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ABSTRACT Significant cost reductions attract ever more households to invest in small-scale renewable
electricity generation and storage. Such distributed resources are not used in the most effective way when
only used individually, as sharing them provides even greater cost savings. Energy Peer-to-Peer (P2P)
systems have thus been shown to be beneficial for prosumers and consumers through reductions in energy
cost while also being attractive to grid or service providers. However, many practical challenges have to be
overcome before all players could gain in having efficient and automated local energy communities; such
challenges include the inherent complexity of matching together geographically distributed peers and the
significant computations required to calculate the local efficient matching options. We define and analyze
in this work a precise mathematical modeling of the geographical peer matching problem, and demonstrate
the inherent intractability of the problem, highlighting its high computational cost and underscoring the
critical need for scalable approaches that effectively balance performance trade-offs as system size grows.
Furthermore, we propose and study analytically and empirically a spectrum of approaches to address it and
perform a cost-efficient matching of peers in a computationally efficient fashion. Our experimental study,
based on real-world energy data, demonstrates that our proposed solutions are efficient both in terms of cost
savings achieved by the peers and in terms of communication and computing requirements. Our scalable
algorithms thus provide one core building block for practical and data-efficient peer-to-peer energy sharing
communities within large-scale optimization systems.

INDEX TERMS Geographical peer matching, hypergraph matching, P2P energy sharing, prosumers.

I. INTRODUCTION

Renewable electricity generation is becoming more afford-
able to end-users as the initial investment cost has been
drastically cut, thus transforming the traditional residential
households from consumers into prosumers [14] (capable of
producing locally their own electricity). Sharing resources,
for example solar photovoltaic (PV) panels and battery
systems, in Peer-to-Peer (P2P) [15] setups can be lever-

The associate editor coordinating the review of this manuscript and

approving it for publication was Junho Hong

aged as a way to optimize the cost-benefits from those
distributed renewable resources. Driven largely by the goal
of reducing costs [16] and enhancing renewable energy
integration, interest in P2P energy communities has been
steadily increasing. This high-potential concept has attracted
considerable attention from the research community in recent
years (see [17], [18] and references therein) and continues
to generate a significant amount of research [19], [20], [21],
[22], [23].

The principle of P2P energy sharing is for different
end-users to share their resources locally in groups, in order
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TABLE 1. Comparison in terms of scale between our work and related work on P2P energy sharing community formation within long-term communities,
as well as cost-optimization within short-term coalitions (1) based on real-world consumption data.

Year Authors (reference) Target objective(s)

Size of communities No. of formed No. of possible

/ household pool trading groups communities
This work (I week of data;§ VI-C) Total cost-saving 2-5/up to 115492 up to 23140 4.65-10™8
This work (1 year of data; § VI-B) Total cost-saving & global cost 2-5/2221 444 t0 1110 4.17 -10'*
2023 Chau et al. [2], [3] Total & individual cost-savings 2-3/31 10to 15 4495
2021 Azim et al. [4] { Individual cost-savings 2-36 /36 1-18 14
2021 Duvignau et al. [5] Total cost-saving 2-100/ 100 1-50 4950
2021 Tushar et al. [6] T Peak demand & energy cost 2-12/12 1-6 1“
2020 Duvignau et al. [7] Total cost-saving 2-100/ 100 1-50 4950
2019 Tushar et al. [8] T Individual cost-savings 2-10/10 1-5 1¢
2019 Heinisch et al. [9] Total cost-saving 2-101/101 1 1
2019 Khorasany et al. [10] t Individual cost-savings 7117 1 1
2019 Chau et al. [11] Total & individual cost-savings 2/31 15 465
2018 Liith ef al. [12] T Total cost-saving 4/4 1 1
2018 Long et al. [13] Total cost-saving 100/ 100 1 1

@ Coalitions apply to a single trading slot, hence over a billing period all peers may perform exchanges with each other and thus belong to the same community.

to reduce their energy bill while increasing energy efficiency
and self-reliance within the communities. Locally in each
community, energy is either “traded” at regular intervals (e.g.
every hour) or “exchanged for free” with a later gratification
scheme. P2P energy sharing bypasses the centralized grid
by letting the peers cooperate in a distributed fashion in
order to share in the best way their energy resources. Hence,
to lower their cost, households are encouraged to use as much
as possible the electricity that is generated locally instead
of that from the grid, with local benefits due to reduced
tax fees, as well as an increase in local self-consumption.
There are many challenges that are still required to be
resolved before P2P energy sharing becomes the norm [24],
[25], [26], [27] and in particular robust communication
protocols [17], data protection and privacy [28], legal and
economic challenges [29], how to handle payments [30] as
well as alleviating security concerns [31].

This work focuses on one challenging task that remains to
be dealt with before P2P energy sharing over large systems
can be a reality: how to efficiently organize a large number of
end-users into independent sharing communities.

Short-term coalitions (lasting, for example, 10 minutes)
are typically formed using game-theoretic approaches [8] and
take into account only the current state of the system (e.g.,
the amount of electricity being produced and consumed by
various end-users, as well as market prices).

Forming long-term communities (used over weeks, months
or even years [3], [11]) is an ever more rewarding and
challenging task. Often also associated with geographical
closeness, the long-term communities present many advan-
tages from an infrastructure point of view, being able to better
regulate local load-balancing of distributed energy resources,
providing higher local self-sufficiency and/or reducing the
local peak demand. Chau et al. [11] have investigated stable
partitioning, i.e., a given partitioning can be rejected if any
group of peers would gain more by forming a different
one, similar to the stable marriage [32] problem for pairs.
In [2] and [3], the partitioning is expanded to communities of
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size k > 2 and partition-forming algorithms are evaluated
for groups of size 2 or 3 over a set of 30 households.
Duvignau et al. [5], [7] show that small-scale communities
made of a few peers only (2 to 5) are both efficient in
terms of data and cost. As the authors essentially focused
on energy cost-optimization (increasing benefits for end-
users) and data-efficiency (decreasing amount of shared
data), no mathematical analysis is performed concerning
the cost of computing the different matchings. In all the
aforementioned works, the computed long-term partitions in
the experimental study do not involve a high number of nodes
(100 at maximum) or larger neighborhoods than those of
size 3, nor do they use information about the geographical
positions of the nodes in calculating the partitioning.

A. MOTIVATIONS

We summarize previous works dealing with formation of
P2P energy sharing communities and coalitions in Table 1.
Current state-of-the-art [3], [5], [9], [12] relies on exhaustive
search to compute the optimal solution from datasets
containing only a small number of nodes, whereas our aim
is to provide efficient algorithmic solutions for a large pool
of households. To appreciate the difference in scale between
the empirical evaluation of our work (and exemplify its
scalability properties that is also analyzed in this article)
and previous studies (cf. Table 1), the problem, for example
with about 2000 households, implies 100 billion possible
communities to choose from (when limited to communities
of up to 5 members). Using a week-long dataset covering
115,492 users, the number of possible communities reaches
an astronomical scale of several quintillion — that is, billions
of billions of possible communities.

To scale up towards such large systems, we introduce the
Geographical Peer Matching (GPM) problem that consists in
forming the energy communities based on both geographical
information about the peers as well as their local matching
preferences. This provides a natural way of reducing the
search space but as we show in this work, dedicated
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algorithms are still required to cope with the computational
complexity of the GPM problem. Indeed, as aforementioned,
even when enforcing geographical constraints, there may
exist billions of possible communities when the set search
radius is not restricted to a small value.

B. CHALLENGES AND RESEARCH QUESTIONS

The main challenges in establishing efficiently P2P energy
sharing communities are threefold: (i) peers continuously
produce data and have limited knowledge of how their future
local data will look like, (ii) computing peers’ optimization
options for preferences requires both access to the relevant
data and the execution of a Linear Programming (LP) solver
on a large input (cf. [5], [7] and Section III-B) and (iii)
peers should favor getting matched with geographically
neighboring peers to reduce transmission losses and the
impact on the underlying infrastructure. In particular, weights
in the matching (i.e., the local matching preferences) are not
known at the system’s start but must be computed on the
fly, and this requires additional communication between the
participants. An additional difficulty stems from allowing the
formation of groups of size 4 and above, as the matching
problem becomes intractable in this case and thus in practical
systems, it is not feasible to do exhaustive searches any
longer. This raises the following research questions: (i)
Can one translate the challenges to a formal model that
can capture the benefits and complexity for the prosumers?
(i) How do the maximum size and geographical diameter
for communities influence the cost-efficiency of the peer
matching? (iii) Is it possible to design matching algorithms
that are efficient in terms of cost (with good quality for the
solution) and scalable (with low computational burden) and
where is the best trade-off?

C. CONTRIBUTIONS

We present partitioning mechanisms between consumers
and prosumers to form P2P energy sharing communities.
One core contribution is the presentation of a mathematical
modelling of the GPM problem expressed as finding a
maximum weight bipartite partitioning in hypergraphs.
We establish bounds on the inherent complexity of the
problem, demonstrating its inapproximability within a given
factor and highlighting the challenges in achieving efficient
solutions. With Proposition 3, we provide an important
theoretical result for the smart grid research community,
formally lower- and upper-bounding the benefits that can
be extracted from a prosumer by a coordinated group rather
than independent individuals. We further propose and analyze
different algorithms that solve the GPM problem. We study
the trade-off between cost- and computational-efficiency of
different algorithms and parameters based on an experimental
study involving consumption data from 2,221 real households
and realistic solar profiles (over an entire year), and a realistic
distribution of renewable energy resources among peers.
Our analysis and proposed solutions address the challenges
of the GPM problem and can guide P2P energy-sharing
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communities toward both cost efficiency (providing sig-
nificant savings to all peers) and scalability (capable of
accommodating pools of hundreds of thousands of users).

Implementing these solutions into a real-world setting is
an exciting prospective follow-up of our work, however,
it is noteworthy to highlight that our study focuses on
demonstrating that our solutions are both computationally
feasible and efficient.

D. PLAN

The next section discusses relevant related work. Section III
presents in more detail P2P energy sharing and cost-
optimization of distributed resources in this context.
Section IV presents our mathematical modelling of the GPM
problem and some of its variants. In Section V we present
our algorithms and analyze their computational overhead.
In Section VI, we present an extensive experimental study
of the performance of the algorithms based on electricity data
from real-world households. Finally, Section VII presents our
conclusions.

Il. RELATED WORK

A. P2P ENERGY SHARING

P2P energy sharing has been in the focus of numerous
research works in recent years (cf. the comprehensive
surveys [17], [18], [33] and references therein). Among
those works, one can distinguish two types of P2P sharing
communities. Short-term coalitions (lasting for e.g. 10min)
are formed to cover a single timeslot where game-theoretic
approaches are used to optimize the individual gains among
other things [8]. On the contrary, long-term coalitions [3], [5],
[9], [13] seek to form communities that will take coordinated
decisions within the same group of peers over months to
years.

Research on optimizing the gain outcome from the peering
process using constrained optimization has focused on
different aspects: how communications are handled [13],
reaching stable partitions [3], [11], finding optimal resources
based on community sizes [9], privacy aspects and amount
of data transmitted over the network [5], [7], [34], etc.
Small neighborhoods have been shown to provide a high
share of possible gain while being favorable in terms of
data exchanges [5] and different matching algorithms appear
in [3] and [11], based upon stable partitions (i.e., nodes
with self-interest) and on a cost-sharing mechanism known
beforehand. However, the algorithmic problem behind the
formation of localized and long-term P2P energy sharing
communities with a global objective has not been studied
before to the best of our knowledge, neither analytically nor
from a practical point of view.

B. HYPERGRAPH MATCHING

The solutions explored in this paper relate to the k-bounded
Maximum-Weight Hypergraph Matching (k-MWHM) prob-
lem, where k refers hereafter to the maximum size of an
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hyperedge in the input hypergraph, especially to the works
proposing mechanisms to compute practical solutions. The
k-MWHM problem does not permit a polynomial time
o(k / log k)-approximation unless P = NP [35]. All the best
heuristic algorithms that have been proposed to solve the
problem are based on the notion of ‘““local search” [36]. Local
search consists in incrementally improving a starting solution
by performing a series of small changes (typically switching
membership of a node from one partition to another), that is
known to be competitive to the optimal algorithm. A local
search algorithm is used for example in [37] to solve
greedily the weighted k-set problem while showing that
the introduced algorithm is 2(k 4 1)/3-competitive. One of
the most competitive algorithms for k-MWHM is given by
Berman [38], providing a (k4 1)/2-approximation algorithm.
The algorithm is based on finding independent set in d-claw
free graphs, and it requires a series of prepossessing steps in
order to solve the k-MWHM problem, e.g. [39] makes these
steps explicit to obtain a hypergraph matching algorithm
from Berman’s algorithm. Other works [40], [41] have used
a similar pipeline to solve greedily the k-MWHM problem
based on local search. Recent improvements on Berman’s
algorithm are given in [42], [43], and [44]. k-MWHM has also
been studied in a distributed setting [45], as well as under ““b-
matching” generalizations [46] where nodes can appear in b
different hyperedges instead of one only.

All local search-based algorithms, however, assume access
to the full list of weights since their starting point is the output
of what we referred here as the “Classic Greedy” algorithm.
Also, all those algorithms have a time complexity that is
exponential in k [37]. In [47], computing all the weights was
already identified as a computational bottleneck when the
number of possible hyperedges is large, proportional to O(n¥)
when there are n nodes in the input hypergraph. The authors
hence propose a heuristic algorithm specific to their problem
that only necessitates to compute O(kn®) weights using an
algorithm of time-complexity O(kn’). For the number of
computed weights, this matches the same bound shown
here when using to what we refer as “memoryful weights”
as heuristic input, and we further reduce it to only On?)
weights while introducing the notion of memoryless weights
and exploiting pairwise weights as heuristic basis for the
local preferences. In contrast, all the algorithms studied in
this work have also noticeable smaller time complexities,
namely O(kn?), O(n*) and O(n*logn). Note the problem
studied here adds three additional real-world motivated and
computationally-demanding constraints to classical hyper-
graph matching: requirement for a bipartite solution, spacial
constraints and a challenging environment where the weight
of a hyperedge is computationally expensive to obtain.

C. THE INFLUENCE OF PROCESSING ORDERS

Recently, Duvignau and Klasing [48] and Duvignau et al.
[49] demonstrated several analytical results for achiev-
ing bounded approximations for the assignment problem
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FIGURE 1. Overview of P2P energy sharing showing grouping and
interactions between prosumers (equipped with PV panels on roof top
and optionally a battery system) and traditional consumers (without any
energy resources).

Households interact with the T

(i.e., bipartite graph matching) using greedy algorithms
that focus on both producing a good matching while
inspecting only O(n) weights. Their analysis assumes that
the input graph is processed in an heuristic order where
edges associated with higher weights are usually processed
earlier by the matching algorithm. This completely matches
our setting where prosumers with larger consumptions and
renewable resources are more likely to produce more cost-
saving benefit, and thus their results entail that formal
performance guarantees can also be derived for the heuristic
algorithms that we have introduced in § V. In addition, their
results combined with our formal proofs given in § IV-C2 and
§ IV-D, imply that one of their introduced algorithms provides
a (k—1)-e approximation of the optimal (where & can become
arbitrary close to one for well chosen processing orders on
favorable instances) while only calculating O(kn) weights.

IlIl. SYSTEM MODEL

We define here the notion of P2P energy sharing communi-
ties, its underlying assumptions and consequences. We then
define how to optimize peers cost in such a context and
present how this translates into a matching problem when
several communities are considered.

A. P2P ENERGY SHARING

Let us recall the basic requirements of the traditional energy
infrastructure, considering only electricity as energy source
for the purpose of simplicity.

Consumers, which can be individual households or
virtual entities aggregating consumptions over a building
or neighbourhood of energy-management systems, must
match their consumption by importing from the grid their
electricity demand, whereas prosumers use in priority their
local generation (e.g. PV panels); in case of surplus, the
energy is sold to the grid, while in the opposite situation,
prosumers must import electricity from the grid.

The situation complicates for prosumers equipped with
both electricity production and storage, as they need to take
online decisions whether to store the surplus or sell it to the
grid, and whether to use stored electricity or rather buy it from
the grid.

9721



IEEE Access

R. Duvignau et al.: Geographical Peer Matching for P2P Energy Sharing

TABLE 2. Nomenclature used in the paper (P2P Energy Sharing variables, constants and functions in the left column, graph symbols/functions in the right

column).
Symbol Usage Symbol Usage
cost(h, 1) electricity cost for user 4 at hour 7 (€) \% pool (set of all households), V = PUC
bill(%, [t0,t]) electricity cost for i over period [to, t] (€) P set of prosumer households
el (n,1) amount of electricity bought from the grid by / at hour r (kWh) | n number of prosumers, i.e., |P|
el (h,t) amount of electricity sold to the grid by 4 at hour ¢ (kWh) C set of consumer households
eleons(h, 1) consumption (or electricity demand) of user 4 for hour ¢ (kWh) | m number of edges, i.e., |P| - Sa
elgen(h,t) electricity generated by & during hour ¢ (kWh) A geographical search radius
bat(x, ) battery level at time ¢ for prosumer 4 (kWh) k maximum size for communities
price(r) price of electricity at hour 7 (€/kWh) A average neighborhood size
sun(r) the sun’s intensity at hour 7 (KWh/kWp) w(e) weight of the hyperedge e
tax relative tax level on top of market-price (e.g. 25%) dist(v,v')  geographical distance between v and v/
el fixed electricity tax added on top of market price (€/kWh) EA pairs of E C P x C within distance A
el small payment for selling electricity to the grid (€/kWh) WA, cost-based memoryless weights at time ¢
PV, PV capacity for prosumer i (kWp) WB; cost-saving memoryless weights at time ¢
B, battery capacity for prosumer 4 (kWh) WC; cost-based memoryful weights at time ¢
gain(G, [10,1;])  cost saving of community G over period [f9, #r] (€) WD, cost-saving memoryful weights at time 7

Set in the context of increasing decentralization of the
energy infrastructure, P2P energy sharing (see Fig. 1)
consists in forming local energy communities of cooperative
end-users. The goal is to make the most of the distributed
resources and hence achieve even greater cost reductions.
However, this means that participants need now to consider
also the state and decisions of the other actors in order to
coordinate and optimize the benefits of their local resources.
In such energy communities, any energy consumption can be
offset by importing the equivalent amount of electricity from
a peer; such an exchange may get instantly gratified leading
to a local trading market [50], [51]. At regular time intervals
(e.g. 1 hour), the community needs to coordinate the usage of
energy resources (e.g. which battery system(s) to charge or
discharge and by how much, and by consequence how much
energy needs to be traded with the central grid).

In the literatures [3], [5], [9], and [13], independent long-
term communities of end-users that can last for month(s)
or year(s) have been introduced to alleviate the inherent
infrastructure cost to allow and maintain energy exchanges
among different end-users.

At the end of predetermined billing periods, each user pays
an electricity bill taking into account their own consumption
and all exchanges that occurred within the said period.

B. SINGLE-USER COST-OPTIMIZATION (LP-SOLVER)

The cost-optimization problem consists in minimizing the
yearly electricity bill for a particular end-user, based on
locally available electricity data: amount of consumption,
generation and price. In order to minimize the cost, we adopt
the following LP-formulation cost-optimization following
similar models used in the recent literature (cf. [5], [9], [11]).
The electricity cost cost(h, t) of the end-user % at hour ¢ is
assumed to be as follows (cf. Table 2 for definitions of all
variables used hereafter):

cost(h, 1) = eli,(h, 1) - (price(t) - (1 + tax) + elyy)
—elo(h, 1) - (price(r) + el,e;) . (1)

We assume el,,.; < el;,, and tax > 0.

9722

Pure consumers do not have any generation or storage
resources, hence the yearly cost is obtained directly from their
consumption, that is el;, (%, ) = elcons(h, t) for all hours ¢.
Prosumers with only electricity generation but no storage
have always interest to use in priority their local production
to avoid to pay tax on electricity coming from the grid; hence,
they optimize their cost by setting:

el;,(h, 1) = elgen(h’ 1) — €leons(h, 1), ifxp, >0,
o 0, otherwise;
elyu(h, t) = eleons(h, 1) — elgen(h, 1), if xp, <0,
e 0, otherwise;

with the electricity balance xj,; = €lgen(h, 1) — €lcons(h, 1)
where €lgen(h, 1) = PVj - sun(z). Prosumers having both
electricity generation and storage can optimize their cost over
a period of time from # to #, through running an LP solver of
the following formulation:
« Objective function:
minimize bill(h, (1, 1,]) = >/, cost(h, 1).

o Constraints (for all 7o <r < t,):
0 < bat(h, t) < By, and
bat(h, t) = bat(h, t — 1) + elgen(h, t) — €leons(h, 1) +
EIin(h, t) - elout(hv t)-

« Optimization variables:
{bat(h, 1), el,(h, 1), elou (h, 1) | 10 <t < 1.}.

with bat(h, ty — 1) indicating the initial battery level.

This simplified model introduced in [5] as ‘‘aggregate
model” does not account for transmission and battery losses.
Note that in order to take continuous online decisions
concerning usage of one’s battery system, one would need
to use forecast data as input to the optimization problem as
in [5], [7], and [13].

C. COMMUNITY COST-OPTIMIZATION

One may wonder how the end-users can in this context make
the most of their distributed resources. Instead of fixing one
of the many forms of a local trade market, we consider as
in e.g. [5], [7], [9] that the energy exchanges occur “‘for
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free”” within the community to obtain and analyze the lowest
achievable cost as a community, while postponing the billing
of individual exchanges to the end of the billing period.
Hence, our focus in this work is on finding communities
that reach the best benefits overall. A subsidiary mechanism
can occur when the billing period ends to distribute the gain
achieved by the community among the peers. Under the
above assumptions and neglecting battery and transmission
losses and communication issues, each community becomes
equivalent to a single prosumer with aggregated PV and
battery capacities over the full community.

1) EXAMPLE

Let us consider as an example a particular grouping of
6 households V. = P U C, including 1 battery-equipped
prosumer p; among 3 prosumers P = {pi1,p2, p3} and
3 consumers C = {c1, 3, c3}, as the one on the left of Fig. 1.
Neglecting losses and communication faults, the community
is then equivalent to a single larger entity with aggregated
consumption from the 6 households, aggregated production
from the 3 prosumers and having as much battery storage as
pP1-

Suppose now the annual cost (i.e. T = [fy, #] spans one
year) of each household 2 € V was bill(h, T) = 1000€
each, for a total of 6000€. As a single community taking
coordinated decisions, they may only have to pay 4800€,
or 800€ each if the 1200€ gain is spread equally among
participants. We use hereafter cost saving for the reduction
in cost obtained through cooperation, e.g. 1200€ in this
example.

Definition 1: Let the cost saving (or gain) for the commu-
nity G be defined as

gain(G. [1, t,1) = Y bill(x, [1o, ;1) — bill(G, [10. 1,]).

xeG

where G is an aggregated prosumer equivalent to G, defined
by: PVg = > .coPVv. By = 2 .cqBx and for each

t € [to.t;], we have €lyen(G, 1) = 3 g€leen(x, 1),
elcons(G» 1= erc elcons(xa r).

D. FROM COMMUNITIES TO PARTITIONS
Among a pool (set of end-users willing to participate in
P2P energy sharing), several communities can be managed
independently from each other. How to partition efficiently
a group of users into independent communities is the main
focus of the present work. For any given partitioning (e.g.
the partition of the households of Fig. 1 into 2 communities,
one of size 6 and one of size 5), we can associate a
global cost saving corresponding to the sum of the cost
savings of each community. Optimizing cost-efficiency of
all resources in a given pool corresponds, from a centralized
perspective, to maximizing the global cost saving. One
can thus summarize the problem of forming P2P energy
communities as follows:
- Input: (forecast or historical data for) (1) energy
consumptions over timespan 7 = [f,t,] for each
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household 7 € V, where V = P U C is made of a
set P of prosumers and C of consumers; (2) local solar
intensity (depending on geographical location) over 7
(3) electricity prices (possibly set at regional level) over
7.

- Ouput: A partition M of PU C into independent groups
(whose size may be limited by a certain constant k).

- Metrics of interests: (1) amount of global cost saving
obtained by the partition M (that is, the sum of the
communities’ gains, i.e., Y ;o) 8aIN(G, [fo, 1,]), cf.
Definition 1); (2) computational overhead of calculat-
ing M.

E. FROM PARTITIONS TO GEOGRAPHICAL PEER
MATCHINGS

The search space for possible partitions of the pool of
households into independent communities is large and much
beyond computational capabilities of any real system of
reasonable size. We hence propose several basic restrictions
on the possible partitions to reduce the combinatorial possi-
bilities. First, communities made uniquely of consumers and
single-node communities can be discarded as they provide
absolutely no benefit in terms of cost-saving. Second, follow-
ing results from previous works in the area [5], [9], we include
communities made of a single prosumer, as allowing several
prosumers provides very little to no advantage in terms of
global cost saving in comparison to splitting such group
into two or more smaller communities. Third, we propose to
limit communities to be only made of nearby households by
restricting the maximal distance between the prosumer and
any consumer in a given community to be within a certain
constant A (hence any household of a community is always
within 2A of each other). Limiting the search radius to A
allows the service provider managing the P2P energy system
to use aggregators! in charge of smaller geographical areas.
Remote control of the end-users’ distributed resources could
in turn be delegated to such aggregators relieving the users
of data exchange and computational work during the P2P
energy sharing process. In addition, having geographically
closer communities allows to have better independence and
load-balance in the system, further reducing the impact of
introducing sharing communities on the underlying grid
infrastructure. Hence, the problem of forming communities
reduces to finding a matching (or assignment) of nearby
consumers to each prosumer in the system, and we thus refer
to it as the Geographical Peer Matching (GPM) problem,
further formalized and defined in Section IV.

In the GPM problem, peers are matched together based
on their current preferences w;(G) at time ¢, which indicate
e.g. the potential saving of a certain community G at time
t. Since data is not known ahead of time, there are two
strategies to compute w;(G): either using only past data, i.e.,

ntermediate infrastructure level between end-users and service provider
where data can be retrieved almost in real time and with fine granularity.
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w; is computed based on data recorded within some timespan
[t — 7, t] for some 7, or using past and projected data.

Since our main focus in this work is on communities lasting
for a long period of time (months to years), the preference
calculation based on projection is not the most appropriate
solution as the accuracy of the forecast degrades fast as the
horizon grows (e.g. poor prediction is expected past 48h).
In this context, peers’ affinity is more reasonably captured
by setting T to the same length as the billing period (e.g.
one year), however, note that our algorithmic approach will
work as well for shorter-term communities (lasting e.g. days
to weeks) and using predictions for calculating the peer
preferences.

Also, we would like to highlight that a long time
horizon for the duration of the energy communities does not
imply that one can disregard the computational burden of
calculating the peer matching. Indeed, the GPM problem is
computationally hard to solve (cf.§ IV-B) and calculating
an optimal solution for a large instance is considerably
beyond the capacity of the computing resources available
at the service provider for P2P energy-sharing. In addition,
in order to compute w;(G), necessary data must be transmitted
(enduring some communication overhead) and a run of an
LP-solver (requiring computation overhead) is required to
solve the cost-optimization problem (see § I1I-B and § I1I-C).
Hence, the computation of a single preference w;(G) is
therefore both costly in terms of data exchanged and local
computation.

The goal of our approach is thus for the group matching
to be computed while keeping the amount of preference-
computation low.

F. GENERAL SYSTEM CONSIDERATIONS

We assume customers can see and use their own data, but
do not have access to their peers’ data. To minimize data
exchanges and reduce stress on the architecture, we assume
the matching happens at a higher level through a third party
dedicated entity. This centralized point of view assumes
the end-users have subscribed to such an external service
provider (being the energy provider or a third agent) in order
to participate in the sharing process, and paying for the
service through a fixed share of the cost saving obtained
by each community. Under this setting, the service provider
is in charge of grouping prosumers and consumers and
supervising the transmission of data needed for the matching;
its goal is thus to achieve the best global cost saving to
maximize its own benefit as well. This also means that, once
a matching has been decided and propagated to the peers by
the system, communities can then work in an independent
fashion. In particular, they do not further need to rely on the
service provider for managing their operate day exchanges,
neither for optimizing their electricity cost. Since end-users
change their consumption patterns and may revoke their will
to participate through time, it may be beneficial to recompute
the matching after a billing period has elapsed.
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G. SECURITY AND PRIVACY IN OUR SYSTEM MODEL
Security [31], [52], [53] and privacy [28], [54], [55], [56], [57]
aspects are important recurring concerns in relation to P2P
energy sharing. We briefly detail hereafter the implications
of our system model in those regards.

1) SECURITY ASPECTS

Concerning potential increase in cyber threats over smart
grids, since we only focus in our study on the group formation
step, there is no assumption of a direct control neither over
the prosumers’ energy resources nor on their interactions
with the grid. Instead, we rely on historical data of the
participant peers to compute the best possible groupings.
Daily management and coordination within the communities
is delegated to an auxiliary service that can subsequently be
built with support of the rich literature covering P2P energy
sharing systems [18]. In a decentralized group formation,
malevolent end-users could also lie about their local matching
preferences. Note, however, as we use in this work a global
optimization criterion, mistrustful end-users can only have an
impact and push the cost savings down in groups where they
appear with a limited impact overall if their number is small
relative to the size of the household pool.

2) PRIVACY ASPECTS

To participate in P2P energy sharing, participants are assumed
to be willing to share information about their energy
generation and consumption in exchange of the cost reduction
offered by the system. In our model, we only rely on
historical data to compute the partition of peers into the
different communities, and since this can be operated by a
service operator, sharing of the involved data with only the
service provider is required avoiding sharing it with all the
other participants in the network. If necessary, a possible
decentralized privacy-preserving scheme as proposed in [5]
can be set, removing the possibility for even the service
provider to have access to individual end-user electricity
consumption and generation data, and instead only the
aggregation over small groups is known to the managing
entity. Differential privacy [58], [59], [60] has also been
proposed to mitigate peers’ privacy concerns.

IV. ALGORITHMIC MODELING FOR GEOGRAPHICAL
PEER MATCHINGS

We present in this section a formalism for the GPM
problem in terms of finding a maximum-weight matching
in bipartite hypergraphs. We then present how to measure
the complexity of algorithms solving the problem and
how certain considerations on the behaviors of the peers’
preferences can simplify the GPM problem.

A. THE GPM PROBLEM ABSTRACTION

1) PRELIMINARIES

A hypergraph G = (V, E) is made of a set of vertices V and
a set of hyperedges E C 2" \ @, where a hyperedge ¢ €
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FIGURE 2. Illlustration of the matching procedures with P = {p,, p,, p3}, C = ¢y, ¢, c3} and k = 3: (a) authorized edge set E, for a given search radius
A, (b) all hyperedges based on E,, (c) pairwise weights, and (d) Round Robin, (e) Single Pass, and (f) Classic Greedy matchings.

E is any non-empty subset of vertices. A hypergraph is said
to be weighted if the hypergraph is associated with a weight
function w : E — R. We say a hypergraph is k-bounded if all
its hyperedges are of size at most k; a 3-bounded hypergraph
is displayed in Figure 2(b).

A matching M in a hypergraph G = (V,E) is a set of
disjoint hyperedges (e and e, are considered disjoint when
they do not share any vertices, i.e., e; N ey = ). The weight
of such a matching is the sum of the weights of the selected
hyperedges that it contains, i.e., w(M) = )" ), w(e), slightly
abusing the w-notation. Given a partition of the vertices into
two disjoint sets P and C, a bipartite hypergraph matching
(BHM) is a matching of a hypergraph G = (P U C, E) that
contains in each selected hyperedge exactly one vertex within
P, i.e., M is bipartite if Ve € E, |e N P| = 1. A k-bounded
matching ensures that each output group is of size at most k;
3-bounded BHMs are displayed in Figure 2(d)-(f).

2) GEOGRAPHICAL PEER MATCHING (GPM)

We define the Maximum-Weight Bipartite Hypergraph
Matching (MWBHM) problem that consists in finding a
bipartite hypergraph matching with maximum weight in a
given hypergraph over vertex set PUC. The problem becomes
dynamic when the weighting function w is time-dependent
w; and the matching problem should be solved for each
time step. The GPM problem of parameter (k, A), for k >
2 and A > 0, written in short form as (k, A)-GPM, is a
bounded version of the MWBHM problem where one adds
the following three additional conditions:

1) Neighborhoods: M is a k-bounded bipartite hypergraph
matching, i.e., Ve € M, |e| < k.

2) Spatiality: peers are geographically distributed and the
matching M should adhere to each peer’s locality: every
consumer of a selected hyperedge of M must be within
geographical distance A of its matched prosumer, i.e.,
YeeM,{p}=enP,YceenC, dist(p, c) < A.

3) Computationally-intensive weights: weights are
assumed unknown beforehand but must be dynamically
calculated (cf. § III-E), and the function is considered
expensive (due to inherent communication and compu-
tational costs) and the main bottleneck of the system.
Complexity of an algorithm solving the GPM problem
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is thus mainly measured in the number of weight
computations, as further explained in § IV-B.

3) P2P ENERGY SHARING AS A HYPERGRAPH MATCHING
PROBLEM

We model the problem of forming P2P energy sharing
communities in a continuous fashion as a (dynamic) GPM
problem of parameters k and A. The underlying k-bounded
hypergraph is G = (V, Ea) where the vertex set V. = PU C
is made of P, the set of prosumers (users equipped with
renewable energy resources) and C, the set of consumers
(with no resources). The set of hyperedges £a is made of all
possible hyperedges that can be part of a k-bounded BHM
and consumer-prosumer pairs are pairwise within distance
A (where k represents the maximum allowed size for the
communities), i.e., Eo C {e = (p,X) € P x 2012 < el <
k, A > max.cy dist(p, c)}. The weighting function w;(G) is
dynamic and can be used to e.g. capture the cost saving of a
particular community G at time ¢ (cf. § V-D). Then, adding
the hyperedge G in the BHM is equivalent of forming the P2P
energy sharing community G.

B. COMPLEXITY OF THE GPM PROBLEM

1) METRICS OF INTEREST FOR THE PROBLEM

The GPM problem belongs to the family of Discovery
Problems [48] where the input is not entirely accessible at
the algorithm’s start but must be queried during its execution.
In the case of the GPM problem, the discovery deals with
the weight of hyperedges (i.e., possible communities in the
P2P energy sharing context) and as the main bottleneck in
computing a solution, the number of calls to the weight
function is one of the main complexity measures to evaluate
an algorithm, along with the quality of the solution. Indeed,
one should not forget that GPM is essentially a sub-variant of
MWBHM and hence its primary goal is still to find the best
possible matching of the hyperedges. GPM can therefore be
considered as a bicriteria optimization problem: maximize
the weight of the matching and minimize the number of
calculated weights.

Hence, considering the difficulty of finding the optimal
solution (cf. Proposition 1) and the additional assumption
on computational-intensive weights, an algorithm A that
produces a matching M as solution to the GPM should be
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evaluated on two main criteria: (1) the number of weights
that were computed by A in order to find M, and (2) the
quality of the solution indicated by w(M).

One should observe that minimizing the number of weight
calculations alone is trivial by just producing an arbitrary
valid matching without calling the weight function. Let’s note
that finding the minimum number of weights that need to be
computed to reach a fraction o of the weight of the optimal
matching is out of the scope of the present work.

Definition 2: We call neighborhood of node v € P the set

Na(v) = {V e C | dist(v,V') < A},

and denote the average neighborhood size by

- 1
% = T > INAW)I,

veP

used for complexity computations in the remaining.

EXAMPLE

For instance, assuming that the nodes are spread uniformly
and independently on a square zone of size L x L with toroidal
properties to simplify,? it is easy to calculate the average
neighborhood size as 4 = m - m(A/L)> = Q(m) for
L = Q(A) where m = |C| (recall Table 2 contains definitions
for all variables).

2) COMPUTATIONAL COMPLEXITY FOR THE PROBLEM

Proposition 1: For k > 4, the (k, A)-GPM problem is
not approximable within a factor of o(k/ log k) in polynomial
time, unless P = NP.

Proof: In general, the hypergraph matching (HM)
problem that consists in computing the maximum-weight
matching of hyperedges does not permit a polynomial time
o(k/ log k)-approximation unless P = NP [35]. There is a
trivial reduction to the weighted k-set packing problem,
known to be NP-complete from Garey and Johnson [61].
Indeed, a hyperedge is nothing more than a subset of the
vertex set, and the k-set packing problem [37] is looking for
a maximum weight sub-collection of disjoint sets, which is
equivalent to finding a maximum-weight matching of non-
overlapping hyperegdes.

Now, adding the bipartite constraint is not reducing the
difficulty of the problem, as one can reduce the GPM problem
to HM as follows. Let G = (V, E) be a k-bounded hypergraph
and let G’ = (V] U V,, E’) be a hypergraph that contains all
vertices of G plus |E| “extra vertices”, i.e., V] = {v. | Ve €
E} and V, = V. Then all hyperedges of G’ are made of those
of G with one extra vertex in each, thatis E' = {eU{v,} | e €
E} with w(e U {v.}) = w(e) for every e € E. Any matching
M of E’ is only made of edges containing exactly one vertex
of V| each; therefore, it is a bipartite hypergraph matching
under our definition. In turn, M is also a matching of G (just

2A torus topology means that each node has on average the same number
of neighbors regardless of its position on the map and is very similar to the
usual map when L > A.
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remove the extra vertex in each hyperedge). Lastly, we can
easily affect the position of each vertex so that they are all
within distance A > 0 from each other, thus defeating the
additional spatial constraint. ]

Proposition 1 states that for cases where k > 4,
no polynomial-time algorithm can guarantee an approximate
solution for the (k, A)-GPM problem within a factor better
than o(k / log k), unless P = NP. In practical terms, this means
that as k grows, the difficulty of finding even a reason-
ably close solution increases significantly, underscoring the
inherent computational intractability [62] of the problem and
justifying the introduction of dedicated algorithms in § V.

When forgetting the spatial constraint, we note that for
k = 2, the problem becomes polynomial and is equivalent to
finding the maximum-weight matching in a weighted bipar-
tite graph, usually then named ‘“‘the assignment problem™.
This is a classic problem where the Hungarian algorithm [63]
provides the optimal solution in time O(nm + n*logn)
for n vertices in the smaller vertex set and m edges,
cf. [64]. Now adding spaciality and assuming 8, as the
average neighborhood size for search range A, this gives
a running time of O(n>85 + n*logn) = O(n’). We note
that such a running time can be already prohibitive for
large n and even for k = 2, the problem becomes more
challenging when considering its distributed equivalent [65].
Efficient discovery algorithms for the assignment problem
were recently explored in [48]. For k = 3, the complexity
of the GPM problem remains an open issue.

3) SUMMARY

The (k, A)-GPM problem has two metrics of interest: quality
of the output matching M (weight of M compared with the
optimal matching M,,,) and number of weight calculations
that were required to compute M . Regardless of the number of
computed weights, we show in Proposition 1 that calculating
the optimal matching M,,, is NP-hard for k > 4 whereas it is
solvable in cubic time for k = 2.

C. REDUCTION AND APPROXIMATION

1) REDUCTION TO A ONE-TO-MANY ASSIGNMENT
PROBLEM

Let’s assume here that the weight of any group G = p U
{c1,...,ce} with? < k—1,p € Pand ¢; € C, can
be calculated as the sum of the individual pairwise weights,
ie, wW(G) = 2 <ow{p, c;}). In this situation, finding
the best group (in terms of weight) of size k containing p
is then equivalent of picking the k — 1 best partners for p.
Hence, the maximum weight matching can be reduced to a
one-to-many assignment problem, that matches members of
the set P with at most k — 1 members of the set C such
that the sum of the individual pairwise weights, i.e., the
“edge weights” w({p, c}), is maximum. This problem can be
further reduced to the classical and well known one-to-one
assignment problem in the following manner: for each p € P,
make k — 1 copies p!, ..., p*"! of node p, while keeping
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the original weights, i.e., Ve € C,w({p/,c})) = w({p,c}).
Finally solve the one-to-one assignment problem (maximum
matching in bipartite graphs) with the input P = {p/ | j €
[1..k — 1],p € P} and C. The hypergraph matching is then
obtained by aggregating all selected edges sharing the same
vertex copy. As aforementioned, the assignment problem can
be solved exactly using the Hungarian algorithm in time
O(P'|2-|C|) = O(kn? - max{8, logn}) = O(kn®), which is
already prohibitive for large systems, see e.g. [66]. We refer
hereafter to as Optimal Pairwise the hypergraph matching
calculated based on the optimal matching using pairwise
weights.

We note that setting the original weights (in the hyper-
graph) to the cost saving does not follow this paradigm
and even though finding the maximum matching of the
pairs do provide a hypergraph matching, it is not guaranteed
any longer to be maximal in terms of the sum of the
weights of the hyperedges. Such an example is given in
Figure 2(f) where M = {{pi, c1, c2}, {p3, c3}} maximizes
2 (p.00ePxC | FeeM. (p.cjee WP €)= 360 but w(M) =
330 and thus M is not maximum, cf. the matching of
Figure 2(d) having a weight of 350.

2) APPROXIMATION FOR THE GPM PROBLEM
As shown in § IV-B, in general the GPM problem is
intractable, however, we show thereafter that if the weights of
the hyperedges can be approximated by using the sum of the
pairwise weights, then it is possible to obtain a (polynomial-
time) solution to the GPM within a bounded-approximation
of the optimal.

Proposition 2: Assume that for everyp € Pand X C C
withl < |X| <k — 1l sothatVc € X, {p, c} € E, we have

a1(k) - D wlp. ¢)) < w(lp) UX) < aa(k) - D wilp. c)).
ceX ceX
and let A be an algorithm for the one-to-many assignment
problem with approximation ratio r, then A provides an r -
ar (k) /a1 (k)-approximation for the (k, A)—GPM problem.
Proof: Let’s suppose we use the construction explained
in § IV-C1 to build a one-to-many assignment problem, i.e.,
a bipartite graph Gp = (Px U C, Ep) with Py = {p/ | p €
P,1 <j <k — 1} from a given (k, A)—GPM instance over
prosumer set P and consumer set C.

Let Mg, be an optimal solution for the (k, A)-GPM
problem and M,,, be an optimal solution for the one-to-
one assignment problem in Gp. Let M, be the hypergraph
matching obtained by merging together all pairs sharing a
copy of a vertex p in the matching M = A(Gp) obtained
by executing A over the input Gp, the graph having been
constructed in a way so that My is an answer to the (k, A)-
GPM problem. Reversely, let M), be the matching of the pairs
obtained by breaking the hyperedges of M, thus forming
edges from Gp.

Because algorithm A has approximation ratio r, we have

w(Mp:)
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Moreover, by the proposition’s initial assumption, we have
(using the lower-bound side)

ay(k) - wM) < w(May)
and (using the upper-bound side)
W(Mopt) < (k) - W(Mp)-

Since W(Mpr) = w(My) and w(M,,) = w(M,) by their
optimality property, we obtain

w(My) = ai(k) - wM)

> oty - )
,
M,
> o (k) - 2
a1 (k)
= W 'W(Mapt)~
Hence, A provides an r-a» (k) /a1 (k)-approximation for the
(k, A)-GPM problem. O

D. PAIRWISE WEIGHTS AS APPROXIMATIVE WEIGHTS
Following the construction presented in § IV-C1, one can
use algorithms to solve the one-to-one assignment problem
to build a hypergraph matching and hence a partition of con-
sumers and prosumers into independent energy communities.
However, the partition will not lead in this case to the global
maximum in terms of weight as shown in the example of
Figure 2(f). Nevertheless, one can bound how far from the
optimal hypergraph matching the constructed matching is
by building on the following proposition (cf. Proposition 1).
In the following, the hyperedge weights correspond to the
ones calculated based on cost savings following Definition 1,
ie., w(G) = gain(G, [t — t,t]) for a certain t (e.g. one
month); ¢ is omitted in the following. Neighborhoods are
defined in Definition 2.

Proposition 3: For every prosumer p € P and group X C
C made only of consumers, with 1 < |X| < k—1, and so that
all consumers of X are located within distance A fromp, i.e.,
Vc € X, ¢ € Na(p), we have

1

— > w(lp, ch < w({phUX) < D" w(lp, c})

|X| ceX ceX

where w corresponds to cost-saving weights according to
Definition 1, i.e., the financial gain of using P2P energy
sharing for the community G = {p} U X.

Proof: For ease of notation, let wy = > ..y w({p, c}).
Lower bound: In any community G = {p} U X, it is always
possible to ignore some of the consumers upon optimizing
for the community’s cost (i.e., adding more consumers to a
community can only produce more benefits and not less).
Hence, we have w(G) > w({p, c}) for any ¢ € X, that is
w(G) = max.ex w({p, c}). Since wx < |X|-max.cx w({p, c}),
we get w(G) > wy/|X]|.

Upper bound: The intuition behind the upper bound comes
from the infeasibility to produce more cost saving as a group
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than the sum of each consumer individually working with
the same prosumer p. If it were possible, one would be able
to re-create an individual strategy for one of the consumers
¢ that would then beat the optimal individual strategy that
produces a gain of w({p, c}). Essentially, each gain obtained
by the community as a whole is either due to an efficient usage
of p’s battery (irrelevantly of the consumers associated with
p) or to a price difference between the price paid by using p’s
local energy (either from the same hour or from p’s battery)
and the current centralized grid’s price.

Suppose one has an allocation A of p’s resources over
time in order to maximize the cost saving w(G) for the
community G, and let’s note wA(G) the cost saving obtained
following such allocation, i.e., w4(G) > WA/(G) for any other
allocation A’ of p’s resources. A provides, for each timestep,
p’s decisions upon the quantity of energy to transfer into/from
its battery system, and by consequence how much energy
is bought/sold from/to the grid by the group while covering
X’s aggregated consumptions. Hence, for any ¢ € X, one
can deduce from A an ‘““individual strategy” A, following A
and counter-acting the energy consumption £ of X \ {c} by
selling £ kWh to the rest of the grid. Intuitively, the cost saving
WA"({p, c}) associated with the A, allocation cannot beat the
best individual allocation for ¢ cooperating solely with p
as a community of size 2, that is wA<({p, ¢}) < w({p, c}).
We formally prove the last statement hereafter.

Let’s have a more focused look first at how the cost savings
are calculated (i.e., base cost minus community cost, over the
time period 7):

wA(G) = Z bill(x, 7) — billy (G, T), )
xeG

with bill4 (G, T) being the cost over 7 under A. Following the
strategy A, denote bat 4 (p, t) the battery of p at time ¢, eli (1)
the energy bought from the grid at time 7 and elp,” () the
energy sold during the same hour. Since we assume A is a
valid strategy, we have that €l..,s(h, ) for h € G is balanced
by electricity coming from either p’s battery, the grid or
p’s local production. Hence, noting bat(t) = bata(p,t) —
bats(p,t — 1) and grid ,(¢) = eli® (1) — elpu (1), we have:

> €leons(h. 1) = bata(t) + lyen(p. 1) + grid (7).
heG

1) INDIVIDUAL ALLOCATION OF THE COMMUNITY'S
BENEFITS
We can now make the consumer allocated energy strategies
under A explicit as follows. Order arbitrarily first the
members of G = {p, cy,...,cr—1} and process the ¢;’s in
the same order (hereafter consider “p = ¢p”):
1) Use in priority the energy from elg.,(p, 1);
2) If el ons(c;, 1) is not yet covered by 1 and if there is still
energy in the battery pool, i.e. bat4(t) > 0, then use it;
3) If eleons(ci, 1) is not yet covered by 1 & 2, then use
energy from grid ,(t).
With such explicit allocations, we can compute “‘individual
cost savings”, that is reusing the w-notation we set wAe) =
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ZteT w’t“(c,-) is the cost saving that we can attribute to c;
and calculated as follows. We set eloutA(ci, t) =0ifi > 0,
elouw (co, 1) = el (1) and eliy (ci, 1) = grid 4(c;, t) where
grid 4(ci, t) is the amount of energy drawn from grid 4(¢) by
the above allocation (potentially O if ¢; only needed solar
panel and/or battery energy during that timestep). Individual
cost saving is then obtained as:

wi(ci) = cost(c;, 1) — costa(c;, 1)

where cost(c;, t) is the usual cost (no community, cf. § I1I-B)
and costa(c;, t) is ¢;’s cost using el,-,,A(c,-, t) and el,,utA(c,-, t)
in the cost calculation (eq. 1). Now, let’s observe that we have
from developing equation 2:

WwA(G) = (Z bill(h, T)) — billy(G, 7)

heG
= > wha.
0<i<k—1
This holds because
billa(G, T) = D costa(h) = D" D" costu(h, 1),
heG heGteT

and irreverently on how the energy is locally allocated in each
timestep, aggregated together, they account for all G’s cost.

Now, let’s show that wA(p) is negative, that is p’s
contribution under our formulation is decreasing the total cost
saving wA(G). In our allocation of resources, p has priority
on its battery and PV panels regardless if it is part of a
community or alone. However, if p were left alone, some
elgen(p, t) or bat,(t) could have been sold to the grid or
stored instead of being used by the other peers forming the
community G, which could eventually only decrease p’s cost
(and cannot increase it by any mean).

Now, recall w({p, c}) is the optimal cost saving for the pair
{p, c}. Consider the strategy A, for the pair {p, c} that follows
A except it sells to the grid the energy that was originally
intended to cover the other consumers 2 € G \ {p, c}. Since
A, is not optimal in regards to the pair {p, c}, wAf({p, c}) <
w({p, c}). Obviously thanks to the additional benefits coming
from selling extra electricity, the cost under A, is strictly less
than costy(h) entailing w(c) < wi<({p, c}). However, A.
being a valid strategy for the pair {p, c}, one also gets that
wie({p, c}) < w({p, c}) which entails w(c) < w({p, c}).

We can now conclude our proof by putting together the last
two claims:

WG = D wrey=wrp)+ D vwhe)
0<i<k—1 1<i<k—1
< D> wp.cb.
1<i<k—1

]

In our evaluation, we compare the bounds shown in
Proposition 3 with those calculated in practical instances in
Figure 4 and conclude that the theoretical bounds shown
here are close to those observed in practice. At last, let
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us derive from the previous proposition an approximation
bound for the GPM problem by using the optimal pairwise
weights as approximation for the hyperedge weights. Using
in Proposition 2 the optimal assignment over Gp = (P U
C, EA) obtainable in O(kn3) with the Hungarian algorithm,
and considering the bounds provided by Proposition 3, i.e.,
a1(k) = 1/(k — 1) and ap(k) = 1, we obtain the following
result.

Corollary 1: For cost-saving weights, it is possible to
compute a (k—1)-approximate hypergraph matching solution
to the (k, A)—GPM in O(kn®) time.

V. EFFICIENT PEER MATCHING ALGORITHMS

We describe in this section algorithms that produce a
solution (i.e., a hypergraph matching) to the GPM problem
with the input of the matching problem being a bipartite
graph based on end-users location (as defined in § IV-A).
In order to balance the trade-off quality of the solution versus
computational load in different ways, we present in § V-B
three different algorithms: Round Robin, Single Pass and
Classic Greedy, then explain in § V-D how to instantiate them
using different weight functions.

We analyze here the time-complexity of the introduced
matching procedures; we note the weight function is constant
in this analysis. Dealing with the latter, for each algorithm
and weight function, we provide an asymptotic analysis of
the number of weight computations in order to produce the
solution in § V-D. Recall that following § III-E, in order
to reduce the search space, we have restrained hyperedges
to contain exactly one member of the set P (a prosumer
in our context). It is worth noting that all the algorithms
can be easily adapted if this constraint is lifted by including
prosumer-prosumer pairs in Ex and changing the line where
the possible neighbors are calculated.

A. DEFINITIONS

Let P U C be the input of a GPM problem of parameter
(k, A). We assume that weight(p;, ¢j, M;, t) returns a weight
associated to node p; € P and node ¢; € C and possibly
using a partially computed set of nodes M; C C that are
already associated with p;, whereas ¢ indicates the current
time-step (recall, weights are time-dependent). This function
can be resolved by either:

1) executing a computationally-expensive procedure that
relies on solving one or several LP-programs as defined
in § I1I-B and III-C;

2) simply performing a look-up of a previously computed
weight.

When a weight is obtained in the first case above, we say
it is computed; such computation is the bottleneck of the
matching procedures and is highlighted in the pseudocodes
of the algorithms. The input of the matching algorithms is
the bipartite graph Hx = (P U C, Ea) where E captures all
neighborhoods at geographic distance A from each prosumer,
ie, EA = {(i,j)) € Px C | dist(pj,¢j)) < A}; an
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Algorithm 1 Round Robin Matching Procedure
Input : A bipartite graph Hx = (PUC,Epx)and k > 2
Output: M, a k-bounded bipartite hypergraph matching;
// Initialization
1 foreachi € P do
2 ‘ Ml' <~ 5
3 foreachj € C do
4 | S < False;
5 U < order(P) ;
6
7
8
9

while ¥ = (J do

foreachi € ¥ do
N < {jeC|{ij} € EaA NS},
ifN =0 v |M;| =k — 1 then
10 | W W (i}
11 else
12 if |IN| > 1 then
13 foreachj € N do
14 | b < weight,(p;, ¢;, M),
15 { < argmax;cy bj;
16 else
17 | €< N[1]
18 S¢ < True ;
19 M; < M; U {£};

[
=)

return {M; | i € P};

example of Ex restraining possible hyperedges is illustrated
in Figure 2(a)-(b). We highlight in the following remark that
the presented Peer Matching algorithms are more general
than the GPM problem.

Remark 1: Note that Algorithms 1, 2 and 3 do not rely on
the geographical positions of the nodes but on the authorised
matching pairs captured by Ea, hence any bipartite graph
can be given as input and the algorithms can be applied to a
wider range of problems.

The function order(P) sorts the set P according to a
predefined ordering, to be provided by the user (cf § VI-A
for the ones used in our evaluation). As an example, the
matchings obtained by the three algorithms are displayed
in Figure 2(d)-(f) when using the pairwise weights of
Figure 2(c) with processing order p1, p2, p3.

B. ALGORITHMS FOR EXPLORING THE DESIGN
SPECTRUM

1) ROUND ROBIN MATCHING

Algorithm 1 builds a bipartite hypergraph matching by
affecting to each prosumer one consumer at a time in a
round-robin fashion. If no consumer can be affected to p
(either because p has already k — 1 consumers affected or no
unmatched consumer is found within distance A of p), p is
skipped (and discarded from subsequent matching attempts).
Hence, all prosumers get at most 1 consumer each before a
second iteration starts in affecting a second consumer to every
prosumer. When a prosumer has a choice of which consumer
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Algorithm 2 Single-Pass Matching Procedure

Input/Output: as in Algorithm 1.
// Same as lines 1-5 in Algorithm 1
1 foreachi € P do
N < {jeC|{ij} € EaN—Sj};
if [N| > k then
foreachj € N do
‘ bj <~ WEightt(pi, ¢, M;);
while |M;| <k — 1do
{ < argmax;.y bj;
M; < M; U {£};

o L N N AW N

else
‘ M; < N;
foreach j € M; do
‘ S; < True ;
return {M; | i € P};

==
N = O

—
w

Algorithm 3 Classic Greedy Matching Procedure

Input/Qutput: as in Algorithm 1.
// Same as lines 1-5 in Algorithm 1
1 foreach {i, j} € Ex do
2 ‘ bi,j <~ weightt(pi, ¢, M;);
// Sort all possible matching pairs
by decreasing weights
3 B < decreasing_sort({b; | {i,j} € EA});
4 foreach b; € B do
5 if [M;| < k — 1 A —=S; then
6 S; < True ;
7 M; < M; U {j};
8 return {M; | i € P};

to pick, it greedily selects the consumer with highest weight;
how the weights are settled is further described in § V-D.

2) SINGLE PASS MATCHING

Contrary to the previous one, Algorithm 2 builds a matching
in a single pass over the prosumers. For each prosumer p,
the k — 1 best available consumers (in terms of weight) are
matched with p.

3) CLASSIC GREEDY MATCHING
Algorithm 3 is the “classic” greedy procedure for
solving the assignment problem (cf. § IV-Cl) that,
based on pre-computing all pairwise weights, sorts the
prosumer-consumer pairs (p, ¢) € Ex from highest to lowest,
then associates consumers to prosumer whenever possible (¢
not already matched and p having less than k£ — 1 affected
consumers). As it is well-known that the greedy algorithm
provides a 2-approximation to the assignment problem [48],
Propositions 3 and 2 entail an approximation bound of
2 - (k — 1) on the quality of the output of the algorithm.
Corollary 2: Algorithm 3 provides a 2 - (k — 1)-
approximation for the (k, A)—GPM problem.
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C. ALGORITHMIC TIME AND SPACE COMPLEXITY

We analyze here the time complexity of the three introduced
matching algorithms, assuming a constant time for each
weight calculation.

Proposition 4: Algorithms 1, 2 and 3 run in respectively
O (mk), O (m) and O (mlogm) time, and use O(|EA|)
memory.

Proof: Algo. 1: the main while-loop is executed at most
k times (after what all prosumers have been removed by
line 10) and each inner for-loop goes through |P| prosumers,
each time calculating the best local choice using O(|Na(p)|)
for prosumer p. The inner for-loop thus takes total time
O(IP| + |Eal) = O@AlPD).

Algo. 2: line 5 is executed O(|Ea|) times whereas lines 6-8
also take O(m) in total when using a selection and partition
algorithm to find the & — 1 highest unsorted weights in each
neighborhood.

Algo. 3: this is the time needed to sort all weights, then
going through the sorted list takes O (|P|35) time.

Memory: Algo. 1 and Algo. 2 only require to store one
bit per node, the constructed matching and momentary
one node’s full neighborhood, hence only O(|V|) space in
addition to its input. Algo. 3 requires storing and sorting all
the input edges. (|

D. INSTANTIATION OF THE WEIGHT FUNCTION

We define here two ways to calculate the weights: either in a
“memoryful” fashion, taking into account previous choices
made by the matching algorithm, or in a “memoryless”
one with constant weights only depending on the involved
prosumer and consumer pair (p;, ¢;) being examined. For each
variant, we propose two ways to calculate the weight for a
given pair, either based on the energy cost produced by the
pair working as a community in the recent past [t — t,¢]
(running a single LP-solver as described in § III-B and III-C)
or based on the cost-saving produced by the pair over the
same period [t — 7, ¢]. In the former case, the goal of the
GPM problem being to minimize the total cost, we inverse
the weights to keep a maximum-weight problem. In all, four
weight functions are defined as WX, (i, ) to instantiate the call
to WEightt(p,', ¢j, M;).

1) MEMORYLESS WEIGHTS
Using memoryless weights (WA and WB) means that the
weights are constant and independent of the matching pro-
cedure being run. This also means that building the matching
is nothing more than solving the classic assignment problem
(as described in § IV-C1). An example of memoryless weights
is given in Figure 2(c) where a weight is given for each pair
(p, ¢) € P x C. We set the memoryless weights as follows:
WAt(lv.]) = _blll({plv C/}7 [t -1, t])i
WB, (i, )) = er{pi,c,} bill({x}, [r — 7, 1)) + WA,(, )).
Proposition 5: Algorithms 1, 2 and 3 need to compute
O(m) memoryless weights to solve the (k, A)—GPM problem.
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Proof: Note Algorithms 2 and 3 only call the weight
routine once per prosumer-consumer pair, hence O(|Ea|)
weights are ever calculated. By remembering previously
computed weights, Algorithm 1 needs also to compute each
weight only once since the current matching is not involved
when using memoryless weights. O

Regarding the minimum number of weights to compute,
the three algorithms differ. Algorithm 3 needs to sort all the
weights, so |Ea| weights are always computed regardless
how the nodes are distributed in space. However, for
Algorithm 1 and Algorithm 2, there exist cases where none
of Q(|P|?) weights are computed.’ It is naturally possible
to pre-compute all the O(n*) memoryless weights based on
some Ex. However, we note that the necessary number of
weights to compute may be lower when using Algorithm 1
and Algorithm 2.

2) MEMORYFUL WEIGHTS
We define two memoryful weight functions (WC and WD) to
take into account the already matched pairs, hence trying to
provide the most accurate answer to the bipartite hypergraph
matching problem. The weights are set as follows:

WC, (i, j) = =bill(M; U {p;, ¢;}, [t — 7, 1]);

WD (i,)) = ZXEMJ'ULDI»C]} bill({x}, [r — 7, 1])) + WC,(i, j).

Proposition 6: Algorithms 2 and 3 need to compute O(m)
weights when using memoryful weights for solving the GPM
problem of parameter (k, A); Algorithm I needs to compute
O(km) weights.

Proof: Variants C and D now depend on previous
matching. As with memoryless weights, Algorithms 2 and 3
only call the weight routine at most once per edge in Ea,
hence O(|EA|) weights are ever used. Note that for those
algorithms, memoryful weights are identical to memoryless
ones. For Algorithm 1, the number of weight calculation is
bounded by its time complexity, cf. Proposition 4. g

For Algorithm 1, pre-computation is not needed as each
time the weight function is called, a weight calculation must
occur (i.e., M; is different for each iteration).

3) SAMPLING FOR REDUCING THE SEARCH SPACE

One solution to further reduce the number of weights to

compute is to sample the neighborhoods, before executing the

matching procedure. We propose here two sampling methods
for a given sampling size s. For neighborhoods containing
less than s consumers, we keep them all, otherwise for

neighborhood N:

« Random: pick uniformly at random s neighbors in NV;

« Greedy: pick the s consumers with largest consumptions in
N (expected to produce higher cost savings than the others).
Applying such a sampling step as a pre-processing of the

neighborhoods reduces the number of weights to compute to

only O(ns).

30ne can indeed construct the following example (for Algorithm 1): p; is
positioned at (0, i - £) and ¢; is positioned at (0, A + - gYwith0 < ¢ < %

ande <&’ < %
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TABLE 3. Summary of our proposed approaches to solve the GPM
problem (all relying on pairwise weights as described in § IV-D) compared
with a traditional solution based on local search booted by calculating a
greedy hypergraph matching as an initialization step.

Proposed Space Time
Algorithm Bound# Bound#

O(kn* log(n))

Weight No. of | Approx.
Function | Weights* | Ratio®
weight, O(nk) k
Memoryful | O(km)

Greedy Hypergraph | O(n*)

Round Robin O(m) O(km) None
Memoryless | O(m)
Single Pass O(m) O(m) Memoryless | O(m) None
Classic Greedy O(m) | O(mlog(m)) | Memoryless | O(m 2(k —1)
Optimal Pairwise | O(n?) O(kn3) Memoryless | O(n?) k—1

# Assuming for simplicity that |C| = O(n). Also, recall m = |EA .

* Sampling weights (cf. V-D3) can be applied to all our approaches and
reduce weight calculation to O(ns) for a sampling size of s.

© Using cost-saving weights for the algorithms using pairwise weights.

E. SUMMARY OF OUR ALGORITHMIC APPROACHES

The complexity bounds, approximation ratio and weight
functions of all our introduced approaches are summarized
in Table 3, along the classic greedy algorithm over the
hyperedges as baseline reference. Each algorithm presents
interesting perspectives and trade-offs: Optimal Pairwise
is likely to achieve a better solution, Classic Greedy
reduces space/time complexity while guaranteeing a bounded
approximation, Single Pass is the fastest algorithm time-
wise, while Round Robin offers the possibility to con-
sider the current state of the matching using memoryful
weights.

One can observe that all the proposed algorithms compute
significantly fewer weights than the number of hyperedges,
that is bounded by O (|P| . (kil)) = Oms1), with 8
being the maximum size of the neighborhoods, i.e., § =
max,cp [Na(p)|, or said otherwise whenever |C| = O(n), the
number of hyperegdes can be in ©(1%).

VI. EXPERIMENTAL STUDY

We present in this section an experimental study com-
paring the performance of the proposed algorithms in
terms of number of computed peer matching preferences
(i.e., hyperedge weights) versus the amount of cost saving
produced by the computed matching (i.e., the quality of the
output matching) exploring in details communities of size
at most 5 with a billing period of one year. We further
investigate the aforementioned trade-off by analyzing the
quality of the solution versus the maximum size of the
communities, the computational and cost saving efficiency of
pre-sampling the neighborhoods and the gains obtained with
shorter billing periods. At last, we complement our results
with experiments on scaled instances demonstrating the
scalability of our proposed approach and further summarize
all our results.

A. EXPERIMENTAL SET-UP

1) ENERGY DATA

Consumption profiles of 2221 real households are used in this
study, originating from [67]. Each trace contains electricity
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(a) User positions

(b) Prosumers' neighborhood sizes (incl. all households)
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FIGURE 3. Dataset used in our evaluation: (a) Position of the users with an example of grid infrastructure relying them;

(b) Size of the neighborhoods.

consumption measures on a hourly basis for a different
household for one year.

For our experimental evaluation, following current trends
and near-future realistic projections of energy resources [16],
[68], [69], we have equipped households willing to participate
in the energy-sharing system with energy resources as
follows: 10% of them are prosumers with only PV panels,
10% are prosumers with both PV panels and a battery system,
and the rest are usual consumers.

Capacities for the energy resources are set for each
prosumer relative to its average electricity consumption
following the current trends on installed PV capacities (based
on the Open PV 19 dataset [68]). An hourly solar profile is
used here assuming same roof panel orientations [70]. We use
in our study the original city position of the households
(obtained through using their respective zipcode), where we
added a small random offset of up to lkm, see Fig. 3(a).
The hourly electricity price profile is based on the output
from a European scale dispatch model [71]. Taxes are set to
tax = 25%, el,;, = 6.9 € cents/kWh and el,,, = 0.58 €
cents/kWh.

2) ALGORITHMS

We compare in this study the three procedures defined
in § V-B: Round Robin, Single Pass and Classic Greedy
algorithms, as well as the hypergraph matching computed
based on the optimal pairwise matching as described in
§ IV-C1. For the first two, the order in which prosumers are
processed can take three forms: Increasing or Decreasing
order of their average energy consumptions, or decreasing
order of their energy resources (Resource); the latter is
obtained by adding together both PV capacity (kWp) and
battery capacity (kWh). Single Pass and Classic Greedy
algorithms can be tuned to use two variants of the weight
function (as explained in § V-D): cost-based weights (WA)
or saving-based weights (WB). In addition to the above
two variants (referred as ‘“memoryless weights’’), the Round
Robin algorithm is tested with the two memoryful counter-
parts: cost-based memoryful weights (WC) or saving-based
memoryful weights (WD). We hence tested the 16 different
combinations of algorithms, prosumer orders and weight
functions of Table 4 (cf. first three columns of Table 5). The
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TABLE 4. Tested parametrized procedures for comparing our Peer
Matching algorithms (cf. § VI-B).

Algorithm | Processing Order | Weight Function
Increasing WA, WB, WC, WD
Round Robin Decreasing WA, WB, WC, WD
Resource WA, WB
Single Pass Decreasing WA, WB
Resource WA, WB
Classic Greedy - WB
Optimal Pairwise - WB

experiments were run on a high-end server (Intel Xeon E5
2650 CPU, 64GB RAM) where computing a single weight
takes about 2 seconds (corresponding to the execution of an
LP-solver with 26280 input variables for a cost-optimization
over one year of data).

3) SEARCH RADIUS

We set for the experiments 8 different search radii: 100m,
500m, 1km, 3km, Skm, 10km, 20km and 40km. For each
search radius, Fig. 3(b) presents the distribution of the size of
the nodes’ neighborhoods (only based on the node positions).
Since the search radii of Skm and 10km produce very similar
neighborhood sizes as 3km, we omit them in the rest.

4) PAIRWISE VERSUS HYPEREDGE WEIGHTS
All studied memoryless algorithms manipulate only the
pairwise weights to infer their matching decisions. Following
Proposition 3, we know that when using cost-saving weights,
we can upper- and lower-bound all hyperedge weights in
relation to the sum of the pairwise weights. Fig. 4 explores
what is the distribution of the ratio between the hyperedge
weights (the “real weights’”) and the sum of pairwise weights
(the ““approximate weights” as presented in § IV-D), i.e., the
parameter w({p} U X)/ >"..x w({p, c}). The figure illustrates
how close to the theoretical bounds of 1/(k —1) (lower
bound) and 1 (upper bound) the actual values are, when
considering a range of lkm (using about 80k weights for
possible triplets, 10k pairwise weights and 1000 random
samples for 4- and 5-weights).

One may observe that (i) the bounds obtained in Propo-
sition 3 are very close to being tight for k = 3, (ii) the
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FIGURE 4. Comparison of hyperedge weights with the sum of pairwise
weights for memoryless cost-saving weights, search radius of 1km, and
k =3 to 5; For k = 3, all weights are considered, while for k = 4 and

k =5, 1000 randomly chosen weights are used.

lower-bound is quite close to the lowest found ratios and
that, (iii) the ratios are in general between 0.5 and 0.9.
This indicates that pairwise weights do provide a suitable
approximation for the weights of larger groups.

B. COMPARISON OF PEER MATCHING ALGORITHMS

We shall hereafter compare the performance of all our
algorithms based on our two performance measures: quality
of the matching (in terms of cost saving achieved by the
communities) and number of weight calculations (main com-
putational bottleneck) for the 16 parametrized procedures of
Table 4.

1) QUALITY OF THE MATCHING

The solution obtained using the studied algorithms is
summarized in relative terms in Table 5. The results are
calculated upon matching together 445 prosumers (half of
them having also a battery system) with 1776 consumers into
groups of size at most k = 5 containing exactly one prosumer
each and running the LP-solver (cf. § III-B) over a year of
data to obtain each community’s yearly cost (used as the
hyperedge weight). Recall the hyperedge weight is the basis
of the weight function in Algorithms 1, 2 and 3, following
the four different ways to calculate weights as presented
in § V-D.

In our scenario, up to 150k € can be saved when all
the nodes cooperate in a single community (equivalent
of setting A = k = o0), from which up to 91.6%
can be recovered by using A = 40km and £k = 5.
In terms of quality of the solution, the Single Pass algorithm
using decreasing order and cost-based weights is clearly
outperformed by the rest, whereas the three best performing
ones are the Optimal Pairwise, the Classic Greedy and the
Round Robin algorithm using decreasing order and WD (all
with cost-saving weights). Closely behind, we note the high
performance of both the Round Robin (decreasing order,
WB) and the Single Pass (WB) algorithms, both computing
significantly less weights than the algorithms that require
the full pairwise weight list (Optimal Pairwise and Classic
Greedy).
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1e11 Computed weights for different algorithms, k=5
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FIGURE 5. Average number of calculated weights for the different
matching algorithms and search radii; k = 5.

2) NUMBER OF WEIGHT CALCULATIONS

Fig. 5 presents the number of pairwise or group weights®
calculated along the computation of the matchings of Table 5.
Recall a weight calculation corresponds to running a LP-
solver (§ III-B) and may correspond to calculate the cost
or cost-saving of a community of size 2 up to k (only for
memoryfull weights of the Round Robin matching).

All algorithms (except the sampling ones) display a
quadratic increase in number of weights as the search radius
increases, with varying slopes. Confirming the theoretical
upper bounds given in Section V, memoryful weights entail a
large computational overhead. On the contrary, memoryless
weights reduce the burden on calculating weights with
the Single Pass algorithm only calculating about 57% of
all prosumer-consumer pairs, and less than 25% of the
memoryful weights. As expected, sampling s values among
the neighborhoods further reduces the weight computations
to a bit less than ns in total. One can observe that all
tested algorithms compute several orders of magnitude fewer
weights than the number of possible communities, at about
414 billion possible communities for A = 40km, that would
be required to compute in order to run a greedy algorithm on
the input.

3) NEIGHBORHOOD SIZE
The neighborhood size providing the best trade-off depends
on the search radius, as shown in Fig. 6(a) with the cost saving
produced using different bounds on the community size (k).
In our evaluation scenario, using k = 5 provides a cost
only 0.01% inferior than using & = 10 for the Round Robin
algorithm. For the Single Pass algorithm, using neighborhood
sizes above 5 is even detrimental as the first prosumers get

4Variability is negligible in our evaluation: the average value is displayed
with error bars, if any, indicating min-max values accounting for the different
tested weight functions and prosumer orders. Both Optimal Pairwise and
Classic Greedy require the same number of weights, |[Ex |.
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TABLE 5. Comparison of the different algorithms, processing orders and weight functions .

Matching Algorithm (§ V-A) | Processing Order (§ VI-A) | Weight Function (§ V-B) | 100m | 500m | 1km | 3km | 20km | 40km
WA 9.5% | 60.9% | 74.2% | 78.8% | 81.6% | 83.8%
WB 9.3% | 61.7% | 73.7% | 78.5% | 80.3% | 82.4%
Increasing
wC 9.5% | 60.9% | 74.3% | 78.9% | 81.6% | 83.9%
) WD 9.3% | 61.7% | 74.1% | 79.0% | 81.0% | 83.2%
<
E WA 9.5% | 61.7% | 74.8% | 79.0% | 82.2% | 85.0%
Q
Q
= WB 9.6% |64.4% | 77.9% | 82.9% | 85.0% | 87.4%
g Decreasing
Q% WwWC 9.5% | 61.7% | 74.7% | 79.0% | 82.1% | 84.8%
WD 9.6% | 64.4% | 78.1% | 83.4% | 85.6% | 88.3%
WA 9.6% | 61.8% | 75.4% | 79.3% | 82.4% | 85.0%
WB 9.6% | 58.7% | 77.9% | 82.8% | 84.8% | 87.3%
— Resource
C:b WA 9.5% | 58.7% | 71.5% | 73.4% | 76.1% | 79.2%
=
e WB 9.5% | 61.1% | 75.0% | 79.7% | 83.6% | 86.9%
w
<
ﬁ: WA 9.5% | 58.7% | 68.8% | 71.1% | 74.7% | 77.6%
En Decreasing
93] WB 9.5% | 61.1% | 73.6% | 78.7% | 82.5% | 86.0%
Classic Greedy (Alg. 3) WB 9.6% | 62.7% | 77.5% | 83.2% | 86.7% | 90.5%
Optimal Pairwise (cf. § III1.C) WB 9.6% | 64.0% | 79.0% | 83.7% | 87.6% | 91.6%

* Tested weight functions: cost-based memoryless (WA) or memoryful (WC) and saving-based memoryless (WB) or memoryful (WD). The presented percentages are the fraction
of the gain obtained by the matchings when compared with a single unrealistic 2221-households community. Best results for each search radius are displayed in bold, and for
indication only and to ease the reading of the table, performance (compared with the best procedure for a given radius) is indicated by a background with a darker shade of

green.

matched with a large amount of peers which removes the
possibility for later processed prosumers to get consumers
at all. We note choosing k should follow the distribution of
prosumers in the pool.

4) WEIGHT SAMPLING

We analyze the effect of weight sampling in Fig. 6(b). The
two strategies to sample a fixed number of potential partners
in each neighborhood are compared: either perform a random
or a greedy selection. The result clearly favors a random
selection which is very efficient even for small sampling
size (here, 2k = 10 to 4k = 20 neighbors), whereas the
greedy solution only catches up for large sampling size (both
converges to the non-sampling algorithm when s reaches 4§,
the maximum size of the neighborhoods).

5) CONTINUOUS MATCHING

In previous experiments, we have used historical data for
one year as input to the aggregate model (LP-optimization)
to calculate the peers’ matching preferences. This is based
on the assumption that the peers participating in long-term
energy communities will likely reproduce overall the same or
similar consumption patterns over time (and entailing similar
matching preferences in the future), cf. [9], [72].
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The impact of performing the peer matching on smaller
intervals than one year is studied in Fig. 6(c). The figure
displays in relative term the cost saving achieved when
performing the peer matching every week, second week,
month, and second month, with all compared to the one year
matching used so far (set to 1). The cost savings obtained with
all smaller periods decrease compare to using a year of data,
but only to a very small extend, all reaching at least 99% of
the yearly saving. Even though shorter interval communities
could potentially gain from seasonable changes in finding
ideal trading partners among fellow peers, this experiment
confirms that long-term communities are very robust in terms
of cost-saving.

C. SCALING EVALUATION AND VALIDATION

We provide here an evaluation of our approach, methods, and
introduced algorithms on larger problem instances with the
largest instances containing more than 100k end-users and
180M edges (allowed prosumer-consumer pairs), simulating
a possible future large-scale adoption of P2P energy sharing
at e.g. the city- or region-level.

1) DATA OF LARGE INSTANCES
To build larger graph instances, we scale our original
real-world dataset of 2221 end-users. Let I1 be the household
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FIGURE 6. Sensitivity analysis showing the impact of (a) different
maximum neighborhood sizes, (b) pre-sampling the neighborhoods and
(c) shortening the billing period.

TABLE 6. Scaled instances with number of prosumers, consumers, edges,
quantity of data (billing period) and average execution time of the
LP-solver. NB: one edge’s weight calculation requires at most 2 runs of
the LP-solver.

# P |C| |Ea| Qty. of data  Time/pb (s)°
1 445 1776 66979 1 year 2.08+ 0.172
2 890 3552 269156 6 months 1.08 £ 0.116
3 1335 5328 601965 4 months 0.76 + 0.075
4 2670 10656 2412378 2 months 0.435 + 0.056
5 5785 23088 11383965 1 month 0.266 + 0.036
6 11570 46176 45657204 2 weeks 0.172 + 0.028
7 23140 92352 182551323 1 week 0.125 £ 0.02

b Over 100-1000 sampled executions, & standard deviation.

pool instance used in the experiments of § VI-B. Instances 12
to I7 are obtained by scaling up the dataset as follows (see
Table 6 for the parameters of all scaled instances). We divide
the year into smaller portions (from 1 week to 6 months) and
the consumption data associated to each portion is used as
stand-in for one user in the scaled instance. In this process,
we keep the initial PV and battery capacities of the initial
household, hence the proportion and distribution of resources
among prosumer vs. consumer stays the same in the scaled
instances.

The solar profile and price time series are identical for all
users and correspond to a portion of the original data centered
around the mid-year hour. Neighborhoods are randomly

generated as follows: all end-users receive a random position

within a square area of size 1 x 1 and we set A = ﬁ

leading to neighborhoods containing around 10% of all users
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FIGURE 7. Experiments on scaled instances: cost efficiency (€ per billing
period) and time efficiency (execution time in seconds) for different
approaches as a function of the number of edges in the input instance.

(matching our settings used in § VI-B when A was set to
40km). It is important to note that no household consumption
data is ever duplicated neither simulated in the generation of
the scaled experiments.

Time measurements are obtained with the Python pyomo®-
based implementation relying on the coin-or/Cbc® open-
source LP solver on an openSUSE-Tumbleweed server
equipped with an Intel Xeon CPU ES5-2695 2.1GHz
and 64 GB RAM.

2) EXPERIMENTS ON SCALED INSTANCES

We present the results of the experiments on large instances in
Figure 7. For the cost saving, we use the single pass algorithm
(Algorithm 2) with k = 5 and cost saving weights combined
a random pre-sampling of the neighborhoods. The upper
bound of cost savings in Figure 7 corresponds to the benefit
obtained without using small groups but instead a single
community that encompasses the entire pool of households.
Using a small sampling size of 6 to 15, our solution already
reaches up to 88-89% of the theoretical highest possible
saving (with groups of arbitrary size, not only limited to
size up to 5) while requiring about two orders of magnitude
less computation time compared to calculating the cost of all
prosumer-consumer pairs (for example, Algorithm 3 or using
the optimal matching over the pairs).

Note that we only considered here algorithms based on our
modeling of using pairwise weights to build the partition.
When considering existing state-of-the-art algorithms for
the hypergraph matching problem [37], [38], [39] with
hyperedges of size 5, we estimate to 31 years of our CPU time

5 http://www.pyomo.org/.
6https:// github.com/coin-or/Cbc.
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for the computation of all weights for the smallest instance
I1 (prerequisite for computing the initial greedy solution),
and up to 10'7 seconds for the largest instance. Our proposed
solutions hence produce high quality solutions, likely within
a couple of percentage points from the optimal for the set
maximum size k for the groups, while being able to scale to
very large instances.

D. SUMMARY OF THE RESULTS
In short, our experimental evaluation leads to the following
observations on our dataset:

1) tomaximize cost-efficiency, use Round Robin (decreasing
order, WD) for a small search radius and Classic Greedy
or Optimal Pairwise for larger search spaces;

2) memoryful weights do not provide a significant advantage
in terms of cost-saving that justifies the induced overhead,
with Round Robin (Decreasing or Resource order, WB)
algorithm providing one of the best trade-offs overall in
our experimental scenario;

3) applying a random pre-sampling of each neighborhood
of e.g. s = 20 weights for k = 5 reduces drastically
the computational overhead with little impact on the
cost-efficiency, with further reductions obtained using
the Single Pass algorithm. For a large search radius, the
latter only requires a very small fraction of the weight
computations of a brute-force approach enumerating all
possible communities (about e.g. 2- 1078 for A = 40km).

4) our methods can scale to systems with up to a hundred
thousand end-users and produce a cost-competitive and
computationally efficient solution.

VIi. CONCLUSION

This paper studies the peer matching problem to participate
in P2P energy sharing. We introduce the Geographical
Peer Matching problem within a well-defined mathematical
framework setting the problem as a hypergraph matching
problem with a bounded search radius A and output
partitions of size up to k. This allows known approximation
algorithms for the weighted k-set problem to be ported to
our energy sharing setting. To provide an efficient solution
to the problem, we introduce and analyze three different
matching algorithms that do not require to compute all O(n%)
possible weights (each requiring the run of a computationally
expensive LP-solver) but only at most O(kn?). We also
provide optimizations that, even though they do not change
asymptotic behaviors of the proposed algorithms, are shown
in this work to yield a practical computational advantage
without sacrificing the quality of the produced solution.
Pre-sampling the weights can further reduce the number
of weight calculations to O(sn). For instance, this means
that over the more than 10'* possible communities over
our 2221 household pool, the cost savings of only 10,000
communities need to be calculated to reach a close to optimal
partitioning. Our extensive experimental study shows that up
to 91.6% of the benefit of a very large community (i.e., of size
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k = n and unbounded geographical diameter A = 00) can
be obtained by limiting communities to 5 nodes only using
a small bounded geographical search radius. We demonstrate
that the introduced algorithms are both scalable in terms of
required computation, handling up to hundred of thousands
of users, and efficient in terms of the quality of the computed
solution, achieving performance close to an optimal solution.
We further expect that as the introduced algorithms are more
general than our specific problem, they can also be useful in
other contexts where it is challenging to compute a solution
to the hypergraph matching problem.

Some practical aspects for further research are (i) how
to push parts of the matching computation towards the
end-users for a more edge-friendly solution, for saving data
transfers and caring about the privacy perspective [73], [74],
while transitioning from batch-based to the online analysis
required by today’s smart metering infrastructure [75], [76],
and (ii) how to update the matching dynamically and
maintain a stable network through the arrivals and departures
of peers [77], [78], possibly building on and adapting
previous distributed and adaptive algorithms for matching
with preferences [79], [80].
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