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ABSTRACT In this study, we propose a method to estimate energy consumption in battery-powered
Narrowband Internet of Things (NB-IoT) devices using the statistical data available from the NB-IoT
modem, thereby circumventing the need for additional circuitry to measure battery voltage or current
consumption. A custom edge node with an NB-IoT module and onboard current measurement circuit
was developed and utilized to generate a labeled dataset. Each data point, generated upon UDP packet
transmission, includes metadata such as radio channel quality parameters, temporal parameters (TX and RX
time), transmission and reception power, and coverage extension mode. Feature selection through variance
and correlation analysis revealed that coverage extension mode and temporal parameters significantly
correlate to the energy consumption. Using these features, we tested 11 machine learning models for energy
consumption estimation, assessing their performance andmemory footprint, both of which are critical factors
for resource-constrained embedded systems. Our best models achieved up to 93.8% of fit with measured
values, withmemory footprints below 100KB, some as low as 3KB. This approach offers a practical solution
for the energy consumption estimation in NB-IoT devices without hardware modifications, thereby enabling
energy-aware device management.

INDEX TERMS NB-IoT, energy consumption estimation, LPWAN, machine learning.

I. INTRODUCTION
In massive Internet of Things (IoT) applications and
scenarios, featuringmultiple thousands of edge devices, some
of the key concepts affecting scalability and sustainability
concern choosing a proper power source. According to [1],
by the end of 2024, the number of connected IoT devices has
grown 13% over the previous year. Moreover, it is estimated
that this number may reach 40 billion by 2030, underscoring

The associate editor coordinating the review of this manuscript and
approving it for publication was Fan-Hsun Tseng.

the need for sustainable solutions in energy management and
connectivity for widespread IoT deployment.

Lithium-thionyl chloride batteries [2] are a choice widely
utilized in low-power IoT devices due to their desirable
properties such as high energy density, long shelf life, stable
voltage output, wide operating temperature range, safety fea-
tures, minimal maintenance, and overall suitability. However,
such batteries feature a very flat discharge curve (Fig. 1),
delivering a constant output voltage until almost complete
discharge. This property makes it practically impossible to
estimate the amount of energy left based on output voltage
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measurements, unlike other battery technologies such as
Li-ion.

FIGURE 1. Discharge curves of lithium-thionyl chloride batteries [2].

The energy consumption of embedded devices, particularly
those utilized for battery-powered telemetry IoT applications,
is characterized by aggregating consumption from multi-
ple sources. Certain components exhibit constant energy
consumption, while others display variable consumption
patterns. These variations can be attributed to a variety of
environmental factors, such as temperature and pressure,
among others. However, for communication modules par-
ticularly, which are commonly integral parts of embedded
devices, the radio channel quality parameters emerge as
critical determinants of energy consumption variability.
As a consequence, developing a robust mechanism for
precise estimation of energy consumption of communication
modules is necessary for the efficient management of IoT
devices and their batteries.

In this study, we investigate the energy consumption
characteristics of Narrowband Internet of Things (NB-IoT)
communicationmodules. NB-IoT represents an enhancement
to the 4G LTE standard [3], facilitating connectivity for up
to 50,000 low-power devices to a single base station. This
technology is specifically optimized for low-power devices,
enabling a projected battery lifespan of up to ten years.
The trade-off for this extended battery life is a reduced
data transmission rate; however, a significant advantage
of NB-IoT is its extended coverage leading to superior
indoor penetration capability, allowing devices to maintain
communication with base stations from locations that may
be inaccessible to other wireless technologies.

The communication module utilizing NB-IoT is character-
ized by three distinct coverage extension modes, which oper-
ate based on the radio channel quality parameters specific to
a given location. These variations in radio channel quality
result in corresponding differences in energy consumption.
Consequently, the accurate prediction of energy consumption
for embedded devices, along with the estimation of their
battery lifespan, becomes critical within the context of
NB-IoT applications.

Embedded devices utilizing NB-IoT communication mod-
ules occasionally exhibit significant energy consumption
patterns, particularly during initial network connection

procedures. The initial setup necessitates a prolonged and
power-intensive connection to the network. However, sub-
sequent activations during which a device wakes up from
Power Saving Mode entails a markedly shorter and lower
power-consuming reconnection process. Consequently, the
predominant contributor to the energy expenditure of these
modules is the data transmission activity. This transmission
is characterized by various radio channel quality parameters
that are relevant during the communication process, in addi-
tion to radio channel-independent communication parameters
intrinsic to the module’s operation. These parameters form
the foundational basis of our study, serving as critical input
variables for our energy consumption estimation models.

Traditional methods for estimating device’s energy con-
sumption and battery lifespan typically rely on measurements
of battery voltage and current or analytical modeling of
energy consumption associated with communication proto-
cols. In contrast, our approach leverages machine learning
(ML) algorithms, which have gained traction in embedded
systems with the development of TinyML concepts [4],
[5]. The application of ML algorithms enables the creation
of models that can derive custom logic to predict specific
values based on provided inputs. In this study, we utilize
multiple ML algorithms to develop models for predicting
energy consumption based on radio channel quality and
communication parameters for each transmitted packet. Our
main objective is to demonstrate that the energy consumption
of communication modules per packet transmission can
be estimated using these parameters with high accuracy.
We apply different regression-based ML models to predict
the energy consumption of transmitting a single packet.

The main contributions of this work are the following:

• a custom dataset comprising 5,880 data points, which
includes radio and temporal parameters for each packet,
as well as the corresponding amount of consumed
energy;

• a comprehensive analysis of 17 dataset features and their
mutual correlation;

• a detailed feature reduction analysis based on correlation
heatmap and K-best algorithms resulting in numerous
feature combinations;

• an in-depth analysis of energy consumption estimation
using various regression models, on proposed feature
combinations;

• a successful estimation of energy consumption for a
transmitted packet with the accuracy of up to 93.8% R2
value utilizing Random Forest regression;

• results showed that temporal parameters (RX time and
TX time) carry more information necessary for energy
consumption prediction than all radio channel quality
parameters combined.

The paper is organized as follows. After the introduction
part, in Section II, we provide a comprehensive analysis
of related work in this field. In Section III, the hardware
architecture used in this study is described in detail.

2390 VOLUME 13, 2025



D. Bortnik et al.: Evaluation of ML Algorithms for NB-IoT Module Energy Consumption Estimation

Section IV covers an explanation of the utilized experimental
setup, the creation of the corresponding dataset, and the
energy consumption measurement technique. In Section V,
a detailed analysis of input features is provided. The next
section, Section VI, gives a methodology used for the input
feature selection. Subsequently, in Section VII, we describe
regression models and corresponding metrics used in this
study. In Section VIII, a detailed analysis of results is
conducted. Finally, Section IX concludes the paper with a
summary and suggestions for the future research area.

II. LITERATURE OVERVIEW
Several studies have emerged focusing on the analysis of
NB-IoT network power and energy consumption to predict
battery lifespan [6], [7], and [8]. Most of these studies aimed
to dissect the operation of NB-IoT modems, to indepen-
dently analyze each phase and determine the relationship
between consumption and various radio channel and temporal
parameters. A recent, comprehensive survey addressing the
NB-IoT technology efficiency and challenges in terms of
energy consumption is presented in [9]. The paper [10]
surveys energy-saving strategies for 3GPP-based Cellular
IoT, analyzing techniques like parameter configuration and
software adjustments to enhance device battery lifetime.
Key factors affecting energy use are discussed such as data
frequency and DRX cycles. Another study by Yang et al.
is focused on the analyses of the energy consumption of
NB-IoT in the wilderness [11].

In our paper [12] we presented our custom-designed
NB-IoT platform for fine-grained measurements of energy
consumption of an NB-IoT module across different phases
during the data transmission. Using the designed platform
in a real-world setup supported by a mobile operator,
we presented several numerical examples of NB-IoT module
energy consumption under various settings, in which the
energy consumption is decomposed and analyzed across
different data transmission phases, resulting in precise phase-
by-phase energy consumption measurements.

Apart from analyzing the power and energy consumption
of modems, there have been attempts to define energy
consumption analytical models that can be used in the
estimation of the battery lifespan of a device. The following
studies provide both analytical and empirical models to
estimate battery lifetime in NB-IoT networks. However,
none of them employ ML approaches to accomplish this
task.

A. ANALYTICAL AND EMPIRICAL APPROACHES TO THE
ENERGY CONSUMPTION ESTIMATION
The first research on reducing NB-IoT energy consumption
is based on random access reduction [13]. It utilizes
deep uplink packet inspection, and accordingly, pre-
assigns radio resources. Furthermore, study [14] introduces
mechanisms that leverage the stationary and periodic char-
acteristics of NB-IoT devices that have been demonstrated

to reduce energy consumption by as much as 37.8%.
Additionally, another paper that provides an analysis and
energy
optimization of downlink traffic using particle swarm
optimization (PSO) was presented in [15].
The first paper estimating the power consumption of a

commercially available NB-IoT device introduced an empir-
ical approach [16]. The authors compare their measurements
with the results obtained during the 3GPP standardization,
demonstrating promising outcomes, as the battery lifetime
is only around 10% shorter than the estimates provided by
3GPP.

An analytical model based on Markov Chains is intro-
duced and validated in the different approach by the same
authors [17]. The comparison between the proposed model
and measurements obtained using an experimental setup
consisting of a base station emulator and commercially
available NB-IoT devices with a power analyzer is conducted
in terms of estimated battery lifetime. The results indicate
that their analytical model performs well, with a maximum
relative error of 21% in battery lifetime estimation compared
to the measurements, assuming an Inter-Arrival Time (IAT)
of 6 minutes.

The study given in [18] presents an empirical analysis of
NB-IoT technology in a well-designed experimental setup.
Authors observed that the main factors determining energy
consumption are: module type, network operator, signal
quality, usage of energy saving enhancements such as RAI
and eDRX. Additionally, the packet size has a negligible
effect on overall device power consumption under normal
operating conditions.

In [19], the authors conduct a thorough investigation of
energy consumption profiling in NB-IoT networks using the
Quectel BG96 module across various states of the Radio
Resource Control (RRC) protocol. Unlike this paper, they
utilized a power analyzer to measure current and voltage.
The authors reported that their proposed model accurately
depicts the baseline energy consumption of an NB-IoT radio
transceiver, with an evaluation error ranging between 0.33%
and 15.38%.

Another work presents a comprehensive power consump-
tion model for estimating battery lifetime in two cellular
IoT technologies: NB-IoT and Long-Term Evolution for
Machines (LTE-M), achieving a modeling inaccuracy within
5% [20]. Similarly to the papers mentioned before, the
authors employ a strictly analytical approach to develop the
model. However, to estimate battery lifetime, they provide
a detailed methodology that considers various configura-
tions of traffic profiles, coverage scenarios, and network
parameters.

Recently, an analytical model based on UE power con-
sumption is presented [21]. Using a probabilistic model and
simplified state diagram of the NB-IoT device the authors
achieved a simulated target battery lifetime of over 11 years
with IAT set to 11h.
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A paper reporting a custom measurements device (data
concentrator) uses 4 radio channel quality parameters (RSRP,
RSRQ, RSSI, and SINR) [22]. They are used to evaluate the
NB-IoT and LTE link states and select the better one. There
are no power or energy estimations in this work.

Recently, a detailed NB-IoT energy consumption profile
has been presented based on power meter measurement
on Quectel’s BG96 module [23]. The energy consumption
model is based on TR 45.820 by 3GPP [24]. In [25], the
authors analyze the power consumption of the Quectel BG77
module and present an analytical model for battery lifetime
estimation.

In a recent study, two parameters are identified as a
main contributor to power consumption. Optimizations of
NB-IoT transmit power level and the number of independent
transmissions sent per day may lead to battery lifetime
enhancement [26].

Another paper [27] presents a comprehensive anal-
ysis of Qualcomm’s NB-IoT modem, detailing the
reverse-engineering process used to decode essential frame
information and examining various network configurations
that influence performance. The study also presents a large
NB-IoT dataset, collected from a metropolitan network, and
utilizesML techniques to identify critical factors contributing
to low throughput and prolonged delays.

B. ML-BASED APPROACHES TO THE ENERGY
CONSUMPTION ESTIMATION
There have been attempts to estimate battery lifespan utilizing
ML models, but to the best of our knowledge, no studies
have been published on the topic of estimation of power
or energy consumption for NB-IoT modems based on ML
models. Nevertheless, there have been publications that deal
with the same topic in other wireless technologies.

One of them is study [28] which investigates the prediction
of the lifetime of awireless sensor network utilizing LoRaRa-
01 wireless modules. The authors employed a probabilistic
framework, developing a model based on Markov chains
to estimate the system’s lifetime as a function of the data
transmission probability throughout the day.

In [29], the authors aim to estimate the battery life
of intelligent roadside units using the RSSI parameter,
specifically within a GSM technology framework. They
provide a detailed description of the test environment setup
and the devices used for data acquisition. Various MLmodels
were employed, tested on the collected data, and subsequently
compared using the coefficient of determination. They
show that the Random Forest regression models were the
preferable option for predicting power consumption with an
R2 coefficient of 98%.

Energy consumption estimation of IEEE 802.15.4 network
transmissions have been studied in [30]. Authors applied
various regression-basedMLmodels, such as: linear, gradient
boosting, random forest, and deep learning. Results show
that deep learning achieves up to 98% accuracy for energy

FIGURE 2. Hardware architecture of the edge device.

consumption predictions. As inputs for their ML models,
authors utilize communication parameters like transmission
power, packet size, etc.

Authors in [31] used various ML models and LoRa
technology to estimate factors other than power consumption,
based on numerous radio channel quality parameters. They
discovered a correlation between the RSSI parameter and soil
humidity values collected from sensors and proposed an ML
model for its estimation.

Finally, in paper [32], an ML-based approach for forecast-
ing the resulting uplink transmission power used for data
transmissions (over LTE-Advanced) based on the available
passive network quality indicators and application-level
information was proposed. Employed ML models in this
work are: random forest, ridge regression, and deep learning,
where random forest performed the best, with a mean average
error of 3.166 dB.

A comprehensive overview of LPWAN technologies is
presented in [33], where the authors conduct a real-world per-
formance evaluation based on coverage parameters, path loss,
packet delivery rate, latency limits, and power consumption.
The study highlights that LoRaWAN and Sigfox technologies
are more battery-efficient compared to NB-IoT. Additionally,
it demonstrates that depending on signal quality, latency can
vary significantly, leading to a critical degradation in battery
life efficiency within NB-IoT networks.

In recent years, there have been various studies on esti-
mating the capabilities of Li-Ion batteries based on different
input features such as voltage, current, or temperature [34].
To achieve this task, some of them utilize different ML
techniques such as [35], [36], and [37].

Still, to the best of our knowledge, no published work
utilizedML algorithms to estimate energy consumption based
on radio channel quality parameters as input features for
NB-IoT network technology.

III. EXPERIMENTAL HARDWARE MODULE OVERVIEW
In the context of data collection and dataset development,
we utilize a prototype of an edge node device designed
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FIGURE 3. An experimental setup used in this study.

for our NB-IoT testbed, as described in our previous
publications [12], [38], and [39]. The device architecture,
illustrated in Fig. 2, features a BC68 NB-IoT modem from
Quectel, and a current measuring circuit. Apart from that,
the board is equipped with a 16MHz ARM Cortex M0+
microcontroller unit (MCU).

The device facilitates the transmission of diverse data
streams through two distinct serial communication lines. The
first serial port is employed for onboard microcontroller
logging, capturing essential data pertaining to the most
recent packet transmission acquired from the NB-IoTmodule
through AT commands. The second serial port enables the
tracking of current consumption patterns, measured for the
NB-IoT modem only.

To measure the current consumption of the network
modem, a specialized onboard current measuring circuit was
implemented. This circuitry is capable of measuring the
module’s current consumption in both themA andµA ranges,
making it convenient for power analysis during both the
NB-IoT module’s active periods and Power Saving
Mode.

In contrast to the experimental setups in other studies [18],
[19], and [29], which utilize external power measuring equip-
ment and similar approaches, our onboard circuit provides
a significant advantage for evaluating power performance in
large-scale edge node deployments.

IV. DATASET
Utilizing the aforementioned hardware architecture, we
developed firmware specifically for dataset generation. This
application was designed to execute a sequence of data
transmissions, relay modem statistics and information, and
continuously measure current consumption. Both sets of
information were transmitted to the host computer, where
theywere parsed and stored in dedicated log files. Subsequent
post-processing was necessary to correlate and extract the
required data points. In this section, we provide a detailed
description of the dataset creation process.

A. EXPERIMENTAL SETUP
To ensure the resulting dataset encompassed diverse radio
conditions, our experimental setup was designed to be
mobile and battery-powered, allowing measurements to be
conducted at various locations without the loss in precision.
The setup included a laptop and an edge node device
connected via two serial ports. These ports facilitated
the separate transfer of current consumption data every
millisecond and modem information following each data
transmission. The configuration of the setup is illustrated in
Fig. 3.
The experiment was designed to collect data from various

locations within the Science and Technology Park in Novi
Sad, Republic of Serbia. Spanning five floors, from the
ground level to the fourth floor, measurement locations were
spaced approximately 3.5 meters apart and situated in the
building’s corridors, as illustrated in Fig. 4.

B. DESCRIPTION AND SIZE OF DATASET
The dataset comprises data points that encapsulate all
available information about individual data transmissions
utilizing the UDP protocol. As previously described, the
experimental setup was positioned at various locations to
conduct a sequence of transmissions. This sequence involved
ten repetitions for each of four different packet sizes: 16,
32, 64, and 128 bytes. Given that there were 10, 34, 34, 34,
and 35 locations per floor, respectively, the resulting dataset
comprises a total of 5,880 data points.

Each data point in the dataset contains two pieces of
positional information along with the size of the transmitted
packet:

• floor: Number of the floor at which the experiment was
conducted.

• packet_size: Size of the packet in bytes.
• position: ID of measurement position.

Apart from the floor level, location identification number,
and packet size, the data point also consists of information
provided by the modem about the transmission itself. In the
case of Quectel’s BC68 module, this information can be
obtained by AT+NUESTATS [40] command. The following
list describes all available information for each data point in
more detail:

• ecl: Enhanced Coverage Level, which corresponds to
3GPP Coverage Extension Mode value for serving cell
where 0 indicates excellent conditions, 1 represents
good, and 2 moderate or poor conditions.

• mac_dl/mac_ul: Medium Access Control Down-
link/Uplink, representing physical layer throughput
(downlink/uplink) in bits-per-second.

• rlc_dl/rlc_ul: Radio Link Control Downlink/Uplink,
representing the RLC layer throughput (downlink/
uplink) in bits-per-second.

• rsrp:Reference Signal Received Power, representing the
received power level of the reference signals from the
cell.
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FIGURE 4. An experimental scenario used in this study.

• rsrq: Reference Signal Received Quality, indicating the
quality of the received reference signals in centibels.

• rssi: Received Signal Strength Indicator, representing
the overall received signal strength, including the
contribution of the serving cell and interference.

• rx_time: Total time the device has spent in the receiving
state (listening for incoming data) in milliseconds.

• signal_power: Strength of the received signal in cen-
tibels.

• snr: Signal to noise ratio.
• tx_power: Power level at which the device is transmit-
ting data in centibels.

• tx_time: Total time the device has spent transmitting
data in milliseconds.

In addition to the parameters described, each data point
also contains information regarding the energy consumption
(expressed inmilliwatt-hours (mWh)) of the networkmodule,
which is derived from accurate onboard measurements.

C. ENERGY CONSUMPTION MEASUREMENTS
Having described all the parameters available for energy
consumption estimation, we will now detail the procedure
used to measure and associate energy consumption with each
transmission. As previously mentioned, the edge node is
equipped with an onboard circuit for current consumption

measurement, which records the current consumed everymil-
lisecond. This value is scaled in the firmware and transmitted
as a sample via UART2 (as depicted in Fig. 3). Consequently,
a log is created for each location that contains a sequence of
consumption measurement samples, as illustrated in Fig. 5a.
Furthermore, Fig. 5b provides a visual representation of the
consumption log for an individual packet.

To distinguish between transmissions, we implemented
a mechanism that sends a special, negative sample value
as a separator before each packet is transmitted. This
allows us to accumulate samples between two separators,
or between a separator and the end of the log, to calculate the
electric charge consumption per transmission. Although we
are fundamentally calculating electric charge consumption,
measured in Coulombs (C), we use milliampere-hours (mAh)
as the unit, as it more effectively represents battery consump-
tion. Finally, we multiply the electric charge consumption
with the battery voltage (3.7V), to get energy consumption
represented in milliwatt-hours (mWh). That being said, the
energy consumption can be expressed as the sum of current
samples between two separators multiplied by a constant.

V. INPUT FEATURE ANALYSIS
Section IV-B provides a comprehensive overview of the radio
channel quality parameters included as input features in the
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FIGURE 5. Consumption logs displaying current measurements per
packet.

ML models. The following sections outline the analyses
conducted on the data collected for each parameter. First,
a variance analysis is performed to evaluate the diversity
within the dataset for each parameter. This is followed by an
examination of the correlation between each parameter and
the corresponding energy consumption values.

A. VARIANCE ANALYSIS
The initial step in the analysis of parameter variances involves
identification and exclusion of parameters that are irrelevant
to the experiment. Consequently, we exclude parameters
position and floor level from further analysis to avoid basing
our prediction on spatial parameters.

The remaining parameters exhibit significant variability,
as illustrated in Fig. 6. Similar, yet more comprehensive
analyses of various parameter relationships, including RSRP,
CE mode, TX Power, SNR, and throughput for both uplink
and downlink stages, are presented in [41].
RSSI and RSRP exhibit a strong correlation, which

aligns with expectations given their similar nature in signal
strength measurement. On the other hand, TX Power displays
a markedly uneven distribution, with approximately 85%
of all recorded values converging to a 23dB, which is
maximum value for TX power. This also aligns with the
conclusions drawn in [41]. Additionally, Signal Power is
also correlated with both RSSI and RSRP. The CE mode
parameter predominantly takes the value 0 in approximately
70% of cases, indicating better signal conditions, while the
remaining 30% corresponds to value 1, reflecting poorer
coverage conditions.

Time intervals for transmission (TX time) and reception
(RX time) show diversity, with the reception time interval

rarely repeating. In contrast to the RX time intervals, which
exhibit infrequent repetition, the TX time intervals, in some
cases, repeat hundreds of times for specific values.

B. ENERGY CONSUMPTION CORRELATION WITH RADIO
CHANNEL QUALITY PARAMETERS
After analyzing the variance of the parameters, we examine
their correlation with the energy consumption. Fig. 7 presents
the distribution of packets in relation to radio channel
parameters and energy consumption. The figures in the first
and the third row illustrate the distribution of packets based
on a specific parameter and consumption, with lighter regions
indicating higher density and darker regions indicating lower
density. The figures in the second and the fourth row depicts
the distribution of packets according to the specific parameter
and consumption, in relation to the packet’s CEmode. Lighter
dot-shaped markers represent packets with CE mode 0, while
darker x-shaped markers denote those with CE mode 1.

Fig. 7a and 7d demonstrate that an increase in packet size
does not lead to higher energy consumption. This finding
aligns with the conclusion presented in [18] that, under
normal operating conditions, the size of the packet has a
minimal effect on the overall consumption. However, a strong
correlation exists between CE modes and consumption,
which is consistently observed across other figures as well.

A strong correlation between temporal parameters and
energy consumption is evident in Fig. 7g and 7h. The
near-linear dependency observed in these figures suggests
that these parameters may be the most significant factors in
estimating energy consumption.

VI. FEATURE SELECTION
As previously discussed, the generated dataset encompasses
a wide range of features. In certain cases, pairs or groups
of features exhibit similar patterns, often due to underlying
similarities in the information they convey. Tomitigate redun-
dancy among input features in machine learning models,
we apply feature selection techniques. Numerous methods
are available for this purpose, as outlined in comprehensive
reviews [42], [43], and [44].

The following sections describe the methodology for
selecting an optimal subset of input features. This pro-
cess employs two distinct approaches: Feature correlation
heatmap analysis, which quantitatively assesses the cor-
relations between parameters and organizes them based
on their similarity, and K-Best Feature Selection, which
numerically identifies combinations of a specified number
of input features that optimize performance according to
various target functions. In our study, we employed the Scikit-
learn [45] and Tensorflow [46] frameworks to address this
task.

A. FEATURE CORRELATION HEATMAP
A correlation heatmap provides a visually intuitive approach
to illustrating the relationships between features within a
dataset. At its core is the correlation coefficient, a statistical

VOLUME 13, 2025 2395



D. Bortnik et al.: Evaluation of ML Algorithms for NB-IoT Module Energy Consumption Estimation

FIGURE 6. Variances of selected input features.

measure that quantifies the strength and direction of the
linear relationship between two variables. The values of the
correlation coefficient range from −1 to 1, where:

• 1 signifies a perfect positive correlation;
• –1 signifies a perfect negative correlation;
• and 0 indicates no correlation between the variables.

Fig. 8 presents a heatmap illustrating the correlation
between parameters. The correlation calculation method used
in the displayed heatmap is the standard Pearson correlation
coefficient. The presence of high values indicates a strong
correlation between two or more parameters. This finding
can be leveraged to reduce the number of input features in
ML models by grouping correlated parameters, as shown
in Table 1. Based on these groups, all possible parameter
combinations can be calculated. AsGroup1,Group2,Group3

and Group4 consist of 3, 2, 3, and 2 members, respectively,
there are 36 possible input parameters combinations.

TABLE 1. Groups of parameters sorted by feature correlation heatmap
analysis.

The correlation between parameters within the same
group is evident in the variance graphs. For instance,
Fig. 6c, 6a and 6d display significant similarities, which is
expected given their interdependence as radio channel quality
parameters. Consequently, reducing the number of input
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FIGURE 7. Packet distribution by radio channel quality parameters and energy consumption.
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FIGURE 8. A correlation heatmap of input features.

features in ML models can theoretically be accomplished by
selecting a single representative parameter from each group,
without a substantial loss of accuracy.

Another notable conclusion that applies to the correlation
heatmap is that independent parameters introduce small,
and in some cases negligible,1 influence on the prediction
result [42]. This can also be seen from Fig. 8, where
all independent parameters have weak correlation with the
output value in contrast to mutually correlated values, that
are members of specific groups. Therefore, apart from
the combinations described above, another set of possible
combinations that excludes independent parameters is created
in order to support this assumption.

B. K-BEST
K Best feature extraction is a filter-based feature selection
technique that ranks all the input features based on their
relevance to the target variable and selects the top K features
which combination yields the highest scores. Scores are
calculated based on target functions, which are, in the case
of this study:

• R Regression – target function that is based on the
calculation of Pearson’s r-value for each feature and the
target.

• F Regression – target function, derived from R regres-
sion, that calculates the F-value instead of Pearson’s
r-value.

• Mutual Info Regression – target function that computes
mutual information between two random variables, thus
measuring their dependency.

1In our dataset, tx_power has a negligible influence on the power
consumption as it is almost always set to the maximum value. However, in a
different setting where it may vary significantly, this particular feature would
most likely not fall into independent group.

For each target function, different numbers of input
features are selected using the K-Best procedure. The number
of features is determined based on the size of the input feature
sets derived from the feature correlation heatmap analysis
procedure, as explained in the section VI-A. Accordingly, the
top 8, 6, and 4 input features with the highest scores for each
target function, are selected.
The resulting input feature combinations are presented in

Table 2. The first four rows represent the selected feature
groups of the best four parameters for each target function, the
first six rows represent groups of the best six parameters for
each target function, and all eight rows represent full feature
groups of the best eight parameters for each target function.

C. CUSTOM COMBINATIONS
At last, we also tried some of the custom feature combinations
we empirically determined during the initial experimental
phase of our research, which we compared with the outputs
of the feature selection methods outlined in subsections VI-A
and VI-B. The list of these combinations is presented in
Table 3.

VII. MODELS OVERVIEW
This section provides a detailed description of the models
used in this experiment. Furthermore, it explains the metrics
used to evaluate the results, providing insights into their
relevance and how they are applied to assess the model’s
performance.

A. DESCRIPTION OF MODELS AND THEIR PARAMETERS
In this experiment, 11 models are employed to estimate
energy consumption. To determine the relationship between
a dependent variable – energy consumption and multiple
independent variables – radio channel quality parameters
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TABLE 2. Feature combinations generated by K-best algorithm.

TABLE 3. Custom combinations chosen based on previous analyses.

and subsequently forecast outcomes based on new predictor
values, the application of regression models presents itself
as an optimal methodological approach. Regression analysis
enables the quantification of the influence of each predictor
variable on the dependent variable, providing insights into the
underlying dynamics of the system under study [47]. Through
this statistical technique, we can develop a predictive model
that facilitates accurate forecasting of energy consumption
given novel sets of radio parameter values. An expanded and
more formal description of the different well-known, proven
regression models [48], [49], [50], [51] used in this study is
given in the Table 4:

B. METRICS
Four metrics were utilized for evaluating the results obtained
in this study. We use three standard metrics for regression
analysis and one ‘‘non-standard’’ – Accuracy. Accuracy
is used not only to obtain information about the model’s
correctness but also to determine whether the model is
overestimating or underestimating energy consumption. This
provides an insight into its ‘‘conservativeness’’ in terms of
prediction. Definitions of these metrics are given as follows:

• Accuracy – measures the average ratio of predicted
values to the actual values, defined as presented in 1.

Accuracy =
1
n

n∑
i=1

ŷi
yi

(1)

• MAE (Mean Absolute Error) – the average of the
absolute differences between the original and predicted
values, indicating how close the predictions are to
the actual values. Formula for MAE calculation is

displayed in 2.

MAE =
1
n

n∑
i=1

|ŷi − yi| (2)

• MSE (Mean Squared Error) – the average of the
squared differences between the original and predicted
values, highlighting larger errors more than smaller
ones. The definition of MSE is depicted in 3.

MSE =
1
n

n∑
i=1

(ŷi − yi)2 (3)

• R-squared (Coefficient of Determination) – indicates
how well the predicted values fit the actual values,
ranging from 0 to 1. A higher value means a better
fit, with 1 representing a perfect fit. This coefficient is
calculated as shown in 4.

R2 = 1 −

∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(4)

VIII. EXPERIMENTAL RESULTS AND ANALYSIS
The following subsections provide a detailed analysis of the
experimental results. In the subsection VIII-A, we present
a general comparison of the selected models and their
respective performances. The subsection VIII-B discusses
the memory consumption of the models used in the study,
comparing two different feature sets: one that includes all
available features, and another that includes only a single
temporal parameter, RX time. In the subsection VIII-C,
we provide a comprehensive overview of the model’s
performance in predicting modem energy consumption based
on various feature sets. Finally, we provide a comparison
of our solution with other similar approaches found in the
literature.

A. ANALYSIS OF MODELS
The models, as presented in Tables 5, 6, 7, and 8, can
be classified into two categories based on performance
and memory consumption (outlined in Table 9). Those
are: excellent and decent. The excellent group, determined
according to these criteria, includes DTR, GBR, XGBR,
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TABLE 4. Summary of regression models and their main characteristics.

and PR. For the DTR and GBR models, depths were adjusted
between 2 and 20, and 10 and 25, respectively. Results
indicate that optimal performance metrics and memory
efficiency were achieved with a depth of 3 for DTR and
25 for GBR. XGBR yielded the highest performance across
all metrics, with consistent memory usage, establishing it as
the best-performing model. Lastly, PR outperformed LRwith
modestly higher memory consumption, which was deemed
acceptable and thus supports its classification within the
excellent group.

The second group encompasses a diverse set of models,
including ENR, ERT, KNR, LAR, LIR, RFR, and RR. LAR
and its derivative, ENR, show strong performance when
transmission and reception times are part of the feature
set. However, performance declines significantly in their
absence. ERT and RFR models deliver high performance
across all evaluated metrics, though this comes at the cost
of substantial memory requirements. In this experiment, the
number of estimators for these regressors was varied between
5 and 500, with an optimal value observed at 5. Thus,
ERT and RFR are recommended primarily for applications
requiring high performance in environments without memory
limitations. KNR is included in this group due to its slightly

higher memory consumption compared to GBR, though
it achieves similar performance. Notably, KNR’s memory
footprint remains constant regardless of the number of
neighbors specified. Finally, the LIR and RR models achieve
stable, moderate results, with performance unaffected by the
presence or absence of transmission and reception times in
the feature set, though both remain outperformed by models
in the excellent group.

To conclude, processed models can be categorized into
two groups based on their performance and memory
consumption:

• Excellent – DTR, GBR, XGBR and PR;
• Decent – ENR, ERT, KNR, LAR, LIR, RFR and RR;

B. MEMORY FOOTPRINT OF MODELS
As presented in the second column of Table 9, the memory
footprint for the feature set that includes all features shown
in Fig. 8 varies depending on the models used. The smallest
footprint is observed in the DTR, ENR, LAR, LIR, PR, and
RR, all of which use less than 3kB of memory. On the other
hand, largest memory consumption is observed in the ERT,
RFR, and KNR. Despite their high memory consumption,

2400 VOLUME 13, 2025



D. Bortnik et al.: Evaluation of ML Algorithms for NB-IoT Module Energy Consumption Estimation

TA
B

LE
5.

Pe
rf

or
m

an
ce

of
m

od
el

s
w

it
h

ex
te

ns
iv

e
fe

at
ur

e
se

ts
.

TA
B

LE
6.

Pe
rf

or
m

an
ce

of
m

od
el

s
w

it
h

K
-b

es
t

ge
ne

ra
te

d
fe

at
ur

e
se

ts
.

VOLUME 13, 2025 2401



D. Bortnik et al.: Evaluation of ML Algorithms for NB-IoT Module Energy Consumption Estimation

TA
B

LE
7.

Pe
rf

or
m

an
ce

of
m

od
el

s
w

it
h

he
at

m
ap

ge
ne

ra
te

d
fe

at
ur

e
se

ts
.

TA
B

LE
8.

Pe
rf

or
m

an
ce

of
m

od
el

s
w

it
h

cu
st

om
fe

at
ur

e
se

ts
.

2402 VOLUME 13, 2025



D. Bortnik et al.: Evaluation of ML Algorithms for NB-IoT Module Energy Consumption Estimation

these models, particularly ERT and RFR, deliver some of
the best results in terms of overall model performance. The
middle tier of models includes the GBR and XGBR, where
the XGBR demonstrates a slightly better and more consistent
memory efficiency, particularly when smaller feature sets are
used.

The third column of Table 9 presents the size of the
memory footprint for a feature set consisting of only one
parameter. To generate this memory footprint, RX time, the
feature that produces the best results among single feature
sets, was used. However, it should be noted that the results
are very similar when different single feature sets are used.
As observed from the comparison between the second and
third columns, the difference in memory footprint across
all models is generally negligible, but in some cases, it is
worth considering. For DTR, the difference is minimal
when a smaller tree depth is used. However, as the depth
increases, the difference becomes more pronounced. In this
context, DTRs still provide sufficiently good results with a
small depth, making the increase in memory footprint less
impactful.

For ENR, LAR, LIR, PR, and RR, there is a slight improve-
ment in memory consumption, but it is not significantly
better. Additionally, GBR and XGBR are again somehow
special. As mentioned earlier, these models, especially the
XGBR, exhibit a fairly consistent memory consumption
pattern, which has been slightly, but negligibly, improved
with the reduction in feature set size.

On the other hand, the reduction in feature set size had a
substantial impact on the memory footprint of ERT, RFR,
and KNR. In these cases, memory consumption dropped
by approximately 50%. When using certain features, such
as RX time in this case, which can deliver acceptable
overall performance on their own, this becomes particularly
interesting since good performance can be achieved with
a significant reduction in memory consumption. However,
it should be noted that similar performance could be achieved
using much smaller models.

Memory footprint analysis provides several conclusions:

• Models can be categorized into three groups based on
their memory footprint:

-- Smallest – DTR, ENR, LAR, LIR, PR and RR;
-- Mid-sized – GBR and XGBR;
-- Largest – ERT, RFR and KNR;

• Variance in a number of input features does not
significantly reduce model memory footprint in most
cases. The most significant reduction is achieved by
ERT, RFR and KNR.

C. PERFORMANCE OF FEATURE SETS
The quality of energy consumption predictions based on
the discussed models, concerning various input feature
sets, is detailed in Tables 5, 6, 7, and 8. Performance is
assessed using four distinct metrics, which provide diverse
insights. In addition to the standard MAE, MSE, and R2

TABLE 9. Memory footprint analysis of feature set that includes all
features and feature set that includes only one input parameter.

metrics, accuracy is evaluated according to the definition in
Section VII-B, yielding noteworthy results. In each table,
the three highest results per metric are emphasized in
bold. As shown in the aforementioned tables, this accuracy
metric consistently exceeds 1.0. This finding indicates that,
on average, the regressors predict energy consumption values
higher than the actual values. This outcome is significant
as it suggests that models will tend to overestimate energy
consumption, leading to a more conservative assessment of
battery lifespan.

TABLE 10. Extensive parameter sets.

Table 5 presents the results of testing various feature sets,
encompassing nearly all parameters as displayed in Table 10.
The first set (ALL) includes all parameters and demonstrates
the best performance. The second set (NT) is similar to
set ALL but omits time-related parameters (tx_time and
rx_time). The third set (RNT) aims to retain as many param-
eters from set NT as possible while minimizing performance
degradation. The removal of temporal parameters leads to
reduced performance in both sets NT and RNT compared
to set ALL. Nonetheless, these sets still perform well,
as their R2 scores surpass the 0.7 threshold for some models.
Consequently, Table 5, indicates that temporal parameters are
critical for accurate energy consumption predictions. Their
absence significantly impairs performance, even when other
parameters are included.

As detailed in Section VI-A, we can group parameters
by the information they provide listed in Table 1, leading
to 36 distinct combinations of parameter sets. Given the
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extensive number of possible combinations, this study
focuses on three selected feature sets, each representing the
best-performing set containing members of Group 3 from
Table 1. Although Table 5 demonstrates that temporal
parameters are foundational for the most effective feature
sets, our goal is to identify the optimal combination of
features based on the feature correlation heatmap. The
combinations are detailed in Table 11. The final combination
in this table omits temporal parameters, relying instead on
the CE mode. The first two combinations, which include
temporal parameters, yield results only slightly inferior to
the set ALL from Table 5. This suggests that incorporating
a single temporal parameter along with additional radio
channel quality parameters can still produce significant
results. In contrast, the third feature set, while showing
similar performance to sets NT and RNT, offers a reduction
in the number of input features.

Additionally, removing independent parameter inputs,
as described in VI-A, results in an average decrease in
accuracy between 1-3%. This suggests that these parameters
are not essential for predicting energy consumption, but still,
there is a benefit of using those additional parameters for
enhancing model performance. Therefore, the performance
of models that do not utilize independent parameters as inputs
is not presented.

TABLE 11. Feature correlation heatmap parameter sets.

Table 6 provides performance results for model input
feature sets determined by the K-Best feature extractor.
As shown in Table 5, combinations with temporal parameters
provide better results, we limited the Table 6 to a single
combination with temporal parameter, which provides the
best result of all K-Best regressions. This combination was
generated by F-regression and utilizes only 4 parameters.
The list of parameters generated by K-Best regressions is
given in Table 2. To provide a consistent comparison, Table 6
provides additional three combinations that do not contain
temporal parameters generated utilizing F-regression for 4, 6,
and 8 parameters. The table confirms the conclusion that sets
containing a temporal parameter provide significantly better
results, but it also shows that combinations without them can
give good enough results as shown with a combination with
8 parameters. Nevertheless, the reduction of some parameters
in sets that do not contain temporal parameter leads to a
decrease in performance with each dropped parameter.

Table 8 provides an overview of the results for custom
input feature sets, which were created empirically with the
idea of achieving high performance while using the absolute
lowest possible number of input parameters. Following up
on the conclusions made about sets that contain temporal
parameters, we created custom sets given in Table 13.
The first two sets are single-element sets that contain
distinct temporal parameter. Interestingly, a single temporal
parameter is enough to produce better performance than all
non-temporal parameters combined. This further confirms
the importance of temporal parameters in the prediction
of energy consumption of NB-IoT modems. The third set
combines two temporal parameters and generates even better
results. The fourth set is created by adding the CE mode
parameter to the third set, as those three elements provide
the best correlation to energy consumption, as calculated
by feature correlation heatmap and presented in Fig. 8.
Nevertheless, the fourth set produces better results than the
first two, but worse than the third set. We attribute this
behavior to the binary value of the CE mode. At last, the
fifth set contains the RSSI parameter as representative of
all single-element non-temporal parameter sets which were
not able to predict energy consumption with any degree of
certainty.

Finally, a comparison of the energy consumption predic-
tions made by the best-scoring model – RFR, which was
trained using the dataset containing parameters from set ALL
is depicted in Fig. 9. The x-axis represents actual, measured
energy consumption samples collected from onboard current
measurements. On the other hand, the y-axis represents
the energy consumption values predicted utilizing the RFR
model, which demonstrated the highest accuracy among all
regression models, achieving R2 value of 93.8%.

Fig. 9 displays 1176 data points from the test set, the
majority of which are clustered near the main diagonal. This
positioning indicates a high level of accuracy in the model’s
energy consumption predictions.

FIGURE 9. Comparison of energy consumption predicted utilizing RFR
and actual energy consumption.
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TABLE 12. Comparisons with the other approaches.

TABLE 13. Custom parameter sets.

To sum up, analysis of the performance of presented
models gives the following conclusions:

• accuracy metric consistently exceeds value 1.0, indi-
cating that models tend to overestimate energy con-
sumption, leading to a more conservative assessment of
battery lifespan;

• the best-set performance-wise is set ALL, which con-
tains all available features and achieves 93.8%R2metric
value for RFR;

• enhancing a single temporal parameter with additional
radio channel quality parameters produces significant
improvements;

• the removal of temporal parameters leads to reduced
performance;

• to overcome the absence of temporal parameters, models
require a combination of all non-correlated features to
produce results that exceed 70% R2 metric threshold;

• a single temporal parameter is enough to produce
better performance than all non-temporal parameters
combined;

• single non-temporal parameter sets are not able to
predict energy consumptionwith any degree of certainty.

D. COMPARISON WITH OTHER APPROACHES
Table 12 provides a comparison of key attributes across
several related works in this field. Some main observations
are as follows.

As can be seen from the table, the studies presented in
related papers differ in approaches. Some of them utilize ML
techniques in energy consumption estimation, while, on the
other hand, some of them use a strictly analytical approach.

In terms of network technology used in the studies, the
papers that utilize ML techniques analyze different network
standards from our study. Specifically, [30] employs IEEE
802.15.4, a protocol widely used in low-power wireless
personal area networks, while [29] uses GSM. On the other
hand, both papers that adopt an analytical approach, [19]
and [20], use NB-IoT in their experimental study, which
aligns them more with our study.

Also, all the other studies rely on external current
measurement devices, while our study utilizes an onboard
measurement technique, which enables us to isolate the
consumption of the NB-IoT module from the rest of the
on-board circuitry.

The accuracy comparison reflects that our solution presents
competitive results, and in some cases, even better than
other similar approaches. However, it’s worth mentioning
that these studies are based on specific network modules
and technologies. Therefore, the comparison between those
devices cannot be generalized to a conclusion that our
methodology is better or worse, as the energy footprint of a
device is implementation-specific.

IX. CONCLUSION
Accurately estimating energy consumption in edge devices
is a critical challenge due to the non-linear discharge char-
acteristics of batteries, which complicate the interpretation
of output voltage measurements. Addressing this challenge
requires robust methods for estimating energy consumption
to enable precise predictions of device operational lifespan.

In this paper, we propose a methodology and conduct a
comprehensive analysis of energy consumption estimation
for a custom-fabricated device equipped with an NB-IoT
module and on-board current measuring capabilities, employ-
ing various ML algorithms. We constructed a custom
dataset comprising 5,880 data points, with each data point
encapsulating information about corresponding radio and
temporal parameters, and actual current consumption.

Next, we presented a detailed input feature analysis to
investigate the mutual correlations among parameters and
established a feature selection process to identify those most
suitable for energy consumption estimation. Subsequently,

VOLUME 13, 2025 2405



D. Bortnik et al.: Evaluation of ML Algorithms for NB-IoT Module Energy Consumption Estimation

different regression models were analyzed to assess their
suitability for this specific task.

In the results, we showed that:

• temporal parameters can be used solely to estimate
energy consumption with great certainty;

• all models overestimate which is a good sign, because of
its conservative approach in terms of battery change;

• individual performance of the radio channel quality
parameters is suboptimal. However, their combination
yields significantly enhanced outcomes.

As for the regression models, we divided all analyzed
models into two groups: excellent and good. The excellent
group, which consists of DTRs, GBR, XGBR, and PR,
showed the best results among all metrics. Among them,
DTRs achieved the smallest memory footprint with good
estimation performance, while XGBR showed small memory
model variability with great performance in terms of
estimation. Good models comprise ENR, ERT, KNR, LAR,
LIR, RFR, and RR. Some of them, such as ERT and RFR,
performed excellently but had large memory footprints. With
RFR using all available parameters, we achieved the best
result of 93.8% R2 value. Finally, regressors such as LAR,
RR, and their derivative, ENR, showed good results with
temporal features but poor results when using other input
combinations.

A. FUTURE WORK
For future work, the following things should be considered:

• test more sophisticated ML models in order to achieve
better performance in terms of energy consumption
estimation;

• experiment with additional feature selection methods
to deepen the understanding of the correlation between
parameters and consumption;

• update the existing dataset with a wider range of data
points that reflect poorer radio conditions than the
current ones;

• integrate ML models to achieve on-the-edge self-
estimation of energy consumption by running inference
on the device;

• testing of battery lifetime prediction based on proposed
models;

• generating a more extensive dataset, especially when it
comes to the variance in CE mode (including CE2), and
TX power levels.

X. DATASET
The dataset used in this study is available at: https://
github.com/VladimirNikic/nbiot_energy_consumption_
dataset.git accessed on 25 November 2024.
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