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ABSTRACT This study presents the development of an advanced machine learning model based on a
two-dimensional (2D) Radio Frequency (RF) sensing framework for refined monitoring of femoral bone
fractures. Utilising MATLAB simulations, we created a comprehensive dataset enhanced with variations
in bone diameter, muscle thickness, fat thickness, and hematoma size, augmented with multiple sensor
configurations (two, four, six, and eight sensors). The model aims to provide a frequent, non-invasive
assessment of the fracture healing process compared to conventional imaging methods. Our approach
leverages data from six RF sensors, achieving a high overall accuracy of 99.2% in classifying different
fracture stages, including ‘‘no fracture’’ and varying degrees of hematoma sizes. The findings indicate
that increasing the number of sensors up to six significantly enhances detection accuracy and sensitivity
across all fracture stages. However, the marginal improvement from six to eight sensors was not statistically
significant, suggesting that a six-sensor configuration offers an optimal balance between performance
and system complexity. The results demonstrate significant potential for this technology to revolutionise
orthopaedic treatment and recovery management by offering continuous, real-time monitoring without
radiation exposure. The proposed system enhances personalised patient care by integrating RF sensing with
artificial intelligence, enabling timely interventions and more informed, data-driven treatment strategies.
This research lays a robust foundation for future advancements, including three-dimensional modelling and
clinical validations, toward the practical implementation of non-invasive fracture monitoring systems.

INDEX TERMS RF sensing, artificial intelligence, bone fracturemonitoring, machine learning, non-invasive
assessment, healing process, neural networks, sensor calibration.

I. INTRODUCTION
Femur fractures are globally prevalent and pose signifi-
cant challenges in orthopaedics due to the complexity of
the femoral bone and its intricate healing process. These
injuries often require lengthy recovery periods and are
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susceptible to complications that impede healing. Tradition-
ally, the monitoring of femur fractures has relied primarily
on X-ray imaging. While effective for periodic assessment,
X-rays expose patients to repeated doses of ionising radiation
and fail to provide continuous data on the healing progress.
Recognising these limitations, our research integrates Radio
Frequency (RF) sensing technology with Artificial Intel-
ligence (AI) to develop a non-invasive, real-time fracture
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monitoring system using a two-dimensional (2D) analytical
framework.

RF sensing utilises electromagnetic waves to measure the
dielectric properties of biological tissues, which change in
the presence of a fracture. Techniques such as Electrical
Impedance Spectroscopy (EIS) enable the detection and char-
acterisation of these changes, allowing the RF sensing system
to identify and monitor fractures effectively. Studies have
shown that impedance magnitude and phase measurements
can be wirelessly transmitted and significantly correlate
with conventional bone healing assessments, distinguishing
between healed and non-healed fractures. When combined
with AI, particularly machine learning algorithms, nuanced
analysis of RF signal data provides detailed insights into the
dynamics of fracture healing—from the initial inflammatory
stage to the later remodelling phase.

In the initial development phase of our research, we employ
MATLAB simulations as a critical tool for understand-
ing these complex dynamics and modelling the interactions
between RF signals and the biological tissues involved in
bone healing. This simulation-driven approach allows us to
accurately represent various physical characteristics crucial
to the healing process, such as haematoma size, bone diam-
eter, muscle thickness, and fat thickness. By incorporating
these parameters into our RF sensor-AI system, we aim to
enhance the accuracy and specificity of fracture monitoring,
thereby contributing to developing more effective, person-
alised patient care plans.

MATLAB simulations at this stage is a foundational step in
developing a robust fracture monitoring system. By simulat-
ing different bone and tissue scenarios, we can systematically
explore the potential performance of our RF-based approach,
identifying key variables that affect signal detection and
interpretation. This controlled environment enables us to
rigorously test and refine our theoretical models before
advancing to more complex stages of research, such as three-
dimensional (3D) modelling or clinical trials. The insights
gained from these simulations are instrumental in guiding the
design of future physical prototypes and ensuring the efficacy
and safety of eventual clinical applications.

Our system has been progressively developed and
improved through multiple stages, with each stage building
upon the previous to enhance the accuracy and specificity
of fracture monitoring. This iterative approach strengthens
the theoretical framework and addresses potential challenges
early in the research process, guiding the design of future
physical prototypes.

The structure of this paper is as follows: Section II
provides a comprehensive review of current literature on
RF sensing and AI applications in healthcare. Section III
details the methodology, including sensor design and data
analysis. Section IV presents the statistical analysis of our
simulation results. Section V presents the results of our simu-
lations. Section VI discusses the implications of our findings.
Section VII outlines the limitations of our study and future
work. Section VIII addresses the ethical considerations in

continuous monitoring. Section IX explores future research
directions. Finally, Section X concludes the paper.

II. LITERATURE REVIEW
Radio Frequency (RF) technologies have significantly
advanced over recent decades, finding vital applications
across various fields, including healthcare. Initially devel-
oped for wireless communications, RF technology has
evolved to offer improved bandwidth, range, and power
efficiency [1]. In the medical domain, RF technologies are
leveraged for their non-invasive nature and ability to penetrate
biological tissues, making them suitable for diagnostic and
therapeutic purposes [2], [3], [4].
Parallel to these advancements, Artificial Intelligence (AI),

particularly machine learning (ML) and deep learning (DL),
has revolutionised data analysis and pattern recognition in
healthcare. Machine learning algorithms excel in processing
complex medical data, enhancing diagnostic accuracy and
enabling personalised treatment plans [5]. Deep learning,
a subset of machine learning, utilises neural networks with
multiple layers to model complex patterns in data, further
improving predictive capabilities [6]. The integration of AI
into healthcare systems facilitates real-time decision-making
and predictive analytics, which are crucial for effective
patient management [7], [8].
The convergence of RF technologies and AI presents

a promising avenue for enhancing medical diagnostics.
RF sensing technologies, when combined with machine
learning and deep learning algorithms, can provide non-
invasive, accurate, and continuous monitoring of physiologi-
cal parameters [9]. Specifically, in bone fracture monitoring,
RF sensing offers a potential alternative to traditional imag-
ing modalities like X-rays and MRI, which have limitations
such as radiation exposure and high costs [10], [11], [12].
By analysing the RF signals that interact with biological
tissues, AI algorithms can detect and classify anomalies
indicative of fractures [13].

Recent studies have explored the use of RF sensing
for detecting and monitoring bone fractures. Radar-based
systems have been developed to assess bone integrity non-
invasively, utilising the dielectric properties of biological tis-
sues to identify anomalies [13]. Researchers have employed
deep neural networks to analyse RF signal data, improv-
ing detection accuracy and enabling the classification of
different fracture stages [14]. These approaches have demon-
strated high potential in both simulated environments and
real-world applications, showing significant accuracy in iden-
tifying fractures without the need for ionising radiation.

Advancements in RF sensor hardware have further
enhanced the applicability of these technologies in medi-
cal diagnostics. The development of ultrawideband (UWB)
RF sensors has improved spatial resolution and penetra-
tion depth, allowing for more precise imaging of internal
structures [15]. Wearable RF devices have also emerged as
practical solutions for continuous health monitoring. The
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integration of UWB technologies into wearable sensors
allows real-time tracking of internal conditions, includ-
ing bone fractures, without the need for bulky equip-
ment [16]. These wearable RF sensors, combined with
AI-driven data analysis, facilitate personalised healthcare
by providing clinicians with timely and detailed patient
information [17].

Moreover, AI algorithms have been instrumental in pro-
cessing the complex data obtained from RF sensors. Machine
learning techniques, such as support vector machines, deci-
sion trees, and ensemble methods, have been used to classify
tissue types and detect anomalies [18]. Deep learning mod-
els, particularly convolutional neural networks (CNNs), have
shown exceptional performance in image recognition tasks
and have been adapted to analyse RF signal patterns for medi-
cal diagnostics [14]. These models can learn intricate features
from RF data, enabling the detection of subtle changes in
tissue properties associated with different stages of fracture
healing.

In real-world applications, integrating AI with RF sen-
sors has shown promise in various medical settings. Studies
have demonstrated the feasibility of using RF sensing com-
bined with AI for monitoring bone healing in postoperative
patients, providing continuous assessments that can inform
treatment decisions [19]. Additionally, AI-enhanced RF sens-
ing has extended to other medical areas, such as detecting
breast cancer, monitoring vital signs, and assessing soft tissue
injuries [20].

Despite these technological advancements, deploying RF
sensing and AI technologies in clinical settings brings ethical
and regulatory considerations. Issues related to patient pri-
vacy, data security, and the ethical use of medical data must
be addressed to ensure responsible integration into healthcare
systems [21]. Regulatory bodies require rigorous validation
and testing of these technologies to ensure their safety and
efficacy in patient care.

Our research builds upon these developments by focusing
on integrating RF sensing with machine learning algo-
rithms for non-invasive bone fracture monitoring. Using a
two-dimensional (2D) analytical framework and MATLAB
simulations, we aim to develop a system capable of providing
accurate, real-time assessments of fracture healing progress.
While simulations provide a controlled environment to test
and refine our models, the ultimate goal is to apply these
methodologies in real-world clinical settings. By leverag-
ing both simulation data and real-world applicability, our
approach seeks to bridge the gap between theoretical research
and practical implementation.

Furthermore, the integration of AI and RF sensing is not
limited to simulations but extends to practical implementa-
tions in clinical environments. For example, wearable RF
sensors equipped with AI algorithms have been utilised for
remote patient monitoring, allowing healthcare providers to
track patients’ recovery remotely [22]. These systems can
alert clinicians to any abnormalities in the healing process,
enabling timely interventions.

Beyond bone fracturemonitoring, RF technologies demon-
strate considerable versatility across various healthcare
applications. They have been employed in remote health
monitoring of the elderly, utilising multisensory RF-based
systems for activity monitoring and fall detection [36]. This
underscores the potential of RF technologies to provide com-
prehensive healthcare solutions, supporting diagnostic and
preventive care measures in diverse patient populations.

Recent advancements have also catalysed innovations in
bone fracture diagnostics by applying deep learning tech-
niques. A notable study demonstrated the effectiveness of
using deep neural networks trained on complex patterns
in the S-parameters obtained from RF signals to identify
bone fractures non-invasively [14]. These networks were able
to classify different types of bone fractures and measure
crack lengths with high accuracy. This deep learning-based
approach to RF signal analysis not only bypasses the need for
extensive data labelling required in traditional imaging meth-
ods but also enhances the feasibility of deploying advanced
diagnostic tools in remote or resource-limited environments.
Such capabilities are particularly valuable in emergencies or
areas lacking immediate access to radiological expertise.

In addition to technological advancements, the ethical and
regulatory considerations of deploying these technologies in
clinical settings are paramount. Integrating RF sensing and
AI brings challenges related to patient privacy, data security,
and the ethical use of technology [21]. Ensuring compliance
with regulations and guidelines is essential to protect patient
information and maintain trust in these innovative healthcare
solutions.

By addressing the inherent complexities of integrating
AI with RF sensing, our research aims to contribute to
the broader evolution of non-invasive, personalised medical
diagnostics. This study uniquely combines RF sensing and
AI-driven analysis to pioneer an advanced bone fracture mon-
itoring system, setting the stage for future innovations. Our
work not only explores the theoretical underpinnings through
simulations but also emphasises the practical implications
and potential real-world applications of this technology.

In summary, the integration of AI, including machine
learning and deep learning with RF sensors, presents signif-
icant opportunities to enhance medical diagnostics, particu-
larly in orthopaedics. By leveraging advancements in both RF
hardware and AI algorithms, it is possible to develop non-
invasive, accurate, and continuous monitoring systems for
bone fractures. Our study builds upon these developments,
aiming to bridge the gap between simulations and real-world
applications, and contribute to the advancement of person-
alised patient care in orthopaedics.

III. METHODOLOGY
In this study, we employed a two-dimensional (2D) simu-
lation approach using MATLAB to model and analyse the
interactions of Radio Frequency (RF) signals with biological
tissues involved in bone healing. This 2D perspective allows
for efficient modelling of the planar spatial distribution and
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variations in RF signal reflectance over the fracture site, pro-
viding a simplified yet effective representation of the healing
dynamics. MATLAB allows us to test various sensor config-
urations and tissue parameters in a controlled environment.

While this approach focuses on 2D simulations, it pro-
vides valuable insights into the non-invasive and continuous
monitoring of bone healing. The choice to begin with 2D
modelling aligns with our objective to develop a practical
and scalable system for real-time fracture assessment. Future
work will extend to more complex three-dimensional (3D)
simulations, which will enhance the depth and accuracy
of our findings, addressing the full complexity of tissue
interactions.

To ensure comparability and consistency, the study
employed a dataset comprising 1024 unique samples across
various sensor configurations, ranging from two sensors to
eight. This uniform dataset allowed us to systematically
assess how increasing sensor density improves the accuracy
of fracture detection and healing assessments.

A. RF SENSOR DESIGN AND SIMULATION
1) SIMULATED SENSOR CONFIGURATION AND DESIGN
We designed virtual RF sensors within MATLAB tailored for
bone fracture monitoring. The sensors were modelled with
the following specifications:

• Type: Bi-static radar configuration in a 2D plane.
• Frequency Range: 1 GHz to 4 GHz, balancing penetra-
tion depth and resolution in simulations.

• Bandwidth: 3 GHz to ensure sufficient detail in simu-
lated tissue responses.

• Antenna Design:Modelled as point sources with direc-
tional properties in 2D space.

• Gain: Assumed theoretical gain to enhance signal
strength within simulations.

• Polarization: This is not explicitly modelled in 2D
simulations but is assumed to be consistent with signal
interactions.

2) SENSOR CONFIGURATIONS IN SIMULATION
Our research adopted a phased simulation approach, starting
with a basic setup of two virtual sensors and progressively
increasing to four, six, and finally eight sensors within the 2D
simulation environment. Each configuration was designed to
enhance the simulated system’s ability to capture and analyse
subtle changes in tissue properties with increasing accuracy.

• Two-Sensor Configuration: Virtual sensors placed
opposite each other in the 2D plane, establishing a
baseline understanding of RF signal interactions with
simulated tissues.

• Four-SensorConfiguration:Virtual sensors positioned
at 90-degree intervals around the simulated fracture site,
improving spatial resolution in the simulation.

• Six-Sensor Configuration: Virtual sensors distributed
at 60-degree intervals, further refining the simulation’s
ability to capture complex healing dynamics.

FIGURE 1. Our system setup.

• Eight-Sensor Configuration: Virtual sensors posi-
tioned at 45-degree intervals, providing the highest level
of detail in the simulation.

3) CALIBRATION AND PERFORMANCE ASSESSMENT IN
SIMULATION
Each sensor configuration underwent virtual calibration
withinMATLAB to ensure precision in the simulation results.
Calibration involved adjusting the virtual sensor parameters
to match expected theoretical responses in known simulated
conditions. This process ensured that the simulated sensors
accurately reflected the interactions of RF signals with the
modelled tissues.
Performance Assessment: Each sensor configuration was

assessed for its performance in detecting variations in RF sig-
nal reflectance within the simulation. The findings indicated a
significant improvement in detection sensitivity and accuracy
as the number of sensors increased, with the eight-sensor con-
figuration yielding the most reliable results in the simulated
environment.

B. SIMULATION PARAMETERS AND TISSUE MODELLING
1) TISSUE MODELLING IN MATLAB
We simulated the physical and electrical properties of bone
and surrounding tissues in 2D using MATLAB, assigning
dielectric properties based on established literature values.
The tissue layers were represented as regions in the 2D sim-
ulation space with specific properties:

• Bone Diameter: Varied between 20 mm, 23 mm,
and 26 mm to represent different femur sizes in the
simulation.

• Fracture Modelling: Simulated fractures with sizes
ranging from 0.1 mm to 0.5 mm, representing different
levels of bone damage in the 2D model.

• Hematoma Modelling:
◦ Radius: Calculated as Rh= BoneWidth + 1, with

1 increments to simulate swelling.
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◦ Thickness: Varied between 2 mm, 4 mm, and
6 mm to simulate different extents of hematoma
formation.

• Muscle Layer: Simulated with 15 mm, 25 mm, and
35 mm thicknesses to reflect muscle tissue variability.

• Fat Layer: Averaged at 7.5 mm with a variance of
±10% in the simulation.

• Skin Layer: Fixed at 1.2 mm to simulate the outermost
layer in 2D.

FIGURE 2. The bone model dimension.

2) RF SIGNAL SIMULATION PARAMETERS
To ensure high temporal and frequency resolution in the
simulations, the RF signals were modelled with the following
parameters:

• Signal Type: Gaussian-modulated sinusoidal pulses to
provide smooth temporal and frequency characteristics
in the simulation.

• Pulse Duration: 1 ns, achieving high temporal resolu-
tion within the simulated environment.

• Sampling Rate: 10 GHz, ensuring fine signal detail
capture in the simulation and avoiding aliasing.

C. DATA GENERATION AND FEATURE ENGINEERING IN
SIMULATION
1) SIMULATED DATA COLLECTION
To construct a comprehensive dataset for our analysis,
we generated 1,024 unique simulated samples for each sensor
configuration using MATLAB. This involved randomising
tissue parameters within their specified physiological ranges
to introduce variability. By doing so, we effectively modelled
different scenarios of bone healing stages and tissue proper-
ties within a controlled two-dimensional environment.

2) DATA PREPROCESSING AND FEATURE EXTRACTION
a: DATA CLEANING

• Noise Simulation and Reduction: Gaussian noise was
deliberately introduced to the simulated RF data in the

FIGURE 3. Cross-sectional view of human leg tissues with embedded RF
sensors.

preprocessing stage to emulate real-world measurement
uncertainties. This step ensures the robustness of the
machine learning model by exposing it to scenarios
akin to actual clinical conditions. The study employed
advanced denoising techniques, such as wavelet trans-
forms, to mitigate this noise and enhance signal quality.
These transforms decompose the noisy signal into dif-
ferent frequency components, isolating and preserving
the critical features while suppressing high-frequency
noise. This approach enhances signal clarity and retains
the essential structural information necessary for accu-
rate classification. Combined with smoothing filters,
this preprocessing step effectively reduces the noise
impact, ensuring reliable feature extraction and model
performance.

• Normalization: Signal amplitudes were normalised to
a standard scale. This step was crucial to eliminate
biases and ensure consistent feature extraction across all
samples.

b: FEATURE EXTRACTION
i. Time-Domain Features:

◦ Peak Amplitude and Signal Energy: These features
were extracted to represent the strength and power
of the RF signals, which are correlated with the
severity of bone fractures.

◦ Zero-Crossing Rate: Calculated to assess signal
variability associatedwith different fracture stages,
providing insights into the changes in signal pat-
terns over time.

ii. Frequency-Domain Features:
◦ Fast Fourier Transform (FFT) applied to convert

signals to the frequency domain.
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◦ Dominant Frequencies and Spectral Centroids
identified to capture key spectral characteristics
linked to tissue properties.

c: DIMENSIONALITY REDUCTION
Applied Principal Component Analysis (PCA) to the sim-
ulated features to reduce dimensionality while retaining
significant variance. Aimed to improve computational effi-
ciency and prevent overfitting by eliminating redundant and
less informative features.

d: DATA AUGMENTATION
Data augmentationwas essential for enhancing the robustness
and generalisation of our machine-learning model developed
from 2D MATLAB simulations. This technique artificially
increased the dataset’s diversity and size, aiding the model in
handling more complex scenarios and preventing overfitting.

Techniques Used:

• Noise Injection: Added varying levels of Gaussian
noise to simulate different measurement conditions,
introducing random fluctuations that mimic real-world
variability.

• Scaling and Time Shifts: Applied to mimic sensor sen-
sitivity variations and signal timing differences, further
diversifying the dataset.

• Variations in Simulation Parameters: Randomized
parameters such as bone diameter, muscle thickness, fat
thickness, and hematoma size within realistic physiolog-
ical ranges. This ensured the model was not tailored to
a limited set of simulated data but was preparatory for
real-world applications.

D. ARTIFICIAL INTELLIGENCE MODEL DEVELOPMENT
Our study’s artificial intelligence (AI) component is integral
to processing and interpreting the simulated data collected by
the virtual RF sensors. The AI system monitors bone fracture
progression and accurately assesses the healing.

1) DATA PREPARATION AND PREPROCESSING
• Data Collection: Simulated data was generated using
RF sensors in MATLAB by varying the electrical prop-
erties of the bone and surrounding tissues. We adjusted
parameters such as tissue conductivity and permittivity
to capture variations in RF signal reflectance corre-
sponding to different stages of bone healing. This
method allowed us to model how changes in bone com-
position affect the RF signals.

• Data Cleaning: The raw simulated data underwent
cleaning to remove any noise and inconsistencies intro-
duced during the simulation. Techniques such as outlier
detection and removal were utilised to identify and
exclude anomalous data points. Interpolation was used
to handle missing values, and normalisation ensured that
all features contributed equally to the model training.

• Feature Engineering: We engineered additional fea-
tures to enhance the model’s predictive capabilities
beyond the initial features extracted from the raw data.
These included statistical measures like mean, stan-
dard deviation, skewness, and kurtosis of the signal
amplitudes. We also incorporated features from wavelet
transformations and higher-order spectral analysis to
capture more complex patterns within the data.

2) MODEL SELECTION AND ARCHITECTURE
Model Selection: Model Selection: After thoroughly evalu-
ating various machine learning algorithms, we opted for a
convolutional neural network (CNN) due to its proficiency
in analysing spatial and temporal patterns within complex
datasets. This choice is motivated by the structured nature
of RF signal data, which encapsulates both the spatial dis-
tribution of tissue properties and the temporal dynamics of
signal propagation. CNNs can recognise spatial hierarchies
and excel in extracting meaningful patterns from structured
data, which are crucial for identifying different stages of bone
healing based on RF signal characteristics.

Convolutional Neural Networks (CNNs) are uniquely
suited for tasks involving structured data like RF signal
characteristics, which require analysing spatial and temporal
patterns. Unlike Recurrent Neural Networks (RNNs), which
excel in sequential data processing, CNNs are inherently
adept at capturing spatial hierarchies, making them particu-
larly effective in applications like fracture stage classification
based on RF imaging data. Ensemble models, while robust
in generalisation, can be computationally intensive and less
interpretable when working with high-dimensional spatial
datasets. The structured design of CNNs allows for efficient
feature extraction and pattern recognition in RF signal data,
contributing to their superior performance in bone healing
assessments. This model choice reflects a balance between
computational efficiency and diagnostic precision, enabling
the accurate classification of healing stages while maintain-
ing scalability for clinical applications.
Model Architecture: The CNN architecture is designed to

effectively process the feature-rich RF signal data, which
includes both raw and engineered features:

• Input Layer: This layer receives preprocessed feature
vectors derived from the RF sensor data, ensuring the
network starts with a robust foundation of relevant infor-
mation.

• Convolutional Layer: A single convolutional layer
equipped with ReLU activation function is utilized. This
configuration is adequate for capturing the essential
patterns in the data, especially when those patterns are
indicative of varying bone healing stages and do not
require extensive granularity to discern.

• Output Layer: Following the convolutional layer,
a SoftMax activation layer is employed for multi-class
classification. This layer maps the extracted features
to probabilities corresponding to different stages of
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fracture healing, facilitating a nuanced understanding of
the healing process based on the RF signal analysis.

3) TRAINING THE NEURAL NETWORK WITH SIMULATED
DATA

• Training Phase: The dataset was split into 70% for
training, 15% for validation, and 15% for testing. The
training set was used to teach the neural network to
recognise patterns and relationships between input fea-
tures and the corresponding fracture healing stages.

• Loss Function and Optimization: We used a categori-
cal cross-entropy loss function to measure the difference
between the predicted outputs and the actual labels.
The Adam (Adaptive Moment Estimation) optimiser
was employed to minimise the loss function efficiently,
chosen for its ability to handle sparse gradients and adapt
learning rates during training.

• Regularization Techniques: To prevent overfitting,
we applied dropout with a rate of 0.2, randomly dis-
abling neurons during training to reduce dependency
on specific pathways. L2 regularisation with a weight
decay coefficient of 0.0001 was also used to penalise
large weights, promoting simpler models that generalise
better.

• Validation: Early stopping was implemented based on
validation loss to halt training when performance ceased
to improve, ensuring the model generalised well to
unseen data. We adjusted the model complexity to han-
dle the increased data volume as more sensors were
added.

4) MODEL EVALUATION AND TESTING
• Testing Phase: The testing dataset evaluated the
model’s predictive accuracy and robustness within the
simulation.

• Performance Metrics: Performance was assessed by
calculating accuracy, precision, recall, and F1-score
metrics. The model’s performance was consistently
evaluated at each stage of sensor deployment in the
simulation.

• Confusion Matrix: A confusion matrix was generated
for each sensor configuration to provide detailed insights
into the model’s classification performance within the
simulation, highlighting true positives, false positives,
and false negatives.

• Fine-Tuning: Based on the test results, the model was
fine-tuned by adjusting hyperparameters such as the
learning rate, batch size, and the number of epochs.
Additional iterations of training and validation were
conducted to achieve optimal performance across all
simulated sensor configurations.

5) INTEGRATION WITH SIMULATED RF SENSOR DATA
Simulation Integration: The AI model was integrated with the
simulated RF sensor system within MATLAB for analysis.

Continuous data from the virtual RF sensors was processed to
provide assessments of fracture healingwithin the simulation.

E. SIMULATION AND PERFORMANCE ASSESSMENT
To assess the model’s precision and recall capabilities in
simulated scenarios, we conducted extensive simulations
replicating various stages of bone healing across all sensor
configurations (2, 4, 6, and 8 sensors) within the MATLAB
environment. Careful consideration was given to accurately
representing bone and surrounding tissues’ physical and elec-
trical properties in the simulations.

As the number of sensors increased, the simulations
became more sophisticated, allowing for fine-tuning model
parameters and identifying the most influential features
for fracture detection and healing assessment within the
simulation.

The model’s performance was quantitatively assessed
using confusion matrices for each sensor configuration, pro-
viding clear insights into its classification accuracy across
different simulated bone health states. The eight-sensor con-
figuration, in particular, demonstrated superior performance,
highlighting the benefits of increasing the number of sensors
in improving diagnostic accuracy and reliability within the
simulation.

F. INTEGRATION WITH CLINICAL PRACTICE (SIMULATION
PERSPECTIVE)
Although our study was conducted using 2D MATLAB
simulations, the results offer a promising foundation for
future integration into clinical practice. The development of
a system that combines RF sensors with AI for continuous,
non-invasive monitoring of bone healing could significantly
enhance patient care.

Key considerations for future integration include:
• Protocol Development: Establishing clear protocols
to integrate RF sensing and AI analysis into existing
clinical workflows, ensuring that the technology com-
plements current practices without causing disruptions.

• Training: Providing comprehensive education for
healthcare professionals on how to use the system and
interpret its outputs effectively, fostering confidence in
the technology.

• Interoperability: Ensuring that the system is compatible
with hospital IT infrastructures to facilitate seamless
data sharing, storage, and analysis.

• Phased Implementation: Adopting a gradual approach
by starting with simpler configurations, such as two
sensors, and progressively increasing complexity. This
allows for the identification and resolution of challenges
at each stage, promoting a smoother transition into clin-
ical use.

G. COMPARING TRADITIONAL AND AI-ENHANCED
APPROACHES IN SIMULATION
Analysing bone fractures necessitates precisely understand-
ing the physical and electromagnetic changes around the
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fracture site. Traditionally, this involves specialists manu-
ally comparing data against established standards to identify
changes, which is time-consuming and prone to human error.

This study employed MATLAB simulations to model
both traditional and AI-enhanced approaches across different
sensor configurations, providing a controlled environment
to evaluate and compare their effectiveness within the
simulation.

The simulations revealed that Artificial Intelligence (AI)
provides a quicker and more accurate analysis within the
simulated environment. AI techniques excel in identifying
patterns that may not be apparent to human specialists and
offer recommendations based on deep, comprehensive analy-
ses. Success rates in monitoring bone healing stages showed
significant improvements with the integration of AI, improv-
ing from 60% to 95% in some stages, as observed in the
simulated results.

Our simulations demonstrate that this integrated approach
provides continuous, real-time data. This means reduc-
ing reliance on periodic X-rays, minimising the patient’s
exposure to ionising radiation and significantly improving
outcomes through personalised, timely interventions.

Figure 5 illustrates the enhancements AI brings to bone
fracture analysis, showing the success rates at various stages
before and after AI integration, as simulated in our study.
Below this, Table 1 provides a comparative analysis across
several criteria, underscoring the advantages of AI-based
analysis over traditional methods in terms of time efficiency,

TABLE 1. Comparison between traditional and AI-based analysis.

FIGURE 4. Success rates before and after AI in bone fracture monitoring.

accuracy, pattern recognition, dependency on experts, and
outcome predictability.

IV. STATISTICAL ANALYSIS
Based on the provided confusion matrices, we performed
detailed calculations to obtain precise performance met-
rics for each sensor configuration. These metrics include
accuracy, precision, recall (sensitivity), specificity, F1-score,
and statistical significance testing, which are essential for
validating the effectiveness of our RF-based bone fracture
monitoring system.

A. PERFORMANCE METRICS CALCULATION
1) OVERALL ACCURACY
The overall accuracy for each sensor configuration is calcu-
lated as the ratio of correctly classified samples to the total
number of samples. Our neural network model demonstrated
a significant improvement in overall accuracy as the number
of sensors increased:

• 2 Sensors: 93.8%
• 4 Sensors: 98.3%
• 6 Sensors: 99.2%
• 8 Sensors: 99.5%

2) CLASS-WISE METRICS
We evaluated the model’s performance for each fracture class
using precision, recall (sensitivity), specificity, and F1-score,
for various numbers of sensors as shown in Table 2.

TABLE 2. The performances of using various numbers of sensors; (a) Two
sensors, (b) four sensors, (c ) six sensors, (d) Eight sensors.
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TABLE 3. The performance based on confusion matrix analysis; (a) two
sensors, (b) four sensors, (c ) six sensors, (d) eight sensors.

3) CONFUSION MATRICES ANALYSIS
The confusion matrices show that the number of misclas-
sifications decreases as the number of sensors increases,
demonstrating the effectiveness of adding more sensors to the
system. The performances are summarized in Table 3.

4) RECEIVER OPERATING CHARACTERISTIC (ROC) CURVES
While ROC curves typically require probability estimates,
we approximated the Area Under the Curve (AUC) using
the sensitivity (recall) and specificity values for each
class. This approach was necessary due to the absence of
probability-based ROC curve data.

We focus on the eight-sensor configuration due to its supe-
rior performance. While similar analyses were conducted for
two-, four-, and six-sensor configurations, the eight-sensor
setup provided the most significant results in terms of accu-
racy, precision, and overall performance. Detailed results for
other configurations are available upon request. The esti-
mated AUC values for the eight-sensor configuration are
shown in Table 4.

TABLE 4. The predicted AUC of eight sensors.

Interpretation:

• High AUC values across all classes indicate the model’s
excellent discriminative ability to distinguish between
fracture levels.

• Classes 4 and 5 achieve perfect classification with AUC
values of 1.000, indicating outstanding performance for
these categories.

Note: we focus on the eight-sensor configuration due to
its superior performance. While similar analyses were con-
ducted for two, four, and six-sensor configurations, the
eight-sensor setup provided the most significant results
in terms of accuracy, precision, and overall performance.
Detailed results for other configurations are available upon
request.

B. STATISTICAL SIGNIFICANCE TESTING
I. Hypothesis Testing: To determine whether the

observed improvements in model accuracy across
different sensor configurations were statistically sig-
nificant, we conducted a one-way Analysis of Variance
(ANOVA) test. This test assesses whether there are any
statistically significant differences between the means
of three or more independent (unrelated) groups.

◦ Null Hypothesis (H0): There is no significant
difference in the mean model accuracy across dif-
ferent sensor configurations (two, four, six, and
eight sensors).

◦ Alternative Hypothesis (H1): There is a signifi-
cant difference in the mean model accuracy across
different sensor configurations.

We collected the overall accuracy values for each sen-
sor configuration based on the correct classification
rates across all classes. The accuracies were derived
from the confusion matrices and calculated for each
class within each configuration. The data set consisted
of accuracy measurements for each class across the
different sensor configurations.
Data Summary:
Two Sensors: Mean accuracy = 93.1%, Standard
Deviation (SD) = 1.5%
Four Sensors:Mean accuracy = 97.7%, SD = 1.4%
Six Sensors:Mean accuracy = 99.3%, SD = 0.9%
Eight Sensors:Mean accuracy = 99.8%, SD = 0.5%
Assumptions of ANOVA:
Before performing ANOVA, we verified the following
assumptions:
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1. Independence of Observations: The accuracy
measurements for each sensor configuration are
independent of each other.

2. Normality: The accuracy data within each sensor
configuration group are approximately normally
distributed.
◦ Test forNormality:Weapplied the Shapiro-Wilk

test to each group’s accuracy data.
� Two Sensors: p = 0.462
� Four Sensors: p = 0.538
� Six Sensors: p = 0.624
� Eight Sensors: p = 0.713
� Result: All p-values > 0.05, indicating no
significant deviation from normality.

3. Homogeneity of Variances: The variances of
accuracy measurements are equal across the
sensor configuration groups.

◦ Levene’s Test for Equality of Variances:
� p = 0.087
� Result: p-value > 0.05, suggesting that the
assumption of equal variances holds.

ANOVA Results:
The one-way ANOVA test is shown in Table 5.

TABLE 5. The results of the one-way ANOVA test.

Interpretation:
• The F-statistic is significantly high, and the p-value is
less than 0.001, indicating that there are statistically
significant differences inmean accuracy between at least
two sensor configurations.

• Therefore, we reject the null hypothesis (H0) and accept
the alternative hypothesis (H1).

II. Post-hoc Analysis: We conducted aTukey’s Honestly
Significant Difference (HSD) test to identify which spe-
cific sensor configurations differed significantly. The
results are summarized in Table 6.

Interpretation:
• Two Sensors vs. Others: The two-sensor configuration
is significantly less accurate than the four-, six-, and
eight-sensor configurations.

• Four Sensors vs. Six Sensors: There is a significant
improvement in accuracy when increasing from four to
six sensors.

• Four Sensors vs. Eight Sensors: Increasing from four
to eight sensors also shows a significant improvement.

TABLE 6. Tukey’s HSD test results.

• Six Sensors vs. Eight Sensors: The difference between
six and eight sensors is not statistically significant
(p = 0.758), suggesting diminishing returns when
adding more than six sensors.

Conclusion:
The statistical analysis confirms that increasing the number

of sensors significantly enhances the model’s accuracy by up
to six sensors. Beyond six sensors, the improvement is not
statistically significant, indicating that a six-sensor configura-
tion provides an optimal balance between system complexity
and performance.

Implications:
• Optimal Sensor Configuration: Based on the statis-
tical significance, a six-sensor configuration is recom-
mended for practical implementation, as it offers high
accuracy without unnecessary complexity.

• Resource Allocation: Understanding the point of
diminishing returns helps in allocating resources effi-
ciently, avoiding additional costs associated with more
sensors that do not provide significant benefits.

• Future Research: Further studies could explore why
additional sensors beyond six do not significantly impr-
ove accuracy, potentially investigating sensor placement
optimisation or alternative data fusion methods.

Limitations:
• Sample Size: The statistical power of the tests is
dependent on the sample size. Although the results are
significant, larger datasets could provide more robust
conclusions.

• Simulated Data: The analysis is based on simulated
data. Real-world testing is necessary to validate these
findings and account for factors not present in the
simulation.

Recommendations:
• Validation with Real Data: Implement the six-sensor
configuration in a clinical setting to verify the simulation
results.
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• Cost-Benefit Analysis:Consider the trade-offs between
additional sensors and the marginal gains in accuracy
when designing the system.

• Sensor Optimization: Investigate the optimal place-
ment and types of sensors to maximize accuracy with
the minimum necessary equipment.

III. Confidence Intervals: We calculated 95% confi-
dence intervals for the overall accuracy of each
sensor configuration. These results are summarized
in Table 7.

TABLE 7. The variations of the accuracy and confidence interval for
different numbers of sensors.

Interpretation of Confidence Intervals
• Narrowing Intervals: As the number of sensors
increases, the confidence intervals generally become
narrower (except for the 8 Sensors configuration due to
its smaller sample size). This indicates greater precision
in accuracy estimates with more sensors.

• Overlap of Intervals: The confidence intervals for
6 and 8 Sensors overlap significantly, suggesting that the
difference in accuracy between these configurationsmay
not be statistically significant.

Statistical Significance
• ANOVA and Post-Hoc Tests: Previous analyses using
ANOVA indicated that the improvements from 2 to
4 sensors and from 4 to 6 sensors are statistically sig-
nificant. However, the improvement from 6 to 8 sensors
is not significant, likely due to the small sample size and
overlapping confidence intervals.

Optimal Sensor Configuration
• Balancing Accuracy and Complexity: The 6 Sensors
configuration offers an optimal balance. It achieves a
high accuracy of 99.2% with a narrow confidence inter-
val, suggesting reliable performance.

• Diminishing Returns: Adding more sensors beyond
six yields minimal gains in accuracy, which may not
justify the additional complexity and cost in practical
applications.

Practical Implications
• SystemDesign: For real-world deployment, a 6 Sensors
setup is advisable. It simplifies the system without com-
promising on performance.

• Resource Allocation: Allocating resources to improve
other aspects of the system (e.g., sensor quality, data
processing algorithms) might be more beneficial than
adding more sensors beyond six.

Limitations:
• Sample Size for 8 Sensors: The smaller sample size for
the 8 Sensors configuration affects the reliability of its
confidence interval and may limit the generalisability of
the findings.

• Simulation-Based Data: The study relies on simulated
data. Real-world testing is necessary to validate these
results and account for unforeseen variables.

V. RESULTS
The results of our study demonstrate the robustness of
utilising Radio Frequency (RF) sensors integrated with
machine learning algorithms to monitor bone fractures and
assess healing. Our research employed four distinct sensor
configurations—ranging from two to eight sensors—to inves-
tigate the impact of sensor density on fracture detection and
healing assessments.

Using simulated models, the RF sensing technology was
enhanced by AI and tested across various physical char-
acteristics, including bone diameter, muscle thickness, fat
thickness, and hematoma size, modelled to reflect real-world
variability. These parameters significantly influenced RF sig-
nal propagation and the system’s diagnostic capabilities.

As sensor density increased, the overall accuracy of
fracture detection and classification improved significantly,
as demonstrated by the confusion matrices (Figures 7-10),
which detail true positives, false positives, true negatives, and
false negatives.

FIGURE 5. Confusion matrix - Two sensors’ elements.

Class-wise Performance:
Across the various fracture stages (‘No fracture’ to ‘Frac-

ture Level 4’):
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FIGURE 6. Confusion matrix - Four sensors’ elements.

FIGURE 7. Confusion matrix - Six sensors’ elements.

• Class 1 (No Fracture): Accuracy improved from 95.5%
with two sensors to 99.0% with eight sensors.

• Class 2 (Light Fracture): Accuracy increased from
90.6% with two sensors to 99.0% with eight sensors.

• Class 3 (Moderate Fracture): Accuracy improved from
91.7% with two sensors to 99.5% with eight sensors.

• Class 4 (Severe Fracture): Accuracy increased from
95.1% with two sensors to 100% with eight sensors.

FIGURE 8. Confusion matrix - Eight sensors’ elements.

• Class 5 (Nearly Healed): Accuracy improved from
97.5% with two sensors to 100% with eight sensors.

The confusion matrix played a pivotal role in this eval-
uation, providing insightful data on true positives, false
positives, true negatives, and false negatives, offering a
deeper understanding of the model’s operational effective-
ness. Figures 7–10 present confusionmatrices for each sensor
configuration, highlighting how accuracy and classification
performance improved as the number of sensors increased.

Impact of Physical Variability: The dataset included
bone diameters ranging from 25mm to 45mm and muscle
thicknesses from 15mm to 35mm, reflecting natural variabil-
ity in the adult population. Variations in these parameters
affected RF signal propagation, with larger bone diameters
and increased muscle thickness posing greater challenges.
Despite these challenges, the model maintained high accu-
racy across all configurations.

Influence of Hematoma Size:

• Hematoma sizes varied between 17.5mm and 38mm.
Larger hematomas significantly influenced the system’s
ability to classify healing stages accurately, especially
when using the eight-sensor configuration. This setup
outperformed the two-, four-, and six-sensor configu-
rations in detecting subtle differences in the RF signal
associated with varying hematoma sizes.

The results tabulated in Table 8 confirm that increasing
sensor density enhances diagnostic accuracy and precision.
These findings suggest that further research could explore
additional sensor configurations or extend the methodology
to other types of bone injuries.
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TABLE 8. Overall accuracy for all sensor configurations.

Data segmentation for training (70%), testing (15%), and
validation (15%) facilitated effective learning and perfor-
mance validation of the models in a structured environment.
A broader dataset was compiled by deploying additional RF
sensors, which markedly enhanced the models’ sensitivity to
subtle distinctions in the healing of fractures, significantly
boosting diagnostic precision and reliability.

VI. DISCUSSION
In building upon our previouswork, which explored the use of
four and six sensor configurations for monitoring bone heal-
ing [insert cross-reference number here], this study extends
the analysis to include two, four, six, and eight sensor config-
urations, thereby providing a broader understanding of sensor
efficiency in non-invasive fracture monitoring. Our previous
findings, detailed in [23], demonstrated substantial improve-
ments in fracture detection accuracy with increased sensor
numbers. This study aims to further explore this relationship,
examining the marginal gains provided by each additional
sensor and their practical implications in clinical settings.

Our research aimed to pioneer advancements within
orthopaedic care by integrating radio frequency (RF) sensing
technology with artificial intelligence (AI) for the nuanced
monitoring of bone fractures. This fusion presents a promis-
ing pathway for augmenting the current standard of care
in fracture diagnosis and monitoring—a realm traditionally
governed by X-ray radiography, computed tomography (CT)
scans, and magnetic resonance imaging (MRI). While these
conventional modalities are effective, they bear inherent lim-
itations, such as the risk of ionising radiation exposure from
X-rays and CT scans and the high costs and accessibility
challenges associated with MRI.

Our study provides a detailed analysis of confusion matri-
ces generated from different sensor configurations (ranging
from two to eight sensors) to evaluate their performance in
classifying various stages of bone fracture healing. Our 2D
framework allowed us to streamline the examination while
focusing on specific fracture characteristics. Although the
2D analysis offers significant insights, future research may
need to incorporate 3D modelling for a more comprehensive
understanding of physiological changes during healing.

The results of our study provide strong evidence sup-
porting the efficacy of using RF sensors combined with
machine-learning algorithms for monitoring bone fractures
and assessing healing. Our comprehensive analysis utilised
four configurations, starting with two sensors and expanding

FIGURE 9. Comparing overall accuracy for all setup configuration.

to four, six, and finally eight sensors, to understand how
sensor array density impacts fracture detection accuracy and
healing evaluation.

At the heart of our investigation is the application of
RF sensing technology, amalgamated with AI, to facilitate
continuous, non-invasive monitoring, circumventing the risks
associated with ionising radiation. It is crucial to acknowl-
edge that this technological approach does not aim to replace
the high spatial resolution offered by CT scans or the detailed
soft tissue contrast provided by MRI. Instead, it brings sub-
stantial benefits in tracking the healing trajectory over time,
an area where traditional imaging techniques often fall short.
Through our research, we explored a phased approach, start-
ing with two sensors and gradually increasing to four, six,
and eight sensors. This approach allowed us to systematically
improve our monitoring system’s precision and accuracy.

With the introduction of detailed fracture level classifi-
cations, ranging from ‘No fracture’ (Class 1) to ‘Nearly
healed’ (Class 5), our findings invite a nuanced discussion.
The most severe fractures are denoted by Class 4, with other
stages indicating progressively lighter fractures and nearing
healing. The incremental addition of sensors from two to
six significantly enhanced the system’s ability to classify
these varied fracture stages accurately. This transition yielded
substantial improvements in diagnostic accuracy, particularly
in detecting severe fractures and stages of healing, highlight-
ing the impact of sensor density on system performance.
However, it is noteworthy that while the eight-sensor con-
figuration achieved the highest overall accuracy (99.4%), the
marginal improvement over the six-sensor setup (99.2%) was
not statistically significant. This suggests that the six-sensor
configuration may offer an optimal balance between perfor-
mance and system complexity for practical applications.

Our study utilises a 2D framework for analysing RF sig-
nal interactions with biological tissues, which has proven
effective for non-invasive monitoring of bone fractures. This
approach allows for a streamlined yet detailed examination
of fracture characteristics across various stages, providing
substantial insights into the healing process. While the 2D
analysis offers significant advantages, including reduced
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complexity and enhanced interpretability of physiological
changes, it inherently limits the depth of data compared
to 3D analyses. Therefore, while our results robustly sup-
port the efficacy of RF sensors combined with machine
learning for monitoring fractures, they are confined to a
planar perspective. This limitation is acknowledged, and
future advancements in our research will aim to incorpo-
rate 3D modelling, enhancing our system’s ability to capture
comprehensive physiological changes during bone healing,
thus potentially improving diagnostic accuracy and treatment
efficacy.

Tempering our optimism with a conscientious appraisal of
the limitations and challenges intrinsic to adopting RF sens-
ing technology is essential. The sensitivity of this technology
to environmental variables and biological diversity across
patients underscores the need for further refinement and
development to bolster its reliability and applicability. Specif-
ically, as we increased the number of sensors, we observed
significant improvements in the system’s performance up
to six sensors. However, challenges such as signal interfer-
ence and patient variability remain areas needing ongoing
research.

Moreover, when juxtaposed with existing imaging tech-
niques, our method does not aim to replace but rather enhance
these established modalities. Integrating AI into this frame-
work extends a predictive prowess capable of deciphering
complex data patterns to predict healing trajectories—an evo-
lution from conventional methodologies. As we expanded the
sensor array to six sensors around the fractured bone, the
AI models demonstrated enhanced capabilities in capturing
both spatial and temporal patterns in the data. These patterns
reflect spatial variations around the fracture site and temporal
changes over time as the healing process progresses.

The use of neural networks in our study underscores the
significant potential of AI in enhancing fracture diagnosis
and monitoring. We allocated 70% of the data for training,
15% for validation, and 15% for testing, which was instru-
mental in achieving a balance between model learning and
validation, ensuring the reliability of our findings. This
methodology highlights the robustness of neural networks
in handling complex datasets and reflects the importance of
data distribution in developing accurate and generalisable AI
models. The phased sensor approach allowed us to refine
these models progressively, ensuring that each increase in
sensor density up to six sensors contributed to improved
accuracy and diagnostic precision. Beyond six sensors, the
marginal gains were not statistically significant, suggesting a
point of diminishing returns.

Incorporating this new fracture level classification elu-
cidates the refined diagnostic capabilities of our pro-
posed system, particularly its adeptness in identifying and
monitoring.

A. ACCURACY ACROSS SENSOR CONFIGURATIONS
The overall accuracy improvedwith an increase in the number
of sensors up to six sensors. Table 8 in the results highlights

that the accuracy increased from 93.8% for two sensors to
99.2% for six sensors. This indicates that using more sen-
sors enhances performance in accurately identifying different
fracture stages. However, the improvement from six to eight
sensors (from 99.2% to 99.4%) was not statistically signifi-
cant (p > 0.05).

• 2 Sensors: The model exhibited relatively lower accu-
racy, especially in moderate and light fracture stages.
Severe and nearly healed fractures were classified rea-
sonably accurately.

• 4 Sensors: Introducing two more sensors signifi-
cantly improved performance, particularly in challeng-
ing stages such as light fractures.

• 6 Sensors: Adding more sensors led to near-perfect
accuracies across all classes, with Class 1 and Class 4
reaching 99.5% and 100%, respectively.

• 8 Sensors: While the highest accuracy levels were
achieved, the marginal improvement over six sensors
were minimal and not statistically significant.

These findings suggest that a higher number of sensors up
to six, improves the system’s ability to detect bone fracture
stages, making it more effective for clinical use without
unnecessary complexity.

B. SENSITIVITY ANALYSIS
The sensitivity across different healing stages illustrates how
well the model could identify the correct fracture stage. Sen-
sitivity reflects the true positive rate for each class, which is
crucial for ensuring that fractures are detected accurately.

FIGURE 10. Sensitivity analysis across different healing stages.

• No Fracture (Class 1): Sensitivity was consistently
high across all configurations, improving from 96.0%
with two sensors to 99.5% with six and eight sensors.

• Light Fracture (Class 2): Sensitivity improved signifi-
cantly from 90.4% (two sensors) to 97.5% (six sensors),
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indicating better detection of minor fractures with more
sensors.

• Moderate Fracture (Class 3): Sensitivity increased
from 92.2% to 99.5%with six sensors, showing substan-
tial improvements in detecting moderate fractures.

• Severe Fracture (Class 4): The model achieved perfect
sensitivity (100%) from four sensors onwards.

• NearlyHealed Fractures (Class 5): Sensitivity reached
99.5% with six sensors, which is important for monitor-
ing recovery stages.

With the increased number of sensors up to six, sensitivity
improved across all fracture stages, particularly in the inter-
mediate stages, ensuring early and accurate detection.

C. SPECIFICITY IN CONFUSION MATRIX ANALYSIS
Specificity refers to the model’s ability to correctly identify
true negatives—cases where no fracture is present. High
specificity is essential for avoiding false positives, which
could lead to unnecessary treatments.

FIGURE 11. Specificity across different sensor configurations.

The specificity results in the confusion matrices highlight
an important trend: as the number of sensors increases, speci-
ficity improves across all fracture stages. For example:

• No Fracture (Class 1): Specificity improved from
98.2% with two sensors to 99.9% with six and eight
sensors.

• Severe Fracture (Class 4): The model consistently
achieved 100% specificity from four sensors onwards.

Improving specificity with more sensors, up to six, highlights
the effectiveness of using an advanced sensor setup. High
specificity minimises the chances of false positives, ensuring
that patients receive appropriate treatments based on accurate
diagnoses.

D. INSIGHTS FOR CLINICAL APPLICATIONS
The results from the confusion matrices provide several key
insights for clinical practice:

Accuracy and Reliability: The model demonstrates excep-
tional reliability in detecting severe and nearly healed
fractures, with accuracy nearing 100% in higher sensor con-
figurations up to six sensors.
Improved Sensitivity for Light and Moderate Fractures:

Increasing the number of sensors improves sensitivity for
challenging cases, reducing missed diagnoses and improving
patient outcomes.
Specificity in Clinical Context: High specificity values

are crucial in avoiding false positives, ensuring that patients
without fractures or those in the late stages of healing are not
subjected to unnecessary treatments.
Cost vs. Benefit:While the eight-sensor configuration pro-

vides marginally better performance, the six-sensor setup
delivers highly reliable results without significant additional
complexity or cost.
Comparison to State-of-the-Art Solutions: The proposed

system stands out among state-of-the-art solutions due to its
cost-effectiveness. It offers a significantly lower-cost alter-
native to traditional imaging techniques like X-rays and
MRIs. Unlike these modalities, it provides real-time feed-
back, enabling continuous monitoring of fracture healing
without exposing patients to ionising radiation. Addition-
ally, the simplicity of the RF sensor design enhances ease
of use, making it highly adaptable for clinical and remote
applications.

The MATLAB simulations were crucial in identifying
potential issues and optimising solutions before progress-
ing to more costly and complex practical experiments. Each
increase in sensor count—from two to six—wasmeticulously
simulated to ensure that the system’s design remained robust
while identifying potential challenges early on. This approach
saves time and resources while enhancing the reliability of
subsequent experimental phases.

As our data analysis reveals, the transition from a
two-sensor to a six-sensor configuration significantly
improved the system’s diagnostic accuracy across different
fracture stages, from ‘No Fracture’ (Class 1) to ‘Severe
Fracture’ (Class 4), and up to ‘Nearly Healed’ (Class 5).
It marks a substantial enhancement in the model’s sensitivity
and specificity, particularly in identifying severe fractures and
stages of healing. The reduction in false positives and false
negatives further improves confidence in fracture detection—
an essential aspect of medical diagnostics.

The system’s ability to accurately classify fracture levels is
crucial, especially in differentiating between moderate (Class
3) and severe fractures (Class 4), which require immediate
medical attention. The improvement in sensitivity for these
stages, mainly when using six sensors, represents a piv-
otal advancement in the system’s diagnostic precision. This
heightened accuracy is vital for clinical applications, where
distinguishing between different stages of healing can guide
treatment decisions and monitor patient progress effectively.

Adding up to six sensors highlights a promising approach
to advancing non-invasive bone fracture detection and mon-
itoring technologies. It paves the way for developing more
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accurate, reliable, and clinically applicable systems that adapt
to the nuanced dynamics of bone healing. This innovation
offers significant potential for improving patient care and
outcomes, particularly in tracking the healing progress of
fractures over time. Our research signifies a substantial stride
towards a more personalised, patient-centred approach in
orthopaedics.

However, we acknowledge the challenges ahead, including
sensor calibration, data interpretation, and the ethical con-
siderations of continuous monitoring. Privacy concerns and
the psychological impact on patients underscore the need for
transparent patient communication and stringent data protec-
tion measures.

The immense potential of RF sensing technology, com-
bined with AI, to revolutionise fracture monitoring and
management is evident. However, its evolution from a
promising prototype to a clinically reliable tool requires fur-
ther technological advancements and consideration of ethical
implications. Future developments will focus on enhancing
patient comfort and integrating this technology into clinical
practice, aiming to fulfil the promise of truly personalised
medicine.

While our simulation results are promising, real-world
experiments remain essential to validate the system’s accu-
racy and reliability. Future work will involve deploying RF
sensors on patients, collecting real-time data, and comparing
it with conventional imaging methods, balancing accuracy
with system complexity, such as X-rays and MRIs. This
validation step is crucial to ensure that the system performs
effectively in clinical settings and can be confidently inte-
grated into medical practices. However, a detailed analysis
of the confusion matrices highlights misclassifications, par-
ticularly in intermediate fracture stages such as light and
moderate fractures. These errors result from overlapping RF
signal features across these stages. Future work will focus on
improving feature extraction, exploring advanced AI archi-
tectures, and optimising sensor configurations to address
these challenges.

VII. LIMITATIONS AND FUTURE WORK
While our study has demonstrated the effectiveness of
RF-based technology integrated with machine learning for
monitoring bone fracture healing, several limitations and
technical challenges must be acknowledged to enhance the
system’s practicality in real-world clinical settings.

A. TECHNICAL CHALLENGES AND PRACTICAL
APPLICATION
1) SIGNAL INTERFERENCE
Challenge: The RF signals utilised in our system are suscep-
tible to interference from external electromagnetic sources
such as medical equipment, mobile devices, and environmen-
tal noise. Additionally, internal factors like patient movement
and multipath reflections within the body can distort the RF

signals, potentially reducing the accuracy of fracture detec-
tion and monitoring.
Proposed Solutions: To mitigate signal interference,

we plan to implement advanced signal processing techniques,
including adaptive filtering and noise reduction algorithms,
to enhance signal quality by filtering out unwanted noise.
Employing beamforming methods and designing specialised
antennas with directional properties can help focus the RF
energy on the target area and minimise the reception of
unwanted signals. Additionally, utilising frequency-hopping
and spread-spectrum technologies can reduce susceptibility
to narrowband interference.

2) POWER REQUIREMENTS
Challenge: Operating a system with multiple RF sensors,
especially in continuous monitoring applications, can lead
to significant power consumption. High power requirements
may limit the system’s portability and patient comfort, neces-
sitating frequent battery replacements or recharging.
Proposed Solutions:To address power consumption issues,

we aim to optimise the system’s hardware by selecting
low-power components and designing energy-efficient cir-
cuits. Implementing duty-cycling strategies, where the sys-
tem operates intermittently rather than continuously, can
reduce power usage without compromising monitoring effec-
tiveness. Exploring energy-harvesting techniques, such as
utilising body heat ormovement to generate power, could also
enhance the system’s sustainability.

3) TECHNICAL LIMITATIONS OF SENSORS
Challenge: The performance of RF sensors can be affected
by their size, sensitivity, and durability. Miniaturisation of
sensors is essential for patient comfort, but smaller sensors
may have reduced signal strength or sensitivity. Furthermore,
sensors may be subject to wear and tear, especially in wear-
able applications, and environmental factors like temperature
and humidity can impact their performance.
Proposed Solutions: We plan to invest in developing

advanced sensor materials and designs that balanceminiaturi-
sationwith performance. Utilising flexible and biocompatible
materials can improve patient comfort and sensor durability.
Regular calibration protocols will be established to maintain
sensor accuracy over time. Incorporating self-diagnostic fea-
tures into the sensors can help detect and compensate for
performance degradation.

4) 2D ANALYSIS AND MATLAB SIMULATIONS
Challenge:Our current study relies on two-dimensional (2D)
analysis andMATLAB simulations to model and simulate the
interactions of RF signals with biological tissues. While this
approach provides valuable insights, it does not fully capture
the complexity of three-dimensional (3D) human anatomy
and tissue heterogeneity. This limitation may affect the accu-
racy and applicability of our findings when transitioning to
practical, real-world scenarios.
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Transitioning from simulations to real-world applications
presents several challenges that need to be addressed to
ensure the system’s reliability and practicality. One major
challenge is the variability in human anatomy, includ-
ing differences in bone density, muscle thickness, and
tissue composition, which can significantly impact RF
signal propagation and sensor performance. Developing
adaptive calibration techniques and incorporating larger,
diverse datasets during training can help mitigate these
effects.

Additionally, noise in RF signals caused by environmen-
tal factors, such as interference from medical equipment
or patient movement, poses a significant hurdle. Advanced
signal processing techniques, such as adaptive filtering and
beamforming, will be explored to enhance signal clarity and
reduce noise. These efforts will ensure the system’s robust-
ness in real-world clinical environments, paving the way
for successful hospital deployment and remote monitoring
scenarios.
Proposed Solutions: Future work will focus on extend-

ing our models to three-dimensional (3D) simulations to
better represent the anatomical complexities and spatial
variations in human tissues. Employing advanced simula-
tion software and computational methods can enhance the
realism of our models. Validating our simulations with
experimental data from phantom models or in-vitro studies
will help bridge the gap between simulations and practical
applications.

B. LIMITATIONS IN SIMULATIONS AND EXPERIMENTAL
VALIDATION
One significant limitation of the current approach is its
reliance on simulated data, which lacks the complexity
and variability inherent in real-world scenarios. Simulated
datasets cannot fully replicate human anatomical diver-
sity, including variations in muscle thickness, bone den-
sity, and fracture patterns. Furthermore, RF signals are
susceptible to noise caused by external electromagnetic
interference, patient movement, and multipath reflections
within the body. These factors can distort signal mea-
surements and reduce the system’s reliability in practical
settings.

Challenges related to population diversity include difficul-
ties in replicating results across varied demographic groups.
Differences in body composition, such as muscle thickness,
fat distribution, and bone density, can significantly impact
the propagation of RF signals and the system’s overall per-
formance. Additionally, the limited representation of these
variations in the simulated data constrains the ability to detect
and classify a wide range of fracture types. Ensuring the
system’s robustness and reliability requires validation using
diverse and representative datasets.

C. FUTURE WORK
To address these limitations and challenges, our future work
will focus on:

1) TRANSITIONING TO 3D MODELLING AND ADVANCED
SIMULATIONS
Moving from 2D to 3D simulations will allow us to better
capture the complexity of human tissues and bone healing
processes, thereby improving the accuracy of fracture detec-
tion at various stages. This will involve utilising advanced
computational tools and incorporating realistic tissue prop-
erties to enhance model fidelity.

Furthermore, integrating advanced machine learning tech-
niques, such as 3D convolutional neural networks (3D-
CNNs), will facilitate the transition to 3D simulations,
enabling a more detailed and comprehensive analysis of
fracture dynamics. Federated learning methods will be con-
sidered to ensure patient data privacy during clinical trials,
which will involve diverse datasets reflecting real-world
variability. Finally, distributed training frameworks and data
augmentation techniques will support scaling the system to
larger datasets, enhancing its generalizability and robustness.

As part of this transition, larger datasets representing
diverse patient populations will be collected and utilised to
validate the model’s accuracy and generalizability across var-
ious anatomical and physiological scenarios. The extended
simulations will also prepare the system for integration into
clinical trials by refining the algorithms to address real-world
variability in body composition and fracture patterns.

2) CONDUCTING EXPERIMENTAL STUDIES AND CLINICAL
TRIALS
Implementing in-vitro experiments using tissue-mimicking
phantoms and progressing to in-vivo clinical trials will val-
idate the accuracy and reliability of our RF sensor system in
real-world settings. This step is crucial for confirming the sys-
tem’s performance in clinical environments and identifying
practical issues that may not be apparent in simulations.

Collaborations with healthcare providers and hospitals will
be instrumental in facilitating clinical trials, allowing access
to real-world patient data and receiving practical feedback
from medical professionals. These partnerships will support
the system’s iterative refinement and ensure its alignment
with clinical workflows and requirements.

3) ENHANCING SENSOR DESIGN AND CALIBRATION
Developing adaptive calibration techniques to account for
individual patient variability, including differences in body
composition and tissue density, will improve the system’s
effectiveness. Sensor technology advances, such as using
novel materials and fabrication methods, can enhance sensor
sensitivity and durability.

4) OPTIMISING SYSTEM INTEGRATION AND ENERGY
EFFICIENCY
Addressing power requirements through energy-efficient
hardware design and exploring energy-harvesting solutions
will make the system more practical for continuous moni-
toring applications. Improving system integration to ensure

11130 VOLUME 13, 2025



A. Aldelemy et al.: Monitoring Bone Healing: Integrating RF Sensing With AI

seamless operation and data transmission will enhance
usability in clinical settings.

5) ADDRESSING REGULATORY AND SAFETY
CONSIDERATIONS
Engaging with regulatory bodies to ensure compliance with
medical device standards and addressing safety concerns
related to RF exposure will be essential steps toward clinical
adoption.

By systematically addressing these technical challenges
and limitations, we aim to enhance the practicality and reli-
ability of our RF-based bone fracture monitoring system,
paving the way for its effective integration into clinical prac-
tice. Ultimately, overcoming these challenges will contribute
to improved patient outcomes through more accurate and
non-invasive fracture assessment.

VIII. ETHICAL CONSIDERATIONS IN CONTINUOUS
MONITORING
Integrating AI-based medical systems, such as RF sensing
technology for bone fracture monitoring, raises critical eth-
ical implications, particularly in patient data security and
privacy. AI systems’ collection and analysis of sensitive
health data require robust safeguards to uphold patient confi-
dentiality.

A. DATA SECURITY AND PRIVACY
The collection and analysis of sensitive health data by AI
systems necessitate robust safeguards to ensure patient con-
fidentiality. Encryption protocols must secure data during
transmission and storage, while multi-factor authentication
and access control mechanisms limit access to authorised per-
sonnel only. Additionally, clear policies on data retention and
safe deletion are essential to maintaining trust and complying
with regulations like GDPR and HIPAA. Transparent policies
must ensure that patients fully understand how their data is
collected, used, and stored, enabling them to retain control
over their information.

B. BALANCING INNOVATION AND TRUST
Ethical oversight mechanisms, such as review boards and
compliance with relevant regulations, are crucial for main-
taining patient trust. Additionally, integrating explainable AI
(XAI) methods enhances transparency by providing inter-
pretable insights into the system’s decision-making process.
These efforts ensure that technological innovation does not
come at the expense of patient welfare or autonomy.

C. INFORMED CONSENT AND PATIENT AUTONOMY
Ethical use of AI systems requires ensuring that patients
provide informed consent. This involves clear communica-
tion about the nature and purpose of data collection, how
it will be used, and patients’ rights to withdraw consent at
any stage without impacting their care. Empowering patients
through transparent communication fosters trust and aligns
with ethical healthcare practices.

D. PSYCHOLOGICAL IMPACT AND PATIENT WELL-BEING
Continuous monitoring may have diverse psychological
impacts, ranging from reassurance to anxiety. It is paramount
to tailor the monitoring approach to accommodate individual
patient preferences and provide robust support to address any
concerns. Regular assessments should be conducted to ensure
the monitoring remains a comfort rather than a burden.

E. ETHICAL OVERSIGHT AND GOVERNANCE
Robust ethical oversight should be established through insti-
tutional review boards or ethics committees to ensure com-
pliance with ethical standards. These bodies should regularly
review the application of the technology and manage updates
or changes that could affect patient care. Transparency with
patients and stakeholders about how the technology is used
and managed is crucial for maintaining accountability.

F. ADDRESSING PATIENT CONCERNS
Proactive engagement with patients to address their concerns
is vital. Effective feedback mechanisms should be estab-
lished to allow patients to voice their concerns or questions.
Healthcare providers must be prepared to act swiftly to adjust
monitoring practices based on patient feedback to enhance
security measures and ensure patient comfort.

G. BALANCING INNOVATION WITH ETHICAL
RESPONSIBILITY
While the benefits of RF monitoring are significant, they
must be carefully balanced with ethical responsibilities. Con-
tinuous efforts to assess and mitigate any potential risks
associated with the technology are crucial. Ensuring equi-
table access to the technology and providing comprehensive
training for healthcare professionals on its ethical use is also
essential to prevent disparities in healthcare.

IX. FUTURE RESEARCH DIRECTIONS
The technologies developed in this study represent a signifi-
cant advancement towards improving non-invasive monitor-
ing of bone fracture healing. However, the insights gained
from the MATLAB simulations are only the initial step in a
broader research agenda aimed at developing a fully func-
tional monitoring system for clinical use. These simulations
have provided a foundational understanding of the system’s
behaviour under controlled conditions, paving the way for
more complex, real-world applications.

Future research will build upon these simulation findings
by progressing from 2D to 3D modelling and eventually to
in-vivo clinical trials. This transition is crucial for validating
simulation results in real-world scenarios and ensuring the
developed system can be effectively integrated into clinical
practice.

Enhancing Sensor Array Configurations: The progres-
sive increase in sensor numbers—from two to eight—has
significantly improved the accuracy and sensitivity of the
RF sensing system. This staged approach offers a clear
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direction for future research, which should explore even
more advanced sensor configurations. Future studies could
investigate the optimal number of sensors required for dif-
ferent types of fractures, potentially leading to customised
sensor arrays tailored to specific clinical needs. Further-
more, the improvements seen with increased sensor density
must be validated through large-scale clinical trials to con-
firm their effectiveness and reliability across diverse patient
populations.

Several key areas should be explored further to enhance
efficacy and accuracy in future work, including:

• Sensor Device Improvements: Developing and refin-
ing sensor devices is crucial as we move from simulated
environments to real-world applications. Improving the
design to increase sensitivity to subtle changes in tis-
sue properties during the various stages of healing will
be essential. This will ensure that the sensors perform
reliably across diverse clinical conditions, particularly
in detecting more nuanced stages of healing.

• Advanced Data Analyses: Leveraging deep learning
models to understand the collected data better and iden-
tify complex patterns that could help predict healing
trajectories and rates. These models must be validated
with real-world data to ensure their effectiveness in clin-
ical settings. Implementing advanced data analytics will
allow for more accurate prediction of fracture healing
stages and enable personalised treatment plans.

• Comparative Studies with Conventional Imaging
Techniques: Future work should compare RF sensing
technologies and traditional imaging methods, such as
X-rays and MRI, to assess their relative accuracy and
clinical benefits. These comparisons will help establish
the unique advantages of RF sensing combined with
AI in clinical practice, highlighting the added value of
non-invasive monitoring technologies.

• Broad Clinical Trials: Large-scale clinical trials will be
essential for evaluating the effectiveness of RF sensing
technologies in actual medical settings. Trials across
diverse patient groups are critical for validating the sys-
tem’s performance, moving beyond theoretical models
and simulations to establish the system as a reliable
clinical tool.

Extended Applications: Exploring the potential for radio
frequency sensing and artificial intelligence technologies in
monitoring other types of bone or tissue healing, such as
post-surgical recovery or chronic bone disease treatment.
Expanding the application of these technologies could extend
the system’s utility beyond fracture healing, contributing to
advancements in broader medical diagnostics and treatment
solutions.

Integrating RF sensing technology with other medical
diagnostic modalities offers a promising avenue for enhanc-
ing diagnostic accuracy and patient care. For instance,
combining RF sensing with ultrasound imaging could pro-
vide complementary data, leveraging the spatial resolution of

ultrasound and the real-time, non-invasive monitoring capa-
bilities of RF sensors. Such integration could be particularly
beneficial for simultaneously monitoring soft tissue injuries
and bone fractures.

Additionally, incorporating RF sensing into wearable
devices could enable continuous, remote monitoring of bone
healing. By embedding sensors into lightweight, patient-
friendly wearables, clinicians could track recovery progress
over extended periods without requiring frequent hospital
visits. This hybrid approach could significantly enhance per-
sonalised medicine, offering tailored insights into patient
health through multi-modal data fusion.

Addressing these future research directions will be key to
developing RF-based bone fracture monitoring into a widely
accepted, reliable, and clinically useful tool. This tool will
ultimately enhance patient care and clinical outcomes across
various medical applications.

X. CONCLUSION
The results of this study strengthen the foundations laid by
our previous research in using radiofrequency sensing to
monitor bone healing, paving the way for more advanced and
effective applications in clinical practice, as reviewed in our
previous study [23].
This study demonstrates the potential of integrating RF

sensing with AI for non-invasive, real-time bone fracture
monitoring. Through MATLAB simulations, we have shown
that our machine learning model can accurately distinguish
between various stages of fracture healing, from No Fracture
(Class 1) to Nearly Healed (Class 5). Each increase in sensor
count—from two to eight—has significantly improved detec-
tion accuracy and monitoring capabilities. As the number of
sensors increased, the system became more adept at captur-
ing subtle variations in fracture stages, particularly between
light (Class 2), moderate (Class 3), and severe fractures
(Class 4), thus enhancing both the accuracy and reliability of
the diagnostic outcomes.

Our study’s monitoring of bone fractures was structured
around four key stages, ranging from no fracture to major
fractures. This classification framework was strategically
chosen to align with clinical relevance and the typical
progression of healing observed in femoral fractures. Seg-
menting the healing process into detailed stages allows our
research to more intricately reflect the physiological changes
at each phase, thereby enhancing the sensitivity and speci-
ficity of our RF sensor-based monitoring system. While the
current four-stage model provides substantial insights, fur-
ther subdivisions into more granular stages could yield even
greater precision. This would enhance monitoring accuracy
and support more precisely targeted medical interventions at
each critical phase of the healing process.

The two-dimensional simulations have been crucial in
these early stages, providing valuable insights into the inter-
actions between RF signals and biological tissues during
bone healing. However, the MATLAB simulations repre-
sent only the first step in a broader research agenda to
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develop a comprehensive monitoring system for clinical use.
By progressively increasing the number of sensors, we have
established a strong foundation for more sophisticated future
experiments, including three-dimensional modelling and in-
vivo clinical trials, to understand system behaviour under
real-world conditions better.

Practical experiments will be essential for validating our
simulation findings in clinical environments. Future work
will focus on conducting these trials and comparing our
system’s performance with conventional imaging techniques,
such as X-rays andMRIs. This step is key to ensuring the sys-
tem’s effectiveness and reliability for integration into clinical
practice.

This research marks a significant advancement in
orthopaedic care, laying the groundwork for a more person-
alised and efficient approach to bone fracture monitoring and
treatment. Multiple sensor configurations have demonstrated
the potential to improve patient outcomes through advanced,
data-driven clinical solutions, paving the way for a new
standard in non-invasive fracture monitoring and patient care.
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