
Received 3 December 2024, accepted 19 December 2024, date of publication 26 December 2024, date of current version 7 January 2025.

Digital Object Identifier 10.1109/ACCESS.2024.3523401

Augmenting Energy Sustainability of Static Nodes
Using Hybrid KGNN-AHP Driven Approach for
IoT-Based Heterogeneous WSN
R. BLESSINA PREETHI AND M. SARANYA NAIR
Vellore Institute of Technology, Chennai 600127, India

Corresponding author: M. Saranya Nair (saranyanair.m@vit.ac.in)

ABSTRACT As the nodes used in Internet of Things (IoT)- based wireless sensor network (WSN) are
constrained by the limited source of energy, contemporary applications incorporate the heterogeneous energy
model WSN. Although the node energies are heterogeneous in application, further study is required to
improve the potential of heterogeneous WSN and not much is explored on Graph Neural Network (GNN)
clustering and Routing methods, which impels this study on novel optimal clustering of nodes with efficient
cluster head selection and routing for heterogeneous WSN. In the proposed work, a novel clustering model
with K-nearest neighbour (KNN) and GNN clustering, followed by the Analytic Hierarchical Process (AHP)
weight-based cluster head (CH) selection method to find the optimal and eligible CH with classified fitness
functions. The chosen parameters for the fitness functions are the base station to node distance, lifetime of
the nodes in the network, average number of neighbouring nodes in the cluster, peak power transmission by
the node in the network, and the average lifetime of nodes in the cluster. Additionally, the proposed algorithm
ensures the eligibility of the optimal relay nodes using the GNNSage based routing and steady-state of data
transmission from source nodes to the base station. As the model is designed for static nodes deployment for
monitoring environmental changes in realtime application. The simulation results exhibit the enhancement
of network lifetime and data transmission by following the proposed algorithm for static network.

INDEX TERMS Analytic hierarchical process, graph neural network, GraphSAGE, heterogeneous WSN,
Internet of Things.

I. INTRODUCTION
Technological development in exploring a region of interest
(RoI) and gathering information to predict the future is
increasing day by day. The necessity of gathering information
is partially met by the contemporary Internet of Things
(IoT). IoT is extremely cooperative and interconnected with
multifarious bodies such as Wireless Devices, Humans,
Animals, and other living or non-living things, but the IoT
does not adopt an explicit communication paradigm, hence
wireless communication technologies play a significant part
in the roll-out of IoT [1].Wireless communication technology
is efficiently employed bywireless sensor networks (WSN) to
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reinforce the IoT-based real-time applications in the fields of
Industry, Smart Agriculture, the Health sector, Environmental
Monitoring, Military, and Surveillance. The WSN is the
mainstay of IoT in the perception layer of communication
systems for gathering environmental information from sen-
sory nodes and forwarding the data through various modes to
the IoT network [2].

As the usage ofWSN has increased in various applications,
such as weather, underwater, industrial, space monitoring,
and health monitoring, the energy consumed by these
devices is increasing daily. IoT-based WSNs are embraced
with multitudinous sensor nodes constrained by batteries
and power sources [3]. The tiny batteries of sensor nodes
exhaust within a short span of time owing to processing
and communication, and the battery of the sensor nodes is
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non-renewable or irreplaceable when the nodes are deployed
in hazardous and non-human allowable areas. Hence energy
efficiency and lifetime enhancement of the network are
substantial goals in designing a productive network. The
enhancement of energy efficiency in sensor nodes is a crucial
aspect in the augmentation of the network lifetime. The
algorithms proposed for an optimal method of delivering
packets, efficient routing, security, and coverage of the
network alleviate the finite battery of sensor nodes and expire
the network early. Therefore, the energy-efficient algorithms
in the field of IoT-based WSN is in demand to extend the
network lifetime [4].

Various researches have been conducted to address the
problem of extensive energy consumption and effective
utilization of battery resources of sensor nodes in IoT-based
WSNs. The major fields of research in energy magnifications
are data reduction, radio optimization, efficient routing,
duty cycle schemes, and battery replenishment. In the data
reduction method, the algorithms are used to control the
redundant data transmission and qualify the data aggregation
and data compression to reduce the energy consumption
of the network for the recurrent transmission of redundant
data [5]. The Radio Optimization method proposes the
transmission power control, cooperative communication, and
directional antennas which reduce the energy utilized by the
devices for communication. Another process of an energy
optimization in the network is efficient routing by multipath
routing schemes, sink mobility, relay node deployment, and
clustering. The duty cycling method is used on the nodes
to be in an active and sleep state for reducing the power
consumption during idle listening. However, the tiny smart
sensors are embedded in the nodes of monitoring as a
result, the size of the node decreases then the battery power
utilized will also be decreased. This seems to be a good
solution for energy consumption in WSN but the nodes
squander their energies for the processing, transmission, and
reception of data. Hence, the insubstantial sources used for
battery replenishment in a node and the authors surveyed
the natural and artificial energy harvesting methods [6], [7].
Energy is harvested from solar power, thermal variation,
mechanical vibrations, wind swirls, water drifts, and radiofre-
quency/electromagnetic fields, and those energies are stored
in rechargeable batteries, and super-capacitors or utilized
promptly [8]. The constrained battery problem can be solved
by the energy harvesting technology but the components
embedded in the node for harvesting also make the device
design complex and expensive. Variegated techniques have
been proposed to decline the depletion of energy in sensor
nodes, which encompass power-efficient routing protocols,
sleep and wake-up duty cycles, data reduction techniques,
radio optimization techniques, and wireless power and
information transmission technologies despite the efficient
clustering in hierarchical networks being more effective than
other methods [9]. The Hierarchical network follows the
layering model in which the sensor nodes are grouped into a

cluster and among them, one is selected as the cluster head
or relay node to forward the data to the sink by finding
the next node with higher energy. Clustering is the most
energy-efficient technique followed by densely deployed
networks [10]. Every cluster has a single cluster head (CH) or
dual cluster head used to aggregate the sensed and forwarded
data from the member nodes in the cluster. The CH has a
higher responsibility than the member nodes, it has to gather
the data from the member nodes, eliminate the redundant
data, and forward it to the base station (BS)/sink node.
This transmission can be done directly from CH to BS or
through multi-hop from one CH to another CH until the data
reaches the Base Station. Clustering is appreciated because
of the high reduction in energy consumption according to the
maximum power transmission theory. Clustering of the nodes
is performed by either the temporal or spatial correlation of
homogeneous nodes but this is not feasible for the network
deployed with heterogeneous wireless sensors.

The optimum clustering model and energy-efficient cluster
head selection in homogeneousWSN is handled by formulat-
ing a novel weighted method using bio inspired algorithms.
The weight-based fitness function is used by the protocol
to segregate the nodes according to their eligibility value
to become a cluster head or a member node in a cluster.
A mathematical model for formulating the fitness function
and random weighted average is defined and stated for an
energy efficient and secured network [11].
Existing algorithms are unable to handle the node hetero-

geneity characteristics that directly affect network lifetime.
Hence the significant characteristics of the heterogeneous
nodes are given priority while assigning weights to the
analytical hierarchical process. Obtain a cost-effective and
optimized solution to determine which prioritized attribute
contributes more to the enhancement of node life and network
lifetime.

The motivation for this research is driven by the critical
need to enhance the energy efficiency of wireless sensor
networks (WSNs), given their limited operational lifespans
and data transmission capabilities due to energy constraints.
As WSN applications evolve, the shift from homogeneous to
heterogeneous energy models presents new challenges and
opportunities. The heterogeneous energy models enable bet-
ter adaptation to nodes with varying energy capacities,which
requires further exploration to optimize the networks for
practical use. Moreover, the Graph Neural Network (GNN)
clustering and routing methods offer promising benefits for
WSN management, their application within this domain is
still relatively evolving. This research aims to bridge these
gaps by investigating how GNN-based clustering and routing
can be effectively integrated with heterogeneous energy
models, thus advancing both the adaptability and efficiency
of WSNs in real-world scenarios.

The proposed model integrates Graph Neural Networks
(GNNs) for clustering, weight-based cluster head selec-
tion, and Graph Sage algorithm for routing in IoT-based
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TABLE 1. Table of acronym.

heterogeneous WSN. Initially, the network nodes are orga-
nized into clusters using GNNs, leveraging their ability to
capture complex relational structures within the network.
GNNs facilitate the clustering process by considering the
connectivity patterns and interactions among nodes,thereby
enabling the identification of cohesive groups based on their
topological characteristics. Following clustering, a weight-
based approach is employed to select cluster heads, where
nodes with higher centrality or importance within each
cluster are prioritized for the role of cluster head using
an Analytical Hierarchical Process (AHP). This selection
mechanism ensures efficient coordination and management
of intra-cluster communications, enhancing network per-
formance and resource utilization. Subsequently, routing
decisions are made using the Graph Sage algorithm, which
leverages node embeddings and graph convolutions to learn
the representations of the network topology. By incorporating
contextual information and neighbourhood relationships,the
Graph Sage enables intelligent routing decisions that opti-
mize communication paths while considering factors such
as distance, link quality, and energy efficiency. Overall,
the proposed model offers a comprehensive approach to
WSN management by combining GNN-based clustering,
weight-based cluster head selection, and Graph Sage routing
to achieve enhanced network efficiency, scalability, and
resilience in dynamic and heterogeneous environments.

This paper is organized with an Introduction to WSN and a
brief note on the heterogeneousWSN clustering method used
in this process, followed by a literature review related to the

TABLE 2. Table of symbols.

work briefed in Section II. Section III briefs the systemmodel
with assumptions and Section IV explains the proposed work
from initialization to data transmission and the algorithm.
Section V discusses the simulation results and Section VI to
conclude the paper.

II. RELATED WORK
This section discusses the work performed in relation to
the proposed model. Initially, heterogeneity is termed the
network deployed with nodes that vary in computational
processing, link level heterogeneity, or energy heterogeneity.
In computation heterogeneity, the node must be instructed
to process multiple tasks at a time by using the central
processing unit and the graphical user interface or the
nodes may vary in memory, which means computing the
node with multiple sources create network heterogeneity in
computation [12], [13]. Link heterogeneity varies according
to the communication channel or medium used in the
network of sensor nodes for communication. As there are
two models of communication, a land area network (LAN),
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and a wide area network (WAN), used by the nodes to
communicate with each other either by a combination of
wired and wireless high bandwidth channels for the longer
distances the network is known under the link heterogeneous
network [14]. The energy heterogeneity in a network is that
the nodes deployed in the ROI have different nth levels
of initial energy [15]. In the early stages of development,
the WSN was totally concerned with the homogeneous
sensor nodes deployed network that diverges as centralized,
decentralized, and ad hoc, so the protocols were designed
on this concern but the Heterogeneous LEACH (HLEACH)
protocol brought the clustering hierarchy and the random
selection of CH in the Heterogeneous network [16]. Though
the LEACH is an efficient protocol, it elects the cluster head
randomly and considers the nodes to be homogeneous in
initial energy. Even in the B-Leach protocol the nodes are
homogeneous in energy and the CH selection is uniform in
all rounds which makes a high overhead [17]. The I- Leach is
the modified protocol of LEACH to overcome its limitation
by electing the CH based on its residual energy and location
[18]. Furthermore, Leach-based protocols such as V-LEACH,
VH-LEACH, LEACH-T, and TB-LEACH have proven their
energy efficiency network but these are all simulated on
the homogeneous network [19], [20], [21], [22]. Though the
HEED [23] protocol has better efficiency than the LEACH,
the HEED is also designed for a homogeneous network.

A Stable Election Protocol (SEP) is proposed for the
energy two-level heterogeneous WSN and it is termed the
nodes as advanced nodes, and normal nodes. The advanced
nodes are deployed in m fraction of normal nodes and they
have α times higher energy than normal nodes [24].
The improved version of the H-Heed protocol increased

the level of energy heterogeneity and proved that the level of
energy heterogeneity increases the network lifetime. These
protocols do not consider the diverse parameters of the CH
during the election process [25]. They contemplate that the
energy of all the nodes is equal at the end and beginning of
a new round, hence the prospect of sensor nodes becoming
CH is equal to all. This is taken into deliberation for forming
the Distributed Energy Efficient clustering (DEEC) protocol
[26]. The DEEC protocol formulates a novel probability for
the heterogeneous nodes to become the CH and the study
shows that the probability of becoming a CH is high for the
advanced nodes when compared with normal nodes and this
is the major flick to extending the network lifetime. As the
probability of selection is a unique concept but the nodes are
eligible to become the CH, it is rejected if it’s already selected
as CH. Therefore, this is solved by the weight-based cluster
head selection method in which multiple parameters are used
to rank the node that has the least rank will be selected as CH
[27] Sandip et al. have proposed an Energy-Efficient Hybrid
Clustering Technique (EEHCT) to cluster the nodes. The
cluster is designed in two different modes such as dynamic
clustering and static clustering. The balanced cluster energy
is evaluated and according to the energy level of the cluster,

the BS decides whether to declare the cluster to be static for
the rest of the rounds or dynamic [28].
L Sahoo et al. have proposed two decision-making

methods in which the entropy-weighted technique and the
Technique for Order Preference by Similarity to Ideal Solu-
tion (TOPSIS) method based on Triangular Fuzzy Numbers
(TFNs) are used. In the entropy-weighted technique, criteria
weights are determined based on the information-carrying
capacity of each criterion and assessed using entropy values.
These weights are calculated through a four-step procedure
involving the examination of a decision matrix and the
normalization of values. However, it may be computationally
intensive and sensitive to variations in data. On the other
hand, the TOPSIS method under uncertainty incorporates
uncertainty using TFNs. This involves defining criteria and
alternatives, normalizing TFNs, weighting criteria, creating
a normalized decision matrix, determining ideal and non-
ideal solutions, calculating similarity to ideal and non-
ideal solutions, computing relative closeness, and ranking
alternatives based on their relative closeness. Both methods
provide systematic approaches for multi-criteria decision-
making, offering insights into the relative importance of
criteria and facilitating the selection of preferred CH and
density-based clustering model [29].
Most of the protocols follow the procedure of CH selection,

declaration of CH and formation of cluster, and routing.
Hongzhang Han et al. have designed a routing protocol
based on ant colony optimization model in WSN [30].
As the data transmission is directly proportional to energy
consumption, the selection of node in the routing is highly
dependent on energy and link quality. Here the link quality
is estimated by the traffic of nodes for transmitting data from
the source node to the target node. The authors stated that
nodes located near each other have a very low probability
of packet loss, which also increases the energy of the
node. Mishra SD et. al have introduced a method called
reliable clustering with optimized scheduling and routing for
wireless sensor network, which employs GridCosins chain
clustering to form distance tree topology-based chaining of
sensor nodes. Additionally, it introduces a Turtle Search
Algorithm-Desert Cat Swarm Optimization (TSA-DCSO)
for CH selection. However, it acknowledges the limitations
of current methodologies, such as unexpected sensor node
failure due to channel congestion and mutual interference
during data transmission. To address this, it proposes a
Decisive Scheduling Optimized communication cost routing
that considers energy levels and round-trip delay time for
decision-making.A potential limitation of the approach is
the increased computational overhead due to the integration
of multiple optimization algorithms, which could affect
real-time responsiveness in dynamic network environments.
[31] In a large network, the low energy adaptive clustering
hierarchy that enables direct transfer from CHs to the
base station is impractical. To address this, Senthil et al.
have proposed an optimized Orphan-LEACH (O-LEACH)
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protocol, and simulated annealing with Lightning Search
Algorithm (SA-LSA) to efficiently utilizing orphan nodes
to cover the network [32]. The O-LEACH proposes two
solutions: firstly, a cluster member can act as a gateway,
creating a floating nodewithin the cluster. This gateway node,
which serves as the CH, can handle multiple orphan nodes’
communications, aggregating data and forwarding it to the
BS. Secondly, in cases where there is a non-secure area with
essential stranded nodes outnumbering node losses in the
cluster, a new CH is created. This new CH, designated as CH,
takes on the role similar to that of the original CH. However,
a limitation of this approach may arise from the complexity
of managing orphan nodes and optimizing the network
coverage. Even the paper [33] considered the residual energy
of the nodes and the distance between the nodes. The authors
have considered the nodes as quasi-stationary and location-
aware nodes with the embedded GPS or by the reception of
signal strength or by the direction of location in the form of
x,y concerning the base station or the neighbouring nodes.
The authors have introduced the DWEHC protocol. In the
initialization stage, all sensor nodes forward their location in
terms of (x,y) to all nodes under their signal strength. Every
node receives a set of neighbouring nodes’ locations and it has
to calculate the distance between itself and the neighbouring
nodes using a mathematical formula and tag itself as
my_level = -1. This −1 is the indication that the node
has not yet joined any cluster. After finding the distance, the
nodes need to forward their estimated value of distance which
is considered as one of the weighing factors as my_weight
to the base station. Then my_weight is evaluated in the
base station and the largest neighbour node with the highest
energy will be elected as a temporary parent node and the
other nodes are termed as child nodes for gathering the
information and forwarding it to the recently elected parent
node. Subsequently, the temporary parent node must be
acknowledged by its child node to become a permanent parent
node to form the cluster. Huangshui Hu et al. introduced a
clustering routing protocol named PFCRE which leverags
fuzzy logic and particle swarm optimization techniques to
enhance energy efficiency, mitigate energy holes, and extend
the network lifespan. PFCRE prioritizes energy minimization
and balance in cluster formation through an enhanced particle
swarm optimization algorithm. Additionally, it incorporates
a fuzzy inference system to determine the optimal routes
for the CH, considering factors such as residual energy,
distance to the base station, and relay selection frequency.
The PFCRE adopts an adaptive maintenance mechanism
to manage clusters dynamically, eliminating the need for
periodic clustering and reducing computation and message
overheads.While PFCRE shows promising results in improv-
ing energy efficiency and extending network lifespan, its
effectiveness may be limited in highly dynamic network
environments where node mobility or varying traffic patterns
could challenge the stability of the clustering structure [34].
Yuebo L et al. have proposed a fuzzy clustering model

to select the CH with three parameters namely residual
energy, node degree deviation, and distance to centrality,
which are regarded as fuzzy inputs. After selection of the
CH, a cluster is formed based on the signal strength and
fuzzy based routing is generated. The routing of the data is
chosen by the eligible nodes residual energy, node degree
to the mean number of neighbours of all the node, and
the distance of the node to the centrality of its neighbours.
This fuzzification involves approximately 75 combinations
of IF-THEN rules to optimize routing decisions. While the
fuzzy clustering model presents a comprehensive approach
to CH selection and data routing, its performance may
be affected by the complexity and computational overhead
associated with managing a large number of IF-THEN
rules. Additionally, the effectiveness of the model can be
influenced by the accuracy and reliability of the input
parameters, particularly in dynamic network environments
where conditions may change rapidly [35]. Pal R et al.
have proposed a multi-criterion binary grey wolf optimizer
(MOBGWO) based clustering method for heterogeneous
wireless sensor networks [36]. There are five objectives
namely, maximizing overall cluster head energy, minimizing
cluster compactness, minimizing the number of cluster heads,
minimizing energy consumption from non-cluster head to
cluster head transmission, andmaximizing cluster separation.
An equal weight distribution leads to a linear combination
that transverses multiple objectives into a single objective.
To overcome this problem in weight assignment the authors
have infused the Pareto optimal formulation solution which
retains the diversity of the objectives and the authors also
discussed theMOBGWOmethodwhich converts themultiple
objective functions into single objective function.

Mingwei Lin et al. [37] have proposed a new method
for assigning weights to the functions. They set the ordered
weighted averaging (OWA) of the input values with the aid of
the probability density function (PDOWA). The probability
density function, the inputs to be taken for consideration, are
arranged in descending order, and kernel density estimation
is applied to estimate the probability density function to
determine the structure of the cluster to be formed by the
input values. The Kernel function has three models such as
Gaussian, uniform and Epanechnikov kernel mathematical
models, among these the authors have chosen the general
classic Gaussian model of the kernel function to estimate the
probability density function of the inputs to be assigned with
weights, which can also identify the local cluster structure of
given input values of the real-time case study.

Liu Z et al. conducted node failure analysis using a weight
factor. They have analyzed the Failure Mode and effect
analysis (FMEA) which is used in management technology
with normal risk priority number (RPN) and has several
drawbacks when implementing in an application [38]. Hence
to overcome the drawback, they have proposed weight-based
probabilistic linguistic preference relations (PLPRs) with the
score evaluated by the gain and loss (GLDs). GLD is used
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to derive the risk ranking of the failure nodes in the network.
They have taken both the individual modes’ risk ranks and the
group modes’ risk ranks to identify the optimum risk value
in the network. At last, they evaluated the load haul dumper
machine risk with the weight calculated using the analytical
hierarchical process (AHP).

AHP is a powerful tool for qualitative and quantitative
analysis of the multiple attributes to make appropriate
decision on relative weights. The basic ideology of eliciting
judgments by decision makers on closely or diversely
related attributes is based on weightage [39]. The AHP
makes judgments and calculations better by comparing the
weights. The theory of AHP is derived from the process of
candidate selection for a job by evaluating the skills and
other contributions of the employees with a weighted average
[40]. Herein, CH selection in a heterogeneous network is also
a multi-attributive problem, where the order of priority in
attributes and related weight selection is complex. Hence, the
problem is addressed in the proposed model by incorporating
the initial stage of weight election with AHP and Ranking.

Arif et al. have proposed a framework integrating Fuzzy
Spider Monkey Optimization (FSMO) and a Hidden Markov
Model (HMM). The protocol rounds consist of setup and
steady-state phases. In the setup phase, CH selection is
simplified using SMO to construct energy-efficient clusters
based on network remaining energy and non-overlapping
distance. During the steady-state phase, CHs gather data from
cluster members and transmit it to the base station (BS). How-
ever, a drawback of this model is the complexity introduced
by integrating FSMO and HMM, which potentially increases
the computational overhead. Additionally, relying solely on
SMO for CH selection during setup may not always result in
optimal cluster configurations, leading to suboptimal energy
efficiency in certain scenarios [41].
In the described model, cluster head selection follows a

hierarchical approach initiated by the base station transmit-
ting a BS_Init_msg to initialize clustering. the top layer
nodes receive this message, determine their distance from
the base station and participate in cluster head competition.
Each top layer node broadcasts a start_msg containing its ID,
distance to the base station, remaining energy, and prediction
energy, exchanged with neighbouring nodes to facilitate
cluster head selection. Nodes evaluate their weighted election
for cluster heads based on predefined equations, considering
factors such as the energy level, distance to the base station,
and prediction energy. Cluster heads are selected based on
higher weighted scores, favoring nodes with greater energy
reserves, shorter distances to the base station, and high
prediction energy. Once selected, the cluster heads update the
distance information for each network level and exchange
local information with nearby nodes to optimize routing
paths. This iterative process continues to facilitate efficient
data transmission and network performance [42].

S. He et al., provide a detailed overview of the methods
employed for constructing Wireless Communication Graphs

(WCG) in various network types, including mesh/ad-hoc
networks, cellular networks, and wireless local area networks
(WLANs). They elaborate on the methodologies used to
establish these communication graphs, shedding light on
the intricacies involved. Additionally, the authors introduce
classical paradigms of Graph Neural Networks (GNNs)
applied within wireless networks, aiming to enhance the
comprehension of GNN concepts and structures. Through
their review, they offer a comprehensive examination of
GNNs utilized in wireless networks, covering diverse areas
such as resource allocation and emerging fields. This
review contributes to a deeper understanding of the existing
directions and potential applications of GNNs in wireless
communication systems [43].
Ting Zhu et al. have proposed a model for Multipath TCP

(MPTCP) to enhance network utilization in 5G networks.
MPTCP extends TCP to enable concurrent packet transfer
over multiple paths by utilizing cross-layer optimization
techniques such as routing and path management. However,
existing multipath routing algorithms face the challenge of
subflow asymmetry due to network heterogeneity, which
limits comprehensive routing optimization. To address this,
the paper [44] introduces a novel Graph Neural Net-
work (GNN)-based multipath routing model to explore the
link, path, subflow, and MPTCP connection complexities.
Leveraging the GNN model, expected throughput can be
predicted,thereby guiding multipath routing optimization.
Despite its advancements, a potential drawback of the
model is the increased computational complexity associated
with GNN-based routing optimization, potentially impacting
real-time performance in large-scale networks [44].
However, the existing algorithms such as HLEACH,

B-LEACH, SEP, DEEC, and HEED have made significant
advancements in energy efficiency and clustering for WSNs,
which are regularly suitable primarily for homogeneous net-
works or apply simplistic clustering techniques that may not
fully exploit the heterogeneity within WSNs. Multi-criteria
decision-making techniques used in algorithms of EEHCT
and optimization-based approaches such as TSA-DCSO,
SA-LSA, and GNN-based models have introduced more
sophisticated methods for cluster head selection and energy
balancing. However, the TSA-DCSO and MOBGWO are
the metaheuristic search algorithms used in fitness functions
based optimal CH selection without explicit prioritization of
criteria by treating all parameters as equally or randomly
significant. Though this models simplify the optimization
process, it may not give the best CH selection when certain
criteria are precedence over others. In the Proposed model,
AHP specifically addresses this limitation by structuring
the CH selection process around prioritized weights. AHP
ensures that the critical factors have a greater influence
on CH selection, leading to more optimal and contextually
relevant results by explicitly ranking criteria according to
the priority. Moreover, the weight based and optimization
algorithms are designed for high-performance optimization
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FIGURE 1. IoT based WSN Architecture.

which involves significant computational complexity in large
networks with complex fitness functions. Therefore, AHP
incorporates explicit calculations and comparisons, which are
computationally less intensive than evolutionary algorithms,
hence AHP based CH selection is highly recommended for
real-time applications where rapid CH selection is needed.
Furthermore, many of these models lack an integration
of advanced clustering and routing techniques tailored to
heterogeneous WSNs, which limiting the adaptability to
real-world applications.

III. SYSTEM MODEL
A. MODEL ARCHITECTURE
Figure 1 illustrates an IoT-based Wireless Sensor Network
architecture which consists of multiple sensor nodes, each
equipped with IEEE 802.15.4 wireless communication mod-
ules. The IEEE 802.15.4 protocol is specifically designed
for low-power, low-data-rate applications, making it ideal
for WSNs where energy conservation is crucial. The IEEE
802.15.4 standard supports a simple and robust communica-
tion framework, enabling reliable data transmission between
the sensor nodes and the Cluster Head within the limited
range and power constraints of typical WSN deployments.
These nodes are organized into clusters, with a designated
cluster head responsible for coordinating communication and
data aggregation within the cluster. The cluster heads then
relay the aggregated data to a Base Station (BS) or Sink,
which acts as a gateway to connect theWSN to the cloud [45].

The IoT standards, IEEE 802.15.4 is employed as a key
protocol for communication within the WSN. This standard
is widely recognized in IoT deployments for enabling

low-power, low-data-rate communication among devices,
which is essential for battery-operated sensor nodes. For
internet connectivity, the architecture utilizes a variety of
IoT-related standards depending on the specific deployment.
For instance, connectivity to the cloud from the BS can
be achieved via Wi-Fi (IEEE 802.11), cellular networks
(4G/5G), or Ethernet. The cloud connection facilitates data
analysis and decision-making processes.

This hierarchical architecture enables users to monitor the
network remotely and access real-time data through cloud
services. In this architecture, the IoT and WSN are closely
integrated, as the sensor nodes gather environmental data
and transmit it through a Cluster Head (CH) to a BS, which
then sends it to the cloud. The architecture leverages IoT
principles, enabling remote monitoring, data accessibility,
and real-time analysis through cloud connectivity. The IoT
framework here ensures that data collected from physical
sensors can be processed and accessed over the internet,
bridging the physical network (WSN) with digital services
(IoT). This integration aligns with IoT goals, providing a
seamless pathway for data to travel from sensor nodes to
end-users. The cloud connection facilitates data analysis
and decision-making processes, supporting various IoT
applications such as precision agriculture, environmental
monitoring, and smart cities and healthcare.

The proposed method for energy-efficient clustering
and cluster head selections is implemented in a network
area where the sensor nodes are heterogeneous in nature.
Heterogeneous sensor nodes are classified into two categories
as Normal Nodes (NOR) and Advanced Nodes (AD). The
deployment of normal nodes are in random order to cover
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FIGURE 2. Deployment of Heterogeneous Nodes.

the entire region of deployment (RoD) and Advanced nodes
disseminated uniformly inside the equivalent geological area
of the normal nodes as shown in Figure 2. The nodes are
formed into an optimal number of clusters using KGNN,
a weight-based cluster head selection method is used to select
the appropriate cluster heads in the network, and the other
nodes are treated as member nodes. The scenario of the
proposed model is shown in Figure 3. The nodes are allowed
to transmit sensed packets after the declaration of the cluster
head in a cluster. The cluster heads receive packets from
the member nodes and forward the packets to the BS/sink
node.

B. BASIC ASSUMPTIONS IN PROCESSING NETWORK
DESIGN
• Iot based WSN nodes are heterogeneous in energy and
the network has two-level energy heterogeneous nodes.

• The fraction of normal nodes is higher than the advanced
Nodes

• The nodes that have an initial energy equal to Eo are
considered normal nodes and those with energy > Eo
are considered advanced nodes.

• All the deployed nodes are static in nature, hence the
nodes are known for their location in dimensional (x, y).

• Every node is allotted a unique ID, and that is maintained
for the entire process of assessment.

• Every member node is capable of sensing the environ-
ment and forwarding data to the CH and the CH forwards
the data to the BS.

• Links are symmetric that is the transmission power
between two nodes is equal.

• The time synchronization of the nodes are ideal.
• Consideration of a node dead state is only when the total
energy of the node is depleted (E = 0).

• The nodes are under the direct control of a static BS
which acts as gateway and connected to cloud.

• The BS has uninterruptible energy.

FIGURE 3. Clusters of heterogeneous nodes.

C. SYSTEM MODEL TIMING
The process of execution starts from initialization and ends
once all the nodes are dead or reach maximum rounds.
Herein, the system timing is defined in several rounds.
A round is the duration of the sensed packets traveling from
node to the cluster head and from CH to BS. The packets are
forwarded by the principle of non-persistent Carrier Sense
Multiple Access (CSMA). The data transmitted by the nodes
does not interfere with the data of other nodes.

D. ENERGY MODEL OF NODES FOR COMMUNICATION
The Energy of the sensor nodes is spent on basic three
processes: (i) data transmission (ii) data reception and (iii)
data aggregation. The energy consumption of a node is
estimated by the total energy used for transmitting a bit,
aggregating data received, and receiving a bit. The total
energy consumed by a node is given as the sum of the
energy consumption of the radio-electronic sensory circuit
for sensing (Eelec), energy used to amplify the sensed data for
transmission (Eamp) for free space model (εfs) and multipath
model (εmp), energy consumed to aggregate the sensed data
(Ead ), consumption of energy for transmitting (ETX (l, d)) and
receiving (ERX (l, d)) a data l bit over the distance d [46].
If the d is less than or equal to the threshold (do), the d is
squared, else the d is taken as d4.

ETX (l, d) =

{
(Eelec × l)+ (l × εfs × d2) ford ≤ do
(Eelec × l)+ (l × εmp × d4) ford > do

(1)

ERX (l, d) = (Eelec × l) (2)

The threshold distance is calculated using the following
equation(3)

do =
√

εfs

εmp
(3)

In the CHs, an amount of energy is consumed for the received
data aggregation (Ead ), and the energy is also summed with
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the total energy consumption of the CHs. The energy spent
by the CH is given in Equations (4) and (5), where the CM is
the total number of member nodes in the cluster.

ECH−TX (l, d) = CM × ETX (l, d) (4)

ECH−RX (l, d) = CM × ERX (l, d) (5)

ECH−TOT (l, d) = ECH−TX + ECH−RX (6)

E. OPTIMAL NUMBER OF CLUSTERS
In the initial setup state, the sensor nodes are grouped into
clusters according to the distance between the nodes. The
Optimal number of clusters must be chosen in the setup state
which avoids the problem of improper clusters, heavy load
to CHs, and early dying of CH due to more neighbouring
nodes. Thus, determining the optimal number of clusters
plays a vital role in energy optimization techniques. It is
essential to find the optimal number of clusters that is efficient
in minimizing the utilization of average energy and duly
distributed total energy consumption among all the nodes in
the cluster. Optimal clustering depends on the energy model
of the transmitter and receiver distance, number of nodes, and
area of deployment. Hence we used the basic radio energy
dissipation model to determine the optimal cluster.

kopt =

√
N
2π

√
εfs

εmp

M

d2BS
(7)

The kopt form Equation (7) is used to design the optimal
number of clusters in the network on every round as used [40].
The kopt depends on the total number of nodes (N ) deployed
in the region of area A = M × M square meters, in which
the nodes amplify the data and trans-receive with respect
to the distance of the base station (d2BS ) and the values are
distributed in [46].

F. OPTIMAL NUMBER OF ADVANCED NODES
The entire network setup is assumed to be N sensor nodes
deployed in a squared area A = M × M region. Though
sensor nodes are designed with energy heterogeneity, they are
all able to sense and transmit data directly to the BS located
in the center of the sensor nodes deployed in area A. The
total number of nodes N is very optimally divided into two
categories (i) Advanced Nodes and (ii) Normal Nodes. Let us
assume thatµ is the fraction of advanced nodes from the total
deployed nodes and (1−µ)×N is the normal node count in
the deployed area. We assume that all the nodes are deployed
randomly and evenly distributed in the RoI. The Advanced
nodes have (1+η) times higher energy than the normal nodes.
The counts of the advanced and normal nodes are estimated
from Equations (8) and (9) [47].

NAD = µ× N (8)

NNOR = (1− µ)× N (9)

The fraction of the advanced nodes (µ) allocation is based
on the optimal number of clusters kopt and the total number
of nodes to be deployed. The value of µ has to be set either

equal to kopt/N or greater than kopt/N , which is given in
equation (10).

µ ≥
kopt
N

(10)

G. ENERGY ALLOCATION OF NODES
According to the value of µ, the total number of advanced
nodes and the normal nodes ratio vary. As the advanced nodes
differ from the normal nodes only in the energy capacity
of the battery, the Total Initial Energy of the normal nodes
ET−NOR and the advanced nodes ET−AD are given in the
equations (13)-(16) where the E0 is the initial energy of the
normal nodes and the initial energy of an advanced node in
equation (11) and (12).

ENOR = E0 (11)

EAD = E0 × (1+ η) (12)

ET−AD = E0 × (1+ η)µ× N (13)

Can also be rewritten as

ET−AD = E0 × (1+ η)× NAD (14)

ENOR = E0 × (1− µ)× N (15)

Can also be rewritten as

ET−NOR = E0 × NNOR (16)

Then the total Energy (Etotal) of the network is certainly
probable as in equations (17)-(20).

Etotal = ET−AD + ET−NOR (17)

Etotal = [E0 × (1+ η)× NAD]+ [E0 × (1− µ)× N ] (18)

Etotal = [E0 × (1+ η)× NAD]+ [E0 × NNOR] (19)

Etotal = E0[(1+ η)× NAD + NNOR] (20)

IV. PROPOSED SYSTEM
This paper focuses on enhancing the energy efficiency
of IoT-based Heterogeneous Wireless Sensor Networks to
improve network lifetime. The proposed system consists
of two phases: Phase I, the Setup state, which involves
deployment strategy, clustering, cluster head selection, and
finding the energy-optimal routing. Phase II, the steady state,
is dedicated to data transmission.

The proposed model setup state is illustrated in Figure 4
and which offers several benefits. Firstly, the proposed
model extends the overall network lifetime of IoT-based
Heterogeneous Wireless Sensor Networks by improving
energy efficiency. This enhancement is achieved through
optimized deployment strategies, efficient clustering, and
selection of energy-efficient cluster heads. Secondly, the
model ensures energy-optimal routing, further reducing
energy consumption and prolonging network operation.
Additionally, the two-phase approach of the model, separat-
ing setup and steady-state operations, enhances the network’s
overall stability and performance, leading to more reliable
data transmission.
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FIGURE 4. Proposed model setup state.

A. PHASE I: SETUP STATE
1) DEPLOYMENT STRATEGY
In a large area network, a square meter area can be divided
into multiple clusters of sensor networks. The sensor nodes
are deployed in the region to cover the area to gather
information about the environment. The proposed model
has energy- heterogeneous nodes, hence the nodes are
deployed in a different strategy. As the normal nodes are
higher number of advanced nodes, they NNOR are deployed
randomly. The number of advanced nodes (NAD) is estimated
as per equation (7) to set the µ and the µ fraction of
advanced nodes are deployed uniformly in the RoI as shown
in Figure 2. The significance of combining random and
uniform deployment strategies lies in achieving a balanced
and effective coverage of the area. Random deployment
ensures that normal nodes are spread across the region,
providing a basic level of coverage. Meanwhile, uniform
deployment of advanced nodes within the RoI ensures a low
probability of coverage holes, which enhances the overall
performance and efficiency of the network.

2) CLUSTER FORMATION
Graph Neural Networks (GNNs) offer a substantial advance-
ment over traditional clustering models in Wireless Sensor
Networks (WSNs), providing improved performance, scal-
ability, and adaptability. In the GNN model G = (V, E),
where the nodes are represented as vertices (V) and the
connections between them as edges (E). The edges are
established by determining the distance between a node
and its neighbours using the K-nearest neighbour (KNN)
method [48], [49], where K is set to 1 to ensure that each
node has at-least one edge to a neighbour node. These
edges are directional, pointing towards the closest neighbour
(E = (v, u)|v, u ∈ V).
To avoid the potential issue of multiple subgraphs in the

network and ensure a complete graph structure, the K is
incremented by 1 until the graph has complete edges between

subgraphs. KNN creates a complete graph based on the edge
weights of the neighbours. KNN algorithm iteratively adds
the edges of the neighbours and selects the edge with the
smallest weight that connects a vertex. This process continues
until all vertices are included in the tree, resulting in a
connected acyclic subgraph with a minimum possible total
edge weight.

The KNN approach guarantees that all nodes in the
network are interconnected,thereby preventing the isolation
of nodes and enhancing the overall graphical connectivity
of the network. Additionally, weights (ωe(i, j)) are assigned
to the edges based on the location (x,y) distance between
nodes (i, j), calculated using the Euclidean distance as in
equation (33) by setting d = 2. Nodes are characterized
by spatial layout features and self-accessed features (F =
f1, f2, . . . , fn), that is including node id, node location (x, y),
distance from BS, residual energy, and the total number of
connected least neighbour node edges as shown in Figure 5.
Each node in the network has its member neighbouring

nodes represented as (mv). The objective of the clustering
stage is to estimate the number of optimal clusters and group
the nodes in the clusters, where the total number of optimal
clusters is estimated from equation (7) and node (v) with its
neighbour (u) is grouped by GNN. To convert the objective of
estimating the optimal number of clusters and grouping nodes
into the optimal number of clusters in the formula for the
objective function, we can combine the two objectives into a
single formulation function. The optimal number of clusters
is denoted by Kopt and the grouping of nodes into clusters
is represented by c(u, v) where v is the node with the highest
edges, and u is the neighbouring node that becomes a member
node of the cluster from the neighbouring node set Nv. The
formulated objective function is given in equation (21).

minimizeKopt , c(·) : [
{
mv +

∑
u∈Nv c(u,v)|v ∈ V

}
] (21)

The objective function is achieved using the GNN, which
learns from the node representation. In node representation
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FIGURE 5. Initial graph network formation.

learning, the node features and the edge values are learned
by the GNN model from the graph topology as an adjacency
matrix (Am ∈ RV×V ) where V is the number of nodes in the
network. The Input features and edge metrics of every node
in the network are passed to the neighbours to understand
the relationship between the nodes that are constructed in
a feature matrix as F ∈ RV×n, where n is the number of
node features. The GNN has the concept of a message passing
neural network (MPNN), which comprises three stages such
as messaging passing, aggregating and updating to learn the
node and edge states by staking the information in a fixed
size vector in the encoding stage. In the message-passing
stage, each node sends its hidden state hln to its neighbour
nodes, which denotes the hidden state of nth node in l layer.
The network is initialized as h0v = Fv, where the Fv is
the feature vector of node v. The hidden function of every
stage is generated as in equation (22) and forwarded to the
neighbouring nodes as in equation (23).

hlv = σ (ωl
∑ hl−1u

|Nv|
+ blhlv − 1) (22)

Equation (22) comprises two units with a non-linear
activation function (σ ), where the first unit is the averaging
of hidden values from the set of all the neighbouring nodes
of node v with weight (ω),and the second unit is the bias (b)
multiplied by the previous layer embedding of node v.

Message(mlv,u)← msg(hl−1v , hl−1u ),∀(u, v) ∈ E (23)

Aggregate(agglv)← agg(mlv,u|u ∈ Nv,∀u ∈ V) (24)

Updatehlv← updt(hl−1v , agglv),∀v ∈ V. (25)

In the aggregation stage, all the nodes receive messages
passed from their neighbours (mlv,u). In aggregation, the
messages of neighbouring nodes are summed or averaged
(agglv) in equation (24). In the proposed model, aggregation
is used as the mean function given in equation (25) where
agg is the mean of the weighted average of neighbours as in

Equation (27).

hlv = σ ([ωl · agg(h(l−1)u ,∀u ∈ Nv), blhl−1v ]) (26)

agg =
∑
u∈Nv

h(l−1)u

|Nv|
(27)

The update stage performs the message update with its
neighbouring node information hlv as in equation (26). After
updating of all node details, the GNN is trained for the
iterations, and the loss function is used to refine the values
by backpropagation. The loss function is precisely structured
for efficient clustering by incorporating intracluster similarity
and intercluster dissimilarity, where the intracluster similarity
term must be maximized and the intercluster similarity must
be minimized. Hence the Silhouette Coefficient, which com-
prises intercluster similarity and intracluster dissimilarity,
is calculated for every node. The Silhouette Coefficient is
used to measure the quality of a cluster by accessing the
distance from two nodes d(xi, xj), where the clusters are
denoted as Ck and {k = 1, 2, 3, . . . , kopt} of the nodes
X = {x1, x2, . . . , xN }. Initially the intracluster similarity is
evaluated for node xi with all other intracluster nodes xj in
cluster Ci as given in equation (28).

a(xi) =
1

|Ci| − 1

∑
xj∈Ci,i̸=j

d(xi, xj), (28)

where the low value of a(xi) represents high similarity within
the cluster and a high value of a(xi) represents dissimilarity
of the node within the cluster. The minimum average of the
intercluster value of the node (xi) is estimated with all the
other nodes xj cluster-wise as in equation (29), where the high
values of b(xi) indicate that the node is different from the other
cluster and a lower value indicates the closeness of the node
to the cluster.

b(xi) = min
j̸=i

1
|Ci|

∑
xj∈Cj

d(xi, xj), (29)
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The silhouette score (Sc) of node xi must be the minimum
of a(xi) and maximum of b(xi), and is expressed as in
equation (30).

Sc(xi) =
b(xi)− a(xi)

max{a(xi), b(xi)}
(30)

The silhouette score must be the maximum to obtain a good
quality cluster hence, the clustering loss is framed as in
equation (31).

Lc = 1− Sc(xi) (31)

The decoder layer is used to extract the final values of the
edges used to cluster the nodes. The decoder computes the
inner product of the hidden states of the nodes at both ends.
This inner product serves as a scalar value assigned to the
edge, representing the relationship or similarity between the
nodes connected by the edge. Finally, the clusters are formed,
and the entire proposed model of clustering is structured in
figure 6. The proposed model of KGNNs can exploit the
complex relationships between nodes based on their spatial
layout, connectivity patterns, and other features. This allows
GNNs to create more precise and context-aware clusters,
leading to a more efficient use of resources and better overall
network performance.

3) CLUSTER HEAD SELECTION
Fitness-based cluster head selection is evaluated by consid-
ering highly impacted elementary parameters to generate the
fitness factor of a node with AHP weights to be elected as a
cluster head in this phase. AHP excels in environments where
different criteria need to be prioritized. In CH selection,
factors such as residual energy, distance to the base station,
intra-cluster distance, and communication cost are critical.
AHP enables to assign weights to these factors based on their
relative importance to network performance, which integrates
with the heterogeneous nature of WSNs. Additionally, AHP
allows fine-tuning of weights based on network-specific
priorities, which varies with application requirements. In the
proposed model, a network focused on energy efficiency,
hence the AHP assigns higher weights to residual energy
and prioritize distance to the base station. This adaptability
makes AHP suitable for diverse scenarios and scalable as
network priorities shift over time. The proposed model
structured approach in maintaining a balanced CH selection
process by confirming that all the fitness functions are
consistently evaluated to reduce subjective bias in weight
assignments.The primary eligibility of the node to participate
in the election is that it must be an alive node whose
residual energy must be greater than the eligible node energy,
calculated as in equation (32).

ENE =
ResidualEnergyofNode(ERE(CH ))

ECH−TOT )
(32)

The focus of the paper is not only on weight estimation
but also on decreasing the complexity of analysis by imple-
menting priority-based AHP which balances the weightage

distribution on ranking. The fitness functions for evaluating
the fitness value are as follows.

1) Distance from node to the Base Station: As nodes
forward their position (x, y) to the base station, the
distance is calculated by using the Minkowski distance
given in equation (33). The Minkowski distance is
formulated by two different prominent formulas of
the Euclidean distance and Manhattan distance. The
simplest rule by changing the d value= 2, this equation
acts as the Euclidean distance, and while setting the d
= 1, the formulae turn into Manhattan distance. From
the study of the best formulation on the dependent
variable, it is found that the node deployment is
random, and the Euclidean distance formulae are
efficient, however for uniform deployment, Manhattan
performs better than Euclidean distance. Therefore on
the random deployment set the d = 2 and on the
uniform deployment set d = 1 for proficient distance
estimation.

DN−BS =
∑

((|xBS − xl |d + |yBS − yl |d ))
1
d (33)

2) Lifetime of a CH: The node lifetime is calculated as the
residual energy of the node and the data transmission
energy required in Equation (34) to transmit the data
to the base station. The node lifetime is the highest
priority factor considering the overall network lifetime
and performance.

CHl =
ResidualEnergyofCH (ERE(CH ))
TransmissionEnergy(ETX (CH−BS))

(34)

3) Average intra-cluster distance: The logic behind the
calculation of the intra cluster distance is that,
when the node has multiple nearby neighbouring
nodes, then the distance of transmission from node to
CH is reduced, which defends more energy in every
transmission. Therefore the neighbouring nodes are
calculated using the average distance from the nodes
to the node assessed to become the cluster head.

DN−CH =
∑

(|xN − xCH |d + |yN − yCH |d ) (35)

NN =
1
CM

CM∑
l=1

distance(DN−CH )l (36)

4) Max Power transmission: The maximum power deple-
tion of a member node from any of the created clusters
in the entire network and its peak transmission energy
to forward the data to the cluster head are formulated
by equation(37).

Pi.max = max(ETX (node(i)−CH )) (37)

5) Average lifetime of the nodes in the cluster: The
individual lifetime of the nodes is calculated by the
resemblance of equation (38) for finding the node
lifetime and that is used to find the average lifetime
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FIGURE 6. Initial cluster formation.

of the nodes in a cluster. This is taken as the average
lifetime of the cluster.

LN =
ERE

ETX (node(i)−CH )
(38)

LavgMN (cluster) =
1
CM

CM∑
l=1

LN (39)

4) WEIGHTS
As this paper proposes that the cluster head selection depends
on the weights, the basic summation of weights (ωi) assigned
to find the fitness function (fv) must be equal to one. As we
are using five different fitness values,we used

n∑
i=1

ωi = 1 (40)

ω1 + ω2 + ω3 + ω4 + ω5 = 1 (41)

5) FITNESS VALUE
The fitness function for the nodes to become a cluster
head is formulated with the foremost priorities for energy
and distance. This paper proposes a detailed hierarchy for
weighting the nodes on the above-mentioned five factors by
scalarizing functions bound to the algorithm. The hierarchical
arrangements of weighing stages are introduced in the
process of the fitness function by initially grouping the
nodes, relating the entities, setting up the priority factor, and
assigning weights to the nodes assumed to be the cluster head.

fv = ω1A+ ω2B+ ω3C + ω4D+ ω5E (42)

As cluster head selection is an exceedingly convoluted task in
the computational, link, and energy heterogeneity of WSN,
an efficient model must be introduced in various fields
of heterogeneous networks. In a network of computational

heterogeneity, the node’s processing power, and memory
are considered as weighing factors. In a link heterogeneous
network, the link of asymmetric radio transmission power for
the minimum path range length, speed of mobile nodes, the
distance from the cluster head to the base station using the
Euclidean distance and link of the converse path is considered
for weighing the nodes. In an Energy heterogeneous network,
the lifetime of the cluster head and the average lifetime of
cluster member nodes in a cluster are considered weighing
the fitness factors. These entities lead to a more complex
or non-optimized solution in the process of weighting the
impeccable cluster head. In the Proposed model, the fitness
value is the summation of all five fitness functions, but the
fitness functions are a combination of the Min and Max
terms with normalized values. Hence, to make it equal, the
reciprocal of a few fitness functions is used, as given in
Equation (43).

fv = ω1(
1

DN−CH
)+ ω2(CHl)

+ ω3(LavgMN (cluster))+ ω4(
1

Pi.max
)+ ω5(NN ) (43)

Hence, we have proposed a modest form of weighing
process that takes the highly essential entities for weighing
the nodes to bring out the least ranked node as a cluster head
in a cluster by using AHP. The entities are introduced by
representatives A, B, C, D, and E. These five entities are
broadly classified under only two categories of consideration:
(i) distance among the nodes and to the base station,
and (ii) average energy of the cluster and its inter-cluster
nodes. In these two categories, weights are assigned to
the priorities of the entity. Primarily, the priority is given
to proximity entities because, according to equation, the
distance is directly proportional to the energy consumption
of a node while transmitting and receiving a bit of a data
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FIGURE 7. Data transmission through CH.

TABLE 3. Priority rank.

packet. In a clustered network, the direct transmission and
reception distance is alienated by half if it’s a two-hop data
transmission, but the relay of data can be sectored further
in multi-hop transmission. The energy required to transmit
the data directly to the BS from its location is reduced by
forwarding it to the CH which is located between the nodes
and the BS. Figure 6 shows how the distance of transmission
is further reduced by the multihopping technique. Hence, the
proximity of the node to the cluster head and to the base
station is a highly prioritized entity in the weighing factor.
Thus, the distance between a node and its CH is considered
to be (A, E). The distance of the BS versus the nodes to be
a CH is assessed by the equation DNBS represented as A, for
simplicity in further processing.

The Node distance from the base station (A) is set as
the foremost factor in the fitness function, therefore it is
considered as the first fitness factor for weighing. The
remaining three energy-dependent fitness factors are, the
Lifetime of the node assessed to become a cluster head is
designated as D, the Lifetime of member nodes is taken in
the summed average that will be represented by C, the peak
power consumed by any of the nodes in a cluster is designated
by B, and the intra-cluster distance is represented by (E),
which are evaluated by equations (32)-(38).

Although the values are obtained by equations, these
fitness factors must be set to assign weights. As A is set
in first place in order, the remaining entities are set into a
series of highly prioritized factors (D) lifetime of a cluster
head node of the node is chosen to be the head among the
energy-related entities that will be followed by the maximum
neighbouring node entity E and the last two entities (B) peak
power consumption proceeds with the average lifetime of
member nodes (C). The ranking order is given in Table 1.

Table 1 lists the basic energy factors B, C, D, and E. These
four factors can be ranked in twenty-four possible orders in
combination. Because the weighing process depends on the
preceding entity for calculation, finding the optimal order is
the objective of embedding the fitness function on the cluster
head.

In the process of finding the best order of entities, the
study of homogeneous and heterogeneous network protocols
is considered and simulated to find the optimal combinations.
The above combinations are simulations with various initial

TABLE 4. Point ranking table.

energy values and the results indicate that the higher
energy-consuming nodes will drain their energy earlier.
Hence, the node with higher energy consumption is weak for
the race to become a cluster head. The next priority is given
by the inference that the higher residual energy nodes have
greater possibilities to becoming a cluster head and can also
withstand a longer duration of its responsibilities. Finally,
it is inferred that a cluster with higher average energy may
lead to an enhanced network lifetime. As we have considered
the same parameters henceforth, we have followed the same
order of ranking, but the highest neighbouring node factor is
also taken into consideration in our proposed model. For that,
the nodes with the highest neighbour must be given priority
because if the nearest neighbours are more, then the data
transmission range of those nodes will be reduced which will
influence the reduction of energy consumed by the nodes to
communicate the data. Therefore, we obtained the rank order
as mentioned in Table 1.

a: POINTS RANK
The establishment of the ranked entity is followed by a
weighing process to obtain the fitness function. Step 1
associates the near-ranked entities and points are given by
comparing their priority at the base station with a score of
10 points, and that with a lower priority, is given a lower
relative score.

Let’s assume that the point rank possessed by the base
station is listed in Table 2.

b: RELATIVE POINTS
The Relative Points (PR) are generated from the five
factors, and we obtained four results of comparison and the
non-comparable entities are not considered (not applicable)
as shown in Table 3.

When two factors are paired and compared, the preference
value should satisfy the reciprocal condition. For instance,
if A is x times as important as B, B is 1

x times as important
as A, and vice versa. The points are given initially to the
higher ranker’s (Thigh−rank ) by the normalized value 10 and
the relative of the next lower ranker entity (Tlow−rank ) is given
under consideration with respect to the normalized value as
in equation (44).

PR = P(A) =
Tlow−rank
Thigh−rank

∗ 10 (44)

For example, Table 3 is filled by the relative ranking by
comparing entities A with D, and the relative importance
value of A is Thigh−rank = 10, which is normalized by the
highest normalizing point P(A)= 10. The relative importance
value of D is considered as low (Tlow−rank ), so the points for
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TABLE 5. Relative points table.

P(D) are calculated as in equation (45).

P(D) =
Tlow-rank
Thigh-rank

∗ (Prior entity value)

=

(
9
10

)
∗ 10 = 9. (45)

As the remaining entities are not directly related to A
and D, we mentioned them as not applicable. The next
comparison is between D and E, where E has a low rank,
therefore we get P(E) = (8/10) ∗ 9 = 7.2. The remaining
entities are compared and are listed in Table 4 for reference.

c: POINT BINDING VALUE
The point binding value (Pbv) method is used to decrease
abnormalities in computed values as well as anomalies in the
weighing process using the linear interpolation method. This
is done to bind the best window of difference between the
fitness factor’s maximum and lowest point ratios i.e., P(A)-
P(C). A larger difference value leads to higher reliance on
specific factors and the lower difference degrades the order of
priority, which is imposed on the main objective of an energy-
efficient network. The higher reliance on a specific factor
above 20 percent of variance steers the results of the protocol
into unpredictability and a variance lower than 20 percent
diminishes the priority factor. Accordingly, the lowest point
ratio is smoothened by 20 percent by incrementing the point
ratio value of the least ranker to reduce the difference range
between the highest and least rank point ratios. Therefore, the
least relative point ratio of value 3.024 is enhanced and the
new bounded least point is 4. It is important note that the least
binding value is dependent on the required disparity between
the weights. When the least relative point ratio is very low,
the binding value can be chosen to be higher and all relative
points are linearly interpolated.

To formulate this, we have stated that Pbv(x) is the point
binding value, (Pint ) point interval, (Plr ) least point ratio
i.e.,3.024, Current Point Ratio (Pi), Initial Point Range (Vi),
and Bounded Point Range (Vb).

Pint = (
Pi − Plr

Vi
) ∗ Vb (46)

Pbv = Pint + (Pblr ) (47)

The highest point ratio is 10, and the initial point range
is taken from the different values of the highest and lowest
points, i.e., Vi = (10 − 3.024) = 6.976. The Bounded Point
Range (Vb) is the difference value of the highest PR and the

new least binding point (Pblr i.e., 4) as in equation (48).

Vb = PR − Pblr
= (10− 4) = 6. (48)

Calculations:

Pint (D) =
9− 3.024
6.976

∗ 6

Pint (D) =
5.976
6.976

∗ 6

Pint (D) = 0.857 ∗ 6

Pint (D) = 5.14

Where

Pbr (D) = Pint (D)+ Pblr

Therefore

Pbr (D) = 5.13+ 4

Pbr (D) = 9.14

To find the point binding value of D, initially, the Pint is
calculated by the interval from point D ratio (Pint = 9) to the
least relative point and the lowest point interval is 5.976 from
the lowest end. The new Pint (D) = [((5.976)/6.976)* 6] =
5.14, and the interval of Pint (D) is enhanced to the new scale
binding value, that is Pbv (D) = 5.14 + 4 = 9.14. Similarly,
the intervals from E to C and B to C are computed and are
shown in Table 4.

d: WEIGHING
The sum of point binding values (Pbv(x)) given in Table 4 is
taken i.e., 36.43 and the point bounded value of the fitness
entities is divided by that. We acquired the weights as given
in Table 5 and the summation of weights is equal to 1.
After finding the weights as in Table 5 of every fitness

factor, which is applied in equation (43), the fitness values
are estimated. The estimated value is arranged in descending
order, and the node with the highest value is ranked the least
and selected as the cluster head in the round.

6) RELAY NODE SELECTION FOR THE OPTIMAL ROUTE
GraphSAGE (Graph Sample and Aggregation) is also a GNN
technique that learns node representations by sampling and
aggregating information from a node’s local neighbourhood.
This addresses the challenge of scalability in GNNs by
operating on large graphs efficiently. GraphSAGE operates
in multiple layers, where each layer samples a fixed number
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TABLE 6. Weight table.

TABLE 7. Final weight table.

of neighbours for each node and aggregates their feature
information to update the node’s representation. This process
allows GraphSAGE to learn embedding for nodes in a graph
by capturing both local and global graph structures [50].

In the proposed model, GraphSAGE is utilized for finding
the optimal relay nodes and the routing is followed as in [51].
The process begins with the farthest CH from the BS, where
a set of relay nodes is selected to establish a connection
between the CH and the BS. GraphSage learns node
representations by sampling and aggregating information
from a node’s local neighbourhood, which incorporate as an
efficient model for routing decisions in WSNs. It efficiently
identifies suitable relay nodes by considering the node
features and neighbourhood information, thereby optimizing
data transmission and minimizing packet loss. Through its
ability to learn from the network structure and node attributes,
GraphSage enables effective routing decisions to optimize
the energy efficiency in the network. GraphSage incorporates
only the advanced nodes deployed uniformly across the
region of interest exclusively participate in relay node
selection, thereby reducing the excess workload on normal
nodes. GraphSage is employed to determine the optimal relay
nodes for data transmission and path setting. In this model,
the sample range is fixed to the 2-hop distance nodes from
each node using the KNN algorithm, with Meanagg utilized
for aggregation as in equation (27) and Figure 8.
GraphSage reduces latency in routing decisions (Sr) by

considering only nodes within a 2-hop neighbourhood. The
Nodes (AD) in the 2-hop distance of the CH forward the
message of the hidden state comprising the features of node
location (x, y), residual energy of the node, distance from BS,
distance between the nodes, Packet Reception ratio (PRR),
and load of the node.

The load of node (Loadr ) is the cumulative traffic load of
r , which is actually the sum of packets generated by the node
at the current round (rp) and the packets travel through (rpr )
node r from neighbouring nodes (u) in order to reach the sink
node, and it is represented by expression (49).

Loadr = rp +
∑
u

rpr (49)

Nodes can quickly identify suitable relay nodes without
needing to search the entire network topology, leading to

FIGURE 8. Routing in the network.

faster data transmission. Traditional GNNs may involve
aggregating information from distant nodes, leading to
increased computational overheads and communication
costs. Therefore in GraphSage, the aggregation process
focuses on nearby nodes within 2-hop distance which reduces
overhead and improves the network efficiency. GraphSage
helps find the closest neighbouring node between the BS and
the CH. For distant CHs, a middle node is selected to transmit
data to the BS. To ensure efficient relay node selection,
criteria such as proximity to the CH, avoidance of multiple
hops, and adherence to the maximum transmission path
distance are considered. This problem is solved by examining
only the advanced nodes with four basic constraints:

• The selected relay node from the CHsmust be capable of
forwarding its data as well as the data transmitted from
the other nodes (Mv).

∀r ∈ R (50)

where, r is a node capable of forwarding data from other
CH and Mv R is set of relay nodes selected.
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• The CH node selected as the relay node cannot be the
relay node for another CH.

∀i, j where i ̸= j,∀r ∈ Ri,CHj /∈ Ri (51)

where all relay nodes (r) from the set of relay nodes (Ri)
for CHi cannot be relay nodes of CHj.

• The total energy of passing data must not be much
greater than the current node transmission path (tx)
energy in distance to the CH and BS.

• If the last condition is not satisfied, the node can directly
transmit data to the BS.

The eligible relay nodes as the next hop is determined
based on both the energy cost and the distance involved in
data transmission. Relay nodes are chosen to ensure minimal
energy consumption as in equation (52) and also maintaining
an optimal transmission distance as in equation (53), thereby
balancing energy efficiency and reliable data delivery within
the network.

1E = ECH,BS

−

(
ECH,Relay1 +

n−1∑
i=1

ERelayi,Relayi+1 + ERelayn,BS

)
(52)

ECH,BS = k · Dα
CH ,BS (53)

where k is a proportionality constant related to the data packet
size and the energy dissipation model, α is the path-loss
exponent as in equation (1), ECH,BS is the energy required for
direct transmission from CH to BS, ECH,Relay1 is the energy
required to transmit data from CH to the first hop relay node.

n−1∑
i=1

Erelayi,relayi+1 =
n−1∑
i=1

k · Dα
relayi,relayi+1 (54)

where
∑n−1

i=1 Erelayi,relayi+1 is the total energy consumed by
transmissions between consecutive relay nodes andERelayn,BS
is the energy required to transmit data from the last relay to
the BS.

To compare the distance between the Cluster Head (CH)
and the Base Station (BS) (D(CH ,BS)) with the total distance
traversed through relay nodes, we consider the combined
distances of all individual segments in the relay-based
path from the equation (33). This includes the distance
from the CH to the first hop relay node (D(CH ,Relay1)),
the cumulative distance between consecutive relay nodes
(
∑n−1

i=1 DRelayi,Relayi+1), and the distance from the last relay
node to the BS (DRelayn,BS). The comparison helps to evaluate
whether the relay-based path is more efficient in terms of
distance, providing a basis for selecting the optimal route
for data transmission. The unnecessary energy consumption
and delays can be avoided, ensuring an efficient and reliable
communication route in the network by minimizing the total
path distance.

B. PHASE II: STEADY STATE
The study state is initiated after the setup state by finding the
optimal number of clusters and estimating the fitness values

FIGURE 9. Declaration of CH.

of the nodes to become cluster head, assigning weights to
a fitness function, finding the least valued node among the
other nodes in the cluster, and declaring it as a CH. This is
followed by the estimation of the optimal routing path.

Following the declaration of cluster heads (CHs) and
the optimal path, nodes forward their sensed data to the
CH within allocated TDMA slots. Subsequently, the CH
aggregates the data forwarded from the nodes and transmits
along the optimal path. The time taken for this single process
of transmission is referred to as a round. Upon receiving
data from the nodes, the cluster head obtains information
regarding the residual energy of each node. When a node’s
energy level reaches zero, it is designated as a Dead node.
The energy quality of the network is determined by the time
it takes for the first node to be tagged as dead and the total
duration of all node failures. Dead nodes are excluded from
further processing within the network.

C. PROPOSED ALGORITHM
The proposed algorithm is divided into two phases.
Algorithms 1, 2, and 3 are for initialization, clustering,
cluster head selection, and optimal routing, respectively, and
Algorithm 4 is for data communication. In the algorithm of
data communication, the while loop function is designed to
calculate the residual energy of the CH and the member nodes
and when the residual energy of the nodes is less than or
equal to zero then the node is tagged as dead. If the residual
energy is greater than the transmission energy then the node
is considered as an alive node for data transmission and
reception.

V. DISCUSSION OF SIMULATION AND RESULTS
The proposed algorithm has a distinctive method of cluster
formation, calculating the weightage and fitness function to
elect the cluster head, and routing using GraphSAGE. The
experiments are performed and evaluated using MATLAB
R2020.a. and Tensorflow-GNN V 1.0 simulation software.
The proposed algorithm is designed to achieve efficient
energy optimization in the multi-level of energy in node
deployment, therefore the algorithm has run on the simulation
software and compared its results with other algorithms to
assess the effectiveness of the proposed algorithm.
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Algorithm 1 Clustering
INITIALIZATION
Let’s set the Ni = n
Set Maximum roundsrmax
Set the optimal number of clusters kopt as per equation(7)
Set µ ≥ kopt

n
Customize the Nodes as in equations (8) and(9)
Distribute the Energy as in equations (11) and (12)
Deploy the nodes in Area A = M ×M with the Location

of(x, y)
while InitialEnergy ≥ E0 do

if Advanced node then
Uniform deployment

else if Normal Node then
Random Deployment

end if
end while
CLUSTERING WITH KGNN
Set Vertices← Ni
while clustering do

Set K = 1 for KNN
Create Edges
for Ni = 1 to n do

Check existence of subgraphs
if Subgraph exists then

Increment K ← K + 1
else if All nodes are connected (Complete graph)

then
Stop incrementing K
Break loop

end if
end for

end while
Estimate ωei, j using eq.(33)
Assign Edge values(ωe(i))
Train the graph G = (V, E)
Determine Kopt
Ni ∈ Cj
Iterate until convergence:
while not converged do

Compute hlv and messages mlu,v them
Aggregate agglv
Update hlv
Compute Lc
if converged then stop
else if backpropagate then
end if

end while

A. SIMULATION PARAMETERS
The proposed model utilizes a variety of carefully selected
hyperparameters to balance learning efficiency and computa-
tional demands. The proposed network model is simulated
with the below-mentioned parameters in Table 6 and the

Algorithm 2 Cluster Head Selection
while for every node do

if ERE ≥ ENE then
Compute DN−CH ,CHl,LavgMN (cluster),Pi.max ,NN
Set weights to the nodes
Calculate the Fitness value
Select the least Fv as cluster head

else if Normal Node then
Set as Member node

end if
end while

Algorithm 3 Optimal Route Finding With GraphSage
Initialization:
Incorporate GraphSage for routing decisions
Set Sr ← 2
Utilize Mean aggregation (Meanagg) in eq (27)
while for every CH node do

Select AD within 2-hop neighbourhood
if AD within 2-hop then

Compute hlv and messages mlu,v them
Aggregate agglv
Update hlv
If AD eligible← set as r relay node

else if
thenAD ̸= r

end if
Ensure tx path Energy as in eq (52)
if Total tx Energy is ≤ ECH ,BS then

Set the Path
else if

then Direct transmission to BS
end if

end while

Algorithm 4 Data Communication
while for every node do

Compute the Transmission Energy ETX
if ERX > 0 then

Consider node alive
if Node is CH then

Compute EDA and ERX
Acquire residual energy ERE=ERE−1-(ETX +
EDA + ERX )

else ifMember Node then
Acquire residual energy ERE=ERE−1-ETX

end if
else if then

Tag Node ‘Dead’
end if

end while

hyperparameters of the Neural Network setup are given in
Table 7.
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TABLE 8. Table of network setup parameter.

TABLE 9. Table of neural network hyperparameters.

The number of epochs is set to 20, providing adequate
time for the proposed model to learn intricate patterns within
the network without overfitting or unnecessarily increasing
computation time. However, additional epochs yield minimal
improvements as the model has already converged to an
optimal solution. In the proposed model 128 units provide
a balance between complexity and computational efficiency,
facilitating robust learning of the data transmission paths
and network dynamics. In contrast, fewer units 64 have a
lower capacity to capture complex patterns, while higher
numbers, such as 256 or 512, and extend convergence time
due to the increased parameter count. The model is tested
with varying learning rates (1.0, 0.1, 0.003, and 0.0003). The
larger rates of 1.0 and 0.1 proved unstable, and even 0.003 and
0.0003 are too aggressive, leading to oscillation around the
optimal solution. The chosen rate of 0.00003 allows gradual
convergence, minimizing the risk of overshooting minima.
The ReLU activation function effectively handles data non-
linearity, essential for learning diverse node characteristics
and interactions. A message dimension of 64 enables the
GNN to communicate key features between nodes, and the
Adam optimizer is selected for its adaptive learning rate and
ability to manage sparse gradients efficiently.

B. MODEL VALIDATION
Model validation in evaluating the effectiveness of clustering
algorithms, especially, where optimal cluster formation
directly impacts energy efficiency and data routing. In this
paper, the silhouette coefficient is employed as a key metric
to assess the quality of clusters formed by the proposed
model. The silhouette coefficient, which ranges from −1
to +1, measures how similar each node is to its own
cluster compared to other clusters. A higher silhouette score
signifies better-defined clusters with high cohesion and clear
separation from neighboring clusters, indicating that the

clustering approach effectively groups nodes based on their
characteristics. The initial clustering quality of the proposed
model is given in Figure 10 where the network is deployed
with 100 ans 200 nodes. In both scenarios the average
silhouette score is above 0.80, in which 100 nodes network
the average score is 0.83 and in the 200 nodes network, the
score is 0.82. In both the scenarios the proposed model is
efficient in clustering.

C. RESULTS AND DISCUSSIONS
The most formidable metrics such as Network lifetime,
overall data transmitted from the nodes to the base station,
and the average energy of the network are analyzed to sys-
tematically determine and assess the potency of the proposed
algorithm. The simulation results of the proposed algorithm
are compared with SEP [24], HLEACH [16], the Multi-
level Heterogeneous clustering (MultiHet) algorithm [52],
MOBGWO [36], and EEHCT [28].

The scalability analysis is crucial for evaluating the
robustness of models, hence, the paper included an additional
analysis to examine the impact of varying sink positions and
different network sizes on overall performance as in Table 10.
Additionally, the simulation is done in six cases by varying
the fractional values of advanced nodes and level of energy
to the advanced nodes in the network, follows the established
methods detailed in the reference paper SEP [24]. When the
µ = kopt/n and η = 1 with 100 and 200 nodes in the network
to access the scalability and performance of Computational
complexity of GNN in small scale and medium scale network
while the BS is in the center of RoI (50, 50) and located
away from the RoI (150, 200) as in [53]. This scenario level
simulation strengthens the transparency and validity of our
analysis approach.

Figure 11 and 12 are plotted on the Number of Alive nodes
in every round during the process of simulation to find the
energy longevity of the 100 and 200 nodes networks. The
cluster head selection and the number of cluster formations
play an important role in the individual node lifetime. The
modified HLeach protocol has the vertiginous fall around the
1300 round of simulation due to the drained energy of normal
nodes initially and the network has been run through the
advanced nodeswhichwere overcome by the SEP protocol by
enhancing the lifetime of normal nodes and equally utilizing
and selecting the advanced nodes as cluster heads but the
nodes alive are drastically reduced in from 2500 round. The
multi-level heterogeneity algorithm has linear sustainability
of the alive nodes but the network could not prolong its
lifetime due to the random number of selection of cluster
heads. The MOBGWO network’s first node dead (FND)
earlier than the SEP, HLEACH and the proposed model. The
EEHCT has stable decline of dead nodes between FND and
last node dead/all node dead (AND) but the death of nodes are
too early, even there is no significance remark of advanced
nodes in the network. The FND in the proposed model is
prolonged than the other models due to the algorithm has
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FIGURE 10. Average silhouette score of clusters in proposed model.

TABLE 10. Table of simulation scenarios.

the optimal number of clustering methodologies and efficient
selection process of fitness value in cluster head election
exceedingly reduces the normal node election as cluster head
which increases the lifetime of the normal node and also the
network lifetime.

To analyse the robustness of the proposed algorithm
implemented network Figure 13 and 14 are plotted between
the dead nodes in every round of 100 and 200 nodes Network.
As per the static quality of the analysis, the study determines
the stability of the network by the time the first node is
dead. Here the Multilevel heterogeneous algorithm has the
first node dead below the round 1000 due to the random
selection of the number of cluster heads. When the random
selection of the number of cluster heads increases then the
normal nodes are forced to be the cluster head which leads to
the node dead early. The HLEACH algorithm also follows
the random selection of cluster heads with its common
threshold probability ratio hence there is not much difference
in the round of the FND from the Multi-level heterogeneous
algorithm. The SEP has a different threshold probability to
select the normal nodes and the advanced nodes but the
same as the HLEACH, once the selected node is not given
preference to be selected again as cluster head, it leads to the
first node dead early. The proposed algorithm gives priority
to the Advanced nodes to be elected as cluster heads which
gradually reduces the exhaustion of energy in the normal

node to be elected as cluster heads. The network’s efficiency
and performance are quantitatively measured by the data
transmitted from the source node to the destination and the
rate of data received at the destination node either through
single or multiple hops transmission. Hence, Figure 15 is
plotted between the packets received at the BS at every
round of simulation. Herein, the proposed model outperforms
the other models, where the HLEACH has the least data
transmission caused by the balanced energy distribution
which extends the operational lifespan of the network,
allowing it to function for prolonged durations without any
node depleting its energy reserves. As a result, the network
necessitates fewer packet transmissions, ensuring sustained
functionality over an extended timeframe. In SEP, the CH’s
are elected based on residual energy and proximity to the base
station, though this approach can optimize energy efficiency
but reduces the packet transmission to the base station. The
only consideration of residual energy and proximity may
result in some clusters being formed with nodes that have
poorer communication links to the base station. Nodes farther
away from the base station might experience higher packet
loss or lower reception ratios due to increased transmission
distances and potential interference. The MultiHet model
has moderate data packet reception at BS. The number of
data transmitted by the MOBGWO and EEHCT are almost
similar. The stability of data transmission is analysed by
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FIGURE 11. Alive Nodes vs Rounds in 100 Nodes network.

FIGURE 12. Alive Nodes vs Rounds in 200 Nodes network.

figure 15 and 16, where the alive nodes are plotted with the
packets transmitted to the basestation of 100 and 200 nodes
network. As the nodes dead early in HLEACH and SEP,
the networks become partitioned due to nodes dying in a
way that disrupts the communication path to the BS, packets
from the remaining nodes may not be able to reach the BS.
The EEHCT andMOBGWOhave higher packet transmission
than the HLEACH, SEP and MultiHet but not more than the
proposed model.

The extension of the network lifetime has the most
significant impact on throughput. Therefore, Figure 17 and 18
depicts the relationship between the number of alive nodes
and packets transmitted to the base station in 100 and
200 nodes network. The graph illustrates that as the number
of alive nodes increases, there is a corresponding increase in
packet transmission. Conversely, when the number of nodes
begins to decrease, the throughput also declines. The pro-
posed model demonstrates superior performance compared
to other algorithms, particularly in terms of the duration
during which all nodes remain operational. Additionally, its
effectiveness persists even after the occurrence of the scenario
where 90 nodes cease functioning.

The relationship between the average energy of network
nodes and the maximum number of rounds is illustrated in
Figure 19 and 20, which aid in comprehending the efficient
energy utilization of the protocols in 100 and 200 node
network. Despite the allocation of Heterogeneous initial
energy for normal and advanced nodes, Hleach and SEP
demonstrate similar levels of energy depletion due to the

FIGURE 13. Dead Nodes vs Rounds in 100 Nodes network.

FIGURE 14. Dead Nodes vs Rounds in 200 Nodes network.

probability-based random selection of nodes to serve as CHs.
TheMultiHet algorithm has amoderate average energy due to
the method of functional election of cluster head. The average
residual energy of the network the MOBGWO has much
higher than the MultiHet but due to optimal CH selection
and not higher than the EEHCT. As the proposed model
setup state is especially designed for efficient utilization of
residual energy using GNN in the clustering and routing,
the model outperforms other models in all the scenarios.
At some points, the average energy of the EEHCT algorithm
is more than the proposed algorithm but it falls immediately
in further rounds without the proper stability when the
number of nodes is less. It clearly shows that the proposed
algorithm has a higher network energy efficiency than other
protocols. All the cases of the models are accessed with
100 and 200 nodes in the same network area, to evaluate
their scalability and robustness across various network sizes.
Algorithms that perform well with a small number of nodes
may not necessarily scale effectively to larger networks.
By testing with different node numbers can determine if
the algorithms maintain their effectiveness, stability, and
efficiency across a range of network sizes, ensuring their
applicability in real-world scenarios with diverse deployment
scales.

1) CASE 1
The case 1 scenario is illustrated with figures, and in tables 11
and 17. Tables 11 and 17 are generated by case 1 for
100 nodes and 200 nodes with µ = 0.1 of advanced nodes
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FIGURE 15. Packets to BS vs Rounds in 100 Nodes network.

FIGURE 16. Packets to BS vs Rounds in 100 Nodes network.

and η = 1 of initial energy of advanced nodes while the
BS in location (50, 50) and (150, 250). Wherein table 11,
the first node died at 983 rounds for HLEACH, 937 round
of SEP, 807 round of MultiHet, 892 round of MOBGWO
702 of EEHCT and 1291 rounds of the proposed algorithm for
100 nodes in the network when BS in center, meanwhile the
FND is much earlier in scenario 2 where the BS located away
from the RoI. The MOBGWO protocol’s FND in Scenario
2 is 96.8% lower and the AND is approximately 46.4%
lower than the scenario 1. As the same the EEHCT’s FND
in Scenario 2 is 97.4% and the AND is 20.7% lower than the
scenario 1. However, the proposed model’s FND in Scenario
2 is 85.7% lower and the AND is approximately 29.4% lower
than the scenario 1, it outperforms other models in scenario
2 also.

In scenario 1 200 nodes network, the first node dead if
HLEACH is extended to 1003 round, but it is very clear in
the table that the other models SEP, MultiHet, MOBGWO,
and EEHCT have earlier FND than 100 nodes network.
The proposed model demonstrates only a slight increase in
the occurrence of the first node failure when transitioning
from a 100-node network to a 200-node network. This minor
change suggests that the network remains stable and capable
of effectively managing larger-scale deployments without
significant degradation in performance.

FIGURE 17. Alive Nodes vs Packets to BS in 100 Nodes network.

FIGURE 18. Alive Nodes vs Packets to BS in 200 Nodes network.

In Scenario 2 of 200 nodes network, the MOBGWO’s
FND is 96.5% and AND is 51.3% lesser than the scenario 1
200NN. The EEHCT’s FND round is 97% and AND round
is 16.1% lesser than the scenario 1, in both the models, the
higher differnece of FND and AND is due to no proposer
routing from source to destination, especially when the
destination i.e., BS located far from the sources. Herein the
proposed model achieves higher node lifetime prolongation
than the other models, which directly reflects on total packet
transmission to the BS. In table 17 scenario 2 of 200NN,
has HLEACH 28.80196602% SEP 83.89%,MULTI HET has
65.45%, MOBGWO has 37.53% and EEHCT has 37.21% of
energy lower than the proposed model at 90 nodes dead.

As the number of first nodes dead is extended, the total
number of packets received at the Base Station with respect
to rounds is also increased. The packets received at the BS
of HLEACH of 100 nodes nework is 74.1%, and 200 nodes
network is 76.5% lesser than the proposed model. The other
algorithms have higher packet transmission to BS when
compared to the same algorithms of 100 nodes to 200 nodes.
The proposed model has 27.8% higher than MultiHet, 9.18%
higher than MOBGWO and 15.68% higher packets received
at the BS in 200 nodes network. The models are further
evaluated with average residual energy (ARE) during node
failure at the round, as presented in Table 17 for 100 and
200 nodes, respectively. These table offers valuable insights
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FIGURE 19. Average residual Energy vs Rounds in 100 Node network.

FIGURE 20. Average residual Energy vs Rounds in 200 Node network.

into the duration of node survival within the network and how
efficiently the models utilize residual energy to extend the
network’s lifetime.

2) CASE 2
Case 2 is simulated by varying the energy level of only the
advanced nodes as (1 + η) where the η is set to 2 i.e., µ =

0.1 and η = 2. This is to analyze the network performance
without increasing the number of advanced nodes, just by
only increasing the energy level of advanced nodes.

In the scenario 1 and 2, the first node dead is slightly
better for all the protocols but the proposed is performed
better than others and also in the number of packet received
as in Table 12. The increase in energy of the advanced
nodes drastically prolonged the last node dead rounds
of all the protocols, which is clearly given in table 12.
Table 18 showcases the average residual energy of the
100 node network, where the residual energy of theMultiHet,
MOBGWO and EEHCT are higher at the FND because the
first node died much earlier than the other models, hence the
residual energy is higher. In the further rounds the residual
energy of all the models are decreased linearly.

The average residual energy of the proposed network
surpasses that of the other protocols. In Table 18, representing
a 100-node network, the MultiHet protocol exhibits higher
values than other models when 25 nodes fail. However, due
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to inadequate energy management, the network’s longevity is
compromised compared to the proposed algorithm. Similarly,
in a 200-node network, the EEHCT protocol demonstrates
higher residual energy than other models when 50 nodes
fail. Nonetheless, the network’s lifetime is shortened due to
multiple packet transmissions, resulting in premature failure.
The proposed model has sustained for longer duration than
the other models.

In scenario 2 of 100NN and 200NN, the average residual
energy when the 90 nodes dead of HLEACH is 11.5% lower
than the proposed model of 100NN and 20.34% higher
than the proposed model in 200NN, due to improper energy
management all nodes are died earlier at 4116 round. The SEP
is 60.30% lesser in 100NN and 82.42% lesser, MULTI HET
is 60.23% in 100NN and 88.50% in 200NN, MOBGWO is
43.2% and 87.48% than the proposed model’s ARE.

3) CASE 3
Case 3, withµ = 0.1 and η = 5, is simulated by adjusting the
energy level of only the advanced nodes to (1+η), where η is
set to 5. This analysis aims to evaluate network performance
without increasing the quantity of advanced nodes, solely by
raising the energy level of advanced nodes to five times that
of normal nodes.

Here, only the energy of the advanced nodes has been
increased, resulting in the earlier depletion of normal nodes
similar to Case 2. The proposed system significantly prolongs
the average residual energy of the network compared to
other protocols in scenario 1 and 2, as demonstrated in
Table 13 and 19. In scenario 1 of a 100-node network, the
proposed system’s average residual energy when 90 nodes
are dead is 11.5% higher than HLEACH, 61.5% higher
than SEP, 94.4% higher than MultiHet, 97.9% higher than
MOBGWO, and 98.7% higher than EEHCT. In scenario
2 of a 200-node network, although HLEACH and SEP have
11.4% and 4.2% higher average residual energy respectively
compared to the proposed model, 190 nodes are dead by
the 7165th round for HLEACH and 5163rd round for SEP,
clearly indicating the superiority of the proposed model in
prolonging network lifetime. Moreover, MultiHet is 76%
lower, MOBGWO is 87.3% lower, and EEHCT is 90.3%
lower than the proposed model. Therefore, the proposed
system efficiently manages the average residual energy in
100 and 200 nodes network. In the scenario 2 of 100NN
when compared with the proposed model, the HLEACH has
48.57% lower ARE at 90 nodes dead and AND at round 5012.
The SEP has 66.17% lower ARE at 90 nodes dead and AND
at round 2749, the MULTIHET has 94.33% lower ARE at
90 nodes dead and AND at round 1867. The MOBGWO has
37.14% lower ARE at 90 nodes dead and AND at round 6284,
and the EEHCT has 33.95% lower ARE at 90 nodes dead and
AND at round 7001.

4) CASE 4
Case 4 is to analyse the performance of the network by
increasing the fraction of advanced nodes. In this scenario,
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all networks consist of 100 nodes, with 20 nodes designated
as advanced nodes, achieved by setting µ = 0.2. The energy
allocated to advanced nodes is adjusted to (1 + η), where η

is equal to 1, i.e., µ = 0.2 and η = 1. This configuration is
maintained for both the scenarios of 1 and 2 in 100-node and
200-node networks.

The performance of all protocols surpasses that of Case 3,
yet the proposed modes exhibit notably higher efficiency
than the others in table 14. When comparing Case 3 and
Case 4, HLEACH and SEP experience earlier First Node
Death (FND) than in Case 3, while other models have a higher
number of rounds before FND. Hence, solely increasing the
energy level of advanced nodes may extend network lifetime,
but augmenting the number of advanced nodes with lower
energy levels also enhances network stability.

From the average residual energy table 20 of scenario 1 of
100NN, the proposed model has 57.13% than the HLEACH,
13.43% than the SEP, 16.93% than the MultiHet, 46.2% than
the MOBGWO and 65.06% than the EEHCT higher residual
energy when the 90th node dead in 100 nodes network. In
200 nodes network, the HLEACH, SEP and the MOBGWO
are higher than the proposed model but the 190 nodes are
dead half a way to proposed model. The proposed model
outperforms the other models, as depicted in Tables 17
and 18. This case demonstrates that increasing the number
of advanced nodes is marginally more advantageous than
increasing the energy of advanced nodes alone. Therefore,
instead of solely elevating the energy level of advanced
nodes, augmenting their number with lower energy levels
also contributes to increased network stability. On the other
side the scenario 2 of 100NN, the ARE of MULTI HET
is 64.06% lower, MOBGWO is 56.45% lower, EEHCT is
46.6% lower, and proposed model is 36.83% lower when
compares to scenario 1 FND round. However in scenario 2 of
100NN, the proposed model has higher packet reception at
the BS by 37.99% than HLEACH 69.95% than SEP, 65.61%
than MultiHet, 77.62% than MOBGWO and 75.34% than
EEHCT.

5) CASE 5
Case 5 is done on µ = 0.2 and η = 2. When we
increase the number of advanced nodes as well as the energy
in Case 2, the network performance is increased, though
the first node of the proposed algorithm is earlier than the
other, the last node dead is much greater than the other
protocol. Tables 15 and 21 prove that the proposed algorithm
is prolonging the network lifetime than the other networks.

In table 15 of the 100 node network and the 200 node
network, the proposedmodel FND is at 1336 and 1362 rounds
which are not achieved by the other protocols in the present as
well as the previous cases. The packets received at the BS in
scenario 1 from FND to AND of the protocols are HLEACH
77.3%, SEP 86.4%, MultiHet 29.2%, MOBGWO 37.3%,
EEHCT 43.5% and Proposed model 63.8% in 100 nodes
network, and in 200 nodes network, the packets received at
the BS from FND to AND of the protocols are, HLEACH

71.1%, SEP 82.5%, MultiHet 45.6%, MOBGWO 36.6%,
EEHCT 32.64%, and Proposed model 51.5%.

In scenario 2 of 100NN, the total packet received by
the HLEACH is 23.7%, SEP is 48.8%, MultiHet is 61.7%,
MOBGWO is 66.6% and EEHCT is 57.5% lesser than the
proposed model and in 200NN, the total packet received by
the HLEACH is 44.9%, SEP is 68.5%, MultiHet is 75.9%,
MOBGWO is 81.5% and EEHCT is 82.9% lesser than the
proposed model.

In the average residual energy table 21 of scenario 1 for a
100-node network, the proposed model showcases a scenario
where 90 nodes expire by the 5559th round. Comparatively,
the residual energy of the proposed model surpasses that of
HLEACH by 0.4%, MultiHet by 39.02%, and MOBGWO by
35.6%. While SEP and EEHCT demonstrate higher residual
energy, but the proposed model extends the lifespan of these
nodes significantly. For instance, in the case of SEP, the
90 nodes reach the end of their lifespan by the 2799th
round, whereas for EEHCT, it’s by the 3352nd round. This
observation underscores how the proposed model effectively
prolongs the lifespan of nodes compared to other models.

In scenario 1 of the 200 node network, the residual energy
of the proposed model os much higher than the other model
when 50, 100, and 150 nodes dead, whereas the AND at
6771 round in the proposedmodel, which is much higher than
the other models.

In Scenario 2, involving both 100-node and 200-node
networks, table 21 shows the ARE for various models,
along with the corresponding AND rounds. While all models
demonstrated reduced performance compared to Scenario 1,
the proposed model still outperformed the others within this
challenging scenario. Specifically, the proposed model able
to extend network lifetime up to 5323 rounds for the 100-
node network and 4983 rounds for the 200-node network,
indicating its robustness inmaintaining network stability even
under conditions of overall reduced efficiency.

6) CASE 6
This case is simulated by elevating the energy parameter,
denoted as η = 5, for the advanced nodes, while maintaining
µ = 0.2, to assess the performance of all protocols under this
configuration, where both parameters are set as µ = 0.2 and
η = 5 for 100 node network and 200 node network.
In scenario 1 stated in table 16 and 22 of Case 6, the SEP

protocol demonstrates a FND occurring at 1428 rounds in the
100-node network and 1406 rounds in the 200-node network,
accompanied by an average residual energy of 39.8J and
103.3J respectively, both significantly lower than the other
models. On the other hand, the MultiHet protocol exhibits
average residual energies of 85.7J in the 100-node network
and 198.5J in the 200-node network, while experiencing
FND at 638 rounds and 259 rounds respectively. Similarly,
MOBGWO displays average residual energies of 95.1J in
the 100-node network and 199.1J in the 200-node network,
with corresponding FNDs at 341 rounds and 270 rounds.
Lastly, EEHCT shows average residual energies of 100.3J
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FIGURE 21. Average energy consumption per round.

FIGURE 22. Packet reception ratio at BS.

FIGURE 23. Average of throughput in Mbps.

in the 100-node network and 208.9J in the 200-node
network, along with FNDs at 442 rounds and 144 rounds
respectively. HLeach demonstrates moderately competitive
performance, although it does not reach the level achieved

by the proposed model. In scenario 2 of 100NN and 200NN
compared with scenario 1, the packets received at BS in
scenario 2 is totally reduced due to the distance from the
nodes to BS, however the proposed model has 9.83 higher
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FIGURE 24. Average End to End Delay in milliseconds.

than HLEACH, 37.1% higher than SEP, 69.7% higher than
MultiHet, 83.3% than the MOBGWO and 73.9% than the
EEHCT in 100NN of scenario 2. The proposed model has
38.2 higher than HLEACH, 55% higher than SEP, 76.2%
higher than MultiHet, 72.1% than the MOBGWO and 64.7%
than the EEHCT in 200NN of scenario 2 table 16.

In the comparison of the rounds at which all nodes dead
in scenario 1, HLEACH leads with 9896 rounds, followed
closely by SEP with 8677 rounds. MultiHet lags significantly
behind with nodes dying at 13993 rounds, while PBOFFA,
and IDSHR, exhibit similar performance, with nodes ceasing
to function at approximately 12957, and 13320 rounds
respectively. This data suggests that HLEACH and SEP
maintain a longer network lifespan compared to the other
protocols, with HLEACH leading the pack. However, the
proposed model shows competitive performance, positioning
higher in between HLEACH, SEP and the other protocols in
terms of prolonging the network’s operational duration.

In this case of scenario 1, also, the FND round is increased
for all the protocols than the proposed but the other protocols
failed to prolong the network lifetime due to improper
protocol design. In this case, by the Tables 16 and 22, the clear
performance of the proposed is better than the other compared
protocols. In the scenario 2, the proposed model has higher
energy efficiency, higher packet reception and longer network
duration.

7) OVERALL NETWORK ANALYSIS
The proposed algorithm is further accessed with End-
to-end delay, Throughput, Packet Reception Ratio and
computational complexity.

a: AVERAGE ENERGY CONSUMPTION PER ROUND
Figure (21) presents the average energy consumption per
round in all models, where each round encompasses sensing,
processing, data aggregation, and communication activities,
all drawing from the limited power sources of sensor
nodes. Notably, the proposed model exhibits lower energy

consumption compared to other models, despite occasional
instances where its consumption surpasses that ofMOBGWO
and EEHCT. However, on an aggregate level, the proposed
model demonstrates superior energy efficiency. Specifically
in Figure (21a) of scenario 1, its overall average energy
consumption exceeds HLEACH by 44.1%, SEP by 43.2%,
MultiHet by 22.98%, MOBGWO by 14.11%, and EEHCT
by 5.7%. It is clear that in scenario 2 of Figure (21b), that
the energy consumption per node is totally increased from
450µJ to 2000 µJ , but the proposed model is least among
the other models in scenario 2. This emphasizes the efficacy
of the proposed model in optimizing energy utilization across
various WSN operations in scenario 1 and 2, promising
enhanced longevity and sustainability for sensor network
deployments.

b: PACKET RECEPTION RATIO
The Packet Reception Ratio (PRR) is a crucial metric in
WSN, that quantifies the reliability of data transmission. PRR
represents the proportion of successfully received packets
relative to the total number of packets sent. PRR is calculated
using the equation (35).

PRR =

∑
No.of ReceivedPackets∑
No.of SentPackets

× 100 (55)

The overall average PRR is plotted in figure 22 for all the
cases of scenario 1 and scenario 2 analysis. In the average
of all values, the MultiHet has the lowest PRR compared to
other models, though the SEP is inefficient in Energy, and
throughput but better in PRR. A high PRR of the proposed
algorithm indicates robust and reliable communication as in
Figure 20a is 0.9 which is reduced to the 0.85 in Figure 20b.

c: AVERAGE THROUGHPUT
The Throughput is a vital performance metric in networking
that quantifies the amount of data successfully transmitted
over a network or system within a given period. The average
throughput in Figure 23 reflects the network’s efficiency and
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capacity, indicating how much useful data can be transferred
in a specific timeframe. High throughput signifies a network’s
ability to handle a substantial volume of data quickly. The
proposed model demonstrates an increase in throughput
as node’s initial energy increases in scenario 1, however
the scenario 2 maximum average throughput is decreased
to 0.22 and also for all the models when compared to
scenario 1.

d: AVERAGE END TO END DELAY
At last, the End-to-End delay metric in networking measures
the time it takes for a data packet to travel from the source
(Node) to the destination (Base station), which includes the
data processing, data aggregating and transmission time. The
Average End-to-End delay in the network of 100 nodes and
200 nodes with all cases are given in Figure 24. Especially,
HLEACH and SEP exhibit the lowest end-to-end delay in
both scenarios, attributed to their direct transmission of data
to the BS. Conversely, MOBGWO experiences a slightly
higher delay due to its optimization in CH selection, which
involves identifying the best optimal value and thus takes
additional time. Following this, MultiHet demonstrates the
next highest delay, owing to its weight-based CH selection
approach, necessitating the calculation of fitness function
values for each node, adding to the processing time. The
highest delay is in EEHCT because initially EEHCT employs
dynamic clustering based on Received Signal Strength
Indicator (RSSI), similar to LEACH. However, it later
transitions to static clusters based on energy balancing
among nodes. This transition process and the overhead
associated with maintaining static clusters could contribute to
increased delay compared to LEACH, which may maintain
dynamic clustering throughout its operation. Additionally,
the introduction of temporary cluster heads (TCHs) in
EEHCT to decide cluster heads for future rounds introduces
additional complexity and potential delays in the cluster head
selection process.

In the proposed model, the end-to-end delay is observed
to be lower than that of EEHCT and, in certain scenarios,
even MultiHet. However, it remains higher compared to
other models, primarily due to the routing of data and the
time required for network analysis using GNN. Unlike other
models, the proposed approach acknowledges this delay as
a limitation. The overall maximum delay observed in the
scenario 1 is 1ms which is increased twice in the scenario
2 as 2ms.

e: COMPUTATIONAL COMPLEXITY
The proposed model involving the use of GNN for clustering
nodes and electing eligible nodes for routing and best
routing election, a significant limitation arises from the
computational complexity of GNNs (O(n2)), which scales
quadratically with the number of nodes (n). This limitation
impedes the scalability of the proposed algorithms and
restricts their applicability to small-scale WSN deployments.

VI. CONCLUSION
This paper has proposed a distinctive clustering and cluster
head selection algorithm for optimal cluster formation to
enhance the pivotal challenges of energy efficiency and
throughput in wireless sensor networks using the significance
of GNN model.

The weight-based cluster head selection method has vari-
ous processes but inducing the scale-based model is proposed
in this paper that is applicable to all the weight-based cluster
head selection protocols. This method evaluates the nodes
individually in the cluster by distributed probability to rank
the contender nodes to be designated as cluster heads with the
fitness function. GraphSage routing model is is indulged in
the progression of relay node selection with optimal path this
escalates the energy efficiency. The obtained results of the
multiple analyses through simulation that the proper method
of clustering, cluster head selection and optimal routing
would increase the network lifetime and the throughput by
24% on the calculated value of the last node dead in the
network.

Future work can be on the application of weight-based
cluster head selection with newer techniques and also to
be implemented with the energy harvesting network in
which the fitness function of residual energy will vary
unpredictably. In this paper, the fitness functions and the
routing strategies are related to static objective functions,
which effectively addresses energy efficiency of static nodes
for monitoring environmental changes in applications such
as agricultural farmland and non-human operable areas.
Therefore, the proposed model is not validated on the high
mobility scenario. Thus, future work is essential to enhance
the applicability in high mobility scenarios.
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