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ABSTRACT This study proposes a wearable motion classification system by employing commercially
available conductive threads and everyday garments. The unique feature of the proposed system is
an embroidery bending sensor that does not necessitate tight-fitting with the body, which contrasts
with traditional motion sensing systems. Therefore, integration can be simplified by allowing motion
classification onto loose-fitting everyday garments. The sensor that exhibits a change in resistance to bending
deformation is realized by applying multiple zigzag stitch to the fabric. In addition, a significant resistance
change is realized during the phase transition of motions (e.g., stance and swing phase). Therefore, motion
can be categorized without making joint angle measurements. We fabricated a prototype by attaching the
sensors to a commercially available work jacket and pants by sewing them onto the fabric. Ten participants
were requested to perform ten various activities (e.g., walking, jogging, ascending and descending stairs).
The findings demonstrated that the sensor can measure the degree of joint flexion, the flexion cycle, and
the timing of flexion during the wearer’s activities. Moreover, motion classification was performed by
training a one-dimensional convolutional neural network (1D-CNN) model with the sensor signals. The
model successfully learned the differences in signal amplitude and frequency as distinguishing features of
each activity, resulting in an average classification accuracy of 99.02% across the ten types of activities.

INDEX TERMS Flexible sensors, loose-fitting garments, motion classification, machine learning, smart
textiles, wearable sensors.

I. INTRODUCTION
Monitoring and analyzing human motion allows us to obtain
useful information, such as health records, injury prevention,
risk assessment, and evaluation of posture and motion
patterns. Detecting gait disturbance due to neurological
causes such as dementia or Parkinson’s disease is possible by
monitoring gait motion [1]. In addition, the changes in health
status and physical functions of the elderly can be recorded
and detected regularly by monitoring their motions [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Ajit Khosla .

Therefore, better health management, safety assurance, and
early symptom detection and intervention can be achieved.
By monitoring the activities of factory workers, abnormal
movements can also be detected and early warnings of
potential malfunctions can be provided, thereby preventing
industrial accidents [3].

Motion sensing using a wearable device is an effective
means of monitoring in any environmental setup. This is
because wearable devices are designed for non-invasive and
continuous environmental monitoring of the aforementioned
activities. Therefore, several methods such as employing
accelerometers placed inside garments and performing Fast
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FIGURE 1. Activities classified in this study and their corresponding signals.

Fourier Transforms (FFTs) on the measured data [4], [5], and
using inertial sensors [6], [7], [8] have been developed for
sensing body motion. Although these systems provide high
accuracy, the sensors must be fixed to a body part. In addition,
rigid sensors placed around joints increase user discomfort.

Attaching flexible sensors directly to a garment has been
proposed by several researchers/engineers. Specifically, for
sensing methods based on strain [16], [17], [18], [19] and
pressure sensors [20], [21], where stretching deformation of
the garments leads to a change in resistance. Therefore, these
techniques work only on tight garments. Hence, pressure
sensor, which is attached to a band or garments, monitors
muscle activity and requires tight contact between the
sensor(s) and the body.

In this study, we propose a sensor system capable of
classifying the wearer’s activities by attaching an embroi-
dered bending sensor fabricated using a conventional sewing
machine and conductive thread to loose-fitting clothing.
In addition, this sensor is realized by applying a multiple
zigzag stitch to the fabric. The sensor is crafted by stitching
the conductive thread onto the locations where the garment
undergoes bending deformation. The resistance of the sensor
changes in response to the motion of the wearer. We designed
the multiple zigzag stitch to classify motions rather than
measure joint angles. Thus, this sensor exhibits a significant
change in resistance during the phase transition of motions
(e.g., stance and swing phase). By inputting the time-series
data of the sensor’s resistance changes into deep learning
models, the system can learn the signal characteristics of each
activity to enable motion classification. These characteristics
include the degree and timing of joint flexion in the arms
and legs. The contributions of this study are summarized as
follows:

• We developed a sensor that exhibits changes in resis-
tance in response to bending deformation by applying
multiple zigzag stitch with conductive thread onto
fabric.

• We placed the sensor at 16 locations on a commercially
available loose-fitting work outfit (jacket and pants)
and proposed a sensor system to classify the wearer’s
activities.

• We evaluated the proposed method via an experiment
involving ten participants. Ten different activities (walk-
ing, walking while carrying a box, jogging, stepping,
squatting, ascending and descending stairs, upward-
reaching, left-reaching, and right-reaching) were
classified.

• We applied a one-dimensional CNN model to the col-
lected data and, achieved an average accuracy of 99.02%
(SD: 0.19) by employing 5-fold cross-validation.

II. RELATED WORKS
A. SENSING WITH LOOSE-FITTING GARMENTS
Related methods of attaching sensors to loose-fitting gar-
ments are based on capacitive [15], triboelectric [11], and
piezoelectric sensors [14]. These methods are effective in
motion classification. However, the following problems deter
their practicability; the sensor can be used only in limited
environments, the production method is complex, and the
wearer’s comfort is compromised. In addition, the capacitive
sensors [22] do not function in the presence of metallic
objects nearby. Triboelectric sensors employ complex fabri-
cation processes, which require many fabrication processes
for garments. Moreover, the stiff film of the piezoelectric
sensor attached to a garment causes discomfort to the user.
It is worth noting that the stiffness distribution of the
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TABLE 1. Comparison of methods for activity classification using loose-fitting clothing.

fabric changes significantly. Therefore, the more sensors
are attached to the garments, the more discomfort may be
experienced by the user.

Table 1 compares previous approaches toward sensors
employed in clothing. While many methods employ complex
sensing principles that are difficult to integrate into e-
textile components, our proposed system has developed an
embroidered-type flex sensor that can be manufactured using
a standard sewing machine and conductive thread. The sensor
employs a resistive method, simplifying the measurement
circuit, and it can be easily incorporated into commercially
available fabrics by sewing in a conductive thread.

B. EMBROIDERY SENSOR SYSTEM USING CONDUCTIVE
THREAD
Pressure, elongation, and bending sensors are being pursued
as wearable sensors that can be sewn via conductive threads
into textile material.

Moreover, pressure sensors have been proposed to be sewn
into non-conductive fabrics [23], conductive fabrics [24],
or capacitive types [25]. However, these sensors are charac-
terized as interface devices to input the user’s commands and
are not designed as body motion sensing devices. Therefore,
the sensor must be in close contact with the wearer’s skin and
firmly fixed to detect motion.

Elongation sensors are fabricated using various sewing
methods such as zigzagstitch, coverstitch, and overlockstitch.
The change in resistance in response to the elongation
of the fabric has been evaluated [26], [27], [28]. Some
studies have shown that it is possible to measure joint
angles using the coverstitch [29], [30]. The accuracy of
the motion analysis using this method is high; however,
it must be incorporated into a tight garment because
of the need to generate elongation deformation in the
garment.

Fabrication using the coverstitch method has been pro-
posed for bending sensors. The possibility of measuring the
angle of the joint has been investigated by sewing the sensor
into the section of the jeans where bending and stretching
of the knee causes bending deformation [31]. However, the
coverstitch is a complicated sewing method using multiple
needles and requires a special machine. Therefore, in this
study, we propose an improved stitch pattern and a method to
analyze the time-series change of resistance for easy motion
classification.

III. EMBROIDERY BEND SENSOR
A. CONCEPT OF THE PROPOSED SENSOR
The proposed sensor utilizes the multiple zigzag-stitch (in
this study we use triple zigzag) [32]. Fig. 2(a) shows a
schematic of the triple zigzag stitch. The bundle segment
is drawn to stitch a thread back and forth 1.5 times. The
proposed stitching creates electrical short paths at corners and
bundles. Bending deformation causes a change in the contacts
between the thread at the bundle and the corner sections
(Fig. 2(a)), resulting in a change in the resistance value.
This significantly differs from the usual zigzagstitch in which
the thread is stitched once to form a bundle section. Here,
ϕ denotes the curvature of the sensor. When the sensor is
bent in the direction of tensile strain on the conductive thread
side, ϕ > 0 (Fig. 2(b–c)). When bending in the direction of
the compressive strain on the conductive thread side, ϕ < 0
(Fig. 2(d–e)).
Employing multiple zigzag-stitch enables us to adjust the

thread consumption and sensor sensitivity by changing the
stitch width (p) and the pretend width (w), as shown in Fig. 2.
p and w can be changed independently; however, in this
section, we discuss the sensor performance by changing θ ,
which is the half angle of the zigzag line corner. θ can be
determined as follows:

θ = arctan
p
2w

. (1)

A change in θ affects the rate of change of the sensor’s
resistance. This is because the number of bundle sections
N per fixed length of the sensor and the number of corner

FIGURE 2. (a) Embroidery bend sensor and details of its stitching.
(b–e) Types of bending deformation.
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sections N − 1 vary with θ , as follows:

N =
L
p/2

=
L

w tan θ
, (2)

where L denotes the sensor length.

B. HOW TO FABRICATE THE SENSOR
The conductive thread used in this study is a Smart-X #50
(Fujix, Inc.), whose elongation capability is 35%. This thread
is manufactured from silver-plated nylon 66 fiber and has
sufficient conductivity (line resistance: approx. 250 �m−1)
and wash durability [33].

Two steps are involved in the sensor fabrication process.
The first step is to design a triple zigzag-stitch using
the embroidery production software Tajima Writer PLUS
(Fig. 3(a)). The second step is to sew the design into the fabric
using a Tajima SAI (Tajima Industries, Inc.) embroidery
machine (Fig. 3(b)). In this study, the upper thread is
conductive, whereas the lower thread is nonconductive.

FIGURE 3. Procedure for fabrication of embroidery bend sensors.

C. BENDING EXPERIMENT WITH A SINGLE SENSOR
1) EXPERIMENTAL SETUP
Sensors with different θ values were fabricated, and the
change in the resistance was measured when the seams on
the conductive thread side were subjected to tensile and
compressive deformation. First, three sensors were fabricated
with the seam fixed at w = 7 mm and varied in the range
of 1 mm ≤ p ≤ 3 mm (p in 1 mm increments).

A robotic arm (UR3e; Universal Robots) was used to
continuously change the bending curvature of the sensor in
the following manner. One end of the sensor was fixed,
whereas the other end was attached to the end effector of
the robotic arm (Fig. 4(a)). Next, the sensor was deformed by
sliding the robotic arm (Fig. 4(b–c)). This sliding motion is
performed five times, bending and returning to the original
position for 2 s and stopping for 2 s. The change in the
resistance was measured using an Arduino Mega 2560.

The change in bending curvature of the sensor was mea-
sured using a two-dimensional motion analysis application
(Kinovea). The range of the length of the sensor with varying
curvature was set to 20 mm. In addition, three markers were
placed at both ends and in the middle of the sensor (Fig. 4(b)).
The bending curvature was assumed to be constant in that
section. Then, we filmed a video of the sensor bending
curvature changing, tracked the coordinates of the three

markers using Kinovea, and calculated the bending curvature
of the circle passing through the three points (Fig. 4(c)).

FIGURE 4. Bending experiment procedure.

2) EXPERIMENTAL RESULTS
Fig. 5(a, c, e) and (b, d, f) shows the resistance changes when
ϕ > 0 and ϕ < 0, respectively. The resistance changes
of the sensor initially increased and then decreased as the
bending curvature increased. In addition, we confirmed that
the resistance value increased and then decreased when the
bending of the sensor was resolved, which will be discussed
in Section V-A.

FIGURE 5. Relationship between sensor bending curvature and resistance
during deformation for (a, c, e) ϕ > 0 and (b, d, f) ϕ < 0.

The range of the resistance change increased when the
value of θ decreased: the wider range of the resistance change
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FIGURE 6. FFT analysis of the sensor’s resistance change: (a) ϕ > 0,
(b) ϕ < 0.

can be achieved when θ = 4.09. Fig. 6 shows the FFT
analysis results. The results show that the largest amplitude
can be achieved when θ = 4.09 in cases of ϕ > 0 and ϕ < 0
(see the amplitude of approximately 0.1–0.5Hz).

This finding is consistent with the hypothesis presented in
Section III-A.

IV. CLOTHING-TYPE MOTION CLASSIFICATION DEVICE
Utilizing the developed sensor and commercially available
workwear, we fabricated a wearable sensor device to classify
the wearer’s activities. We then conducted evaluation exper-
iments to assess the accuracy of the motion classification.
The details of the device and the experimental methods are
described below.

A. SENSOR DEVICE DETAILS
The sensors were directly sewn onto a workwear jacket
and pants (KURODARUMA 32380 and 31380 workwear).
As shown in Fig. 7, the workwear is loose-fitting and made
of 100% cotton woven fabric, which is not easily stretchable.
To prevent the conductive threads from coming into direct
contact with the wearer’s body during movement, the seams
with the conductive threads were sewn on the outside, and
insulating fabric tape (Matsuura Industry Co., Ltd.) was
applied to the lining (Fig. 7(c-2)). The length L of the
attached sensors was set to 100 mm. The angle θ was set
to 4.09◦ (p = 1.0 mm, w = 7.0 mm), which exhibited
the largest change in resistance (based on the experimental
results from Section III-C2). These sensors were placed on
body parts that are prone to bending deformation during
movement. Therefore, the sensors were attached to the
olecranons, antecubital fossae, shoulders, armpits, buttocks,
hip joints, posterior knees, and anterior knees. The workwear
was prepared in two sizes (the jackets in L and LL, and the
pants with waist sizes 76 cm and 85 cm), and the sensors were
sewn onto the designated parts according to each size.

A custom-built device, consisting of an Arduino (Arduino
Mega 2560) and a voltage divider circuit (with the sensor
and a resistor connected in series: the sensor resistance
approximately 120 �, a resistor 270 �), was used as the
resistance measurement tool for each sensor (Fig. 7(e)). The
sensors were connected to the measurement device using

FIGURE 7. (a, b) Overall view of the prototype. (c, d) Deformation of the
sensor during the wearer’s motion and the surface (c-1) and wrong side
(c-2) of the mounted sensor. (e) Prototype of the resistance value
measurement device.

integrated circuit (IC) clips. To prevent the IC clips from
moving owing to the wearer’s motion and introducing noise
into the sensor signals, the IC clips were secured to the
clothing using Velcro (Fig. 7(c-1)). All sensor data were
sampled at 20 Hz, transmitted via USB to a PC, and saved
in an Excel file.

B. DEEP LEARNING FOR MOTION CLASSIFICATION
The deep learning model used in this device is a
one-dimensional convolutional neural network (1D-CNN).
This model was selected because of its ability to extract
features from each time step of the time series data and its
suitability for low-cost real-time hardware implementation.
Since the convolutional filters in a 1D-CNN move only
along the time axis, a 1D-CNN can extract features from
fixed-length segments. In addition, because of its simple and
compact structure that performs only linear 1D convolutions
(scalar multiplications and additions), the computational
cost is kept low, enabling low-cost real-time hardware
implementation [34].

The model consists of two convolutional layers (Conv1D
layers). Each layer applies the ReLU activation function
and L2 regularization (λ = 0.01), and includes a dropout
layer and a max-pooling layer. The dropout rate is set to
30% to prevent overfitting. The max-pooling layers reduce
the dimensions of the feature maps and capture the most
prominent features [35]. After the second convolutional
layer, a global average pooling layer is added to flatten the
feature maps [36], and the output layer employs the softmax
activation function. The model is trained using the Adamax
optimizer with a learning rate of 1e-4 [37], and the categorical
cross-entropy loss function, which is suitable for multiclass
classification tasks.

C. MOTION CLASSIFICATION EXPERIMENT
To evaluate the performance of the above-mentioned device
and deep learning model, motion data from 10 participants
were collected, and based on that data, the movements of
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the wearer were classified. The following sections present an
overview of the experiment and the accuracy of the motion
classification.

1) EXPERIMENTAL SETUP
Ten participants wore the developed wearable sensor device
(Fig. 7) and performed 10 activities as shown in Fig. 1.
The time-series data of sensor resistance changes measured
during these activities were used to train the 1D-CNN for
classifying the activities of the wearer. The participants
were 10 adult males (height of approximately 167-184 cm,
weight of approximately 47-90 kg). The experiment was
conducted with the approval of the ethics committee of
Shinshu University (Approval No. 387). Regarding the size
of the device, each participant wore the size that fits their
body type. Each participant’s information is summarized in
Table 2.
The instructor explained and demonstrated to the par-

ticipants how to perform the 10 activities. The cycle of
the activities was not standardized among the participants.
No specific instructions were given to the participants for
walking, jogging, and stair climbing. During the walking
while carrying a box, each participant carried a box
containing a weight equivalent to 20% of their body weight.
For the stepping activity, participants were instructed to raise
their knees as they would during walking. In the reaching
activity, participants moved a pen from a box placed in front
of them to another distanced box, and they were instructed
to reach with their right hand only. The number of times
the participants performed the above mentioned activities
was 10 cycles of walking and other moving activities and
stepping, 10 steps of ascending and descending stairs, and
10 pens of reaching activities, which are called one set. The
participants performed 10 sets of each of the above activities.

2) PREPROCESSING DATA AND EVALUATING MODELS
Concerning data preprocessing, the first step was to normal-
ize the measured sensor resistance values by calculating the
percentage change 1001R/R (%) from the baseline value
R at the start of the measurement. Next, the data for each
set was divided using a fixed-width sliding window of 2.5 s
with a 50% overlap (50 readings per window) [38], resulting
in a total dataset size of 10,320 samples. Finally, the data
were filtered using a 6 Hz first-order Butterworth low-
pass filter. This filtering step was performed because the
frequency spectrum relevant to human movement typically
lies within the 0-10 Hz range [39], and it helps to remove
noise caused by wrinkles in loose-fitting clothing, thereby
enhancing the similarity of signals corresponding to the same
movement [13].
The accuracy of the model was evaluated using 5-fold

cross-validation, as shown in Fig. 8. The dataset was divided
into five folds, each used as the test set in turn, whereas
the remaining four folds were split into 70% training data
and 30% validation data. The model was trained using these

FIGURE 8. K-fold cross-validation (K=5).

FIGURE 9. Confusion matrix for the classification of 10 types of activities.

splits, and the average accuracy obtained from each training
session was used as the final evaluation of the model. During
training, the number of epochs was set to 200, and the batch
size was 64.

D. EXPERIMENTAL RESULTS
The average accuracy of the activity classification was
99.02% (SD: 0.19) (Fig. 9) after training the model with
sensor data (comprising 16 sensors in total) from all
participants. Walking, stepping, walking while carrying a
box, squatting, and ascending stairs were classified with an
accuracy of above 99.3%. Even the lowest accuracy observed
for the left-reaching was 97.24%, indicating that all ten types
of activities were classified with high accuracy. The high
accuracy achieved can be attributed to the sensor’s ability
to measure the degree and timing of joint flexion according
to each activity, as well as the periodicity of the actions (as
detailed in Sections IV-D1 and IV-D2).

The accuracy for jogging, descending stairs, and all
reaching activities was below 99%, compared to the other
activities (e.g., walking) which were classified with accuracy
above 99% accuracy. The accuracy for jogging was 98.33%;
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TABLE 2. Participant body information and device size data.

FIGURE 10. Average FFT values of sensor data for each activity across all participants (Right hip joint (a), Right posterior knee (b), Right shoulder (c)).
Participant-specific average FFT values of sensor data for each activity (Jogging (d), Descending stairs (e), Upper-reaching (f)).

however, in misclassification cases, it was confused with
other activities involving traveling on flat ground, such as
walking or walking while carrying a box. The accuracy for
descending stairs was 98.78%; however, it was misclassified
as stepping with a probability of 0.49%, walking, walking
while carrying a box, and jogging with a probability of
0.24%. The causes of these misclassifications mentioned
may include the similarity of signals between different
activities and variations in signal magnitude and frequency
between participants performing the same activity (discussed
in Section IV-D3).

1) AMPLITUDE AND FREQUENCY CHARACTERISTICS IN THE
FFT OF EACH ACTIVITY DATA
We performed a fast Fourier transform (FFT) on the
sensor data from all participants to analyze the classifi-
cation accuracy. We examined the degree of joint flexion
and the movement cycles corresponding to each action.
Fig. 10(a) shows a graph of the average values for different
activities obtained by performing FFT on the sensor data from

the right hip joint of all participants. Note the magnitude of
the amplitude between 0.25Hz and 1.5Hz in this graph. In the
range, the optimal stride frequency for running is reported to
be approximately 85–90 strides per minute (approximately
1.42–1.5 Hz) [40], and the activities performed in this
experiment did not involve moving the arms and legs at
frequencies faster than this. Among the 10 types of activities,
the squat activity exhibited the largest amplitude, appearing
at 0.47 Hz. Next, the activity of ascending stairs appeared
with the second-largest amplitude at 0.85 Hz. The larger
amplitudes for these two activities are likely due to greater
hip joint flexion compared to the other activities. Walking
is characterized by a significant amplitude at 0.91 Hz,
stepping at 1.08 Hz, and walking while carrying a box
at 1.0 Hz, with only minor amplitude differences. For
these activities, the descending stairs activity exhibited a
peak amplitude at the same frequency of 1.08 Hz as the
stepping activity; however, the amplitude was smaller than
that of the previously mentioned activities. This suggests
that the descending stairs activity involves less hip joint

2988 VOLUME 13, 2025



K. Minami et al.: Motion Classification With Embroidery Bend Sensors Using Multiple Zigzag-Stitch

flexion than other activities. The jogging activity exhibited
a large amplitude at 1.41 Hz, indicating that the hip joint
is flexed the fastest. Reaching activities involve minimal
lower limb movement, resulting in a small amplitude of
approximately 0.5 Hz.

Let us consider the impact of arm movements on the
activity classification. Fig. 10(c) shows a graph of the average
values for different activities obtained by performing FFT on
the sensor data from the right shoulder of all participants.
Comparing the peaks in amplitude at approximately 0.5-
0.75 Hz for the three types of reaching activities, the
order from largest to most minor is left-reaching, upper-
reaching, and right-reaching. This is because the sensor
bends more significantly as the hand is extended further
to the left side relative to the body. During walking, the
amplitude peaked at 0.91 Hz because of the swinging
arms. In contrast, during walking while carrying a box,
the amplitude peak (1.0 Hz) was minimal because the arm
motion was relatively fixed. The differences in amplitude
and frequency observed in each activity are likely learned by
the model as distinguishing features, contributing to the high
accuracy in activity classification.

2) ANALYSIS OF JOINT FLEXION TIMING
The timing differences in joint flexion during each activity
can be measured from the sensor’s time-series data. Fig. 1
(a) shows the time-series data from eight sensors placed on
the right side of the body during walking. Focus is placed
on the gray painted area of the graph (1.2-1.6 s). In the
walking activity, the minima in the sensor signals appear
in the order of buttocks (1.2 s), posterior knee (1.4 s), and
hip joint (1.6 s). In contrast, the minima appeared at almost
the same timing for stepping and ascending stairs activities
(Fig. 1 at approximately 1.5 s in (e) and at approximately
1.9 s in (g)). The model can likely learn these timing patterns
of joint flexion as activity features, contributing to the high
accuracy in activity classification.

3) FACTORS LEADING TO MISCLASSIFICATION OF
ACTIVITIES
Fig. 10(b) shows a graph of the average values for different
activities obtained by performing FFT on sensor data from
the right posterior knees of the participants. In this graph,
the focus is placed on the stepping and descending stairs
activities. In both cases, a similar amplitude was observed
at a frequency of 1.08 Hz. This would have resulted in the
most misclassified activity in the data for the stair descending
activity and the stepping activity (see Fig. 9).

The amplitude of the sensor signals for each activity
varied depending on the participant’s BMI, which can
result in misclassification with other activities. There was
variability in the participants’ BMI, with the highest being
participant 10, followed by participants 1, 9, and 6 (Table 2).
Fig. 10(d, e) shows graphs of the average values for each
participant obtained by performing FFT on the sensor data
from the right hip joint during jogging and descending

stairs. For jogging, the amplitude was between 1.25-1.5 Hz;
for descending stairs, the amplitude between 0.75-1.0 Hz
varied across participants. For both activities, participants 1,
6, 9, and 10 exhibited larger amplitudes than the other
participants. This is because of the differences in BMI
between participants. The space between the body and the
clothing varies with the participant’s physique. Hence, if the
joint flexion angle is the same, a more extensive space results
in less sensor deformation. Therefore, participants 1, 6, 9,
and 10, with higher BMI values (see Table 2) and narrower
spaces between their bodies and clothing, likely exhibited
larger amplitudes.

The sensor signal frequency during reaching activities
varied between participants, which can lead to misclassifi-
cation with other activities. This is likely because no specific
instructions regarding the movement cycle were given to the
participants. Fig. 10(f) shows a graph of the average values for
each participant obtained by performing FFT on the sensor
data from the right shoulder during upward-reaching activity.
It can be seen that the frequency at which the amplitude peaks
varied between participants, ranging from 0.25 Hz to 1.5 Hz.
It is hypothesized that the misclassification of activities is
caused by the differences in amplitude and frequency as
described above.

V. DISCUSSION
A. PRINCIPLE OF RESISTANCE CHANGE THAT DOES NOT
FOLLOW SENSOR CURVATURE VARIATION
Based on the changes in sensor resistance values shown
in Section III-C2, it is hypothesized that when this sensor
undergoes bending deformation, the resistance values of the
bundle section and corner sections’ resistance values change
in opposite directions, with one increasing and the other
decreasing. Therefore, the overall change in sensor resistance
1R is assumed to be determined by the change in resistance
of the bundle section 1RB and the corner section 1RC, and
can be expressed as follows:

1R = 1RB + 1RC. (3)

The time difference between the resistance changes 1RB
and 1RC suggests that even when tensile and compressive
strain are applied to the conductive stitching, the resistance
may temporarily increase in response to rapid bending
deformations, such as during phase transitions in movement.
The cases where the sensor curvature is ϕ > 0 and ϕ < 0 are
explained.

1) RESISTANCE CHANGE MECHANISM UNDER TENSILE
STRAIN (ϕ > 0)
When a tensile strain occurs at the seam on the conductive
thread side (Fig. 11(a), when ϕ > 0), the conductive
path gets shorter at the bundle sections and longer at the
corners, and the resistance changes (Fig. 11(a-1), (a-2)).
When ϕ increases, the tension |f T| increases in the bundle
section (Fig. 11(a-2)). This causes the threads to bundle
together, shortening the conductive path and reducing 1RB
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(< 0) (red graph in Fig. 11(c)). As ϕ increases, the contact
between threads decreases at the corners owing to tensile
strain (Fig. 11(a-1)), the conductive path becomes longer and
1RC (>0) increases (red graph in Fig. 11(d)).

Fig. 5(a) shows the experimental values of resistance
change with bending deformation of the sensor. The resis-
tance increased and decreased as the curvature of ϕ increased.
Since the resistance increases during the phase transition
(Fig. 5(a)), the increase in 1RC was considered to be faster
than the decrease in 1RB.

2) RESUSTANCE CHANGE MECHANISM UNDER
COMPRESSION STRAIN (ϕ < 0)
When a compressive strain occurs at the seam on the
conductive stitch side (Fig. 11(b), when ϕ < 0), the
conductive path changes at the bundle and corner sections and
the resistance changes (Fig. 11(b-1), (b-2)). When ϕ becomes
smaller, the compressive force |f C| becomes larger in the
bundle section (Fig. 11(b-2)). This causes the conductive path
to become longer, which leads to an increase in 1RB (blue
curve in Fig. 11(c)). As ϕ decreased, the contact between
threads increased at corner sections because of compressive
strain (Fig. 11(b-1)), and the conductive path became shorter,
which in turn decreased 1RC (blue curve in Fig. 11(d)).
Fig. 5(b) displays the experimental value of the change

in resistance with sensor bending curvature change. The
resistance increased and then decreased as the curvature ϕ

decreased. As shown in Section V-A1, 1RB increases faster
than the decrease in1RC, suggesting that the resistance value
increased during the phase transition of the operation.

FIGURE 11. Consideration of the principle of resistance change in the
bundle and corner sections during bending deformation ((a) ϕ > 0,
(b) ϕ < 0).(c–d) Change in 1RB and 1RC as ϕ modifies.

B. SENSOR DEFORMATION ON A GARMENT
When the sensor is attached to a garment, wrinkles with
a mixture of convexity (ϕ > 0) and concavity (ϕ < 0)
occur on the sensor in response to the wearer’s motion
(Fig. 7(d)). By contrast, in the bending experiments dis-

cussed in Section III-C, the sensor deformed separately for
ϕ > 0 and ϕ < 0.
The results of the experiment using sensors on a garment

in Section IV-D reveal that the sensor resistance commonly
showed the same pattern of change for ϕ > 0 and
ϕ < 0, as discussed in Section III-C2. Specifically, the
resistance value increased at the start of sensor bending
and then decreased. When the sensor bending is resolved,
the resistance value increased and then decreased (Fig. 5).
Therefore, the resistance value is expected to follow the same
pattern even when two bending deformations are mixed.

C. METHODS FOR IMPROVING THE ACCURACY OF THE
PROPOSED
Potential strategies to improve the ability of the system to
classify finer distinctions in behavior with greater accuracy
have been explored. These strategies include increasing the
number of sensors, positioning them in optimal locations, and
leveraging signal augmentation techniques in conjunction
with advanced architectures to capture motion character-
istics. The rationales for these approaches are detailed
below.

1) IMPACT OF THE NUMBER OF ATTACHED SENSORS ON
CLASSIFICATION ACCURACY
By increasing the number of sensors attached to the clothing,
it may be possible to classify a greater variety of activities
more accurately. Fig. 12 is a confusion matrix showing the
classification accuracy of seven types of activities (excluding
reaching activities) as the number of sensor data used for
training the model increases. The average classification
accuracy in this figure shows that the accuracy was 85.96%
when only the anterior knee (both legs) sensor data were
used for model training. In addition, it was 96.60% when
using the anterior knee and buttocks (both legs) sensor data,
it was 98.24% when using the anterior knee, buttocks, and
hip joint (both legs) sensor data, 99.11%when using all lower
body sensors, and it reached 99.61% when using all sensors
(including upper body’s). This indicates that the average
classification accuracy improved as the number of sensors
used for training increased.

By training the model with sensor data from multiple
body locations, differences in locomotion activities can be
classified with high accuracy. The classification accuracy for
walking, walking while carrying a box, and ascending stairs
was below 90% when using only the anterior knee sensors.
This suggests that sensor data from just one location (on
both sides) did not fully capture the differences in features
among these four activities. By adding sensor data from the
buttocks, the classification accuracy improved by 10.45%
for walking, 10.45% for walking while carrying a box, and
14.22% and 26.83% for ascending stairs and descending
stairs, respectively.

This suggests that increasing the number of sensors makes
it possible to learn the degree and timing of joint flexion,
which can lead to improved classification and accuracy for a
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FIGURE 12. Improvement in movement classification accuracy with an increasing number of sensors used for the model training.

more significant number of activities. However, this involves
trade-offs, such as higher fabrication cost and reduced user
comfort.

2) IMPACT OF SENSOR PLACEMENT DIFFERENCES ON
CLASSIFICATION ACCURACY
To improve activity classification accuracy, it is essential to
consider the sensor placement that best captures activity dif-
ferences. Table 3 shows the classification accuracy for seven
types of activities when sensors were placed at the hip joint
(H), anterior knee (A), posterior knee (P), and buttocks (B)
individually, as well as for combinations of these sensors: hip
joint and posterior knee (HP), and anterior knee, buttocks, and
hip joint (ABH). The highest average classification accuracy
was achieved with sensors placed at the hip joint, followed
by the posterior knee, buttocks, and anterior knee. Focusing
on the classification accuracy for walking and descending
stairs, it was observed that the hip joint sensor provided the
highest accuracy for walking. In contrast, the posterior knee
sensor provided the highest accuracy for descending stairs.
This indicates that the hip joint and posterior knee place-
ments contribute significantly to high activity classification
accuracy.

It is possible to achieve highly accurate motion classifica-
tion, even with a limited number of sensors, by strategically
placing them in optimal locations. The classification accuracy
for HP (using hip joint and posterior knee data) was 98.40%,
whereas for ABH (using anterior knee, buttocks, and hip
joint data), it was 98.22%, which is lower than that of
HP. Thus, exploring appropriate sensor placement could
further enhance activity classification accuracy, pushing the
boundaries of this technology. Exploration of appropriate
sensor placement is described in Section V-C1 in terms of the
trade-off between accuracy and increased cost or decreased
user comfort.

TABLE 3. Classification accuracy of seven types of activities when
training the model with data from sensors individually attached to the hip
joint (H), anterior knee (A), posterior knee (P), and buttocks (B), as well as
when training with combined data from the hip joint and posterior knee
(HP), and from the anterior knee, buttocks, and hip joint (ABH).

3) SIGNAL ENHANCEMENT AND ADVANCED
ARCHITECTURES
The misclassifications observed in this study (e.g., distin-
guishing between stepping and descending stairs) are likely
attributed to the similarity of sensor signals (e.g., posterior
knee signals) and participant-specific variations, such as
differences in BMI. To address these issues, additional
preprocessing techniques, such as band-pass filtering and fea-
ture augmentation using frequency-domain characteristics,
could potentially reduce signal overlap between activities.
Furthermore, employing advanced model architectures, such
as LSTM or CNN-LSTM, may enhance the capture of
temporal dependencies in the motion data, thereby improving
the classification accuracy [13]. Future work will focus on
integrating these approaches to reduce misclassification and
enhance the overall performance of the system.

D. LIMITATIONS AND FUTURE DIRECTIONS
We evaluated the system using data collected from 10 adult
male participants, which may limit the generalizability of the
findings. The experimental setup was designed to assess the
fundamental performance of the proposed system. However,
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demographic variations, such as age, gender, and BMI, could
influence sensor signals and classification accuracy (e.g.,
BMI, as discussed in Section IV-D3). In future studies,
we will include participants with more diverse demographics
to validate the robustness of the system across broader
populations.

We adopted a 5-fold cross-validation approach to evaluate
the proposed model. Before splitting the dataset, random
shuffling was performed to ensure that each fold contained
representative samples. This method minimizes the risk of
bias and ensures that the test data in each fold is independent
of the training data. However, owing to sliding window
segmentation with a 50% overlap, there may be partial
redundancy between training and test datasets. To address
this limitation, future work will incorporate more rigorous
evaluation methods, such as Leave-One-Subject-Out cross-
validation.

VI. CONCLUSION
We developed a sewn-type bending sensor created by
applying multiple zigzag stitches with conductive thread
on the fabric. The sensor was integrated into loose-fitting
clothing, and we proposed a system that enables motion
classification of the wearer by training the collected data
using deep learning. The proposed method was evaluated
by measuring data from 10 participants performing 10 dif-
ferent locomotion and reaching activities. As a result, the
system demonstrated high performance, achieving an average
classification accuracy of 99.02% for the 10 activities.
Furthermore, by optimizing the number and placement of
sensors, there is potential to classify a greater variety of
activities and detect subtle differences in physical actions.

The proposed system has demonstrated significant poten-
tial for applications across various fields. In healthcare, it can
monitor rehabilitation progress, detect fall risks in elderly
individuals, and support physical therapy. In the sports sector,
the system can analyze movements of athletes to provide
insights for performance enhancement. It can also monitor
the postures of workers and detect hazardous movements in
industrial settings. Moreover, the system offers a practical
and scalable solution for everyday wearable applications by
enabling motion classification with loose-fitting garments.

The future prospect involves verifying whether the pro-
posed method can classify the movements of unmeasured
individuals and perform personal authentication. Further-
more, we aim to optimize the number and placement of
sensors to enablemore accurate detection of subtle movement
differences.
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