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ABSTRACT In recent years, school attendance issues among university students have been increasing,
which can lead to repeating courses, dropping out of school, or even social withdrawal. Despite the
existence of counseling services, students often delay help-seeking, which can cause symptoms to worsen
and make support more difficult. Thus, it is essential to identify at-risk students early and encourage them
to seek help. A realistic approach must minimize the burden on students, rely only on devices they already
own, and operate correctly even for students who are less engaged or prone to social withdrawal. While
several techniques have been proposed to estimate individual indicators, they fail to address one of these
requirements due to requiring additional devices or requiring user attention and interaction. In this paper,
we propose an unobtrusive screening method for detecting subtle signs of school attendance issues in
university students. We develop a smartphone app to collect sensor data and collect ground truth information
using questionnaires for 1) sleep problems; and 2) decreased student engagement. We collect data from
58 university students for about 10 months, and build estimation models for the above indicators. Our
evaluation shows that the estimation models are sufficiently accurate in flagging problematic cases. The
indicators can then be used to notify at-risk students and medical practitioners, enabling timely intervention.
This screening is not intended to replace traditional face-to-face medical examinations, but rather to
selectively flag at-risk students and connect them with medical experts.

INDEX TERMS School attendance issues, sleep state estimation, subjective sleep quality estimation, study
engagement estimation, smartphone sensing.

I. INTRODUCTION
In recent years, class attendance issues have been on the
rise among university students. In particular, the long-term
presence of (1) sleep problems [1] and (2) reduced study
engagement [2] often leads to school attendance issues. These
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issues have causedmany students to fail and/or repeat courses
or to drop out of university entirely. To deal with this problem,
many universities take mental health measures such as
offering psychological counseling by clinical psychologists
and psychiatrists. However, students often fail to recognize
their own attendance problems and delay seeking help such
as counseling, which can exacerbate their symptoms and
make treatment more difficult. Therefore, early detection
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of students showing subtle signs of attendance issues, and
encouraging them to get help, is important.

Recently, methods of monitoring a person’s daily life
and estimating their physical and mental state by using
IoT devices, smartphones, and wearable devices have been
proposed. These methods aim to estimate sleep habits [3],
[4], [5] and various human psychological states such as study
engagement [6], [7], [8], emotion [9], [10], depression [11],
[12], stress [13], [14].

Moreover, several methods aim to monitor academic
life-log data including sleep, academic performance (GPA),
stress [15], [16], and emotion using smartphone and/or
wearable devices. However, the applicability of methods
using wearable and IoT devices is limited among students
due to low device ownership rates. Additionally, existing
methods either require extra devices (such as wearable and
IoT devices) or require user attention and interaction, which
may be difficult for students with low engagement and/or a
tendency toward social withdrawal.

When designing a method for early detection, we need
to meet some requirements to make large-scale adoption
realistic. First, the method should not disrupt students’
daily lives or require additional device purchases. It should
also support students who may not actively seek help.
Additionally, the system must be constructed using cor-
rect medical knowledge and correct ground truth data.
Finally, since the onset of school attendance issues is
often gradual, long-term and automated observations are
crucial.

Our goal is to develop an unobtrusive screening method
that can identify students at risk of developing school atten-
dance issues. Using sensor data from smartphones and ground
truth data from questionnaires, we aim to build accurate
machine learning models to predict indicators related to
school attendance issues. Tominimize the burden on students,
we design our method to require smartphones only (which are
widely adopted), and operate in the background without user
intervention.

We select sensors that are commonly available on
standard smartphones. Specifically, our method collects
Wi-Fi scan data, acceleration, gyroscope and magnetic field
measurements, battery information, screen state, ambient
light intensity, noise levels, and proximity information. With
this data, we train machine learning models to estimate
the responses to the questionnaires that measure indicators
related to sleep and engagement. Regarding sleep, our
primary objective is to detect a decline in overall sleep
quality using only smartphone sensor data, excluding any
external sensors or devices. Thus, despite the abundance of
factors associated with sleep problems, in this paper, we focus
only on those that can be estimated from smartphone sensor
data. Specifically, we estimate sleep state (awake or asleep)
and subjective sleep quality. Regarding study engagement,
we estimate three standard engagement indicators (vigor,
dedication, and absorption).

Our estimation models can enable meaningful applica-
tions, such as automatically giving feedback to students about
their lifestyle, and allow students to present the data to
healthcare professionals. Healthcare professionals can use
this data to offer personalized advice, suggest interventions,
or gather more information through questionnaires. Our
proposed screening method is not intended to replace
traditional face-to-face medical examinations, but instead to
provide insights and encourage students to make changes or
seek help before symptoms worsen.

Our contributions are as follows:
• In cooperation with the Osaka University Health Center
and the Department of Psychiatry Graduate School of
Medicine, we design and build a sensing-based student
support platform for estimating the above indicators
using medium- to long-term smartphone life log data
only. Our system works with off-the-shelf Android
smartphones and operates entirely in the application
layer, without any operating system modifications.

• We evaluate our estimation techniques using 58 under-
graduate and graduate students over the course of
10 months. Our evaluation shows that our models
achieve either high or at least sufficient accuracy for the
purposes of flagging problematic cases.

The rest of the paper is organized as follows. Section II
describes related work on estimating psychological state
using life log data, discusses existing methods related to
estimating sleep and engagement, and clarifies this paper’s
position. Section III describes the overall design of our
student support system. Section IV defines the specific
indicators, explains their necessity, and describes our method
for estimating them. Section V presents an experimental
evaluation of our system. Finally, Section VI concludes the
paper and describes future work.

II. RELATED WORK
In this section, we describe related work on sleep estimation
and psychological state estimation, including research on
engagement.

A. SLEEP ESTIMATION
Sleep estimation using wearable and/or mobile devices has
been widely studied.

Borazio et al. [17] measured sleep rhythm and quality in
based on heart beat data collected from a smartwatch. While
devices such as smartwatches have higher accuracy, it has
been reported that the quality of sleep deteriorates due to their
invasiveness [18]. Additionally, despite their potential utility,
smartwatch-based monitoring methods remain constrained in
their applicability due to the relatively low adoption rates of
these devices among undergraduate students.

There is also work on smartphone-based sleep estima-
tion. For example, Wahl et al. [19] estimates users’ fall-
asleep and wake-up time from various smartphone sensors
such as acceleration, illuminance, and sound. To improve
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the accuracy of the obtained results, they use additional
information on each individual’s sleep rhythm. They can
estimate the fall-asleep time with an absolute error of 42 to
48 minutes, and the wake-up time with an absolute error of
42 to 57 minutes. Chen et al. [4] constructed a model that
estimates sleep time using a regression model. Hao et al. [20]
constructed a system that evaluates sleep quality by detecting
events closely related to sleep quality, such as body
movements and snoring, using only the smartphones’ built-in
microphones.

B. ESTIMATION OF PSYCHOLOGICAL STATES USING LIFE
LOGS
In recent years, psychological state estimation using life logs
(records of daily activities) has been gaining attention.

MIMOSYS [21] is a smartphone app that recognizes
users’ mental health condition from voice samples. To avoid
reporting bias, the system detects the involuntary reaction of
the vocal cords. Using features such as voice energy, the sys-
tem can distinguish ‘‘patient’’, including major depression,
cerebral infarction, etc., from ‘‘healthy person’’ with over
90% accuracy. MIMOSYS requires active measurement of
13 voice samples to collect one data point, making it very
time-consuming. This type of approach, which relies heavily
on user-initiated actions, could pose a significant barrier
to continued use, especially for users who are struggling
with their mental health and may already be experiencing
difficulty with motivation and engagement.

Huynh et al. [22] estimate happiness using life logs
for the purposes of detecting depression in students. They
estimate happiness with 72% accuracy based on smartphone
data (phone and SMS history, screen on/off status, GPS),
and smartwatch data (such as heartbeat and electrodermal
activity) for one month. Another work by Ito et al. [23] uses
the sensors and usage history of smartphones to predict
the responses of an anxiety questionnaire. They create a
prediction model from data for several days for an individual,
and predict the anxiety level for the next day. Using up
to 7 days of data, they achieved an accuracy of about
80% in estimating anxiety. However, these systems do not
comprehensively estimate study engagement.

There are also several works dealing with the issue of esti-
mating engagement specifically [6], [7], [22], [24]. However,
such systems tend to rely on invasive sensors (e.g., wristband,
external depth camera, EDA, PPG, or even EEG) to perform
the estimation. One system, TaskyApp [25], estimates task
engagement (task difficulty) using only smartphones, but it
mainly focuses on estimating the difficulty of mental tasks
performed in an office setting. Automatic sensing is limited
(triggered when a change in the user’s context is detected),
making TaskyApp unsuitable for longer-term tracking of
study engagement in daily life.

Despite these advances, existing methods often struggle
with university students’ needs - particularly regarding
device adoption, user burden, and the need for unobtrusive
monitoring. Many systems rely heavily on user interaction,

limiting their effectiveness for disengaged students. In the
next section, we propose a smartphone-based system that
operates continuously in the background to detect subtle signs
of school attendance issues.

III. METHODOLOGY: SYSTEM DESIGN
In this section, we first define the requirements of the student
support system and how we address each of them. Then,
we present the design of the proposed system.

A. REQUIREMENTS AND APPROACH
As described in Section I, an effective school support system
must satisfy a set of requirements and challenges. Below,
we present our approach to each of these.

1) LOW BURDEN ON STUDENTS
To make the system easy to deploy, we should not use
devices with low penetration rates (such as wearables [26],
[27]), and we should not require additional devices per
person. Therefore, we use only smartphones for data
collection, which most university students already own [28].
Additionally, since we want to collect data from regular
users’ daily-use smartphones, we cannot expect them to
apply modifications to their smartphones (e.g., custom OS).
Therefore, we implement our data collection application
entirely in the application layer as a regular Android app.
To support passive students who do not actively engage in
help-seeking behavior, we design our app so that it collects
data automatically in the background.

2) CORRECT MEDICAL KNOWLEDGE AND GROUND TRUTH
To obtain domain knowledge, we worked together with
the Osaka University Health Center and the Department
of Psychiatry, Graduate School of Medicine and developed
questionnaires to compute indicators related to school
attendance issues. In traditional face-to-face interviews,
biases may arise from students’ subjective self-evaluation and
memory limitations, as they’re asked to recall events from a
month ago. To tackle this issue, we use daily questionnaires
to gather ground truth. While subjectivity remains, we argue
that asking about recent events reduces the recall bias when
compared to traditional face-to-face interviews.

B. SYSTEM OVERVIEW
Figure 1 shows the overall concept of the proposed student
support system, which essentially represents a feedback loop.
First, users provide smartphone sensor data and answer
questionnaires related to indicators of school attendance
issues. Using the collected data, we build and train estimation
models to estimate the questionnaire responses based on
the sensor data. After training, the system can estimate
the relevant indicators from the sensor data without relying
on questionnaires, enabling unobtrusive monitoring in the
background. These indicators can then be evaluated by
psychiatrists, who can give personalized feedback to users,
or request them to fill out additional questionnaires.
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The actual technical components of our system are shown
on Figure 2. The system consists of a smartphone application
that collects sensor data and questionnaire responses, a public
cloud server, a local server hosted on our campus, a data
analyzer application, and a PC used by doctors to view
relevant metrics about the data. (In this paper, the feedback
mechanism is not yet implemented.) In the following,
we discuss each component of our system in detail.

1) SMARTPHONE APPLICATION
The smartphone application aggregates sensor data and
questionnaire responses from participants through a unified
interface, minimizing user burden. Figure 3 illustrates
the application’s Japanese-language interface, with English
translations provided via speech bubbles to maintain accessi-
bility for non-Japanese readers while preserving the original
design.

To encourage active participation in data collection,
we designed a point-based incentive system that gives points
depending on the amount of data provided. Additionally,
we changed the design of the home screen according to the
daily questionnaire’s response status (Figure 3, B). We also
created a workflow for viewing the history of one’s own
rewards. This screen (Figure 3, D) shows the amount of
points and the types of data collected for each day. We also
have a simple weekly ranking system that creates friendly
competition among users.

Our system supports the collection of the following sensor
data:

a: WI-FI SCANS
One scan result consists of a list of (MAC address, received
signal strength) pairs of nearby access points. Our app
periodically initiates Wi-Fi scans, but the OS may delay or
ignore some requests to save power.

b: ACCELERATION, GYROSCOPE AND MAGNETIC FIELD
3-axis acceleration, gyroscope and magnetic field data. Col-
lection is continuous, but the data is periodically aggregated
before storage.

c: BATTERY STATUS
The possible values are ‘‘charging’’, ‘‘discharging’’, ‘‘full’’,
‘‘not charging’’, ‘‘unknown’’. Data is collected when the
charging status changes.

d: BATTERY LEVEL
The remaining charge of the battery, as a percentage. Data is
collected when the remaining battery level changes by at least
1%.

e: SCREEN STATE
A binary value expressing whether the screen is on or off.
Data is collected when the screen turns on or off.

f: ILLUMINANCE
Ambient light intensity. Data collection is constant, but the
data is periodically aggregated before storage.

g: NOISE LEVEL
Root-mean-square values of audio data from the smartphone
microphone. While technically we are recording potentially
sensitive audio data, to alleviate privacy concerns, we only
upload statistical features of the data to the server. Data is
collected in 5-second bursts, one burst per minute.

h: PROXIMITY
Measures whether something is in proximity of the sensor.
The value is an integer between 0 and 5 (closest proximity
being 5). Data collection is continuous, but the data is
periodically aggregated before storage.

Our system also supports conducting questionnaires.
Specifically, it supports single-choice and multi-choice
questions, a compound question about sleep times (going-to-
bed time, fall-asleep time, and wake-up time), and star-based
rating questions (e.g., subjective sleep quality).

Questionnaire data is sent immediately upon response, but
sensor data is temporarily cached on the device in encrypted
form, and periodically uploaded to the cloud server in the
background. Both sensor data and questionnaire responses
are encrypted using the public key of the local server
before being uploaded to the cloud server. (Additionally, this
communication happens using HTTPS, which provides an
additional layer of encryption during transit between nodes.)

2) CLOUD SERVER
The cloud server acts as an intermediary between the
smartphone app and the local server. It accepts upload
requests from the smartphone app and download requests
from the local server. This server needs to be publicly
accessible so that users can access it regardless of their
location. However, while we keep some plaintext metadata
in anonymized form on this server, for security reasons, all
sensitive user data is stored encrypted on this server, and only
temporarily (see below).

3) CAMPUS LOCAL SERVER
The local server stores raw data securely and can only
be accessed from the university network. Since it can’t be
contacted directly by the cloud server, it regularly checks for
new data. When found, it downloads and decrypts the data,
then deletes the encrypted version from the cloud server. The
security of the raw data is protected by measures such as
access control rules, full-disk encryption, making the data
by accessible only to a limited number of people (such as
doctors), and HTTPS communication.

4) DATA ANALYZER
The data analysis operates via a client application that inter-
faces with the local server’s API endpoints within the campus
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FIGURE 1. Overall concept of the proposed system.

FIGURE 2. Technical components of the proposed system.

network. Access to raw data is secured through TLS client
certificate authentication. The analyzer synthesizes sensor
data and questionnaire responses with domain expertise
from medical professionals to evaluate indicators of student
life patterns, academic engagement, and school attendance
behaviors. Future implementations could facilitate encrypted
feedback delivery (including AI-derived insights, physician
recommendations, and follow-up assessments) to users’
devices via public key cryptography.

In summary, our system design ensures low user burden
and accurate data collection through coordinated operation
of smartphone, cloud, and local components. We now detail
the estimation methods used to derive meaningful indicators
from sensor data and questionnaire responses, focusing on
sleep problems and decreased study engagement.

IV. METHODOLOGY: ESTIMATION METHODS
In this section, we describe our method for estimating indi-
cators of school attendance issues. The high-level flow of the
method is as follows. We first give a definition of the metrics
we want to estimate, namely sleep problems and decrease
of student engagement. Then, we design a questionnaire to
obtain the corresponding ground truth data. Then, we design a
method to extract features from smartphone sensor data. After
these steps, we are ready to collect data (questionnaires and

sensor data) and train classifier models to perform the actual
estimation (Section V).

A. ESTIMATING SLEEP PROBLEMS
Based on sensor data collected by smartphones, we construct
a classification model that can estimate (1) sleep state and
(2) subjective sleep quality. We define these as follows:
Sleep state: a binary value that represents whether the user

is asleep or awake during any given time slot. This definition
was inspired by the sleep diaries used in traditional medical
counseling. The sleep diary is a subjective evaluation of sleep
rhythm, typically represented as a table, with the date along
the Y axis, and the times of the day along the X axis (see
Figure 4). Students indicate the times spent asleep by coloring
the corresponding cells.
Subjective sleep quality: the user’s self-evaluation of their

sleep quality on an integer scale from 1 to 5 (1 = worst,
5 = best).
To obtain ground truth information, we ask users to

answer a questionnaire about their sleep each day after they
wake up. Table 1 shows the content of this questionnaire,
which includes questions about the timing of sleep, and a
five-star subjective sleep quality rating. To minimize user
burden, we avoid asking about nighttime wake-ups. While
this subjective self-evaluation is imperfect, it is regularly
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FIGURE 3. Screenshots from the smartphone application (original
Japanese user interface with English translations in speech bubbles).

used in medical counseling, and the relationship between
subjective sleep quality and mental health has been explored
extensively in the literature [29], [30], [31].

1) SLEEP STATE ESTIMATION
a: FEATURE EXTRACTION
To estimate sleep state, we first need to extract features from
the raw data. In this study, we use the features shown in

TABLE 1. English translation of the sleep questionnaire. (Questions were
asked in Japanese.)

Table 2. We process the sensor data periodically and extract
statistical information from them to be used as features.

For acceleration and gyro sensor data, features include
(1) statistics of the 3D vectors from the sensors and
(2) differences between consecutive values of these statistics
in the time series. The latter ‘‘diffXX’’ features can be useful
in determining whether a smartphone has moved.

For light and audio data, due to differences in the
environment (location of the home, lighting during sleep),
the relative differences in the data carries more useful
information, so we standardize the data for each subject.

The ‘‘time’’ feature indicates the ‘‘time-slot of day’’ of the
data collection. For example, if data is collected at 10-minute
intervals, the day can be divided into 144 numbered time
slots.

The ‘‘cluster’’ feature is a binary feature that indicates
whether the user is at home or not. This feature is useful
because we expect a large difference in sleep metrics between
home and other places (see Section IV-C for more details).

b: CLASSIFICATION
The next step is to classify each time slot.

Our sleep dataset is imbalanced, featuring more samples
in the ‘‘awake’’ state compared to the ‘‘asleep’’ state due
to the average sleep time of humans. Since this negatively
imbalance affects the classification accuracy, we construct
a Balanced Random Forest model, which can handle
unbalanced data by adjusting the number of samples for each
decision tree, and validate the model using Cross-Validation.

c: POSTPROCESSING
Since we estimate sleep state separately for each time
slice, due to subtle inaccuracies in the classification model,
spurious ‘‘asleep’’ time slots may appear in its output
randomly during daytime activity. To improve the accuracy
of the model, we try to correct such clear false positives after
classification via smoothing. Figure 5 shows an overview of
post-processing method.

We post-process the data in two ways. First, asleep states
shorter than 1 hour are converted into the awake state. Second,
awake states of 30 minutes or less between two asleep
states are considered to be temporary awakenings, and we
replace those with asleep states. In a previous experiment,
we observed a slight improvement compared to the case
without postprocessing, indicating that the postprocessing
method is effective.
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FIGURE 4. Example of sleep diary used in medical counseling.

TABLE 2. Features used for sleep state estimation.

FIGURE 5. Example of our postprocessing (smoothing) method for sleep state estimation.

2) ESTIMATING SUBJECTIVE SLEEP QUALITY
The subjective sleep quality for a given night is a function
of not just a single night but also of the environmental
conditions and sleep patterns of previous days. Therefore,
we use data from a certain period of time to estimate sleep
quality. We aggregate the features shown in Table 2 per hour,
and we estimate subjective sleep quality by using the feature
data of a total of 31 hours (see Table 3 for the set of features).

TABLE 3. Features considered estimating subjective sleep quality.

Let t be a given user’s wake-up time on a given day d .
When extracting features for day d , we used the data in the
time range from t − 31h to t . The reason for setting the time
to be 31 hours is that we want to include the previous day’s

sleep in the input of the feature extraction. Assuming that the
daily life rhythm is not significantly disturbed, we think this
is reasonable.

The SENSOR{xx} features come from Table 2. SENSOR
represents the sensor name, and xx represents the number of
hours before the wake-up time t . For example, if the wake-
up time is 09:00, accavg02 represents the average value of
acceleration from 06:00-07:00.

Additionally, we use some features that do not have
separate values for each hour, but rather one aggregate value:

• sleeptime: the total sleep duration within the time range
[t − 31h, t].

• usetime: the total smartphone usage time within [t −

31h, t]. Usage time is defined as the total time the
smartphone screen is on, computed in 5-minute time
slots. One 5-minute slot is considered 5minutes of usage
if the screen is turned on at all during that period, and
0 minutes otherwise.

• num_cluster: the total number of visited places within
[t−31h, t]. For active individuals, this value is expected
to be high. On the other hand, those who tend to isolate
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themselves may exhibit lower values approaching 1. See
Section IV-C for more details.

• weekday: a binary feature representing whether the time
instant t is a holiday or a weekday; we added this feature
because some people may get better quality of sleep on
holidays.

The next step is to classify each time slot. Since the data
used to estimate subjective sleep quality follows a pattern
similar to the sleep state data, we use Balanced Random
Forest for subjective sleep quality estimation as well.

B. ESTIMATING STUDY ENGAGEMENT
To obtain ground truth information, we ask users to fill out a
7-class questionnaire based on the UtrechtWork Engagement
Scale (UWES) [32] every day in the evening before falling
asleep, assessing the indicators of study engagement (vigor,
dedication, and absorption). The specific items of this
questionnaire are shown in Table 4, and the possible choices
are explained in Table 5. Since our target audience was
Japanese students, we used the Japanese version of the
questionnaire in our study. As discussed in Section IV-A,
our ground truth for study engagement relies on subjective
evaluation.

TABLE 4. Utrecht work engagement scale (UWES) [32].

TABLE 5. Choices of the Utrecht work engagement scale (UWES) [32].

1) FEATURE EXTRACTION
There are several factors that affect study engagement.
First, if the learning environment is quiet and calm, the
concentration level may increase. Second, there are also
temporal dependencies; for example, being busy and having
learning difficulties during the previous day may affect
the motivation of the next day. Third, it is also necessary
to consider the influence of recovery time after learning.
(Recovery is the free time after studying. It is generally
spent on leisure activities, and is essential for sufficient study
engagement on the next day.)

To capture such temporal dependencies (e.g., include the
recovery time of the previous day), similarly to subjective

sleep quality estimation, we aggregate the features shown in
table 2 per hour. Then, we estimate engagement by using
a total of 31 hours of feature data ([t − 31h, t]). However,
unlike in sleep quality estimation, we used the bedtime as the
reference time t .

2) CLASSIFICATION
To enhance battery life and user experience, we need to
improve estimation accuracy and limit data collection. To do
this, it is key to identify essential features for high accuracy.
To obtain feature importance information and deal with
imbalances in our questionnaire responses as mentioned in
Section IV-A, we employ a Balanced Random Forest model
and verify it using Cross-Validation.

C. COMPUTING FEATURES RELATED TO LOCATION
CLUSTERS
In this section, we describe the ‘‘cluster’’ and ‘‘num_cluster’’
features used in our estimation models. First, the ‘‘cluster’’
feature refers to the ID of the user’s location cluster at a given
time. Subsequent visits to the same location will be identified
as the same cluster without providing an absolute location.
We only use this to determine whether the user is at home or
not, and the ‘‘home’’ cluster is identified as the cluster that
the user spends the most time at. Second, the ‘‘num_cluster’’
feature refers to the number of visited places. Changes in
this number are closely linked to psychological factors like
motivation and can be seen clearly among students with
school attendance problems. When students lack motivation
to go to class, they skip classes, resulting in less time spent at
the university. Additionally, in cases such as social isolation
or depression, they might not leave their homes at all.

We estimate the number of visited places from Wi-Fi
access point (AP) scans (MAC address and RSSI). For
each month and each user, we preprocess their respective
data separately by pruning irrelevant data. For each scan
(containing a list of APs with RSSI), we select the top five
APs and create a binary vector that represents whether an AP
was seen within that observation. For example, if the known
set of access points is [a,b,c,d,e,f,g,h,i], and at a given time the
observed access points are [c,b,d,a,f], then the corresponding
binary vector will be [1,1,1,1,0,1,0,0,0].

Then, we use these binary feature vectors to per-
form Agglomerative Hierarchical Clustering (AHC), which
involves iteratively merging ‘‘objects’’ (AP scan results) into
clusters based on their dissimilarity. Since places near a
certain location tend to have similar Wi-Fi RSSI signatures,
we use the Euclidean distance between RSSI vectors as the
dissimilarity metric. To combat overcounting (such as in
cases where the user is traveling between places), we perform
smoothing by keeping only the most observed cluster as the
representative cluster within a given time interval, eliminating
spurious clusters that have few observations.

To validate our Wi-Fi-based estimation method, we com-
pare the results to ground truth data computed from GPS
coordinates (GPS data is only used as a reference point to
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validate our method’s accuracy). For each month, we use
Vincenty’s formulae [33] to calculate distances between
GPS coordinates and cluster them using a threshold of
100m to account for indoor GPS error. The mean absolute
error (MAE) is 1.017 and the root mean squared error
(RMSE) is 1.761. The RMSE is higher than the MAE due to
overestimation on certain days, presumably due to walking
indoors with many Wi-Fi access points. However, the MAE
indicates an error of approximately one point, suggesting that
the method is useful.

V. EXPERIMENTAL EVALUATION
In this section, we evaluate the effectiveness of each model
described in Section IV. First, we describe our application
deployment, and then we evaluate our method’s ability to
estimate the relevant indicators, such as sleep and study
engagement. Additionally, to reduce the battery consumption
of the sensing system, we explore whether we can reduce
the number of features collected for our estimations without
losing too much accuracy.

In the below sections, we determine the optimal hyper-
parameters of each estimation model by grid search and
evaluate them via 10-fold cross-validation. The chosen hyper-
parameters are shown in Table 6. Based on our empirical
observations, utilizing only features above a significance
threshold either enhances estimation accuracy or maintains
performance parity, while reducing computational complex-
ity. Therefore, we present results exclusively for this subset of
high-importance features. We report the effectiveness of our
estimation techniques via confusion matrices. These matrices
show to what extent we can estimate the given mental state
based on the training data (questionnaire responses). A higher
estimation accuracy indicates a better ability to detect at-risk
students and provide appropriate feedback about them.

TABLE 6. Hyperparameters obtained by grid search for each Random
Forest estimation model (max_depth and n_estimators represent the max
tree depth and the number of estimators, respectively).

A. EXPERIMENTAL REAL-WORLD DEPLOYMENT
We performed a real-world application deployment to under-
graduate and graduate students of Osaka University between
April 24th, 2022 and February 28th, 2023 (about 10 months).
To recruit participants, in April 2022, we displayed an adver-
tisement within the campus management system of Osaka
University called KOAN (Knowledge of Osaka University
Academic Nucleus). The advertisement contained a link to

our experiment website, which only allowed registrations
from people who have a university-provided e-mail address.
We received a total of 87 registrations from the website, out
of which 58 users installed and activated our data collection
app on their daily-use Android smartphone via the QR code
that we e-mailed to them.

Table 7 shows some basic statistical information about the
participants including age, gender, PSQI score, engagement
and study stage. In this study, we did not collect information
about their health status or academic performance.

TABLE 7. Participant information. (Avg=average, SD=standard deviation).

During the course of the study, participants answered
the morning and evening questionnaires. In the background,
our application collected sensor data automatically. This
experiment was carried out with the approval of the Ethics
Committee of the Health and Counseling Center, Osaka
University (approval ID: 15, approved in Sep. 2020) and the
Ethics Committee of the Graduate School of Information
Science and Technology, Osaka University (approval ID:
20-42, approved in Dec. 2020). All participants provided
their informed consent prior to enrollment in the study by
reading the description of the study displayed on the sign-
up page, and checking a box indicating their agreement. The
sign-up page contained information such as the purpose of
the research, the types of data we collect, how the data will be
stored and analyzed (e.g., anonymization), compliance with
relevant laws and the ethical guidelines related to human
subjects research, an explanation of the ability to opt out or
to selectively provide data at any time, a description of the
rewards provided, and an option to agree to the secondary
use of the collected data.

Data validity in our study was defined by the simultaneous
presence of sensor readings and questionnaire responses
(subjective ground truth). The dataset, aggregated across all
participants, contained 2,255 days’ worth of valid morning
questionnaire data and 1,725 days’ worth of valid evening
questionnaire data.Model trainingwas conducted exclusively
using these valid records.

B. RESULTS AND ANALYSIS
1) SLEEP STATUS ESTIMATION
We performed our evaluation using 5-minute time slots.
We estimated sleep state for each 5-minute time slot, and
rounded the questionnaire responses (which were input at
a resolution of 1 minute) to the nearest 5-minute mark.
We computed each feature shown in Table 2 for each 5-minute
interval, and we constructed a Balanced Random Forest
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model using these features that outputs an asleep/awake value
for each time slot.

a: ESTIMATION RESULT
The confusion matrix of sleep status estimation and more
detailed metrics are shown on Figure 6 and Table 8,
respectively. The results show a recall of about 83% for
‘awake (0)’, 89.5% for ‘asleep (1)’, and an F1-score of 0.808
(macro average), while the precision of sleep estimation was
about 61%. We think that the lower precision is due to the
following factors. First, users were only able to input one
sleep session per day, making it impossible to input daytime
naps. In these cases, the system may correctly estimate an
‘‘asleep’’ state since the phone is not used, but the ground
truth data will incorrectly indicate an ‘‘awake’’ state. Second,
an awake user may have left their smartphone in a quiet and
dark location for a period of time, causing the system to think
that the user is sleeping. Finally, users’ subjective evaluation
of the start and end times of sleep sessions may be inaccurate.

The important features (defined as those with an impor-
tance value higher than 0.01) were, in decreasing order of
importance, as follows: ‘time’, ‘diffgyroavg’, ‘diffaccmax’,
‘gyrostd’, ‘accmax’, ‘audioavg’, ‘diffaccstd’, ‘lightavg’, ‘dif-
fgyromax’, ‘lightmin’, ‘gyroavg’, ‘lightmax’, ‘diffgyrostd’,
indicating an understandable correlation with the time of
day, movement, ambient lighting, and background noise
level.

FIGURE 6. Confusion matrix of sleep state estimation. The label 0 means
awake, and the label 1 means asleep.

TABLE 8. Evaluation metrics of sleep state estimation.

2) SUBJECTIVE SLEEP QUALITY ESTIMATION
Based on the subjective sleep quality answers from the sleep
questionnaire (Table 1), we built a Balanced Random Forest
model to estimate the sleep quality rating using the features in
Table 3. In the following, for the sake of simplicity, we may
refer to subjective sleep quality as ‘‘sleep quality’’.

Since the number of features used for estimation is very
large, we only enable features that have an importance of
at least 0.01 in our preliminary evaluation. This value was
chosen empirically. Figure 7 shows the important features for
5-class sleep quality estimation. The ‘‘Observation timing’’
value indicates the timestamp of the data, expressed as hours
before the wake-up time. For example, if the observation
timing is 04, it indicates that it is a feature of 4 hours before
the wake-up time.

The results indicate that illuminance is a very important
factor, especially ‘‘lightmin’’. Another important feature is
‘‘audiomin’’, an indicator of noise level. There are also
some important features clustered around the observation
timing of 20, indicating a connection between sleep quality
and the activities during the previous daytime. These
feature might be important for various reasons: (1) A
bright environment may interfere with sleep, leading to a
decrease in sleep time and sleep quality (2) High levels of
daytime background noise indicate students were socially
active and involved in extracurriculars, leading to deeper
sleep and better overall sleep quality. (3) High levels of
nighttime background noise may have a negative effect
on sleep quality. Additionally, the aggregate (non-hourly)
features ‘‘sleepTime’’, ‘‘num_cluster’’, and ‘‘use_time’’ were
important. Sleep time is known to be an important factor in
determining sleep quality. As for the number of clusters and
smartphone use time, one possible reason for their importance
could be that excessive activity or sensory overload could
potentially impact sleep quality negatively, whereas moderate
levels of exploration and stimulation might have a positive
effect on sleep.

TABLE 9. Evaluation metrics of 5-class subjective sleep quality
estimation. The labels represent the sleep quality rating (1 = worst, 5 =

best sleep quality).

The confusion matrix and the detailed results are shown
on Figure 8 and Table 9, respectively. The table shows that
the 1-star rating is estimated with a precision of 82%, but
the precision of the other rating classes is low, leading to an
overall F1-score of 0.62 (macro avg).
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FIGURE 7. Important features of 5-class subjective sleep quality
estimation (Yellow = important, Dark blue = not important). Features
without an observation timing are shown in the ‘no slot’ category.

FIGURE 8. Confusion matrix of 5-class subjective sleep quality
estimation. The labels represent the sleep quality rating (1 = worst, 5 =

best sleep quality).

While the overall accuracy is low, the confusion matrix
shows that most erroneous predictions are semantically close
to the true answers (e.g., 2 stars instead of 1 or 4 stars instead
of 5), and larger discrepancies were rare. This result shows
that our method captures the quality of sleep well.

a: SIMPLIFIED ESTIMATION
For the purposes of supporting student life, the ability to
estimate the overall tendency (is the situation good or bad)
is more important than precisely estimating the quality of
sleep. To evaluate our method in this aspect, we converted the
5-level sleep quality scale into a 3-level scale by combining

the two highest ratings (4-5) into the label 3 and the two
lowest ratings (1-2) into the label one. As before, we perform
3-class classification using only the important features. The
important features are shown on Figure 9, which shows a
similar pattern, i.e., a general importance of noise levels and
ambient lighting, and similar timings for other important
features.

FIGURE 9. Important features of 3-class subjective sleep quality
estimation (Yellow = important, Dark blue = not important). Features
without an observation timing are shown in the ‘no slot’ category.

The results of 3-class estimation are shown in Figure 10
and Table 10. The confusion matrix shows that it is rare to
confuse 0 (bad sleep) and 2 (good sleep), highlighting our
method’s usefulness for detecting a deterioration of sleep
quality.

FIGURE 10. Confusion matrix of 3-class subjective sleep quality
estimation (important features). The labels 0, 1, and 2 represent bad,
neutral and good sleep quality, respectively.
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TABLE 10. Evaluation metrics of 3-class subjective sleep quality
estimation.

3) STUDY ENGAGEMENT ESTIMATION
Similarly to sleep quality estimation, the number of features
is large, which may lead to a decrease in accuracy due
to unnecessary features so we only enable the important
features in our Balanced Random Forest model. In all
engagement estimation models below, the cut-off threshold
for important features was an importance value of 0.001. Also
similarly to sleep quality estimation, our focus is on detecting
trends and changes in study engagement, not on estimating
the current state in the highest possible detail. Therefore,
we also investigate a simplified version of the Utrecht Work
Engagement Scale (UWES) [32] that contains only three
classes (0-1, 2-4, 5-6). To distinguish between good and bad
study engagement and detect its deterioration, it is sufficient
to be able to distinguish the 5-6 (Positive) and 0-1 (Negative)
classes.

Overall, noise levels and ambient lighting conditions
are important features for estimating study engagement
regardless of their observation timing. These environmental
conditions can affect attention, concentration, and mood. For
example, high noise levels can increase stress, leading to
fatigue and decreased focus, while adequate lighting supports
visual processing and comfort. Regardless of the time of day,
these factors impact students’ ability to learn, focus and stay
engaged in their studies.

Another important feature was ‘‘num_cluster’’. A very
high number of visited locations could be distracing and lead
to decreased focus and productivity, ultimately impacting
their ability to retain information and feel satisfied with their
studies. Additionally, frequent transitions between locations
can add up to stress and fatigue, further hindering effective
learning. On the other hand, too few locations per day could
suggest a lack of variety in their routine. A lack of diversity in
environments and stimuli can lead to monotony and boredom,
decreasing motivation and study engagement.

Finally, ‘‘use_time’’ as also important. If the smartphone
usage time on a day is too high, it may indicate that the student
is spending too much time on non-academic activities such
as social media, gaming, or mindless scrolling, which can
lead to procrastination and reduce their focus on studying.
On the other hand, if the smartphone usage time is too low,
it might imply that the student is not utilizing technology
sufficiently to support their learning (e.g., by seeking out
educational materials or exchanging information with their
peers), leading to reduced motivation.

a: VIGOR ESTIMATION
The important features for vigor estimation are shown on
Figure 11. In addition to the observations at the top of
Section V-B3, there is a cluster of important features around
an observation timing of 11-13, i.e., 11-13 hours before
bedtime, which typically corresponds to various daytime
activities.

The results of vigor estimation are shown on Figure 12
and Table 11. We were able to estimate vigor with an F1-
score of 0.65 (macro avg). In cases where the estimation was
wrong (typically in neutral answers), there were only minor
discrepancies (the predicted class had similar scores to the
true class).

FIGURE 11. Important features of 7-class vigor estimation (Yellow =

important, Dark blue = not important). Features without an observation
timing are shown in the ‘no slot’ category.

FIGURE 12. Confusion matrix of 7-class vigor estimation (0 = lowest
vigor, 6 = highest vigor).

Regarding the simplified, 3-class estimation model (the
mapping is described at the beginning of Section V-B3), the
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TABLE 11. Evaluation metrics of 7-class vigor estimation.

important features are shown on Figure 13, and the results are
shown on Figure 14 and Table 12. While the precision of the
class ‘‘Positive’’ was low, the macro avg F1-score is around
0.75.

FIGURE 13. Important features of 3-class vigor estimation (Yellow =

important, Dark blue = not important). Features without an observation
timing are shown in the ‘no slot’ category.

TABLE 12. Evaluation metrics of 3-class vigor estimation.

b: DEDICATION ESTIMATION
The important features of dedication estimation are shown
on Figure 15. In addition to the observations at the top
of Section V-B3, we can also see a cluster of important
features around the observation timings of 10-12 representing
daytime activities. Additionally, movement-related features
like accelerometer and gyroscope seem to be more relevant

FIGURE 14. Confusion matrix of 3-class vigor estimation (0 = lowest
vigor, 2 = highest vigor).

for dedication than in earlier sections, suggesting that
physical activity during the day affects the dedication.

The results are shown on Figure 16 and Table 13. Our
model achieved an overall macro-avg F1-score of 0.657,
and has a low precision for class 5, presumably due to
insufficient support. The confusion matrix suggests that,
overall, incorrect estimations remain semantically close to
the true label (within one point), except the relatively high
number of cases where themodel incorrectly outputs a neutral
value (3). The value 3 happens to be the class with the largest
support, suggesting an imbalanced dataset.

FIGURE 15. Important features of 7-class dedication estimation (Yellow =

important, Dark blue = not important). Features without an observation
timing are shown in the ‘no slot’ category.

We also evaluated our method with the simplified 3-class
estimation model (with the mapping described at the
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FIGURE 16. Confusion matrix of 7-class dedication estimation (0 =

lowest dedication, 6 = highest dedication).

TABLE 13. Evaluation metrics of 7-class dedication estimation.

beginning of Section V-B3). The results are shown on
Figure 18 and Table 14. The model has an F1-score of 0.745
(macro avg). While it has some difficulty in distinguishing
between ‘‘Neutral’’ and ‘‘Positive’’, it can estimate the (more
important) negative cases with high accuracy.

TABLE 14. Evaluation metrics of 3-class dedication estimation.

c: ABSORPTION ESTIMATION
The important features are shown on Figure 19. Similar to
earlier sections, the influence of noise level and ambient
lighting remains strong, and we can still observe a cluster
of important features at the observation timings 10-13. This
result indicates that the user’s environment throughout the
day is important for estimating absorption.

The results of absorption estimation are shown on
Figure 20 and Table 15. We can see that the precision of class

FIGURE 17. Important features of 3-class dedication estimation (Yellow =

important, Dark blue = not important). Features without an observation
timing are shown in the ‘no slot’ category.

FIGURE 18. Confusion matrix of 3-class dedication estimation (0 =

lowest dedication, 2 = highest dedication).

5 is low. This class had insufficient support due to a limited
number of training samples, which may have negatively
impacted the results. Class 2 also has low precision, despite
the high number of samples. Specifically, for true labels in the
range of 2-4, the model tends to predict the label 2 incorrectly.
However, the model can estimate the extreme cases (0 and 6)
very well.

We also evaluated our method with a simplified, 3-class
estimation task. The important features are shown on
Figure 21, and they are similar to the ones in 7-class
estimation, except that the gyroscope features appear to have
a stronger influence.

The results are shown on Figure 22 and Table 16.
The confusion matrix shows that our model can generally

VOLUME 13, 2025 4665



V. Erdélyi et al.: Detecting Subtle Signs of School Attendance Issues

FIGURE 19. Important features of 7-class absorption estimation
(Yellow = important, Dark blue = not important). Features without an
observation timing are shown in the ‘no slot’ category.

FIGURE 20. Confusion matrix of 7-class absorption estimation (0 =

lowest absorption, 6 = highest absorption).

TABLE 15. Evaluation metrics of 7-class absorption estimation.

recognize cases of low absorption well, but has difficulties
in distinguishing between neutral and high absorption cases.

FIGURE 21. Important features of 3-class absorption estimation
(Yellow = important, Dark blue = not important). Features without an
observation timing are shown in the ‘no slot’ category.

As in the 7-class estimation, this is presumably caused by
the limited number of training samples for class 5 (in the
questionnaire response, on a scale of 7).

FIGURE 22. Confusion matrix of 3-class absorption estimation (0 =

lowest absorption, 2 = highest absorption).

C. DISCUSSION AND LIMITATIONS
In this section, we discuss key limitations of our method and
system.

1) TECHNICAL AND SCALING LIMITATIONS
System reliability depends heavily on consistent sensor data
collection, which can be compromised by battery drainage
or periods of missing/incorrect data when students forget or
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TABLE 16. Evaluation metrics of 3-class absorption estimation.

choose not to carry their phones. As deployments scale to
larger student populations, the backend systems will require
further optimization to handle increased database loads.

2) PSYCHOLOGICAL AND PRIVACY IMPLICATIONS
The psychological and behavioral implications of continuous
monitoring present additional challenges. Students’ aware-
ness of being monitored could inadvertently affect their
natural behavior patterns - some might experience increased
anxiety about being tracked or being identified as ‘‘at-
risk’’, while others might attempt to manipulate the system
by artificially adjusting their behaviors. Privacy concerns
may lead students to restrict app permissions or disable
sensing functions, reflecting their psychological discomfort
with monitoring. This combination of self-consciousness and
privacy-protective behavior could interfere with the very
patterns we aim to detect, and potentially worsen social
withdrawal tendencies in students already struggling with
attendance issues.

3) INDICATOR COVERAGE
Our study did not cover all potential predictors of school
attendance issues, and may thus overlook other relevant
factors. This could result in false negatives for students
affected by unaccounted-for factors. Including additional
factors like anxiety, depression, or internet addiction could
help reduce these false negatives.

4) GENERALIZABILITY TO OTHER POPULATIONS
Our study was conducted with a limited sample of students
sample, offering indicators applicable to those who own and
use a smartphone, but generalizability to other populations
may require retraining or fine-tuning due to differences
in smartphone usage patterns, culture, and resource avail-
ability. In low- and middle-income countries with scarce
resources like limited Wi-Fi networks and lack of high-
end smartphones, deploying our application on a large
scale may be challenging. We can adapt by retraining
estimation models using available features and sensors, but
this may negatively impact accuracy. For instance, if Wi-
Fi networks aren’t available, the system may use GPS data
for location-based features at the expense of privacy, or we
can train models without location data. When working with
low-cost smartphones with limited sensors, we can train
models using the available sensor set. However, our method

requires students to have a daily-use smartphone. Our system
can be utilized for various age groups, including high school
students and even younger students in some cases. With
2022 statistics showing a 45% smartphone penetration rate
among 6-12-year-olds in Japan, and over 86% for 13-19-
year-olds [34], these users often spend hours daily on their
phones [35]. Similarly, our method applies to working adults,
as sleep indicators remain relevant, while work engagement
replaces study engagement in the prediction model.

5) COMPARISON WITH EXISTING APPROACHES FROM
SECTION II
Our approach advances beyond existing work in several
key aspects. Regarding sleep estimation, existing approaches
have shown that smartphone sensors can effectively estimate
sleep patterns and quality. However, university students
face multiple challenges beyond sleep, necessitating a
comprehensive approach that incorporates diverse indicators
of well-being. Our work addresses this by incorporating sleep
patterns as one component within a broader framework for
detecting early warning signs of academic disengagement.
In terms of psychological state estimation, our work can
continuously monitor psychological states and engagement
through passive smartphone sensing alone, requiring neither
additional devices nor active user participation. This is
an advantage over existing methods that rely on wearable
devices or active user input, which may not be practical
for students with low engagement or social withdrawal
tendencies.

VI. CONCLUSION AND FUTURE WORK
In this study, we proposed a screening method and built a
student support system that aims to detect subtle signs of
school attendance problems in university students. In coop-
eration with psychiatrists, we defined sleep problems and
decreased student engagement as relevant indicators. Unlike
existing work, we estimated these indicators using only
off-the-shelf smartphones, which are widely used among
university students, without requiring additional devices such
as wearables.

Our evaluation indicates that, using smartphone sensor
data, our Balanced Random Forest model can perform binary
sleep state classification (F1-score: 0.808), can estimate
subjective sleep quality (3 classes) (F1-score: 0.703), and
can estimate 3 standard indicators of study engagement (F1-
score: approx. 0.745).

It is important to emphasize that our proposed screening
method is not intended to replace traditional face-to-face
medical examinations, but rather to complement them by
selectively flagging at-risk students and connecting themwith
medical experts as needed. Ultimately, we believe that our
system can have a positive impact on the timeliness and
effectiveness of detecting and treating mental health issues
such as the initial stages of social withdrawal.
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Our next phase of development includes a cross-platform
mobile system for Osaka University’s 2025 incoming class
that will analyze smartphone-generated behavioral data to
deliver wellness insights and facilitate optional connections
with mental health practitioners.
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