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ABSTRACT Unlike the lungs or the heart, the thyroid gland is not a primary target in chest computed
tomography (CT) scans and is relatively small; hence, it is difficult for radiologists to always clinically
delineate it in chest CT to incidentally detect a goiter. We designed a residual and dilated convolution
neural network (RED-Net), which automatically measures thyroid volume by segmenting the thyroid gland
in contrast-enhanced chest CT scans. Its fundamental structure comprises a residual downsampling and
upsampling pathway, complemented by a parallel dilated convolution module. This combination allows
the model to extract features at multiple scales and capture contextual information to effectively segment
even tiny thyroid glands in the complex anatomical structures observed in chest CT scans. Additionally,
we constructed training and validation sets comprising CT scans of 1,150 adults (aged ≥19 years) who
underwent chest CT scans at the National Cancer Center and included data of those without a history of
thyroid nodules, C73 diagnosis, or thyroid surgery before scanning procedure.We evaluated the performance
of ourmethod on a test dataset (600 patients) comprising chest CT scans of individuals collected at Chungbuk
National University Hospital using the same criteria. The results showed that it achieved state-of-the-art
performance with a Dice similarity coefficient of 0.8901.

INDEX TERMS Chest CT scans, dilated convolution, goiter, RED-Net, residual blocks, thyroid segmenta-
tion, thyroid volume.

I. INTRODUCTION
Chest computed tomography (CT) scans are widely used
to detect pulmonary and cardiac pathologies. The thyroid
gland is typically visible in these scans, allowing incidental
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detection of thyroid diseases. However, because the primary
purpose of chest CT is to identify structural abnormalities in
the lungs, heart, and major blood vessels, thyroid abnormal-
ities may be overlooked by the radiologist while interpreting
the scans.

Thyroid diseases associated with structural abnormalities
include thyroid cancer, thyroid nodule, and goiter. Goiters are
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often associated with conditions such as Graves’ disease and
Hashimoto’s thyroiditis [1]. A goiter can be diagnosed by
accurately measuring an increased thyroid volume in chest
CT, thereby enabling the diagnosis of autoimmune thyroid
diseases [1], [2]. However, failure to diagnose goiter in chest
CT can potentially have adverse medical and socioeconomic
consequences.

However, as comprehensive examinations of thyroid
lesions in chest CT scans can considerably increase the work-
load of radiologists, an automated tool that can measure
thyroid volume can facilitate goiter diagnosis and could offer
exceptional convenience, thereby ensuring that goiter is not
overlooked.

Previous studies have employed machine-learning meth-
ods such as progressive learning vector quantization [3] and
multi-atlas label fusion [4], as well as the U-Net architecture,
for thyroid segmentation [5], [6]. However, most of them
used neck CT scans that focused on the thyroid region, and
it is unclear whether these models would offer the same
performance for chest CT scans.

Therefore, this study proposes a residual and dilated con-
volution neural network (RED-Net), designed to segment
the thyroid gland and automatically measure the thyroid
volume from contrast-enhanced chest CT scans, which are
routinely performed for non-thyroid-related purposes. RED-
Net combines the strengths of residual blocks with the ability
of parallel dilated convolution to capture multiscale infor-
mation. This combination allows the model to effectively
learn representations of complex anatomical structures in
3D CT scans and delineate the thyroid gland. We evaluated
RED-Net on a test set comprising 600 samples, wherein it
achieved state-of-the-art performance with a DSC of 0.8901.

II. RELATED WORKS
Chang et al. [3] used a progressive learning vector quan-
tization neural network to segment thyroid in CT images.
They demonstrated that it can effectively segment the
thyroid glands, with an average sensitivity of 88.43%.
Narayanan et al. [4] used multi-atlas label fusion (MALF)
and random forest (RF) algorithm to automatically segment
the thyroid gland in CT images. They found that MALF with
RF offered better segmentation performance, with a DSC
of 0.76 ± 0.11, which was significantly better than the indi-
vidual results of the MALF and RF methods.

The U-Net architecture introduced by Ronneberger et al.
[7] has become the cornerstone of medical image segmenta-
tion. The original 2D U-Net employed an encoder-decoder
structure with skip connections, enabling effective localiza-
tion and context integration. Çiçek et al. [8] extended this
architecture to 3D to develop 3DU-Net, which offered signif-
icantly better segmentation performance for volumetric data
by leveraging the spatial context of 3D images.

The DeepLab series, a suite of semantic segmentation
models, incorporates advanced segmentation techniques such
as atrous convolutions and atrous spatial pyramid pooling

for multiscale context capture from 2D images. The first
version [9] contained a fully connected conditional random
field (CRF) to enhance boundary localization, whereas later
versions [10], [11] improved dense-feature extraction and
eliminated the need for DenseCRF post-processing. Subse-
quently, DeepLabv3+ [12] introduced a decoder module and
offered better segmentation accuracy at object boundaries
and enhanced efficiency by using depthwise separable con-
volutions. SegResNet [13], developed by Myronenko et al.,
features a residual encoder–decoder architecture with a vari-
ational autoencoder branch for enhanced feature extraction.

Oktay et al. [14] introduced the attention U-Net, a modi-
fication of the U-Net architecture that incorporates attention
mechanisms to enhance segmentation accuracy by focusing
on relevant regions in the image. Additionally, transformer-
based models, such as UNETR [15], have been introduced
to overcome the limitations of convolutional neural networks
(CNNs), using a vision-transformer encoder to effectively
capture long-range dependencies and multiscale contexts.
Moreover, the Swin transformer, with its shifted-window
self-attention mechanism, enables efficient processing of
large images. Swin-UNETR combines this transformer
with a U-shaped network to effectively capture multiscale
features and long-range dependencies for medical image
segmentation.

Several studies have explored advanced segmentation
techniques in medical imaging, demonstrating the growing
impact of deep-learning. He et al. [5] used a deep CNN to
segment the thyroid gland in non-contrast-enhanced head and
neck CTs. Wen et al. [6] proposed a model that combines the
HRNet architecture with a cSE attention mechanism based on
U-Net to segment the thyroid gland in localized CT images.
Specifically, the HRNet extracts multiscale features, whereas
the cSE block enhances important channel features, thereby
aiding in delineating the thyroid gland for radiotherapy.

D’Aviero et al. [16] investigated the use of commercial
deep learning-based auto-segmentation software for delineat-
ing organs at risk in head and neck radiotherapy. Their results
showed that the software provided acceptable segmentations
for most structures, significantly reducing inter-observer
variability and time consumption, although manual adjust-
ments were necessary for less accurate contours. Similarly,
Xie et al. [17] proposed a comprehensive pipeline for lung
nodule detection and robotic biopsy path planning from chest
CT images, emphasizing accurate lung parenchyma segmen-
tation and 3D reconstruction to improve clinical workflows.

Other applications of deep learning-driven segmentation
include the use of MultiResUNet by Arsenescu et al. [18]
for 3D ultrasound reconstruction of carotid arteries and
thyroid glands, achieving high Dice similarity coefficients
in detecting atherosclerosis. Lu et al. [19] proposed a
two-stage method for lumbar spine segmentation in CT
images, combining U-Net for localization and a novel 3D
XUnet for precise segmentation, proving effective for spinal
anomaly detection. For orbital segmentation in CT images,
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Li et al. [20] employed a semi-supervised framework using
a paired copy-paste strategy, achieving remarkable accu-
racy even with limited labeled data. Alkhadrawi et al. [21]
developed a deep-learning model to segment orbital muscle
and fat for diagnosing thyroid eye disease, highlighting its
potential to improve clinical decision-making through rapid
volumetric assessment. These advancements underscore the
transformative role of deep-learning in enhancing segmen-
tation accuracy, efficiency, and clinical utility across diverse
medical imaging modalities.

III. METHODS
RED-Net is a specialized deep-learning model for thyroid-
gland segmentation from chest CT scans. It employs residual
blocks [13] and integrates dilated convolutions [11] to
enhance its ability to capture multiscale contextual infor-
mation, which is crucial for accurately segmenting complex
anatomical structures in chest CT scans.

A. DATASET ACQUISITION
We collected chest CT scans of adults (aged ≥19 years)
who underwent contrast-enhanced chest CT scanning in
the National Cancer Center (NCC) and Chungbuk National
University Hospital (CBNUH). The data of those with a
prior diagnosis of C73 (malignant neoplasm of the thyroid
gland) or thyroid nodules (classified as D34, D440, or E041)
before the CT scans were excluded, as these conditions can
significantly alter the thyroid appearance or characteristics
in CT scans. Additionally, patients who underwent thyroid
surgery before the CT scan were excluded to ensure that the
dataset contained only scans of individuals with intact thyroid
anatomy.

FIGURE 1. Flow diagrams for the train and test datasets. (A) Train dataset
from NCC (B) Test dataset from CBNUH.

The dataset was further refined by eliminating scans that
did not meet the quality and coverage requirements. Fur-
thermore, low-dose CT scans were excluded because they
typically have a lower resolution and could compromise the
model accuracy. Additionally, scans from external hospitals
were excluded to ensure consistency in imaging protocols and
quality. Chest CT scans in which the thyroid gland was not
visible due to noise or artifacts were also excluded as they
lacked the necessary anatomical information for analysis.

Based on these criteria, CT scans of 1,150 patients
conducted between January 2010 and March 2021 at the

NCC and those of 600 patients conducted between January
2006 and May 2022 at CBNUH were obtained. Expert doc-
tors specializing in thyroid diseases manually created the
ground truth labels. They applied their extensive expertise,
ensured consistency throughout the labeling process, and
reviewed each other’s work.

The NCC data were divided into an 80:20 ratio for train-
ing and validation (920 and 230 data points, respectively),
whereas the CBNUH data were used for testing.

The study was approved by an IRB (IRB No. NCC2021-
0151 and 2022-06-001-001) and exempt from obtaining
patient consent for the following reasons. As a retrospective
study, we utilized de-identified medical records from the
Clinical Research Search Portal, involving adults who had
undergone chest CT scans before the study period. It was not
feasible to obtain consent from all eligible patients, as some
were no longer attending the outpatient clinic, and others
had passed away. Additionally, since the study relied on
pre-existing medical records, it was impossible to ascertain
or infer any refusal of participation. There was no harm to the
patients, and the risk posed to them was minimal. Therefore,
the study’s results do not impact the patients involved.

B. DATA PREPROCESSING
To preprocess the CT images and labels, we employed a series
of transformations to standardize the data and augment those
included in the training set. Initially, we loaded the image and
label data and confirmed that they were in the channel-first
format. Subsequently, their intensity values were normalized
by scaling them to a standardized range of 0–1, thereby
ensuring consistent intensity levels across all images.

After normalization, we isolated the region of interest
by cropping the foreground based on intensity values. This
was achieved by automatically identifying all voxels with
non-zero intensity values, which represent the anatomical
structures within the image. A bounding box encompass-
ing these voxels was computed to crop out the background,
retaining the thyroid gland and surrounding tissues.

The images were oriented using the right-anterior-superior
(RAS) coordinate system to maintain their spatial consis-
tency. Next, the spacing was adjusted to standardize the
voxel dimensions to (1.0, 1.0, 1.0) mm by using bilinear
and nearest-neighbor interpolations for the images and labels,
respectively. To augment the dataset and address class imbal-
ance, we performed random cropping based on positive and
negative label distributions. Specifically, the images were
randomly flipped along all three axes (x, y, z) with a prob-
ability of 0.10 to introduce variability. Additionally, random
90◦ rotations were performed up to three times with the same
probability.

A similar transformation pipeline was used for the valida-
tion and test data. We loaded the images and labels, ensured
channel-first orientation, and scaled the image intensities
between zero and one. The images were oriented using the
RAS coordinate system, and the spacing was adjusted to (1.0,
1.0, 1.0) mm, ensuring that both the training and validation
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FIGURE 2. Architecture of the proposed RED-Net for thyroid-gland segmentation in chest CT scans. First, a 3D convolution layer is employed to extract
the initial features, followed by downsampling path composed of residual blocks for group normalization and the rectified linear unit (ReLU) activation
function, where the spatial resolution is halved using stride-2 convolutions. At the network bottleneck, the dilated convolution module (DCM) integrates
multiscale information through parallel convolutions with different dilation rates. The upsampling path mirrors the downsampling one, and bilinear
upsampling is employed to restore the original resolution.

datasets were subjected to identical preprocessing, whereas
data-augmentation techniques such as cropping and random
flipping were not employed.

C. DOWNSAMPLING PATH
The model begins with a convolution layer that processes the
input image using a 3 × 3 × 3 3D convolution. This layer
converts the input channels into 8, establishing a foundation
for feature extraction in the subsequent layers. Each down-
sampling block consists of several ResNet [28] blocks, each
comprising two convolutions with group normalization [29]
and ReLU, followed by an additive identity skip connection.
Subsequently, a stride-2 convolution is employed to decrease
the spatial resolution and increase the feature size by 2. The
output of the second downsampling is only four times smaller
than that of the input image. We decided against further
downsizing to preserve more spatial context and employed
a parallel dilated convolution at the network bottleneck to
capture multiscale information.

D. DILATED CONVOLUTION MODULE (DCM)
TheDCMcomprises parallel convolutionswith different dila-
tion rates (1, 6, 12, and 18) to gather contextual information
from multiple scales and a global pooling layer to capture
the global context. The convolution and pooling processes are
followed by batch normalization and ReLU, respectively. The
outputs of these branches are concatenated along the channel
dimension and passed through final 1 × 1 × 1 convolutional

block to create the DCM feature map. This map integrates
information from all scales, thereby enhancing the ability of
themodel to distinguish fine details in an image.We also used
spatial dropout rate of 0.5 after the initial encoder convolu-
tion.

E. UPSAMPLING PATH
The upsampling path mirrors the downsampling path but
operates in reverse to reconstruct the image resolution.
It includes multiple layers that progressively restore the spa-
tial dimensions of the feature maps while reducing their
depth. Each upsampling block comprises an upsampling
operation, followed by a residual block. The upsampling
operation reduces the number of features by a factor of two
(using 1× 1× 1 convolutions) and doubles the spatial dimen-
sion (using 3D bilinear upsampling). Feature maps from the
corresponding downsampling layers (stored during encoding)
are added to the upsampled maps to recover the spatial details
lost during downsampling. The final layer in the upsampling
path has the same spatial dimensions as the original image.
After upsampling, a final convolution layer is employed to
convert the feature maps into the desired number of output
channels (two in our case).

F. LOSS FUNCTION
We used the Dice loss (DL) function to accurately segment
the thyroid gland in 3D chest CT images. This function,
proposed byMilletari et al. [30], addresses class imbalance by
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FIGURE 3. Architecture of the dilated convolution module (DCM) that uses parallel convolutions with different dilation rates (1, 6, 12, 18) to
capture multiscale features and implement global image pooling. Batch normalization and ReLU are applied after each operation. The outputs are
concatenated and passed through a 1 × 1 convolution, and a dropout rate of 0.5 is employed in the final feature map.

maximizing the overlap between the segmentation prediction
and the ground truth, measured using the DSC. This approach
ensures that the network can accurately detect and segment
the thyroid gland without the need for sample reweighting
strategies, which are often used in traditional methods to
address foreground–background imbalances [30]. The DL
function is computed as follows:

DL = 1 −
2
∣∣X⋂Y

∣∣+ ε

|X |+|Y | + ε
(1)

where X represents the ground-truth label matrix of the thy-
roid gland, Y denotes the label matrix predicted by the model,
and ε is a small constant added to avoid division by zero.

G. OPTIMIZATION
To train our RED-Net model, we employed the Adam opti-
mizer [25] with an initial learning rate of a0 = 1 × 10−4,
which was progressively decreased according to the follow-
ing schedule.

αe = α0(1 −
e
Ne

) (2)

where e denotes the current epoch and Ne is the number of
training epochs, which was set as 150 in our experiments.
Additionally, a batch size of twowas used for training, and the
input images were randomly fed into the network to ensure
learning variability and robustness.

H. EVALUATION INDICES
1) DSC
The DSC [26] metric is used to quantify the sim-
ilarity between two sets. It is commonly employed
in image-segmentation tasks to determine the overlap
between the predicted and ground-truth segmentations. It is

expressed as

DSC =
2
∣∣X⋂Y

∣∣
|X |+|Y |

(3)

where X and Y denote the sets of predicted and ground-truth
segmentation pixels (or voxels), respectively.

The DSC evaluates the average overlap between the pre-
dicted and actual segmentations, where a value of 1 indicates
perfect agreement and 0 indicates no overlap, and is sensitive
to the degree of overlap between the two sets.

2) JSC
The JSC [27], or intersection over union (IoU), is widely used
in segmentation tasks to evaluate the overlap between two
sets, normalized by their total coverage. It is defined as:

JSC =

∣∣X⋂Y
∣∣

|X ∪ Y |
(4)

where X and Y are the predicted and ground-truth seg-
mentation sets, respectively. The JSC quantifies the overall
accuracy of the predicted segmentation by calculating the
ratio of overlapping regions between the prediction and the
ground truth. It ranges from zero (no overlap) to one (perfect
overlap), with higher values indicating better segmentation
performance.

3) HAUSDORFF DISTANCE (HD) (95TH PERCENTILE)
The HD [28] is the maximum distance between the bound-
aries of the two sets. A lower HD indicates a better boundary
alignment between the predicted and ground-truth segmenta-
tions. The HD between two sets, X and Y , is defined as:

H(X ,Y ) = max

(
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

)
(5)
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where d is the Euclidean distance between points x ∈ X and
y ∈ Y , sup is the supremum (maximum value), and inf is the
infimum (minimum value). The 95th percentile HD (HD95)
is calculated by identifying the 95th percentile distance from
each point in X to the nearest point in Y to mitigate the
influence of outliers.

4) SENSITIVITY
Sensitivity (SE) [29], or true-positive (TP) rate, is an essential
metric for evaluating the capability of a model to correctly
identify positive cases. In this study, TP indicates the correct
thyroid-gland-region identifications, whereas false negative
(FN) indicates the number of voxels in which it is incorrectly
classified as background. SE is calculated as follows:

SE =
TP

TP + FN
(6)

This equation computes the proportion of actual positives
correctly identified by the model. A high SE indicates the
effectiveness of the model in detecting TP cases, which is
especially crucial for medical diagnoses, wherein missing a
positive case can have serious consequences. Therefore, SE is
a critical measure of a model’s ability to accurately classify
the intended region.

5) POSITIVE PREDICTIVE VALUE (PPV)
PPV [30], also known as precision, measures the proportion
of correctly predicted positive regions among all those pre-
dicted as positive. Thus, it indicates the number of correctly
predicted positive regions, reflecting the model’s ability to
avoid false positives (FPs). It is computed as

PPV =
TP

TP + FP
(7)

where TP and FP are the numbers of correct and incorrect
thyroid-gland region predictions, respectively. Thus, preci-
sion quantifies the accuracy of the positive predictions, and
a high precision indicates a low FP rate, indicating that the
model predictions are likely to be correct.

IV. RESULTS
A. QUANTITATIVE ANALYSIS OF RESULTS
Table 1 lists the results for the NCC validation set on
the DSC, HD95, JSC, SE, and PPV metrics. Evidently,
RED-Net outperformed the other segmentationmodels across
most evaluationmetrics, demonstrating its superior capability
in accurately segmenting the thyroid-gland region in chest CT
scans.

Specifically, it achieved the highest DSC (0.9094) and JSC
(0.8361), indicating excellent overlap and segmentation accu-
racy. Furthermore, it exhibited superb accuracy for boundary
segmentation, with an HD95 of 37.931. This is notably lower
than those of attention U-Net (223.441), Swin-UNETRv2
(163.850), and SegResNet (67.296), indicating that RED-Net
can more accurately capture the segmentation boundaries of
the thyroid-gland region. However, DeepLabv3 achieved the
lowest HD95 (10.122), slightly outperforming RED-Net.

Although RED-Net and DeepLabv3 both use residual con-
nections and multi-scale context modules employing dilated
(atrous) convolutions—subtle architectural differences may
contribute to the observed performance disparity in the HD95
metric. A key difference lies in the normalization layers used:
DeepLabv3 employs batch normalization, while RED-Net
uses group normalization. Additionally, the ASPP module
in DeepLabv3 concatenates multi-scale features followed by
extra convolutional layers. Furthermore, differences in the
ResNet backbone configurations, compared to RED-Net’s
encoder, may influence feature representations and the mod-
els’ abilities to capture boundary information.

Nevertheless, RED-Net exhibited a superior SE (0.9192)
and maintained a high PPV (0.9036), indicating that Table 1
lists the results for the NCC validation set on the DSC, HD95,
JSC, SE, and PPV metrics. Evidently, RED-Net outper-
formed the other segmentationmodels across most evaluation
metrics, demonstrating its superior capability in accurately
segmenting the thyroid-gland region in chest CT scans.

TABLE 1. Results of RED-Net and other segmentation models for the NCC
validation set.

The results presented in Table 2 confirm the superior
segmentation capability of RED-Net than the other models.
It achieved the highest DSC of 0.8901 and a JSC of 0.8087,
indicating excellent segmentation accuracy, and a relatively
low HD95 of 42.032, outperforming most models, except
for DeepLabv3; however, DeepLabv3 did not perform as
well on other metrics. Moreover, RED-Net maintained a high
SE (0.9162) and PPV (0.8744), demonstrating a balanced
performance in identifying and predicting TPs. These results
indicate that RED-Net consistently outperformed the other
models on key segmentation-performance metrics.

TABLE 2. Results of RED-Net and other segmentation methods for the
CBNUH test set.

Table 3 lists the MAEs of all segmentation models for the
measured thyroid volume compared with the labeled thyroid
size. RED-Net achieved the lowest MAE of 1.10 cm3 on the
NCC validation set and 1.74 cm3 on the CBNUH test set,
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FIGURE 4. (a) (e) visualize the segmentation results of RED-Net, SegResNet, DeepLabv3, Swin-UNETRv2, and Attention U-Net for five consecutive axial
slides. The numbers below each slide are DSCs for that slide. The enlarged images inside the slides are enlarged thyroid segmentation areas. The arrows
indicate nodules inside the thyroid, and the models other than RED-Net fail to recognize these nodules as thyroid glands.

indicating superior accuracy in volume estimation compared
to other models. Accurate volume estimation is critical for
clinical assessments, andRED-Net’s performance in thismet-
ric further establishes its practical utility. Accurate volume
estimation is critical for clinical assessments, and RED-Net’s
performance in this metric further establishes its practical
utility.

Each training epoch (920 cases) required 33 min to com-
plete on a single GPU. Therefore, model training over
150 epochs entailed six days. Additionally, the inference time
for each model was 2.41 s.

B. QUALITATIVE ANALYSIS OF RESULTS
As illustrated in Figure 4, the performances of five
deep-learning models for thyroid-region segmentation in
chest CT scans were compared: RED-Net, SegResNet,
DeepLabv3, Swin-UNETRv2, and Attention U-Net.

TABLE 3. MAE of measured thyroid volume compared with labeled
thyroid size. (Unit:cm3).

Each column presents the results of one model, along with
the corresponding ground-truth and original images for ref-
erence.

Figure 4 shows five consecutive axial slices, with the
DSC of each slice displayed below it. The areas pointed
out by arrows indicate nodules within the thyroid gland.
RED-Net successfully included these nodules as part of the
thyroid region, closely aligning with the ground truth, while
the other models failed to do so, resulting in segmentation
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FIGURE 5. (a) is the same as Figure 4 (a). (b) shows the sagittal plane, (c) shows the coronal plane, and the vertical line of the original image of
(a) corresponds to the sagittal plane, and the horizontal line corresponds to the coronal plane. The numbers next to the model names are the volumetric
DSCs of the Chest CT scan in Figures 4 and 5.

distortions. Figure 5 illustrates the corresponding sagittal and
coronal slices of the same example. Swin-UNETRv2, as seen
in Figure 5(b), failed to identify the nodule, leading to its
exclusion from the thyroid region. Similarly, Attention U-Net
incorrectly segmented non-thyroid areas as part of the thyroid
gland, as highlighted by the arrows. In contrast, as shown in
Figure 5(c), RED-Net demonstrated the most accurate seg-
mentation, aligning closely with the ground truth and effec-
tively capturing the thyroid boundaries with minimal errors.

Figures 6 and 7 further validate these observations. Atten-
tion U-Net and Swin-UNETRv2 showed under-segmentation
along the thyroid boundaries. While SegResNet and
DeepLabv3 provided reasonably accurate segmentations that
closely aligned with the ground truth, they exhibited slight
inaccuracies, particularly in capturing fine details of the thy-
roid gland. Figure 7(b) shows that non-thyroid regions were
misclassified as thyroid tissue in Attention U-Net. In contrast,
RED-Net consistently delivered superior results, accurately
delineating the thyroid gland and minimizing segmentation
errors.

These superior results of RED-Net can be attributed to
its architectural design, which combines residual connec-
tions and dilated convolutions to effectively capture both
local details and global contextual information. The residual
connections facilitate the training of deeper networks by mit-
igating the vanishing gradient problem, allowing the model
to learn complex features essential for accurate segmenta-
tion. Dilated convolutions expand the receptive field without
increasing the number of parameters, enabling the model
to integrate multi-scale features crucial for identifying the
thyroid gland amidst surrounding structures.

C. ABLATION STUDY
The results of the ablation study are presented in Tables 4
and 5, demonstrating the performance of the proposed
RED-Net model compared to its ablated variants on the NCC
validation set and the CBNUH test set. Each model was eval-
uated using several metrics, including DSC, JSC, HD95, SE,
PPV, and MAE, to assess segmentation quality and overall
performance.

RED-Net exhibited superior performance acrossmost eval-
uation metrics, showcasing its effectiveness in segmenting
thyroid-gland regions in chest CT scans. It achieved the high-
est DSC (0.9094) and JSC (0.8361), indicating strong overlap
and segmentation accuracy. Additionally, the HD95 value of
37.931 underscores RED-Net’s exceptional boundary seg-
mentation accuracy, outperforming the w/o Res. (42.173) and
w/o DCM (63.131) variants. Moreover, RED-Net maintained
a high SE (0.9192) and PPV (0.9036), reflecting its robust
ability to identify true positives and predict thyroid-gland
regions with high precision. The MAE of RED-Net was
the lowest (1.10 cm3), indicating its capability to accurately
measure thyroid volume, further validating the significance
of incorporating both residual blocks and the Dilated Convo-
lution Module (DCM).

The trends observed in the NCC validation set were con-
sistent in the CBNUH test set. RED-Net achieved the highest
DSC (0.8901) and JSC (0.8087), confirming its superior
segmentation accuracy. Its HD95 value (42.032) further high-
lights its accurate boundary delineation compared to w/o Res.
(48.545) and w/o DCM (59.446). These results indicate that
the integration of residual connections and dilated convolu-
tions enhances multiscale feature extraction and boundary
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FIGURE 6. (a) (e) visualize the segmentation results of RED-Net, SegResNet, DeepLabv3, Swin-UNETRv2, and Attention U-Net for five consecutive axial
slides. The numbers below each slide are DSCs for that slide. The enlarged images inside the slides are enlarged thyroid segmentation areas.

TABLE 4. Results of Ablation study for the NCC validation set.

detection. RED-Net also demonstrated a balanced perfor-
mance on SE (0.9162) and PPV (0.8744), maintaining its
robustness in identifying and predicting true positives. The
MAE of RED-Net (1.74 cm3) was comparable to the w/o
Res. variant, indicating consistent accuracy in volumetric
measurements.

The ablation study confirms that the inclusion of both
residual connections and the Dilated Convolution Module in

RED-Net plays a pivotal role in enhancing segmentation per-
formance. The superior results of RED-Net across multiple
datasets and evaluation metrics underscore its potential as a
reliable and accurate tool for thyroid gland segmentation in
chest CT imaging. By effectively combining residual learning
and multiscale context aggregation, RED-Net outperforms its
ablated variants, demonstrating improved overlap measures
(DSC and JSC), boundary accuracy (HD95), sensitivity (SE),
precision (PPV), and volumetric estimation (MAE). This
highlights the synergistic effect of its architectural compo-
nents in capturing the intricate structures of the thyroid gland
and enhancing overall segmentation quality.

V. DISCUSSION
Most previous studies on thyroid segmentation have
employed neck CT images [3], [5], [6], [16] which pro-
vide the clearest view of the thyroid gland. However,
chest CT scans are more frequently conducted in clinical
practice. During interpretation of chest CT scans, thyroid
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FIGURE 7. (a) is the same as Figure 6 (a). (b) shows the sagittal plane, (c) shows the coronal plane, and the vertical line of the original image of
(a) corresponds to the sagittal plane, and the horizontal line corresponds to the coronal plane. The numbers next to the model names are the volumetric
DSCs of the Chest CT scan in Figures 6 and 7.

TABLE 5. Results of Ablation study for the CBNUH test set.

abnormalities are sometimes overlooked, and goiter cases
may not be diagnosed. Therefore, this study aimed to segment
the thyroid region in chest CT and measure its volume using
various deep-learning models and ultimately developed an
optimal model. Compared to the DSC of 0.76±0.11 (evalu-
ated from 66 patients) of the previous study using multi-atlas
label fusion and random forest classification [4] in automated
segmentation of the thyroid gland on thoracic CT scans, our
model has an overwhelmingly high DSC of 0.89 (evaluated
from 600 patients).

In our experiments, we employed various network archi-
tectures and explored several alternative approaches. For
example, we attempted to increase the batch size to eight,
but owing to GPUmemory limitations, this required cropping
images to a smaller size, which led to performance decline.
Conversely, increasing the network width (i.e., the number
of features/filters) consistently enhanced the results. Notably,
we found that optimal performance was achieved by reducing
the downsampled feature map size to 4× the input image
size, compared with downsizing to 8× or 16×. However,
this study had some limitations. First, it used data from
1,150 patients from the NCC, which limited the dataset size.
Second, the high computational demands of RED-Net led

to prolonged inference times, indicating the need for further
optimization.

VI. CONCLUSION
This study presents a significant advancement in thyroid
segmentation and volume measurement from chest CT scans
through the development of RED-Net. The proposed model
effectively addresses the challenge of detecting thyroid
abnormalities in routine chest CT scans, primarily focused
on pulmonary and cardiac pathologies, by automating the
process of thyroid segmentation. This contribution is crucial,
as it ensures that thyroid diseases, such as goiter, are not
overlooked, thereby improving diagnostic accuracy without
increasing the radiologists’ workload.

This paper proposed the RED-Net model, which employs
residual blocks and DCM to delineate the thyroid gland
in contrast-enhanced chest CT scans automatically. Thus,
it can assist radiologists in identifying unsuspected goiters.
The high performance of RED-Net, as demonstrated by its
state-of-the-art DSC of 0.89, surpasses previous methods
used for thoracic CT segmentation, which were primarily
based on neck CT images or less accurate machine learning
models. This study holds clinical significance by providing
an automated and precise neural network model for thyroid
segmentation in chest CT scans, offering the potential for
early diagnosis and reducing the risk of undiagnosed thyroid
conditions. Additionally, it opens the door for more efficient
integration of deep-learning models in routine radiological
practice, contributing to enhanced patient care and optimized
resource allocation.
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