datasets, SOTS-Outdoor and HSTS-Synthetic, and two
realistic image sets, HSTS-Realistic and RESIDE-Natural.
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FIGURE 12. Typical dehazing results of various approaches on HSTS-Synthetic dataset: (a) Hazy (top) and clean (bottom) images, (b-g) results by
CEP [3], DCP [2], BCCR [12], CAP [13], NLID [4], and the proposed RSVT method, respectively. The respective recovered transmission map for each
method is shown below every output.

The SOTS-Outdoor and HSTS-Synthetic datasets consist of
500 pairs and 10 pairs of hazy-clean outdoor images, respec-
tively, while the HSTS-Realistic dataset includes 10 real-
world hazy images, and the RESIDE-Natural dataset contains
20 randomly sampled images with natural haze. These data
sets exhibit significant scene variability and serve as de facto
benchmarks for dehazing algorithm evaluation due to their
widespread adoption in various studies. Quantitative perfor-
mance on synthetic data was measured using Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity Index Measure
(SSIM), while dehazing performance on natural images was
evaluated usingNatural ImageQuality Evaluator (NIQE) [35]
and Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE) [36]. The experiments were conducted on an
Intel(R) Core(TM) i5-8600K CPU @ 3.60GHz.

B. EVALUATION OF SCENE SEGMENTATION
In order to validate the effectiveness of the proposed
segmentation approach, a qualitative analysis is conducted to
compare the segmentation masks generated by our approach
and those obtained from other segmentation methods, includ-
ing the region-growing method [37], GMM-based segmen-
tation [38], and U2-Net [28]. Note that the region-growing
and GMM-based approaches have been adopted in sev-
eral existing image decomposition-based dehazing schemes
like [6], [7], and [8], while U2-Net represents a recent
robust neural network-based image enhancement method

TABLE 2. Quantitative performances of various dehazing methods on
SOTS-Outdoor and HSTS-Synthetic datasets. The best and second-best
results are indicated in bold and blue, respectively.

for images with the appearance of the sky [15], [16].
Based on the visual comparisons presented in Fig. 8, it is
evident that our proposed method is capable of generating
smooth soft segmentation masks with a natural transition
from foreground to background and can avoid generating
undesirable halo artifacts at the boundary regions. Notably,
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FIGURE 13. Typical dehazing results of various approaches on HSTS-Realistic dataset: (a) Hazy image, (b-g) results by CEP [3], DCP [2], BCCR [12],
CAP [13], NLID [4], and the proposed RSVT method, respectively. The respective recovered transmission map for each method is shown below
every output.

FIGURE 14. Typical dehazing results of various approaches on RESIDE-Natural dataset: (a) Hazy image, (b-g) results by CEP [3], DCP [2], BCCR [12],
CAP [13], NLID [4], and the proposed RSVT method, respectively. The respective recovered transmission map for each method is shown below
every output.

our approach outperforms both the region-growing and
GMM-based segmentation methods, and can be considered
competitive when compared with the deep learning method,
U2-Net, while it is worth mentioning that our approach does
not necessitate a training process.

Additionally, the dehazing results obtained by integrating
our proposed RSVT prior with some other segmentation
methods discussed earlier are also examined, as depicted
in Fig. 8. The analysis reveals that the proposed approach
produces visually compelling restored images, particularly
in challenging regions, where other methods struggle.
Specifically, in distant and dim areas where the boundary

between foreground and background regions is unclear, the
other techniques under comparison fail to deliver satisfactory
dehazing outputs. This limitation is particularly evident in
scenes with low contrast and minimal visual cues. In contrast,
our method effectively restores these difficult regions, high-
lighting its robustness against the other algorithms. Further
visual dehazing results generated by the proposed framework,
along with their corresponding segmentation masks, are
presented in Fig. 9. These additional examples provide
further compelling evidence supporting the advantages of
our proposed approach in handling complex environments,
illustrating the consistency and reliability of the RSVT prior
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FIGURE 15. Dehazing results of the proposed RSVT method in comparison
to those of some deep learning-based methods on synthetic hazy images.

TABLE 3. Quantitative comparisons of various dehazing methods on
HSTS-Realistic and RESIDE-Natural datasets. The best and second-best
results are indicated in bold and blue, respectively.

across diverse scene types, and underscoring its robustness in
accurately processing and interpreting intricate visual data.

C. SELECTION OF R(X )
According to the constraint presented in Section III-C, it is
assumed that R(x) could be set as a constant for any input
image such that the intensities of the restored image are
minimally affected when R(x) varies within the range of
its highest frequencies, [2.0, 5.0]. To verify this assumption,
we examine the impact of different values of R(x) on
the visibility of the outputs when R(x) is set to in-range
and out-of-range values, R(x) = {1, 2, 3, 4, 5, 10}, where
R(x) = 1 and R(x) = 10 are typical out-of-range values.

FIGURE 16. Dehazing results of the proposed RSVT method in comparison
to those of some deep learning-based methods on natural hazy images.

The results of the quantitative evaluation are summarized
in Table 1, which shows that the best performance is achieved
when R(x) is set closer to the highest-frequency value,
specifically R(x) = 3. Also, the other in-range values of
R(x) such as R(x) = {2, 4, 5} also yield competitive results
despite of slight drops in performance. On the contrary,
the use of out-of-range values, R(x) = {1, 10}, results
in a degradation in the dehazing performance. To visually
verify these measurements, qualitative restoration results are
demonstrated in Fig. 10. As can be seen Fig. 10, R(x) ∈

[2.0, 5.0] can result in competitive visual dehazing outcomes
whereas R(x) = {1, 10} may lead to color distortion or over-
saturation. Based on the distribution obtained, as shown in
Fig. 3c, alongside the comprehensive quantitative evaluation
detailed in Table 1, we have determined that R(x) = 3 should
be established as the primary configuration in the proposed
framework.

D. EVALUATION ON BENCHMARK DATASETS
Table 2 summarizes the quantitative results of various dehaz-
ing approaches on the SOTS-Outdoor and HSTS-Synthetic
datasets. As reported in Table 2, the proposed RSVT
framework outperforms all the prior-based methods under
comparison by a significant margin in both PSNR and SSIM
measures. Moreover, the proposed approach achieves com-
petitive performance in SSIM when compared against some
deep learning-based models such as GCANet and YOLY.
On the other hand, further quantitative comparisons on
natural hazy image datasets, HSTS-Realistic and RESIDE-
Natural, are summarized in Table 3. As reported in Table 3,
the proposed method also shows competitive outcomes
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FIGURE 17. The UAV platform used in this study.

against some of the leading methods in both prior-based and
deep learning-based categories. Deep learning-based meth-
ods excel in accuracy but require extensive training data and
high computational costs, while prior-based approaches offer
better interpretability and efficiency despite lower accuracy in
complex scenarios. As demonstrated by experimental results,
the proposed RSVT prior can surpass existing traditional
methods in performance while maintaining computational
efficiency.

Additionally, the comparisons in terms of visibility
obtained by our proposed framework and the other
prior-based methods on the considered datasets are also
given in Fig.s 11-14. These visual results demonstrate
that our proposed method is capable of producing visually
appealing haze-free images without halo artifacts or color
distortion. Notably, the sky regions restored by our proposed
method can be considered significantly improved when
compared to those produced by the other approaches.
It implies that our proposed prior effectively addresses
the color distortion problem in the bright regions, which
is a common issue in most other prior-based algorithms.
Moreover, the process of RSVT, which is independent of
the haze imaging model, allows the proposed method to
eliminate the influence of transmission lower bound for
the sky regions. As a result, the soft segmentation mask
can be utilized as weight to emphasize the transmission in
the sky areas. The restored transmission maps shown in
Fig.s 11-14 indicate that the depth information provided by
our proposed method, particularly in the sky regions, is more
accurate when compared against those given by the other
prior-based methods under consideration. In addition, typical
comparisons between the outputs yielded by our method
and various deep learning-based models are also depicted in
Fig. 15 and Fig. 16. These comparisons clearly show that

TABLE 4. Average processing time of various dehazing methods (in
seconds).

the proposed approach achieves competitive visual effects
when compared with deep learning-based methods for both
synthetic and natural hazy scenes.

E. EXECUTION SPEED
Efficiency is also considered a crucial factor when evaluating
an image enhancement method. It partially reflects the
suitability of the algorithm for real-world applications such as
drone’s autonomous navigation or target detection and track-
ing. In order to assess the efficiency of our method, a com-
parative analysis with several typical dehazing approaches in
terms of average execution time has been conducted, with the
results reported in Table 4. As summarized in Table 4, the
proposed dehazing framework takes approximately 0.231 and
0.364 seconds to process a 600 × 450 image and a 1080 ×

720 image, respectively, with an Intel(R) Core(TM) i5-
8600K CPU @ 3.60GHz. As compared against the other
prior-based algorithms, even though the proposed approach
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FIGURE 18. Visual dehazing results of various approaches on real-world collected image data.

may not be considered the fastest method, it can manage
to achieve a more desirable trade-off between effectiveness
and efficiency. Particularly, when compared with DCP or
CEP, our method achieves notable improvement in effec-
tiveness while only slightly increasing the processing time.
In addition, our method can also be compared competitively
with other lightweight deep learning-based approaches such
as GCANet while noting that our proposed method does
not require an extensive training process on any database.
In conclusion, the proposed algorithm shows remarkable
efficiency, making it a feasible choice for real-world
applications.

F. CASE STUDY
To further assess the applicability of the proposed dehazing
framework in real-world scenarios, a case study was con-
ducted using a surveillance UAV in a realistic scenario. This
study aimed to assess both the effectiveness and efficiency
of the framework in a localized area of Seoul, South Korea,
during foggy conditions.

The information of the UAV platform used in this study
is presented in Fig. 17. The surveillance quadcopter was
operated by an onboard flight computer unit (FCU) Pixhawk
4. This system measures altitude using the Lidar Lite V3
laser-ranging sensor, while positioning is done using the F9P
Rover Lite real-time kinematic positioning GPS receiver.
Additionally, the power supply system consists of a 4-cell,
14.8 V, 10,000 mAh Li-Po battery coupled with a Matek
UBEC Duo power regulator. The remote piloting capability
is enabled using a radio frequency transmitter and receiver
set. Data collection occurred at altitudes between 80 and
120 meters, allowing for sufficient resolution across diverse
scenes such as roads, buildings, and vehicles. The qualitative
performance of various dehazing algorithms was initially

analyzed using a set of realistic hazy images. As illustrated
in Fig. 18, the proposed framework’s visual results were
compared to those of several other methods. The outcomes
indicate that the proposed approach delivers visually com-
pelling results in comparison to other schemes. Specifically,
methods like DCP and BCCR struggled to process sky
regions, GCANet and D4+ exhibited color distortion issues,
whereas the proposed framework demonstrated competitive
performance with the recent SDDN-T model. It is important
to note that the proposed framework does not aim to
completely eliminate haze in distant scenes but intentionally
retains a slight amount. This is not a shortcoming but is
intended to preserve the natural appearance of the restored
image.

Additionally, the efficiency of the dehazing framework
within the UAV system was examined. The framework was
implemented on the companion computer, and its processing
speed was measured. The proposed RSVT framework
achieved an average processing time of 0.519 seconds
per 1080 × 720 image, corresponding to a frame rate of
approximately 2 FPS, which can be considered adequate for
UAV-based surveillance tasks.

VI. CONCLUSION
In this paper, an innovative prior for image dehazing, called
Regional Saturation-Value Transition (RSVT), is proposed.
The prior is derived based on two key observations made in
the sky and bright areas of hazy-clean image pairs. First, the
difference in hue components of a pair of hazy and haze-free
points is trivial, indicating that haze has a negligible impact on
the hue channel. Second, in the 2D coordinate system formed
by the saturation and value channels, most of the lines passing
through corresponding pairs of hazy-clean points intersect
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around the atmospheric light coordinates. This suggests that
haze removal can be performed by appropriately translating
hazy points in the saturation-value coordinate system. The
proposed prior is combined with image decomposition and
dark channel prior method to form a unified dehazing
framework. A novel morphological min-max channel is
introduced for image decomposition and estimation of the
global atmospheric light. Experimental results show that
the proposed framework can effectively handle diverse hazy
scenes, restoring the natural appearance of the sky, with a case
study highlighting its practicality in real-world scenarios.
Future work will focus on enhancing the framework’s
performance and applicability by addressing more complex
scenarios.
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