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ABSTRACT Power networks are vital to society, yet service outages and faults can have devastating con-
sequences. This study introduces a novel integration of machine learning and data augmentation techniques
for fault detection and classification, addressing gaps in data diversity and imbalance. Unlike traditional
approaches, the research utilizes an Auxiliary Classifier Generative Adversarial Network (ACGAN) to
generate synthetic data representative of underrepresented fault types, enhancing model training and per-
formance. By extracting both spectral and statistical features from the Grid Event Signature Library (GESL)
dataset, a comprehensive representation of power system signals is achieved. A comparative evaluation of
models including Decision Trees (DT), Random Forest (RF), Extra Tree Classifier (ETC), Gradient Boosting
Classifier (GBC), and K-Nearest Neighbors (KNN) revealed the Extra Tree Classifier achieved the highest
testing accuracy of 93.85%. The methodologies demonstrated scalability by using a dataset augmented
to 9,000 samples and validated robustness through 10-fold cross-validation with a standard deviation of
0.00659. These results highlight the proposed framework’s potential for real-world implementation in
modern power grids, offering enhanced fault prediction and resilience. This research establishes a pathway
for integrating advanced data augmentation and machine learning techniques into operational power grid
systems, ensuring stability and reliability.

INDEX TERMS ACGAN, grid event signature library, smart grid, fault tolerance, Machine Learning,
spectral features.

I. INTRODUCTION

A reliable power system is essential for modern soci-
ety as almost every device, system, and service depends
directly or indirectly on the electrical grid. The conse-
quences of faults and service outages can be severe, including
fires, explosions, intermittent disconnection of residents,
reliance on backup power supplies for vital medical equip-
ment, communication and transportation service outages,
water pollution, and other wide reaching concerns. These
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issues may become more frequent as we move away from
fossil-based energy sources to renewables. Therefore, it is
crucial to incorporate sophisticated metering, real-time mon-
itoring, and warning systems into the electricity network to
enable an effective and resilient smart grid [1], [2]. Mod-
ern power grids can be intricate, ever-changing systems,
consistently expanding to support ever changing industries,
sectors and urban planning. Modern grids are developing
via the incorporation of sustainable energy sources, intel-
ligent grid technology, and sophisticated monitoring tools.
The increasing complexity of power grid systems, caused
by the increased use and need of distributed energy sources,
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worsens temporary disruptions and exposes deficiencies in
safety measures. Identifying, categorizing, and pinpointing
sudden changes are crucial for enhancing the overall effi-
ciency of a system and reducing disruptions in smart grid
environments [3], [4]. High impedance problems, such as
“arcing”’, cause significant difficulties. Power line problems
in recent years have caused devastating wildfires, including
Dixie, Thomas, Camp, Red-wood Valley, Atlas, and Nuns
in the United States alone. These fires have resulted in con-
siderable loss of life and extensive economic damage [5].
While fires caused by ‘“‘equipment failure” or ‘‘electrical
power”’ are approximately 20% of events, their environmen-
tal consequences are disproportionately severe, resulting in
the combustion of nearly 1.5 million acres according to the
above study [5]. To ensure the stability and dependability of
power systems, advanced methods for detecting, predicting,
and categorizing faults are necessary to ensure proactive
management.

The Grid Event Signature Library (GESL) [6] is a major
resource in this field, including a comprehensive collection
of real-world labelled fault data. It supports the development
and evaluation of innovative approaches to improve power
system resilience. Prediction and categorization of faults are
crucial elements of power system management. Operators
can successfully minimize downtime and mitigate the danger
of cascade failures by accurately predicting probable faults
and implementing preventative actions. Fault categorization
facilitates a prompt and suitable response to abnormalities,
guaranteeing that repair measures are customized to the par-
ticular nature of the disruption and the scene. The dataset
provided by GESL includes a diverse collection of power sys-
tem events, ranging from ‘simple disruptions like voltage sags
and swells to more intricate phenomena such as oscillations
and transients’ [6]. Disruptions in electrical power networks
can range in severity from minor to severe. Voltage sags refer
to temporary decreases in voltage, usually induced by the
initiation of large motors or electrical problems. On the other
hand, voltage swells are temporary rises in voltage that occur
when a load is suddenly disconnected. Both have the potential
to cause harm to delicate machinery. Oscillations refer to
periodic fluctuations in voltage or current indicate possible
instability in the system, while transients, which are brief,
high-frequency surges are induced by occurrences such as
lightning strikes or switching processes. Transient electrical
disturbances can result in substantial harm to electrical equip-
ment, highlighting the importance of implementing resilient
power system management. The variety of GESL makes it
well-suited for training and testing machine learning models
that focus on fault prediction and classification.

A. CONTRIBUTIONS
This study makes the following key contributions:

e Comprehensive extraction and integration of power sys-
tem event data from the GESL, ensuring a robust dataset
for analysis. The dataset includes a wide range of power
system occurrences and sensor data, providing a solid
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foundation for developing and evaluating machine learn-
ing models.

e Extraction of a diverse set of spectral and statistical fea-
tures from the sensor data, enhancing the models’ ability
to capture both time-domain and frequency-domain fea-
tures of the power system signals.

e Utilisation of the ACGAN to augment the GESL dataset,
significantly increasing the number of samples and
improving data diversity and representativeness. This
augmentation addresses the issue of data imbalance by
generating high-quality synthetic data for underrepre-
sented classes.

e Application and evaluation of several machine learning
models, including Decision Trees (DT), Random Forest
(RF), Extra Tree Classifier (ETC), Gradient Boosting
Classifier (GBC), and K-Nearest Neighbors (KNN),
on both the original and augmented datasets. The evalu-
ation metrics include training accuracy, testing accuracy,
precision, recall, and F1-score.

II. LITERATURE REVIEW

The GESL dataset has become a vital resource for power
system research, providing comprehensive real-event data,
essential for developing and validating detection methods.
Studies utilizing GESL data have highlighted its adapt-
ability and significance in both academic and industrial
contexts. For instance, [6] introduced a novel event signature
library using a Deep Neural Network (DNN) to classify
electrical disturbances, enhancing traditional event classifi-
cations. This method demonstrated a significant capability
to differentiate between event types, with over 1,000 occur-
rences analyzed. In [7], a big data framework was developed
to categorize power grid signatures, improving intelligent
learning through AI and ML approaches. This library now
contains over 800 signatures and 250 million data points,
supporting advanced analysis and forecasting for grid relia-
bility. The Signature Matching Tool (SMT) described in [8]
aids users in recognizing electrical signatures by employ-
ing a Local Binary Classifier (LCN), achieving an average
accuracy of 83% and reducing training time compared to
traditional classifiers. Meanwhile, [9] presented the Spec-
tral Correlation Function (SCF) for identifying grid-signal
distortions, outperforming fast fourier transform (FFT) and
power spectral density (PSD) methods in detecting signal
types. Researchers in [10] introduced a method to define
thresholds for oscillation detection, enhancing automation
and reliability in identifying significant oscillations. This
approach minimizes false alarms while maintaining pre-
cision. The authors in [5] proposed an energy detection
algorithm for smart grids, improving disruption identification
and automatic warnings using real data from GESL and the
DOE/EPRI National Database. The performance of various
sensors in power systems was evaluated in [11], revealing that
advanced sensors may excel in detecting high-frequency tran-
sients compared to traditional current transformers. The same
researchers highlighted an energy detector algorithm’s effi-
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ciency in identifying transient events with high accuracy [12].
MENSA, an Intrusion Detection System (IDS) discussed
in [13], combines Autoencoder and GAN architectures to
detect and classify cyber intrusions in smart grids with high
accuracy. Lastly, [14] introduced an extensive open-source
dataset of synchrophasor measurements, offering valuable
data for benchmarking and developing new algorithms.

Generative adversarial networks (GANs) have demon-
strated significant potential in addressing data scarcity and
imbalance in energy fault prediction and related fields. Recur-
rent GANs (R-GANs), which use Recurrent Neural Network
(RNNs) to capture temporal dependencies, were applied to
the UCI Appliances Energy Prediction and Building Data
Genome datasets, achieving MAPE values of 10.12% (TSTR)
and 10.81% (TRTR) for the UCI dataset, demonstrating com-
parable performance between synthetic and real data mod-
els [15]. Auxiliary Classifier GANs (ACGANs) generated
realistic labeled sensor data for mechanical fault diagnosis,
achieving 100% fault classification accuracy on vibration
signal data, even with unbalanced datasets [16]. Enhanced
GANs (E-GANs) combined DCGANs with Convolutional
Neural Networks (CNNs), incorporating k-means cluster-
ing and ridge regression for feature optimization. On the
gearbox dataset, E-GAN achieved 73.09% accuracy under a
1:20 imbalance ratio, outperforming DCGAN-based models.
Conditional DCGANSs (C-DCGANSs) improved classification
accuracy to 99.9% on the Case Western Reserve (CWRU)
and planetary gearbox datasets by balancing datasets with
synthetic samples [17]. In power grids, semi-supervised
GAN frameworks like the generative-adversarial based semi-
supervised learning framework (GBSS) integrated CGANs
with Deep Ladder Networks, achieving high F-measure
scores and robust performance in diagnosing faults and
cyberattacks across imbalanced datasets with varying label
ratios [18]. These studies illustrate GANs’ ability to enhance
fault prediction and classification in energy systems, particu-
larly when historical data is scarce or imbalanced.

Overall, the literature highlights GESL’s critical role in
advancing power systems research. By leveraging this rich
dataset, various sophisticated methods have been developed
to enhance fault detection, prediction, and classification,
demonstrating GESL’s importance in improving the reliabil-
ity and stability of power systems.

lll. METHODOLOGY

This section provides a detailed explanation of the thorough
process of gathering data and extracting significant features,
which are essential to our research technique.

A. PROPOSED METHODOLOGY

The proposed methodology used in this manuscript involves
several key steps: data extraction, preprocessing, feature
extraction, data augmentation, and model training and eval-
uation. Data was extracted from the GESL using a web
scraping tool and saved in CSV format. The dataset was then
preprocessed to handle missing values and to standardize the
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data. Spectral and statistical features were extracted from
the sensor data to capture both time-domain and frequency-
domain characteristics. To address data imbalances, ACGAN
was used for data augmentation, significantly increasing
the dataset size. Machine learning models, including Deci-
sion Trees (DT), Random Forest (RF), Extra Tree Classifier
(ETC), Gradient Boosting Classifier (GBC), and K-Nearest
Neighbors (KNN), were trained and evaluated on both the
original and augmented datasets. Model performance was
assessed using metrics such as accuracy, precision, recall,
F1-score, and cross-validation to ensure robustness and reli-
ability.

B. DATA SET

The data used in this study was carefully extracted from the
GESL website (https://gesl.ornl.gov/), which offers an all-
encompassing interface for signatures. The dataset comprises
a wide array of power system occurrences in 1D wave form,
such as transients, voltage sags, surges, and oscillations.
In the dataset, an individual signature ID is assigned to each
record, which is accompanied by comprehensive metadata
such as sources of data and event identifiers. A further
subdivision of these main headings (Condition, Equipment,
Events, Phase, and State) results in a total of 1485 unique
event identifiers. By analyzing these event identifiers, this
research seeks to discern patterns and gain insights regarding
power system disturbances.

Aside from event tags, the collection also contains sensor
data from multiple equipment. These sensors are essential for
monitoring and evaluating power system events and consist
of:

1. Frequency Disturbance Recorder (FDR): An FDR is a
device that monitors and records the frequency varia-
tions in the power grid. Its primary role is to detect
and analyze disturbances in the grid frequency, which
can indicate issues such as load imbalances, generation
losses, or system faults. By tracking these disturbances,
FDRs help in maintaining the stability and reliability of
the power grid.

2. Acoustic Emission on Side Wall: Acoustic emission
refers to the release of transient elastic waves produced
by a sudden redistribution of stress in a material. In the
context of power systems, acoustic emission sensors on
the side walls of equipment like transformers or genera-
tors can detect early signs of mechanical failures, partial
discharges, or other anomalies. This helps in preventive
maintenance and avoiding catastrophic failures.

3. Quadripole: In electrical engineering, a quadripole (or
four-terminal network) is a two-port network with two
pairs of terminals. It is used in the analysis of electri-
cal circuits to describe input and output relationships.
In power systems, quadripoles can be used to model and
analyze the behavior of transmission lines and network
components, facilitating the design and stability analysis
of the power grid.
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4. Ultra-High Frequency (UHF): UHF refers to the fre-
quency range between 300 MHz and 3 GHz. In power
systems, UHF sensors are often used to detect partial
discharges in equipment like transformers, gas-insulated
switchgear, and cables. Partial discharges are early indi-
cators of insulation deterioration, and UHF detection
allows for early intervention to prevent failures.

5. Acoustic Emission on Top Lid: Similar to acoustic emis-
sion on the side wall, sensors placed on the top lid
of power system equipment monitor for stress-induced
acoustic waves. These sensors help in detecting and
locating faults, mechanical stresses, or partial discharges
within the equipment, ensuring timely maintenance and
reducing the risk of breakdowns.

6. Optical Sensors (OS): OSs are used for various power
system applications, including temperature, current and
voltage sensing, and detecting partial discharges. They
provide high accuracy and immunity to electromagnetic
interference, making them ideal for monitoring high-
voltage equipment and ensuring operational safety and
reliability.

7. High-Frequency Current Transformer (HFCT): HFCTs
are used to detect high-frequency components of elec-
trical currents, often associated with partial discharges
or high-frequency transients in power systems. By mon-
itoring these high-frequency signals, HFCTs help in
identifying and diagnosing insulation issues and ensur-
ing the health of critical power equipment.

8. Acoustic Emission: In general, acoustic emission in
power systems refers to the monitoring of elastic
waves generated by stress, deformation, or discharges
within electrical equipment. This non-destructive test-
ing method helps in early fault detection, condition
monitoring, and preventive maintenance of assets like
transformers, circuit breakers, and generators.

9. Potential Transformer/Current Transformer (PT/CT):
PTs (Potential Transformers) and CTs (Current Trans-
formers) are used for voltage and current measurement
in power systems, respectively. PTs step down high volt-
ages to safer levels for metering and protection, while
CTs reduce high currents to measurable levels. Both are
essential for accurate measurement, control, and protec-
tion of the power grid.

10. Phasor Measurement Unit (PMU): A PMU is a device
that measures the electrical waves on an electricity grid
to determine the magnitude and phase angle of the sinu-
soidal waveforms. PMUs provide real-time monitoring
of the grid’s voltage and current phasors, which are
critical for grid stability analysis, fault detection, and
dynamic system response assessment. PMUs play a key
role in enhancing situational awareness and operational
efficiency of modern power systems.

These components and technologies are integral to the
monitoring, analysis, and maintenance of power systems,
contributing to the overall reliability and efficiency of the
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electricity grid. Every sensor records different aspects of
power system functionality, hence enhancing the overall com-
prehension of the factors that contribute to power outages.
In cases where sensor data was missing, a ‘NaN’ label was
used to denote the absence of data. The data was acquired
through the use of a web scraping tool and subsequently
saved in a CSV file titled “Datalabels.csv.” In addition,
sensor data can be accessed via an Application Programming
Interface (API) and is stored in separate CSV files that are
titled after their corresponding signature IDs (e.g., sigID-
5.csv for signature ID 5). The format of these CSV files varies
due to the diverse type, quantity of sensors, and length of the
wave data. In order to maintain uniformity across the dataset,
only one channel (voltage) was chosen for analysis from all
the sensor data.

C. FEATURE EXTRACTION

The data from each sensor was carefully analyzed to extract
an array of spectral and statistical features. This was car-
ried out to improve the performance of machine learning
(ML) models and enable more accurate analysis. The fea-
tures that have been retrieved are Mean, Standard Deviation
(StdDev), Skewness, Kurtosis, Maximum Power Spectral
Density Frequency (Max PSD Freq), Spectral Centroid, Spec-
tral Flux, and Spectral Decrease. The retrieved features are
essential for capturing the properties of signals in both the
time-domain and frequency-domain, providing a holistic per-
spective. Time-domain features, such as Mean and StdDeyv,
offer a clear and easily understandable insight into the data,
which is essential for comprehending model behavior and
results. The Mean provides a measure of central tendency,
serving as a reference point for the variation in the data,
while StdDev quantifies the extent of variability, aiding in
the identification of the stability or volatility within the sig-
nal. Frequency-domain features, such as Max PSD Freq and
Spectral Centroid, are essential for comprehending the peri-
odicity and frequency distribution of a signal. Max PSD Freq
identifies the most prominent frequency component, which
is very valuable for tasks like predictive maintenance and
defect detection, where certain frequency patterns can indi-
cate potential issues. The Spectral Centroid, which indicates
the central point of the spectrum, offers valuable information
about the distribution of high and low frequencies, facilitating
the distinction between different types of signals.

Features such as Spectral Flux and Skewness play a crucial
role in coping with the dynamic and unpredictable features
found in time series data. Spectral Flux quantifies the speed
of variation in the spectrum, allowing models to identify
dynamic changes and transitions in the signal. It is crucial
for recording fleeting events or sudden shifts in the signal’s
behavior. Skewness quantifies the lack of symmetry in the
distribution of data, revealing any deviations and unexpected
changes that are important for identifying anomalies. In addi-
tion, the inclusion of features such as Kurtosis and Spectral
Decrease enhances the depth of the study. Kurtosis quantifies
the degree of deviation from a normal distribution, provid-
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ing insights into the existence of outliers, aiding models in
predicting exceptional results. Spectral Decrease, a measure
of the reduction in higher frequencies with time, provides
valuable information about the harmonic composition and
energy distribution of a signal. It helps to analyze the sig-
nal’s timbre and detect any deterioration or damping effects.
These features work together to accurately capture both the
time-based and frequency-based features of the signals. This
comprehensive approach improves the ability of ML mod-
els to distinguish between different patterns or classes. The
extensive range of features enables models to successfully
differentiate between various signal types or states, adjust to
variations in data distribution over time, and deliver precise
and reliable predictions.

D. DATA INTEGRATION AND FINAL DATASET

The feature extraction process incorporated labels obtained
from the ‘Datalabels.csv’ file, using a common identifier
column, ‘sigID’. This dataset originally contained 50 distinct
labels, each representing a different type of event. As depicted
in Figure 1, the data distribution of these labels was highly
uneven. The label with the highest number of instances
appeared 241 times, while the label with the fewest occur-
rences appeared only once.

Number of instances for each event
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FIGURE 1. Original label distribution of the dataset.

An uneven distribution of data presents substantial dif-
ficulties for data interpretation and the training of models.
Models trained on this dataset could exhibit a bias towards
the more prevalent labels, perhaps leading to the neglect or
misclassification of the less common ones.

Label and their distribution after application of threshoid
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FIGURE 2. Labels and their distribution after application of threshold.
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To tackle this problem, the authors implemented a criterion
to exclude labels with fewer than 50 occurrences. The purpose
of this choice was to establish a dataset that is both well-
balanced and robust, ensuring that each label included has an
adequate number of occurrences for dependable analysis and
model training. By using this criterion, the dataset underwent
a substantial reduction, prioritizing the most dominant labels.
The dataset has been modified to contain only events that
have 50 or more instances, as seen in Figure 2. This modifica-
tion led to a more equitable allocation of categories, enabling
more precise and dependable analysis of data and training of
models.

After performing label encoding, instances with null val-
ues were excluded from the dataset, along with the ‘sigID’
column. The cleaned dataset, now devoid of null values and
unnecessary identifiers, provides a more streamlined and
analysis-ready version for subsequent processing. This pre-
processed dataset, and snippet of which is shown in Figure 3,
ensures that each entry is complete and labeled appropriately,
facilitating more effective data analysis and machine learning
model training.

Mean  Std Dev Skewness Kurtosis Max PSD Freq centroid flux decrease Label
0609588 0.330459 0.447303 0.000211 0.008938 0.014134 0.095047 0.467065 8
0617707 0000011 0407018 0.044636 0.009314 0319465 -0.000232 0.452362 6
0620487 -0.000106 0.261243 0.242309 0.007957 0.383624 0.000002 0.421424 6
0617475 0000660 0444796 0.083483 0.100050 0476205 -0.000950 0.541896 3
0614192 0.000057 0.364182 0.068570 0.017199 0.298620 -0.000183 0.454182 6
0614890 0.000294 0.489585 0.363245 0.229666 0.609965 -0.000092 0.450033
0619510 0000139  0.497920 0.209490 0626415 0.848554 -0.001212 0.348540 3
0621316 -0.000026 0.460793 0.002651 0.012360 0.374160 -0.000341 0.355593 7
0626403 -0.000064 0475996 0.111294 0.021357 0.206331 -0.000016 0.417020 6
0614103 0.002047 0463709 0.196482 0292199 0657549 -0.003137 0.235163 1

FIGURE 3. Snippets of the dataset after label encoding and removal of
null values.

The process of label encoding converts categorical labels
into numerical values, which is essential for ML algo-
rithms that require numerical input. This transformation helps
in maintaining the intrinsic relationships between differ-
ent labels, enabling the models to learn and predict more
accurately. By removing instances with null values, the
dataset’s integrity and quality are preserved, minimizing the
potential for erroneous data to affect analysis outcomes.
Furthermore, the exclusion of the ‘sigID’ column, which
served primarily as an identifier, removes unnecessary noise
from the dataset. This step is crucial, as it prevents the
inclusion of irrelevant data that could potentially skew
results. The resulting dataset comprises 1087 samples and
9 features.

IV. DATA AUGMENTATION

The dataset used in this study, comprising 1087 samples
and 9 features, presented significant challenges for effec-
tively training the employed ML models. The limited size
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of the dataset was insufficient for the models to generalize
efficiently, resulting in issues of overfitting and underfitting.
The discrepancy with the models trained on such a dataset is
discussed in the result and discussion section.

A significant effort was made to handle bias, particularly
the class imbalance present in the dataset. Since the original
dataset exhibited a highly uneven class distribution, the mod-
els are biased toward the majority class as shown in result
and discussion section. To mitigate this, the ACGAN [19],
[20], [21] was employed for data augmentation. ACGAN
was chosen to artificially expand the dataset, generating
more varied and representative samples that better captured
the underlying data distribution. This augmentation process
aimed to mitigate overfitting by providing a richer and more
diverse dataset, enhancing the models’ ability to generalise
to new, unseen data. An ACGAN is a type of Generative
Adversarial Network (GAN) [21], [22], [23] that is particu-
larly effective for data augmentation tasks. In an ACGAN,
the generator not only produces realistic data samples but
also generates them conditioned on class labels, which allows
for more controlled data generation and can enhance the
diversity and quality of the augmented data. The ACGAN
offers several notable advantages over the traditional GAN.
One of the primary benefits of ACGAN is its ability to
generate class-conditional samples. By incorporating class
labels into the training process, ACGAN enables the gen-
erator to produce data samples that are not only realistic
but also representative of specific classes. This controlled
data generation capability is particularly useful in scenarios
where the dataset is imbalanced, as it allows for the targeted
augmentation of underrepresented classes, thereby improving
the performance and robustness of machine learning models
trained on the augmented data. Furthermore, the inclusion
of an auxiliary classifier within the discriminator enhances
the learning process. This classifier predicts the class labels
of the input data, providing additional feedback to the gen-
erator. As a result, the generator receives more informative
gradients, which helps it produce higher quality and more
diverse samples. This dual objective (distinguishing real from
fake samples and classifying the input data) makes the dis-
criminator a more powerful and effective component in the
network.

Additionally, ACGAN improves the overall stability and
convergence of the training process. Traditional GANs often
suffer from issues such as mode collapse, where the generator
produces limited varieties of samples [24], [25]. ACGAN
mitigates this problem by encouraging the generation of
samples across different classes, thereby promoting diver-
sity and reducing the likelihood of mode collapse, further
demonstrating ACGAN as a reliable and robust approach
for generating synthetic data, particularly in complex and
multi-class scenarios. The architecture of the generator in the
ACGAN used in this manuscript is presented in Figure 4 (a).
This is a multi-layered neural network designed to transform
input noise vectors into realistic data samples. This process
is facilitated through a series of dense layers, each followed
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by batch normalisation and dropout layers to ensure effective
learning and to prevent overfitting.

Input Dense BatchNormalization Dropout
Shape: (None, Output Shape: Output Shape: (None, Output Shape:
108) (None, 256) (Nene, 255)
Dense_2 Dropout_1 BatchNormalization_1 Dense_1
Output Shape: Output Shape: Output Shape: (None, Qutput Shape:
(None, 256) {None, 512) 512) {None, 512)
BatchNormalization_2 Dropout_2 Dense_3 BatchNormalization_3
Output Shape: {None, Cutput Shape: Output Shape: Cutput Shape: (None,
256) (None, 256) (None, 128) 128)
Dense_4 Dropout_3
Output Shape: Output Shape:
(None, 8) (None, 128)
(a)
Dense Dropout Dense
snalnprl::‘-:::rﬁ. ‘Output Shape: Output Shape: Output Shape:
pe: " (None, 512) (None, 512) (None, 256)

Dense Dropout Dense Dropout
Qutput Shape: Output Shape: Qutput Shape: Cutput Shape:
(None, 54) (None, 128) [Nene, 128) (Nene, 258)

Dense
Output Shape:
{None, 3)

Dropout
Output Shape:
{Mone, 54)

Dense
Output Shape:
[None, 1)

(b)

FIGURE 4. Architecture of GAN used in this study (a) Discriminator
(b) Generator.

The generator starts with an input layer that accepts
noise vectors of shape (None, 109). These noise vectors are
the seeds from which the generator creates data samples.
The first dense layer then processes these input vectors,
expanding them to 256-dimensional feature representations.
This expansion is crucial as it allows the network to learn
complex transformations required for generating realistic
samples. Following the first dense layer, batch normalization
is applied. Batch normalization helps in stabilizing and accel-
erating the training process by normalizing the outputs of the
dense layer, thus ensuring that the activations remain within
a suitable range. This is immediately followed by a dropout
layer, which randomly drops 50% of the units in the previous
layer during training. Dropout is a regularization technique
that helps prevent overfitting by ensuring that the network
does not become overly reliant on any particular perceptrons.

The second dense layer further increases the feature dimen-
sionality to 512, enabling the generator to capture more
detailed and complex patterns. This layer is also followed
by batch normalisation and dropout layers, maintaining the
same pattern of stabilisation and regularisation seen in the
previous stages. Subsequent to this, the third dense layer
reduces the feature dimensionality back to 256, which is again
normalised and regularised through batch normalisation and
dropout. The alternation between expanding and contracting
the feature space helps in refining the learned representa-
tions, allowing the network to generate more accurate and
detailed samples. In the fourth stage, another dense layer is
introduced, this time reducing the feature dimensionality to
128. This progressive reduction helps in converging the high-
dimensional representations into more concise forms that are
easier to manage and transform into the final output. Finally,
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the last dense layer transforms the 128-dimensional features
into an 8-dimensional output. This final transformation step
is crucial, as it shapes the output into the desired format, ready
for further processing or evaluation.

The discriminator architecture of ACGAN used in this
manuscript, presented in Figure 4(b), is also a sophisti-
cated multi-layered neural network designed to differentiate
between real and generated data samples while also clas-
sifying the input data into its respective classes. This dual
functionality is achieved through a sequence of dense layers,
each followed by dropout layers to ensure robust learning
and mitigate overfitting. The discriminator begins with an
input layer that accepts data samples of shape (None, 17).
This input layer serves as the starting point for the network to
process the features of the data samples. The first dense layer
expands these input features to 512 dimensions, significantly
increasing the capacity of the network to capture intricate
patterns in the data. This layer is followed by a dropout layer,
which drops 50% of the units randomly during training to
prevent overfitting and enhance the network’s generalization
capabilities. The second dense layer continues the feature
transformation, maintaining the 512-dimensional space. This
consistency helps the network stabilize and build deeper fea-
ture representations. This layer is also followed by another
dropout layer, reinforcing the regularization effect.

Distribution of Labels Post Augmentation

System Event/Condition:Frequency Deviation

External:Lightning Strike

Failure
Fault:Nonspecific Fault

i consuctons

System Event/Condition:Oscillation
Switching Event:Nonspecific Switching Event

Other:Unknown

Vegeration: Tree

[] 200 200 600 300 1000 1200
count

FIGURE 5. Class label distribution post augmentation.

The third dense layer reduces the feature dimensionality
to 256, which allows the network to begin converging the
high-dimensional features into more concise forms. Subse-
quently, a dropout layer is applied to ensure that the reduced
dimensionality does not lead to overfitting. In the fourth
stage, the network further reduces the feature dimensionality
to 128 through another dense layer. This gradual reduction
helps in refining the learned representations, making them
more abstract and closer to the final output. This is followed
by another dropout layer to maintain regularization. The fifth
dense layer further reduces the dimensionality to 64, which
is critical for simplifying the features into a form that can
be easily classified. A subsequent dropout layer continues to
enforce the regularization. Finally, the architecture branches
into two separate dense layers to fulfill its dual objectives.
The first branch consists of a dense layer that outputs a single
value, representing the validity score (real or fake) of the
input sample. The second branch includes a dense layer that
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outputs a vector of 9 dimensions, corresponding to the class
probabilities of the input sample.

The use of ACGANS for data augmentation was a pivotal
step in addressing the limitations of the original dataset.
By generating high-quality synthetic data and merging it
with existing data, the research achieved a more balanced
and extensive dataset. The distribution of labels post-
augmentation, as illustrated in Figure 5, demonstrates a more
balanced representation of the various event types, crucial for
ensuring the generalisation and effectiveness of the machine
learning models trained on this data.

V. RESULTS AND DISCUSSION

A. CLASSIFICATION RESULTS ON THE ORIGINAL DATASET
The dataset used in this study comprises 1087 samples
and 9 features, split into training and testing sets with
an 80:20 ratio. Given the dataset’s moderate size and the
complexity inherent in its diverse sensor data, ensemble
models such as Random Forest (RF), Extra Tree Classi-
fier (ETC) and Gradient Boosting Classifier (GBC) were
employed to ensure optimal predictive accuracy and robust-
ness. The complexity of the dataset arises from its varied
sensor data, with features encompassing both time-domain
and frequency-domain. This necessitates robust preprocess-
ing and the application of model’s adept at managing diverse
data characteristics. Ensemble methods like RF and Gradi-
ent Boosting strike an appropriate balance between model
complexity and overfitting risk, offering high performance
without the computational demands typically associated with
deep neural networks. RF and ETC models are particu-
larly effective in mitigating overfitting by averaging multiple
decision trees (DT), elucidating feature importance, and han-
dling non-linear relationships within the data. On the other
hand, GBC models sequentially correct errors from preced-
ing models, capturing subtle patterns and managing outliers
adeptly. Although DT models are individually less powerful,
they provide valuable interpretability and have low computa-
tional cost, making them suitable for baseline analysis. The
study also evaluated the K-Nearest Neighbors (KNN) classi-
fier, which, despite its simplicity and non-parametric nature,
struggles with higher-dimensional data and noise typically
present in such real-world datasets. The hyperparameters
for each model, selected using grid search, are detailed in
Table 1.

The models were trained on the training data and then
tested on the testing set. The results of these evaluations are
presented in Table 2.

The results presented in Table 2 from training and testing
reveal several key insights. The high training accuracies of
the DT and RF models (both at 0.979) contrast sharply with
their significantly lower testing accuracies (0.445 and 0.486,
respectively). This discrepancy suggests that these models
are overfitting the training data, capturing noise and specific
patterns that do not generalise well to unseen data. Similarly,
the GBC model, with a training accuracy of 0.922 and a
testing accuracy of 0.467, also indicates overfitting, although
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TABLE 1. Hyperparameters used in this study.

TABLE 3. Classification results on augmented dataset.

Classifier Hyperparameters
ETC n_estimators: 100, random_state: 123
DT criterion: 'gini’, random_state: 123, splitter: 'best'
RF bootstrap: True, criterion: 'gini', max_features: 'sqrt',
n_estimators: 100, random_state: 123
GBC criterion: 'friedman_mse’, learning_rate: 0.1, loss:
'log_loss', max_depth: 3, n_estimators: 100,
random_state: 123
KNN n_neighbors: 5

TABLE 2. Results of classifiers on original dataset.

Model Training Accuracy Testing Accuracy
DT 0.979 0.445
RF 0.979 0.486

GBC 0.922 0.467

KNN 0.598 0.422

ETC 0.4799 0.472

even though to a slightly lesser degree. The KNN model, with
a training accuracy of 0.598 and a testing accuracy of 0.422,
reflects its struggle with the higher-dimensionality and noisy
data, failing to capture underlying patterns effectively. The
ETC shows the lowest training accuracy at 0.4799, yet its test-
ing accuracy of 0.472 suggests a model that is underfitting,
unable to learn adequately from the training data to perform
well on the test data.

These results highlight a critical challenge with the cur-
rent dataset, such that the models are either overfitting or
underfitting, leading to suboptimal performance. This issue
is particularly pronounced given the complexity and diversity
of the sensor data. To address this, the data augmentation
technique ACGAN is used as a solution to enrich the dataset,
providing more varied and representative samples. By arti-
ficially expanding the dataset, data augmentation can help
mitigate overfitting, improve model generalisation, and ulti-
mately enhance the predictive performance on unseen data.

B. CLASSIFICATION RESULTS ON THE AUGMENTED
DATASET
The augmented dataset, comprising 9,000 samples, was
divided into an 80-20 train-test split to evaluate the model’s
performance. The same models and hyperparameters used
for the original dataset were applied to this augmented
dataset. After successfully training the models on the train-
ing set, the testing set was used to evaluate the models’
performance. The results of this evaluation are presented in
Table 3.

The results of the model evaluation on the augmented
dataset presented in Table 3 and visualized in Figure 6, reveal
insightful performance metrics across several classification
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Model Training Testing Precision Recall Fl-
Accuracy Accuracy Score
DT 0.997 0.907 0.91 0.91 0.91
RF 0.997 0.936 0.94 0.94 0.94
GBC 0.978 0.921 0.93 0.92 0.92
KNN 0.89 0.840 0.85 0.84 0.84
ETC 0.997 0.9385 0.94 0.94 0.94
Model Performance Metrics
1.00 1
0.95 -
p
© 0.90 {1 —e— Training Accuracy
3 Testing Accuracy
0.85 1 —®— Precision
—&— Recall
0.80 1 —®— Fl-Score

DT RF GBC KNN ETC
Models

FIGURE 6. Visualization of performance metrices of classifiers on
augmented data set.

algorithms. The DT model showed a high training accuracy
of 99.7% but a lower testing accuracy of 90.7%, suggesting
potential overfitting, with a precision, recall, and Fl-score
all at 0.91. The RF model performed strongly, with training
and testing accuracies of 99.7% and 93.6%, respectively, and
precision, recall, and F1-score all at 0.94. Similarly, the GBC
had a training accuracy of 97.8%, testing accuracy of 92.1%,
precision of 0.93, recall of 0.92, and F1-score of 0.92. The
KNN model had lower accuracies of 89% for training and
84% for testing, with a precision of 0.85, recall of 0.84,
and F1-score of 0.84. The ETC excelled, achieving 99.7%
training accuracy, 93.85% testing accuracy, and precision,
recall, and F1-score all at 0.94. The RF and ETC models
exhibited the best performance on the testing set, with high
testing accuracies and balanced precision, recall, and F1-
scores, making them the most effective classifiers for this
augmented dataset.

In this manuscript, 10-fold cross-validation was performed
to thoroughly assess the reliability and robustness of the mod-
els. This method ensures that the performance metrics are not
dependent on a single train-test split but are instead averaged
over multiple iterations to provide a more comprehensive
evaluation. The results, including the average accuracy, and
StdDev across all folds, are presented in Table 4 and visu-
alized in Figure 7. This approach helps in validating the
consistency and generalisation ability of the models on the
augmented dataset.

The 10-fold cross-validation results, presented in Table 4,
reveal the performance and reliability of the models. The
DT achieved an average accuracy of 91.30% with a standard
deviation of 0.01. The RF demonstrated strong performance
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TABLE 4. Kfold cross validation results of the classifiers on the
augmented dataset.

Model Average Accuracy + StdDev
DT 0.9130+0.01
RF 0.9335+0.0057

GBC 0.9260+0.00

KNN 0.8533+0.01

ETC 0.9372+0.00659

Model Average Accuracy with Standard Deviation

Lo 0.9130 £ 0.0100 7-2335 * 0.0057 ¢.9260 + 0.0000 0.9372 + 0.0066

0.8533 x 0.0100

0.8

o
EY

Accuracy

Q
Y

0.2

DT RF GBC KNN ETC
Models

FIGURE 7. Visualization of kfold cross validation results of the classifiers
on the augmented dataset.

with an average accuracy of 93.35% and a standard deviation
of 0.0057. The GBC showed stable performance with an
average accuracy of 92.60% and no reported variability. The
KNN model had a lower average accuracy of 85.33% with a
standard deviation of 0.01. The ETC outperformed the other
models, achieving the highest average accuracy of 93.72%
and a standard deviation of 0.00659.

Based on the results presented in Table 3 and Table 4,
the ETC is selected as the best model. Its superior average
accuracy of 93.72% and relatively low standard deviation of
0.00659 demonstrate its robustness and reliability. The ETC
model performed better due to its ability to handle high-
dimensional data effectively and its robustness to overfitting,
which is achieved through averaging multiple decision trees.
This results in high generalisation performance, making it the
most reliable model for this dataset.

C. DISCUSSION

The results from this study offer important insights into
the performance of different machine learning models for
fault detection in power grids, with a particular focus on
the impact of data augmentation using ACGAN. Initially,
the models trained on the original dataset exhibited signifi-
cant challenges, primarily due to overfitting and underfitting.
The DT and RF models demonstrated high training accura-
cies (97.9%), but their testing accuracies were much lower,
at 0.445 and 0.486, respectively. This large gap indicates that
these models memorized the training data, learning noise
and specific patterns that did not generalize well to unseen
data. The RF model, despite being an ensemble method
designed to reduce overfitting, struggled with the variance
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introduced by the small and imbalanced dataset. On the other
hand, the ETC model showed moderate performance, with a
training accuracy of 47.99% and testing accuracy of 47.2%,
indicating potential underfitting. Although the model was
not able to learn complex patterns, its stable performance
suggested it was less prone to overfitting than the DT and
RF models. The GBC also demonstrated a training accu-
racy of 92.2%, but its testing accuracy was lower at 46.7%,
suggesting some overfitting while still capturing useful
patterns.

After applying ACGAN for data augmentation, significant
improvements were observed across all models. The aug-
mented dataset, which increased the sample size to 9,000,
addressed the data imbalance by generating synthetic data,
especially for underrepresented fault types. This not only
balanced the dataset but also enhanced the robustness of
the models. Following augmentation, the models demon-
strated substantial improvements in testing accuracy, with
the RF and ETC models achieving testing accuracies of
93.6% and 93.85%, respectively, and balanced performance
metrics across precision, recall, and Fl-score. The ETC
model performed the best with the highest testing accuracy
and exhibited low standard deviation during cross-validation,
confirming its robustness and generalization ability. The use
of ACGAN to generate realistic, class-conditional samples
for underrepresented fault types proved crucial in overcoming
the challenges posed by the limited and imbalanced dataset.
These improvements suggest that ACGAN can significantly
mitigate overfitting, enhance the model’s ability to general-
ize, leading to better predictive performance, especially when
dealing with complex, imbalanced datasets in fault detection.

The improved results from the augmented dataset also
have important implications for real-world power grid appli-
cations. The use of spectral and statistical features, which
capture both time-domain and frequency-domain signal char-
acteristics, aligns with the types of data commonly collected
by sensors in modern power grids. This ensures that the
methodology proposed in this study is directly applicable
to real-world settings. The ability to handle large datasets
and diverse fault types is critical for operational power grids,
where fault scenarios are dynamic and can vary widely in
both frequency and type. The ACGAN-based augmentation
enhances the model’s ability to recognize these diverse fault
events, making it more suitable for large-scale, real-world
deployment. Furthermore, the balanced class representation
achieved through synthetic data generation ensures that the
model is less likely to be biased towards more common fault
types, improving the reliability of the fault detection system
in practice.

While the results from the augmented dataset were promis-
ing, there are still several factors that influenced model
performance. The training of the models with a relatively
complex and diverse set of features required careful tuning
and parameter optimization. Despite this, ensemble models
like RF and ETC performed better than simpler models such
as KNN, which struggled with the high-dimensional data,
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as reflected in its lower performance. The complexity of the
sensor data set, with its noise and varying fault types, posed
challenges for KNN, which is sensitive to the dimensionality
of the feature space. However, the better performance of
ensemble models in this case suggests that more sophisti-
cated algorithms are better suited to handle the complexities
inherent in power grid fault detection. Additionally, while the
use of ACGAN effectively addressed data imbalance, further
exploration of more advanced feature extraction methods or
deep learning techniques could provide more powerful rep-
resentations of the fault data, potentially improving detection
accuracy even further.

VI. CONCLUSION

This study explores new techniques for strengthening the
reliability and stability of modern electricity systems. This
study focuses on the advancement of methodologies for iden-
tifying, forecasting, and categorizing faults in these crucial
networks. Leveraging the GESL dataset, a comprehensive
strategy was established in this work. Initially, an extensive
array of spectral and statistical features was derived from
the data. Furthermore, to tackle the inherent imbalance in
the data, an ACGAN for the purpose of data augmentation
was used. This strategy efficiently increases the size of the
dataset, hence improving the generality of models. After
data preparation, a set of machine learning methods, such
as Decision Trees, Random Forest, Extra Tree Classifier,
Gradient Boosting Classifier, and K-Nearest Neighbors, were
trained and evaluated. The Extra Tree Classifier emerged as
the most successful model, attaining a testing accuracy of
93.85%. In addition, the strength and reliability of this model
were validated using a 10-fold cross-validation technique,
resulting in an average accuracy of 93.72% and a remarkably
low standard deviation. The results emphasize the signifi-
cant impact of sophisticated data augmentation approaches,
such as ACGAN, on improving the effectiveness of machine
learning models for predicting and classifying power grid
faults. This research highlights the crucial significance of
extensive datasets and creative machine learning methods in
strengthening the durability and stability of contemporary
power grids, eventually protecting society from the many
repercussions of service disruptions.

Future work will aim to incorporate additional event sce-
narios and explore advanced feature extraction techniques,
including wavelet transforms and Hilbert-Huang Transforms,
to further enhance fault classification accuracy. The develop-
ment of real-time fault prediction and classification systems
will be a priority to, ensure seamless integration with actual
operational power grids. A focus on optimizing models for
large-scale deployment in dynamic and complex grid envi-
ronments will be essential to improve scalability and practical
applicability. Moreover, leveraging sensor data fusion and
advanced data augmentation strategies can significantly boost
detection accuracy, contributing to greater resilience and reli-
ability in modern power grid systems.
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