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ABSTRACT In semiconductor manufacturing, the accumulation of byproducts in exhaust pipelines under
inadequate temperature control poses significant safety and operational risks. This study introduces an
innovative approach employing an electrical capacitance measurement sensor system combined with an
artificial neural network (ANN) to monitor residue buildup. The proposed method estimates the free volume
index within industrial process exhaust pipes, enabling precise evaluation of residue deposition and gas
phase fractions. Numerical simulations and field studies in semiconductor environments validate the model’s
effectiveness, demonstrating accurate residue quantification and enhancing safety and operational efficiency.
In numerical simulations, the error between true values and estimated values was within 1%, while the values
estimated from experimental data showed an error within 5%. These findings underscore the robustness of
the model in both controlled and real-world settings. This advancement offers a practical and reliable solution
to mitigate hazards and optimize maintenance processes in semiconductor manufacturing.

INDEX TERMS Electrical capacitance measurement, semiconductor process, pipe deposition monitoring,
free volume index, artificial neural network (ANN).

NOMENCLATURE ECT Electrical capacitance tomography.
Artificial neural network. WO3 Tungstite.
PM Periodic maintenance. TiO, Titanium dioxide.
CMD Computational fluid dynamics. Al,O3  Aluminium oxide.
MSE Mean squared error. e(x,y) Permittivity distribution within sensing
Tanh Hyperbolic tangent. region.
SGD Stochastic gradient descent. ¢(x,y) Electrical potential distribution.
RMSprop Root mean squared propagation. C Capacitance.
EMA Exponential moving average. AV Difference voltage.
MSPE Mean square percentage error. r Electrode surface.
MAE Mean absolute error. A Normalized capacitance vector.
RMSE Root mean square error. S Sensitivity matrix.
CVD Chemical vapor deposition. x Normalized permittivity vector.
o Free volume index.
r Inner radius.
The associate editor coordinating the review of this manuscript and d Thickness.
approving it for publication was Jolanta Mizera-Pietraszko A pipe Area of the industrial process pipe.
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A g5 Empty area of pipe.

A deposit Residue deposit region.

w Weight matrix.

b Bias.

Q Activation function.

Y Output of ANN.

y Loss value.

Y; Estimated output.

Yiue True output.

n Learning rate.

Wi Weight coefficient in each neuron in
epoch t.

L Loss function.

aa—vét Gradient matrix.

T Update coefficient of exponential moving
average.

8 Gradient cumulative size up.

mt First momentum.

i Second momentum.

B1 and B3 Momentum decay rate.

alme True free volume indexes.

af Estimated free volume indexes.

ot Mean of all estimated free volume index

values.

I. INTRODUCTION

Byproducts from semiconductor metal processing facilities
contain WO3, TiO,, and Al,O3 substances [1], [2], [3]. Due
to their strong toxicity and corrosiveness, these byproducts
harm the atmospheric environment, either alone or in com-
bination [4]. Additionally, in the case of scrubbers used by
semiconductor manufacturers, the dust and residues from
harmful gases transform into resin form during decompo-
sition in the scrubber and firmly adhere to the inner walls
of the pipes. Continuous heat exposure causes these toxic
gases to harden into powder form, which can create high-risk
situations by blocking the interior of the pipe [2], [3].
To reduce pipe clogging, water is artificially sprayed some-
times at the scrubber’s exhaust end to remove the residues
from the inner walls. However, this process requires caution,
as increased moisture flow into the secondary scrubber can
reduce its performance [2]. Failure to promptly treat the resid-
ual buildup generated during the semiconductor process can
block waste gas flow, disrupt the completion of the process,
and pose a high risk of explosion. Therefore, periodic mainte-
nance (PM) is essential, where personnel manually dismantle
and clean the scrubber equipment or inlet pipes [5]. In par-
ticular, primary scrubbers with smaller processing capacities
have shorter PM cycles and require careful management.
Currently, PM workers visually inspect residual buildup,
potentially exposing themselves to harmful environments.
To safeguard PM workers’ health and safety, it is necessary to
implement regular, non-destructive monitoring of the pipeline
at the rear end of the process.
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The percentage of the phase fractions in a pipe can be
assessed through various methods, such as, radiation atten-
uation (using X-rays or y-rays) [6], [7], [8], probes involving
optical or electrical contact [9], electrical impedance based
or capacitive based sensing [10], and using quick-closing
valves [11]. While probe-based methods disrupt the flow
field, radiation attenuation methods are both costly and
present challenges, particularly regarding radiation safety.
Conversely, impedance-based techniques are practical and
cost-effective [11], [12]. The primary benefit of applying
capacitive sensing methods is their non-intrusive nature,
which ensures minimum disruption of fluid flow. Electrical
capacitance measurement techniques are used for real-time
monitoring in diverse industries [13], [14]. These techniques
are instrumental in monitoring multiphase flows in oil and gas
pipelines [15], measuring void-fraction by capacitance sen-
sor [13], optimizing pharmaceutical and food processes [16],
and improving mineral processing efficiency [17]. Addition-
ally, ECT has applications also include biomedical imaging
for non-invasive lung visualization [18] and environmental
monitoring [19], [20].

The semiconductor process exhaust pipeline involves the
flow of residue gas byproducts, which includes a solid-gas
flow visualization. Monitoring techniques based on electri-
cal capacitance measurement can observe and monitor the
distribution and behavior of solid particles within a gas
phase in real time. By analyzing the variations in capac-
itance measured at the electrodes, insights can be gained
into the dielectric constant distribution within the pipe,
as well as the concentration and movement of materi-
als [21], [22]. The pipe, comprising distinct phases with
varied compositions, contributes to different electrical prop-
erties, leading to distinct permittivity distributions. Void
fraction is crucial for understanding the flow characteris-
tics and behavior of multiphase flow systems [23], [24],
[25], [26], [27]. It is often expressed as a percentage rang-
ing from 0% (no voids, solid-packed) to 100% (completely
open, with no solid particles). Traditional methods for void
fraction estimation such as image reconstruction and com-
putational fluid dynamics (CFD), often rely on complex
physical models and extensive experimental data, which
can be time-consuming, expensive, and subject to inherent
limitations [23], [28], [29]. Additionally, in a gas scrub-
ber system, where high-temperature thermochemical reaction
occurs [2], the permittivity of materials inside the pipe is also
changed. Each chemical has a unique relationship between
temperature and permittivity value [30], [31], so this must
be considered when measuring capacitance. Capacitance-
based sensing has emerged as a crucial technology for void
fraction measurement in two-phase flows, with significant
advancements made in recent years. An asymmetric capac-
itance sensor with FEM-based calibration was developed to
address non-linear capacitance relationships, achieving high
accuracy but limited to specific refrigerants and flow condi-
tions [32]. To enhance sensor sensitivity, a “skewed” design
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with notable performance improvements is proposed [33],
and sensor configurations for gas-liquid flows is optimized,
addressing issues of sensitivity and linearity [34]. However,
both studies highlighted the need for further validation in real-
world applications.

In contrast, artificial neural networks (ANN) offer a
data-driven approach to void-fraction estimation, leverag-
ing their ability to learn intricate patterns and relationships
from large datasets [23], [28], [29]. By training ANNSs on
a diverse range of input features and corresponding void-
fraction measurements, these networks can provide robust
and accurate predictions, even in cases where traditional
methods may fall short. An ANN-based model was applied
to annular two-phase air-water flow in [23] to estimate the
liquid phase void fraction. The above approach considers a
simple two-electrode sensor with static annular flow condi-
tions. However, the semiconductor process involves solid-gas
flow in metal pipes that require multiple electrode geome-
tries, and the flow conditions are not always annular. The
developed ANN model must estimate the free volume index
of gas in complex eccentric flow conditions, which are typi-
cally observed in semiconductor processes involving exhaust
residue deposits.

Capacitance sensors with artificial neural networks
(ANNs) was integrated for annular flows, showing
excellent prediction accuracy in simulations but lack-
ing industrial validation [35]. Similarly, MLP (multi-
layer perceptron)-based systems were explored, achieving
high accuracy in homogeneous flows. but facing chal-
lenges in applying these methods to complex industrial
environments [33], [36].

Building on these foundations, this study integrates
an electrical capacitance measurement system with an
ANN to enable real-time monitoring of residue buildup in
exhaust pipelines, bridging the gap between simulation-based
research and practical industrial application. This approach
aims to enhance safety and operational efficiency in semi-
conductor manufacturing by addressing the limitations of
prior works.

In this study, an Artificial Neural Network (ANN)
approach optimized with a grid search method is proposed
to estimate the free volume index, enabling effective moni-
toring of exhaust residue deposits in semiconductor process
pipelines within an industrial setting. The ANN model is
trained with capacitance data generated from various random
permittivity distributions of gas and residue deposits inside
the pipe as input while the corresponding free volume index
serves as the output.

The main contributions of the present work lie in the
following
1. The idea of utilizing ANNs with grid search technique for
estimating free volume index directly in solid-gas flow using
electrical capacitance measurements without image recon-
struction
2. Train the model for estimating free volume index not only
involving simple annular flow but complex flow patterns
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involving eccentric and random situations in semiconductor
process exhaust pipeline

3. Different activation functions and optimization methods
are used with ANNs for free volume index and the perfor-
mance is compared

4. Detailed numerical studies and industrial field studies at
the semiconductor process plant are carried out to demon-
strate the effectiveness of the proposed free volume index
estimation

Il. METHOD

A. ELECTRICAL CAPACITANCE MEASUREMENT
Semiconductor metal processing facilities generate residue
gases transported through metal pipes under very high-
pressure conditions. Therefore, the electrical capacitance
measurement sensor modelled for such applications has
electrodes in contact with the medium. In pipe deposition
monitoring using the sensor, we measure the change of capac-
itance based on the permittivity distribution corresponding to
the material distribution inside an industrial pipe or vessel of
interest (Fig. 1). This is done by measuring the capacitances
between all electrode pairs that are placed around the periph-
ery of the pipe.

Data measurement
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FIGURE 1. Pipe residue deposition monitoring using electrical
capacitance tomography.
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The relationship between measured electrical capacitance
value and permittivity distribution of gas and residue deposit
inside a pipe is obtained from forward problem of elec-
trical capacitance tomography. Considering that the total
electric flux over the electrode’s surface is zero, the permit-
tivity distribution and potential are related through Maxwell’s
equation as [12]

V-[e(x, y)Vo(x, )] =0 ey

where (x, y) is the permittivity distribution within sensing
region, ¢(x,y) is the electrical potential distribution. For
inhomogeneous permittivity distribution, the capacitance C
can be computed using FEM (finite element method) numer-
ically as,

1
C=—
AV Jr

where AV is the difference voltage measured between the
source and detector and I' is the electrode surface. From
the above equation, we calculate the capacitance based on

e(x, ))Vo(x, y)dl’ @
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the permittivity distribution of gas and residue deposit inside
pipes inner wall at each given scenario. In general, the mea-
sured capacitance between the electrode combinations and
the permittivity distribution e(x, y) are nonlinearly related,
such as

C=f(e) 3

The above Eq. (3) can be expressed as a linear approxima-
tion [12], [37], i.e.

L= Sx “

where A is the normalized capacitance vector, S is sensitivity
matrix, and x is the normalized permittivity vector. For more
details about ECT forward problem see [12]

B. FREE VOLUME INDEX CALCULATION OF PIPE
Let us consider the inner radius r of the pipe and the thickness
d of the residue deposit as shown in Fig. 2. The area of the
industrial process pipe is A pipe = w1, and the empty area of
pipe where the exhaust residue gas flows is A g45 = 7 (r —d )2.
The residue deposit region is A geposic = 7 — n(r — d)z.
Therefore, the free volume index « is calculated as follows
Ages mr—d)? (r—d)?

Free volume index (o) = = 5 5
pipe r r

&)

Pa

FIGURE 2. lllustration of void fraction computation in pipe deposition
monitoring.

lIl. ANN MODEL FOR RESIDUE DEPOSITION
MONITORING
A. AN OVERVIEW OF AN ARTIFICIAL NEURAL
NETWORK MODEL
Artificial Neural Networks (ANNs) are particularly useful
for estimating void fraction because they can capture the
complex, non-linear correlations between capacitance mea-
surements and the internal phase configuration. By training
ANNs with capacitance data, the model learns to identify
patterns and associations between the input data (capacitance
readings) and the corresponding output (free volume index or
permittivity distribution), enabling more accurate predictions
even in challenging, fluctuating environments, positioning
ANN:Ss as a valuable tool for monitoring and optimizing indus-
trial processes.

The process for estimating free volume index using an Arti-
ficial Neural Network (ANN) involves several critical stages.
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Initially, capacitance measurement data, which captures the
phase distribution within a pipeline, is gathered and under-
goes preprocessing, including normalization. This dataset is
then divided into training, validation, and test subsets. The
ANN architecture is then designed, typically with input,
hidden, and output layers; the input layer corresponds to
the capacitance data, while the output layer is responsible
for predicting the void fraction. During training, forward
propagation is employed to generate predictions, and back-
propagation is used to adjust network weights by minimizing
the error, often based on a loss function such as Mean
Squared Error (MSE), and by applying optimization tech-
niques to enhance learning efficiency. Throughout training,
performance is validated to prevent overfitting, and hyper-
parameters are fine-tuned for improved results. Once the
training phase concludes, the network is evaluated using the
test set to assess its ability to generalize. Finally, the perfor-
mance of the ANN is assessed using performance metrics
ensuring accurate and reliable void fraction estimation in
practical industrial applications.

B

sigmoid tanh
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L ]
 UOOBI} PIOA

FIGURE 3. Structure of the proposed neural network model and
activation function for void fraction monitoring inside a pipe.

B. FORWARD PROPAGATION OF THE ANN MODEL

Fig. 3 shows the forward propagation of artificial neural net-
work model for free volume index estimation. In the forward
propagation of the ANN, the following equation is utilized
for free volume index estimation [38], [39],

Y = o(C+W + b) (6)

where C is the capacitance vector, W is the weight matrix,
and b is a bias. The function ¢ is the activation function,
which gives a non-linear nature to the outputy. We have
used sigmoid, tanh (hyperbolic tangent) and Relu as three
activation functions in the tuning process, and the equations
are as follows [40],

Relu(x) = x(x > 0), Relu(x) = 0(x< 0) @)

& — X
tanh(x) = —— 8
anh(x) prpnpe ®

Sigmoid(x) = i 9
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The capacitance value is provided to the hidden layer
through the input layer. In each hidden layer neuron, the
provided capacitance value applies the activation function
from the previous equation. As network’s last layer, the output
layer shows estimation results for free volume index.

C. BACKPROPAGATION OF THE ANN MODEL

In backpropagation, the weight coefficient of each neuron is
updated to reduce the loss value, which is calculated with true
output and estimated output Y through forward propagation.
The loss value is defined as follows [41],

I o
y=—2 i= Vi) (10)

where y is the loss value, Y; is estimated output in for-
ward propagation, Y. is true output that corresponds to
input capacitance C, and the number of data n. This paper
uses three optimization methods, SGD (stochastic gradient
descent), RMSprop (Root mean squared propagation) and
Adam (adaptive moment estimation), to update weights in the
network grid. SGD optimization equation is defined as [42],
oL 1
Wt = W (11)
where 7 is the learning rate, w; is the weight coefficient in
each neuron in epoch ¢, L is the loss function defined in
mini-batch, ;—‘f,t is a gradient matrix computed with respect
to the weight coefficient. SGD has a low computational
cost and fast convergence as two presentative advantages but
is noise-sensitive. RMSprop optimizer adjusts the learning
rate for each variable at every epoch. Rather than simply
accumulating the slope from the previous time step at the
same rate, the slope is updated using an exponential moving
average (EMA). Equation is defined as follows [42],

8 = 781 H(1=y)(Vf (wi_1))? (12)

Wil = Wy — ————Vf(wi_1) (13)

NeED
where g; is the gradient cumulative size up to the ¢th time
step, v is update coefficient of exponential moving average,
6 is set to 10~ to prevent denominator from being 0. Adam
optimization combines the method of two ideas, momentum
and RMSprop, and is defined as follows [42],

ﬁ’ll

Wil = Wy — Mm (14)
. m'

= 15

"=y (15)
o v

= 16

ST (16)

m' = gim' N — (1 = B)V,y W' (17)

V=g - [vor ) as)

where the default value for 6 is set to 107% and w is the
step size at 107> for updating the first momentum 7' and
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second momentum V'. B; and B, are each momentum decay
rate and set to 0.9 and 0.999, respectively. In the calculation,
all operations on vectors are element-wise.

D. HYPERPARAMETER SELECTION BY GRID SEARCH
TECHNIQUE AND TRAINING PROCESS

In order to identify the optimal configuration, we employ
the grid search technique, which involves exploring differ-
ent combinations of hyperparameters such as the number
of hidden layers, neuron quantity per layer, activation func-
tions, and optimization algorithms. The grid search technique
systematically evaluates each combination within prede-
fined ranges to determine the configuration that yields the
best performance. This method has been widely utilized
for hyperparameter optimization in machine learning tasks,
as described in [41] and [42]. The process of grid search
technique is as follows [45], [46].

1) Select the hyperparameters to tune:

Identify the hyperparameters of your machine learning
model that you want to optimize. These are typically
parameters that are not learned from the data but need
to be set before training

2) Define the parameter grid:

Create a grid specifying the hyperparameter values
to explore by defining a range of values or a list of
possible values you want to test.

3) Cross-validation setup and grid search iteration:
After setting up the cross-validation strategy, train
and evaluate the ANN model using the chosen
cross-validation strategy for each hyperparameters
combination.

4) Performance
combination:
After each cross-validation iteration, the evaluation cri-
teria are recorded, such as the loss value, against the
current set of hyperparameters. Once all iterations are
complete, select the one that yields the best results
based on the interest performance metric.

evaluation and select the best

This paper considers four types of hyperparameters: the
number of neurons, the number of hidden layers, activation
function, and optimization method. To generate a grid, the
user-defined range of hyperparameters is as follows,
the number of neurons = [6 36 216]
hidden layers = [5 10 15 20]
activation = [’Relu’ Tanh’ ‘Sigmoid’]
optimizer = [’'SGD’ ‘RMSprop’ *Adam’]

E. DATA GENERATION AND TRAINING PROCESS

Fig. 4 shows the sensor geometry and true permittivity dis-
tribution for forward solver of ECT. In Fig. 4(a), it is the
geometry and schematic layout of the electrical capacitance
measurement sensor used in field study for obtaining capaci-
tance data from the exhaust pipeline. The industrial pipe that
carries the exhaust gases is made of steel and the pipe has an
inner diameter of 35 mm and an outer diameter of 54.8 mm.
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Number of electrodes used can influence the sensitivity and
thus affect the quality of reconstructed images [47]. In this
application since it involves metal pipe, electrodes are to
be placed on the inner pipe boundary. Placing electrodes
on inner boundary of steel pipe involves complex design
and also additional cost of drilling. Thus, it is necessary to
choose wisely the number of electrodes. In this application we
have used an 8-electrode electrical capacitance measurement
sensor featuring four electrodes in each plane with a width of
18mm aligning with inner surface of the pipe, is positioned
along the exhaust pipeline.

Electrodes occupy more than 65% of the pipe cir-
cumference thus can have good sensitivity and satis-
factory performance. Each electrode is equipped with a
20 mm-wide cap, and the space between the cap and the
electrode is filled with Teflon, serving as an insulating
material.

In generating simulated data, the finite element model is
used to compute the capacitance values at the electrodes
for given permittivity distribution of solid-gas flow. A fine
mesh with 13713 triangular elements and 7067 nodes is used
in numerical and industrial studies for free volume index
estimation. The ECT forward solver generates capacitance
values for training the artificial neural network model. These
values account for residue deposit and gas flowing inside the
pipe across various scenarios, each characterized by different
volumes of gas and residue deposit. The exhaust gas residue
accumulates on the inner walls of the pipe, while the gas flows
through the pipe’s center. Fig. 4(b) illustrates examples of
cross-sectional true permittivity distributions used to generate
capacitance values for the training process in the numerical
simulation. Also, in order to consider effect of temperature
in the semiconductor process, the permittivity value of the
deposit was randomly varied by around 10% when calcu-
lating capacitance value. The dataset comprises a total of
3000 true permittivity distributions, spanning gas volumes
from 0% to 100% at randomized positions within the pipe.
Capacitance values for each distribution are computed using
the ECT forward solver.

Fig. 5 illustrates the training procedure, encompassing data
generation, segmentation of capacitance dataset into training
and validation sets, and hyperparameter optimization using
grid search techniques on the training dataset. The capaci-
tance dataset, generated initially, is divided into two subsets:
one for training the ANN and the other for validating the
trained network. This process involves random shuffling of
dataset, resulting in 2500 sets for training data and 500 sets
for performance evaluation. Subsequently, grid search tech-
niques are applied to identify optimal hyperparameters within
the training dataset.

To determine the optimal hyperparameter combination,
neural network models with each hyperparameter combina-
tion from the grid are trained for 200 epochs, and the best
combination is selected based on the minimum loss value
observed at the end.
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FIGURE 4. ECT sensor used in the studies and permittivity distribution for
residue deposition monitoring, (a) ECT sensor geometry, (b) true
permittivity distribution at o = 47.25% and o = 21.13%.
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FIGURE 5. Training process for the proposed neural network model.

In the hyperparameter tuning process, the optimal param-
eters chosen for the ANN used in both the numerical and
experimental studies include 35 neurons, 15 hidden lay-
ers, tanh activation function, and RMSprop optimizer. The
computation of ANN networks for both numerical and exper-
imental data is performed using a desktop computer equipped
with an Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz proces-
sor and 8 GB of RAM.

F. TUNNING RESULTS OF ANN

In order to confirm the performance of ANN model with
optimal parameters, ANN models are trained with three
hyperparameter combinations. First model consists of the
optimal parameter chosen by grid search technique. Second
model consists of 36 neurons, 15 hidden layers, Relu acti-
vation function and Adam optimizer. Third model consists
of 36 neurons, 15 hidden layers, sigmoid activation function
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and SGD optimizer. Three ANN models are trained for
1000 epochs using same training data, respectively.

Figure 6 depicts the variation in training loss throughout
the training process for the three models. The graph reveals
that the first model, selected using the grid search technique,
achieves the fastest convergence below epoch 100. Further-
more, itis evident that while the models using Adam and SGD
optimizers show a reduction in loss during training, their loss
values exhibit instability.

Process of decreasing the training loss value. For both
models, the loss value did not converge during the end of
training.

100
—Proprms+tanh
Adam-+relu

80 —— SGD+Sigmoid
)
=}
T
>
1]
1]
o
|

0 200 400 600 800 1000
Epoch

FIGURE 6. Loss value for void fraction estimation with hyperparameters
selected by grid search technique in the training process.

G. PERFORMANCE METRICS FOR ANN
For performance evaluation and evaluating ANN accuracy,
we have considered statistical parameters such as, coeffi-
cient of determination R?, mean square percentage error
(MSPE), mean absolute error (MAE), and root mean square
error (RMSE), which are defined below.

The coefficient R? serves as an indicator of the accuracy of
data fitting and is defined as

zg\le (al{rue _ aiest)z
-2
YL (@ = a)

where ozl{”‘e,ozfs’ are the true and estimated free volume

indexes, a¢? is the mean of all estimated free volume index

values. The parameter R? has maximum value as unity, and

a greater value signifies a strong agreement between the
estimated and true free volume index.

MSPE quantifies the expected squared distance between

the prediction made by the predictor for a particular value
and the actual true value, i.e.,

RP=1- (19)

true est 2

C100% N al™ — o
MSPE = — Zi:l (—) (20)

a;‘me

MAE, a statistical parameter, quantifies the average abso-
lute errors between true and predicted values. Smaller MAE
values indicate higher accuracy of the prediction model. MAE
is expressed as

1 N 1 st
MAE = Zi:l HE 1)
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RMSE serves as a performance metric indicating the accu-
racy of the ANN model. It is calculated as the square root of
the mean squared error between the true and estimated free
volume indexes, and is expressed as

frue _ iest |

1 N |a
RMSE:JVZZ_ZI l|a

The RMSE value varies from 0 to 100%, and lower the
value, the less the error is between predicted and actual value.

x 100 (22)

true \
i

IV. EXPERIMENTAL SETUP

A. SEMICONDUCTOR PROCESS INDUSTRIAL SETUP

The dry etching and chemical vapor deposition (CVD) pro-
cesses are essential in semiconductor device manufacturing.
These processes involve a wafer processing system consisting
of a process chamber where selected gases and chemicals
are introduced through a feeder, depositing a thin layer over
the substrate. The gases are managed by a gas control panel,
which regulates their flow into the process chamber. Dur-
ing the process, the gases not only coat the substrate but
also interact with the chamber walls and internal surfaces.
Reaction byproducts and unreacted gases exit the chamber
through a throttle valve and are pumped out via a vacuum
system connected to a scrubber, which treats the residues
before discharge.

To maintain process efficiency, the temperature inside
the chamber is kept above 200°C. Gases exiting through
exhaust pipelines may still contain reactive compounds, and
residues, ranging from 100 nm to several microns in size,
gradually accumulate inside the pipes, leading to clogging.
Additionally, the scrubber’s exhaust pipeline incorporates
a high-temperature burn-off method to neutralize harmful
gases. However, residue accumulation increases at lower
temperatures, making it necessary to maintain temperatures
above 200°C to prevent excessive buildup.

An electrical capacitance tomography (ECT) sensor was
installed between the vacuum pump exit and the scrubber
to monitor the deposition process and understand residue
buildup. Figure 7 illustrates the schematic layout of the indus-
trial setup for pipe deposition monitoring using ECT, while
Table 1 lists the gases used in the process chamber.

TABLE 1. List of gases and byproducts formed in semiconductor process.

Process Gas
Chemical vapor deposition SiH4, B2H6, PH3, WF6, SiH2CI2
Dry etch He, NF3, BCL3, CI2

V. RESULTS AND DISCUSSION

A. SIMULATION RESULTS

In numerical simulations, each scenario is initially designed
with a homogeneous flow distribution within the exhaust
pipe, primarily consisting of gas. Over time, powder-like
residue accumulates and adheres to the inner wall of the pipe.
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FIGURE 7. Schematic view of components and processes in the industrial
setup for residue deposition monitoring in exhaust gas pipeline of
semiconductor device manufacturing.

As time progresses, the thickness of the residue deposit
increases, restricting the gas flow to the center portion of
the pipe. To compare the performance of proposed three
ANN-based models for free volume index estimation, three
different scenarios are considered, each featuring annular and
eccentric flow configurations.

In Scenario 1, the focus is on annular flow conditions,
where gas flows concentrically in the center of the pipe while
residue deposits accumulate along the inner wall. Eight test
cases representing different stages of gas-residue deposition
were examined for free volume index estimation using three
distinct ANN models. The initial free volume index starts at
90.3% for test case 1 and progressively decreases, reaching
18.5% by the final test case 8. Figure 8(a) presents the true
free volume index with gas-residue distribution across all
eight test cases, while Figure 8(b) shows the estimated results
from the three ANN models. The black curve represents the
true free volume index, and the blue, green, and red curves
represent the predictions from ANN models 1, 2, and 3,
respectively.

It is observed that ANN model 1, which utilizes Tanh
as the activation function and RMSPROP as the optimiza-
tion method, provides the most accurate free volume index
estimations across all test cases compared to ANN model 2
(ReLU + ADAM) and ANN model 3 (Sigmoid + SGD).
When the free volume index exceeds 30%, ANN mod-
els 2 and 3 exhibit higher estimation errors. Specifically,
ANN model 2 consistently underestimates the free volume
index, while ANN model 3 tends to overestimate it.

The performance metrics R2, RMSE, MSPE, and MAE for
Scenario 1 are summarized in Table 2. ANN model 1 achieves
an R? value of 0.99, indicating near-perfect accuracy, with the
lowest MAE (0.89), MSPE (0.05), and RMSE (1.88) among
the three models. Although ANN model 2 also has a high R?
value of 0.99, its error metrics—MAE (1.30), MSPE (1.80),
and RMSE (3.39)—are higher than those of model 1 but
better than model 3. ANN model 3, as depicted in Figure 8(b),
consistently underestimates the free volume index, resulting
in significantly higher MAE, MSPE, and RMSE values.

Scenario 2 examines a more practical situation where the
gas flow is slightly offset from the center of the exhaust pipe.
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FIGURE 8. Simulation results for free volume index estimation in
scenario 1 involving annular flow conditions with eight test cases. (a) true
permittivity distribution and free volume index (b) estimation results for
free volume index using ANN models.

Eight test cases (cases 9—16) were analyzed for free volume
index estimation in this scenario, as shown in Figure 9.
Figure 9(a) presents the true permittivity distribution corre-
sponding to free volume indices ranging from 78.9% to0 6.7%.
In Figure 9(b), the black curve represents the true free vol-
ume index, while the blue, green, and red curves depict the
estimated values from the 1st, 2nd, and 3rd ANN models,
respectively.

It is clear from Figure 9(b) that the 1st model consistently
provides the most accurate estimates across all eccentric test
cases. While the 2nd and 3rd models demonstrate reasonable
performance when the free volume index is below 20%, their
accuracy declines significantly when the free volume index
exceeds 20%, especially in comparison to the 1st model.

In Scenario 2, the 1st ANN model shows strong perfor-
mance metrics, achieving an R? value of 0.99, with the lowest
MAE (0.64), MSPE (0.11), and RMSE (2.51) among the three
models. Although there is a slight increase in the error metrics
compared to Scenario 1 (concentric flow), the 1st model
remains highly effective in estimating free volume index even
in more challenging eccentric flow conditions.

In Scenario 3, the test data represent a more complex
situation where gas flow occurs at random locations inside
the pipe, with residue deposits attached to the walls. Eight
test cases (cases 17-24) were analyzed for free volume
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FIGURE 9. Simulation results for free volume index estimation in
scenario 2 considering residue deposit and gas distribution within pipe
(a) true permittivity distribution and free volume index, (b) estimation
results for free volume index using ANN models.

index estimation. Figure 10(a) illustrates the true permittivity
images for free volume indices ranging from 79.4% to 4.2%,
showing the gas and residue distribution within the pipe.

Figure 10(b) presents the free volume index estimation
results for Scenario 3 using the three ANN models. The 1st
model accurately estimated the free volume index across all
test cases, while the 2nd and 3rd models exhibited estimation
errors when the free volume index exceeded 40%. Consistent
with the observations from Scenarios 1 and 2, the 2nd model
overestimated the free volume index, whereas the 3rd model
tended to underestimate it.

Performance metrics for Scenario 3 are shown in Table 2.
The 1st model achieved the best results, with an R? value
of 0.99, and lower MSPE (0.11), MAE (0.87), and RMSE
(3.44) compared to the other two models. Notably, the 2nd
model performed better in Scenario 3 than in Scenario 2,
while the 3rd model showed higher error values, confirm-
ing that the 1st model remains the most reliable across all
scenarios.

B. INDUSTRIAL FIELD STUDIES AND RESULTS

The electrical capacitance measurement sensor, detailed in
Section IV-A, was installed along the exhaust pipeline of a
semiconductor process at ‘A’ company. This sensor recorded
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FIGURE 10. Simulation results for free volume index estimation in
scenario 3, considering residue deposit and gas distribution within an
exhaust pipe. (a) true permittivity distribution and free volume index
(b) estimation results for free volume index using ANN models.

TABLE 2. Performance metric of ANN for free volume index estimation.

Numerical studies

Metrics ANN Experimental
Model Sc 1 Se2 Sc 3 data
1 0.99 0.99 0.99 -
R? 2nd 0.99 0.99 0.99 -
3rd 0.96 0.97 0.97 -
1 0.05 0.11 0.11 3.84
MSPE 2nd 0.13 0.16 0.13 11.30
3rd 0.55 0.40 0.47 4.25
1 0.89 0.64 0.87 2.29
2nd 1.80 1.51 1.33 3.93
MAE 3rd 3.76 242 2.78 241
1 1.88 2.51 344 19.59
RMSE 2nd 3.39 3.66 3.30 33.62
3rd 6.89 5.20 6.28 20.62

independent capacitance values between the electrodes,
enabling continuous monitoring of the pipeline conditions.
The monitoring period spanned approximately three months,
from June 1, 2020, to September 19, 2020. Capacitance data
was collected at one-hour intervals, resulting in 2,100 data
points over the course of the study, as shown in Fig. 11. Dur-
ing this period, the pipe remained mostly closed, providing
a stable environment for validating both the initial and final
conditions of the pipeline.
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FIGURE 12. Capacitance values of numerical simulation and experiment
at homogeneous case with only gas at cross sectional pipe.

Numerical simulations were conducted to calculate the
capacitance under homogeneous gas conditions, and the
results were compared with the initial measured capacitance
data. As shown in Fig. 12, the comparison revealed a strong
correlation between the simulated and actual measured data,
confirming the accuracy and reliability of the capacitance
measurements during the initial phase of the monitoring.

An ANN model, trained with simulated free volume index
scenarios, was validated using 2,163 sets of capacitance
measurements obtained from the field study. Analysis of
the raw capacitance data (Fig. 11) shows an increase in
the electrode pair capacitances over time. These capacitance
readings were input into the ANN models to estimate the free
volume index trend throughout the three-month monitoring
period. As shown in Fig. 16, the initial estimated free volume
index on June 1 at 9 AM was 95.9%, 96.2%, and 102.8%
for the 1st, 2nd, and 3rd models, respectively, indicating a
predominance of gaseous byproducts within the pipe. Up to
case 289, the 1st model shows only a slight reduction in free
volume index, while the 2nd and 3rd models show minimal
or no change.

By case 460, the estimated free volume index from the
1st and 3rd models dropped to around 80%, reflect-
ing the accumulation of residue particles along the inner
walls of the pipeline. In contrast, the 2nd model’s index
only dropped to 90%, suggesting a smaller amount of
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FIGURE 13. Experimental results for free volume index estimation
through an exhaust pipeline of a reaction chamber in semiconductor
process (a) free volume index estimation (b) true image of exhaust line
pipe when the pipe is opened after the experiment for inspection, (c) Free
volume index estimation using image based method.

residue accumulation. The free volume index continued to
decrease rapidly thereafter, in line with the variations in
capacitance data during the three-month measurement period
(as shown in Fig. 13(a)). By September 1st, the free volume
index estimates from all three models converged. However,
until that point, the 1st model showed a steady decline in free
volume index, while the 3rd model exhibited a more rapid
drop beginning in August.

After the experiment, the pipeline was opened for inspec-
tion, revealing the residue deposition as illustrated in
Figure 13(b). The thickness of the gas flow region was
measured using inner Vernier calipers, yielding a true free
volume index of 11.68%. On the final day of measure-
ment, September 21, the estimated free volume index values
from the 1st, 2nd, and 3rd models were 13.98%, 15.62%,
and 14.1%, respectively. The estimated free volume index
with ANN model 1 is close to the true measured value
which shows great potentiality in using ANN model with
capacitance measurements. The ANN models reported slight
higher free volume index values and these discrepancies arise
due to the models inability to fully account for variations
in permittivity caused by temperature changes during the
data generation process, despite incorporating a 10% adjust-
ment for permittivity variations. Additionally, to compare
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the performance of the proposed estimation method with
image-based approaches, the inverse problem of Electrical
Capacitance Tomography (ECT) was solved using Gauss
Newton to reconstruct the permittivity distribution image.
Using the Otsu method, the boundaries between gas and
deposits were delineated, and the free volume fraction was
calculated. Figure 13(c) shows a binarized image obtained by
applying the Otsu method after image reconstruction. Based
on this image, the calculated free volume fraction was 24.7%,
which was significantly larger than the actual value.

The performance metrics for the experimental data are
summarized in Table 2. During the measurement period, the
exhaust pipeline remained closed, except for maintenance
intervals, limiting the availability of true free volume index
values. The final measurement provided the only true free
volume index for comparison. Among the models, the 1st
model outperformed the 2nd and 3rd models based on MSPE,
MAE, and RMSE. For the 1st model, the MSPE, MAE,
and RMSE were 2.29, 19.59, and 3.84, respectively, demon-
strating superior performance. In contrast, the 2nd model
exhibited lower accuracy, with MSPE, MAE, and RMSE
values of 3.93, 33.62, and 11.30, respectively, for the final
measurement. The 3rd model showed moderate improvement
over the 2nd model, with MSPE, MAE, and RMSE values of
4.25,2.41, and 20.62, respectively, but still underperformed
compared to the 1st model.

VI. CONCLUSION

This study developed a monitoring system for residue deposi-
tion in industrial process exhaust pipelines using an electrical
capacitance measurement sensor combined with an artificial
neural network (ANN). The results demonstrate the efficacy
of using capacitance measurements to estimate the free vol-
ume index, which is critical for understanding phase fractions
of residue and gas in solid-gas flows. By training the ANN
with capacitance data and permittivity distributions, the sys-
tem achieved high precision in estimating the free volume
index under both simulated and real-world conditions.

Among the three ANN models tested, the Tanh activa-
tion function with Proprms optimization yielded the most
accurate results, particularly in scenarios with varying depo-
sition levels. Field data collected over three months from a
semiconductor fabrication facility validated the robustness of
the system, with model predictions closely matching actual
measurements. For example, on the final test day, the free
volume index was measured at 11.69%, with ANN model 1
estimating it at 13.98%, showcasing the model’s reliability.
The estimated free volume index based on the traditional
image based method was 24%.

Despite these successes, the study highlights several lim-
itations and avenues for improvement. The ANN models
assumed constant permittivity values for gas and residue,
which may not hold true under real-world conditions
due to temperature fluctuations and process variability.
These factors can lead to inaccuracies in capacitance
readings and subsequent free volume index estimations.
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Future work should address this limitation by incorporating
variable permittivity values as dynamic inputs to the ANN,
improving the model’s adaptability to changing conditions.

In conclusion, the proposed system offers a practical,
accurate, and scalable solution for real-time monitoring of
residue deposition in semiconductor exhaust pipelines. This
innovation enhances safety and operational efficiency by
enabling proactive maintenance and hazard mitigation. Fur-
ther research to refine the model and expand its applicability
to dynamic process conditions will strengthen its utility in
industrial environments.
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