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ABSTRACT The increasing complexity and unpredictability of many ICT scenarios let us envision that
future systems will have to dynamically learn how to act and adapt to face evolving situations with little or
no a priori knowledge, both at the level of individual components and at the collective level. In other words,
such systems should become able to autonomously (i.e., self-) develop mental models of themselves and of
their environment. Autonomous mental development includes: learning models of own capabilities; learning
how to act purposefully towards the achievement of specific goals; and learning how to act in the presence of
others, i.e., at the collective level. In this paper, we introduce a conceptual framework for autonomous mental
development in ICT systems – at both the individual and collective levels – by framing its key concepts and
illustrating suitable application domains. Then, we overview the many research areas that are contributing
or can potentially contribute to the realization of the framework, and identify some key research challenges.

INDEX TERMS Autonomous agents, learning, multiagent systems, self-adaptation, self-organization.

I. INTRODUCTION
Since their early months, human infants start experiencing
their own bodies, moving hands, touching objects, and
interacting with people around them. Such activities are part
of an overall process of autonomous mental development
(aka self-development), which lets them gradually develop
cognitive and behavioral capabilities [69]. These skills
include the capability to recognize situations around, the
sense of self [17], the sense of agency (i.e., understanding the
effect of own actions in an environment) [43], the capability
to act purposefully towards a goal, and some primitive social
capabilities (i.e., knowing how to act in the presence of
others).

Moving from humans to machines, the possibility of
building ICT systems capable of autonomously developing
their ownmental and social models and acting purposefully in
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an environment is increasingly recognized as a key challenge
in many areas of artificial intelligence (AI) [83], such as
robotics [41], [86], intelligent IoT [46], autonomous vehicles
management [89].

Indeed, for small-scale and static scenarios and for
simple goal-oriented tasks, it is possible to ‘‘hardwire’’
a model of the environment within a system, alongside
some pre-designed plans of action. However, for larger and
more dynamic scenarios, and for complex tasks, individual
components of ICT systems should be able to autonomously
(i.e., without human supervision): (i) build environmental
models and continuously update them as situations evolve;
(ii) develop the capability of recognizing and modelling the
effect of their own actions on the context (which variables of
the environment can or cannot be directly affected by which
actuators, which variables and actuators relate to each other);
(iii) learn to achieve goals on this basis and depending on
the current situation; and eventually (iv) learn to interact with
others to coordinate actions.

VOLUME 13, 2025

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 5907

https://orcid.org/0000-0002-9663-1071
https://orcid.org/0000-0001-8921-8150
https://orcid.org/0000-0002-6837-8806
https://orcid.org/0000-0002-0945-2674


M. Lippi et al.: Autonomous Mental Development at the Individual and Collective Levels

The ambitious idea of building systems capable of
autonomous development is not new, and its opportunity
has already been advocated for several years [86]. Also,
many similar research ideas have been conceived under
different names. For instance, researches under the names
of ‘‘Self-aware computing systems’’ [39], ‘‘Autonomic
computing’’ [33], ‘‘Organic computing’’ [58], ‘‘Lifelike
computing systems’’ [77], and finally, ‘‘Self-improving
system integration’’, [10]. All of the abbove foster systems
that are able to learn models of their own structure, behavior,
and relationship with their operational environment, and
use such models to plan actions achieving their intended
goal despite the potential disruption of environment changes.
Autonomous mental development differs as it emphasizes
the continual learning process underlying autonomousmental
development, and the explicit nature of the mental models
built with it. Additionally, we consider both the individual
and collective dimensions, and we interpret the process more
as bottom-up rather than top-down—of course, traditional
top-down engineering is not ruled out.

The topic is now even more timely. Many recent research
results in areas such as causal analysis and causal learning [1],
[52], reinforcement learning [56] multiagent learning [19],
and self-organizing behaviors [72], have started shedding
light on the various mechanisms that have to be involved
in the process of autonomous development. Such results,
in addition to the recent breakthroughs in the area of large
language models [21], [38] and large generalist agents
built on top of generative AI technologies [24], [95], hint
at the fact that what once was only a vision (at least
in specific application areas) is getting closer to become
a reality. Furthermore, unfolding the key concepts and
mechanisms underlying the very notion of autonomous
development can also contribute to understanding some
of the many mental mechanisms behind artificial general
intelligence [14], [49].

Against this background, the contribution of this paper is to
frame the key concepts of autonomous mental development
in ICT systems and to identify challenges and promising
research directions. More in particular: Section II introduces
a general conceptual framework for the (continuous and
adaptive) process of autonomousmental development, both at
the individual and at the collective level; Section III sketches
some key application scenarios; Section IV analyzes the
most promising approaches in the area of machine learning,
multiagent systems, and collective adaptive systems that
can contribute with fundamental building blocks towards
realizing the vision of autonomous mental development, each
per se challenging; Section V identifies additional horizontal
challenges to be attacked, emphasizing their inherent cross-
disciplinary nature.

We emphasize that an earlier and much shorter version of
this paper appeared in [45]. This new version contains more
detailed discussions, updated to cover recent research results
in the AI field, as well as more references to related works
and more representative and updated figures.

II. CONCEPTUAL FRAMEWORK
Autonomous mental development, besides being the process
that infants carry out during the early stages of their life [69],
also involves any ‘‘agent’’ whenever it is incarnated in a new
body and immersed in a new environment, be it a physical,
virtual, or a mixed cyber-physical one.

As an example, to quickly and intuitively introduce our
general framework (Figure 1), let us consider what we
do whenever we start playing a new videogame. At first,
we observe the game environment on the screen and the
commands we have available on the joystick; that is, we get
acknowledged with our embodiment in and perception of the
videogame. We spend a few seconds trying the commands to
assess their effects in the game environment; that is, we try
to acquire a sense of agency. Then, we understand what is
the goal of the game and how we can use the commands to
achieve it; that is, we start acting and planning future actions
in a goal-oriented way.
Typically, we recognize in the videogame the presence

of other ‘‘agents’’, virtual characters that are not under our
control; that is, we distinguish between self and non-self. The
acquisition of such a skill implies that we acknowledge that
we should tune our actions also in dependence on the actions
of these other agents (strategic thinking). All this process
is typically repeated in a cyclic way (i.e., when reaching a
new level in the game) to adapt to new environments, new
situations, new tools available to play with, new goals, and
new virtual characters (e.g., enemies) appearing.

In the case of multiplayer games, besides recognizing the
presence of players different from ourselves, and recognizing
the need to act also accounting for them, we should
understand: whether we have communication tools available,
and how to use these tools to affect and influence the actions
of others, i.e., to coordinate with them, so that eventually
structured (i.e. institutional) ways to act together towards a
goal can be established. Again, this process may be cyclically
repeated as the game advances.

Truly intelligent and adaptive ICT systems should undergo
a similar process and autonomously develop their artificial
minds through similar phases. Thus, in the following,
we analyzes each of such phases, whose key characteristics
are summarized in 1.

A. THE INDIVIDUAL LEVEL
Let us first consider a single agent X (purely software or
physically embodied) immersed in a (virtual or physical)
environment. The agent can observe a set of environmental
variables V = {v1, v2, . . . , vm}. For simplicity and without
loss of generality, internal variables of the agent itself (i.e.,
its current status and configuration) are included in the set.
In addition, the agent has a set of actions that it can choose
from A = {a0, . . . , an−1, null}, including the null action.

1) EMBODIMENT AND PERCEPTION
In this very early phase, the agent should autonomously
recognize the existence of A and V , that is, it should
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FIGURE 1. The conceptual framework of autonomous mental development.

get acquainted with its actuation and sensory capabilities.
Without resorting to complex AI techniques, methods from
the reflective and self-aware programming systems [71] can
effectively apply in this phase to let the agent dynamically
self-inspect its capabilities (A) and start analyzing the
observed variables (V). Still in this phase, the agent can also
start acquiring some understanding of the relations between
variables in V over time, as well as some simple prediction
capabilities.

2) SENSE OF AGENCY
In this exploratory phase, the agent starts trying to understand
what are the effects ofA onV , by trying to apply actions (even
without any specific goal in mind) to see their effects. That
is, it will eventually recognize that, given the current state of
V (Vcurrent ), the application of an action ai (or of a sequence
of actions) in A will eventually lead (with some probability)
to state Vnext . This mechanism enables the construction of the
basic sense of agency [69], and of the sense of causality from
A to V .

3) GOAL-ORIENTEDNESS
In this exploitation phase, the agent starts applying A with
goals in mind. That is, given the current state Vcurrent and a
desired future state Vg (the goal, aka the desired ‘‘state of the
affairs’’), the agent resorts to the acquired sense of agency by
applying those actions inA that can possibly lead to Vg. This
also involves achieving the capability of planning the required
sequence of actions to achieve Vg.

4) SELF AND NON-SELF
As soon as an individual agent starts exploring its own actions
in A, and recognizes that such actions have effect on V ,
it also understands that there are effects that are not under
its own control (i.e. that does not belong to its A). That
is, there are ‘‘non-self’’ entities acting in the environment,
too, either with the same A or a (partially) disjoint set A′.
By learning how to apply A, the agent also learns the limits
of such actions because of the non-self entities affecting some
variable vi in V .

5) STRATEGIC THINKING
The agent has built a model of the world, that is, of how
A affects V , and it starts including the mental models of
others (non-self) [79] while acting, as well as while designing
strategies. That is, it can recognize that there are goals that it
can possibly (or hopefully) attain only by accounting for the
actions of others, be them cooperative or competitive.

As in the videogame example, autonomous development
is not to be conceived as a ‘‘once-and-for-all’’ process.
Rather, it is a continuous, never-ending loop: environmental
conditions can change, new sensors may become available to
enable more detailed observations (thus expanding V), new
actions become feasible (hence expandingA) – or vice versa,
some sensors and actions may no longer be available – and
new virtual characters may appear or disappear. This requires
agents to re-tune their learned sense of agency, and re-think
how to achieve goals in isolation and in the presence of non-
self entities.

We note that the learning mechanism that we envisage
for driving the autonomous mental development of an agent
is significantly different from the learning paradigm of
foundation models such as LLMs. Specifically, the learning
of such models is either self-supervised [96], using large
corpora of raw text to learn next-word completion, or strongly
based on human supervision, as in the case of reinforcement
learning from human feedback (RLHF) [20]. Curiosity-
driven learning and autonomous development are currently
not among the principles that regulate the learning of
foundation models. The collective level, which we present
in the next section, is another dimension that has been
started being investigated only recently by the most recent
models [98].

B. THE COLLECTIVE LEVEL
In the presence of multiple agents acting in the same environ-
ment, agents could recognize that there are goals that cannot
be achieved in isolation or by simply applying strategic
thinking. Thus as part of their autonomous development,
they should collectively develop some forms of ‘‘autonomous
social engagement’’.
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TABLE 1. Core skills considered in autonomous mental development, along with examples of their practical application.

Formally, this corresponds to considering a set of K agents
X0, . . . ,XK−1, where (i) each agent can choose the actions
to perform from its own set Ak (possibly disjoint or only
partially overlapping from those of the other agents); (ii)
not necessarily all the agents can observe the whole set of
environmental variables, but more likely each agent Xj has
the capability to perceive and/or control a subset Vk of them.
Thus, for specific goals Vg to be achieved, there is the need
to properly combine and sequence actions by different agents,
e.g. Xi executes aiw whereas Xj executes a

j
z, and so on.

1) COMMUNICATION
To overcome the limitations of strategic thinking, agents
should be provided with a specific set of communication
actions, i.e., actions that are devoted to influencing the
actions of other agents. These could take the form of explicit
communication acts, i.e., messages, that the agent should
learn how to receive and send as an additional – social –
form of perception and action. However, they could also
take the form of more indirect actions aimed at affecting
the behavior of others, i.e., leaving signs in the environment
(stigmergy) or adopting peculiar behaviors aimed at being
noticed by others (behavioral implicit communication) [50].
All these cases can be formalized by augmenting the A set
to include communication actions, and possibly V , to include
observable signs in the environment.

2) COORDINATION
By exploring its available communication actions, agents
start understanding how such acts can be used to get access
to and affect some of the variables of the environment, and
in particular those that are not observable and controllable
by themselves. For instance, agent Xk can learn how to
use communication acts to get access to the value of some
non-observable variables vi ̸∈ Vk , or to direct other agents in
executing the actions aw ̸∈ Ak that can affect its values vj ̸=i ∈

Vk as required for a goal to be achieved. In other words, such
explorations enable learning basic forms of coordination,

which can be thought of as a social form of the sense of
agency.

3) INSTITUTIONS
Eventually, after exploring coordination protocols, the agents
can ‘‘institutionalize’’ their patterns of interaction towards
collective actions. That is, they will learn those acceptable
social patterns of coordination, and the set of social norms
and social incentives, that enable them to systematically
achieve goals together [57]. Formally, this corresponds to
having agents in the collective recognize and adhere to
a set of constraints C(A | V) ruling the way actions A
(there included communication actions) can be performed
in specific conditions V , as well as the commitments and
expectations each communication action sets on the agents
participating in the protocol.

As for the case of the individual level, the dynamics of
the environment or of the agent population may require
the above collective process to assume a continuous cyclic
nature. This is what happens in video games played in groups:
after a first acquaintance of involved players (i.e., recognition
of self/non-self and strategic thinking phases), they start to
coordinate with each other through communication means of
various types, that can be reused several times if they appear
to be effective toward the shared goal, letting them become
institutionalized. The cyclic nature of this process is due to the
fact that communication tools or strategies may emerge in the
game, and they can be used to learn new ways to coordinate
and new institutionalized group strategies.

We note that communication, coordination, and institutions
are not strictly necessary to promote complex goal-oriented
collective actions, according to some literature [44]. Never-
theless, whenever communication mechanisms are available,
learning to exploit them is a natural part of the autonomous
mental development process In fact, that can both facilitate
and improve outcomes of the development of effective and
purposeful social ways of acting and can give to the system
designermore control over such collective behavior, therefore
more guarantees on expected outcomes.
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III. APPLICATION DOMAINS
There are diverse application scenarios that can potentially
take advantage of systems capable of autonomous mental
development, at the individual and/or collective level.

A. ROBOTICS
Robotics is the area which first identified the profitability of
building robots cables of autonomously building ‘‘by expe-
rience’’ a model of their own capabilities and consequently
learning to achieve specific goals [13], [78].

In general, designers define a formalized model of their
robots and can easily wire such model directly into embedded
software without necessarily having the robot learn it in
autonomy. However, autonomous learning may become
necessary when the robot gets damaged while in operation,
sometimes even partially losing its original capabilities.
In that case, the robot should autonomously learn a new
model to understand what it can do according to its residual
operational capabilities, and how it can re-learn to achieve
goals with them [13].

A different situation is that of modular robots [92].
There, the robot can reconfigure its shape to serve different
tasks, and having the model designer foresee all possible
shapes can be time-consuming and prevent emergent (not
previously envisioned) shapes – functional to peculiar tasks
– to be identified. In this case, having the modular robot
try to assume a variety of forms and understand its action
capabilities for the different shapes could be very useful
before deployment (other than after deployment, to recover
from injuries and from the loss of some of its modules).

At the level of collective robotics (i.e., a group of robots
living together in an environment and having to cooperate
to achieve a collective task), most current approaches rely
on coordination schemes defined at design time. However,
it has been argued that the autonomous evolution of commu-
nication and coordination capabilities can be of fundamental
importance to acquire the capability of the collective to act in
unknown and dynamically changing scenarios [18].

B. SMART FACTORIES
Similarly to a collective robotic system, a complex man-
ufacturing system can be seen as an aggregated group of
components that act together in order to achieve a production
goal. Besides their basic scheme of functioning, defined at
design time, if one component of the manufacturing system
breaks or has some unexpected behavior, the manufacturing
system should ideally adapt to the new situation, so as to
overcome the problem without undermining production.

Exploring in advance all possible contingencies and
hard-wiring possible solutions to them in the system is almost
impossible. The system should rather learn autonomously
how to act upon changing conditions (whether of a temporary
or ultimate nature) to maintain its overall functioning.
For example, the system may explore the possibility of
deviating the material flow from the broken component to

another one, to learn the effect of such actions, and its
overall impact on the production. In doing so, a local or
global production re-scheduling might be necessary, with the
initiative collectively coming from the different components
of the manufacturing system and without involving the
production planning office. Clearly, such capabilities of
autonomous adaptation can also apply at the level of individ-
ual components of the system, whenever these adaptations do
not impact other components.

The need for integrating adaptability and flexibility in
manufacturing systems is explicitly recognized as a key
challenge in Industry 4.0 initiatives [94], and some examples
of agent-based production control systems – exhibiting some
limited forms of adaptivity – can be already found, e.g., in the
automotive industry [16]. However, these are still far from
the adaptivity level that could be reached by fully-fledged
autonomous mental development approaches.

C. SMART HOMES
Buildings and homes are increasingly being enriched
with sensors and actuators (i.e., IoT devices, in general),
to facilitate our interactions with the environment and,
by monitoring our activities and habits, to increase our safety
and comfort [2]. However, such systems exploit design-time
decisions w.r.t. deployment of devices, their interactions, and
the types of services to be provided. Learning capabilities are
typically limited to monitoring user activities and adapting
the parameters of services (e.g., the levels of light and
heating) accordingly [91].

From the perspective of autonomous mental development,
we envision that once IoT devices are deployed in an envi-
ronment, they should be activated in order to autonomously
explore their own individual and collective capabilities (i.e.,
the individual sense of agency and the impact of inter-device
interactions). This will enable them to eventually learn how
they can affect the home environment and how, and apply
such capabilities once users start populating the environment.
Then, the overall smart home/building system will continue
to dynamically and continuously modify its functioning to
adapt to the presence of different users with different profiles,
of users whose habits tend to evolve over time, or simply to
react to contingencies (e.g., modifications in the number and
type of available devices, or structural modifications to the
environment).

We have conducted some simple preliminary experiments
to show the potential feasibility of such a vision in a simple
two-rooms smart home testbed [46]. In particular, we have
shown that IoT devices in a room, when left free to explore
the effects of their actions, can eventually build a sound
causal model of the room, and can use such a model to
actuate specific environmental conditions in that room. Also,
by merging the models built for the two rooms, devices
can learn to cooperatively actuate specific house-level envi-
ronmental conditions. Exploring larger and more complex
environments and different learning techniques, also in the
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presence of users, will give us better clues on the general
applicability of the approach and its possible limitations.

D. SMART CITIES
Most of the considerations made above for smart home
and building scenarios can, in theory, be transferred to the
larger scenario of smart cities. That is, to all those ICT
and IoT systems that can be deployed to automate and
regulate the activities of modern cities, e.g., mobility, energy
management, and garbage collection. Indeed, the need to
deploy robust systems capable – with limited design efforts
and limited human intervention – of dynamically adapting
their behavior to continuously changing urban conditions
is widely recognized as a key challenge for harmonic and
sustainable urban development [80].

The substantial difference between smart homes/buildings
and smart cities is that cities already exist and are already
inhabited. Thus, one cannot think to let a smart city system
free to explore the effect of its actions and interactions to
eventually become capable of acting in a goal-oriented way
(which you can instead do before a new building becomes
inhabited).

However, one can think of exploiting a simulation-based
approach to this purpose. Given that accurate and reliable
simulators exist to study different urban aspects, one can think
of having system components explore and learn in a simulated
environment towards full mental development, before being
eventually deployed in the real world [89].

FIGURE 2. Reinforcement learning in a nutshell.

IV. STATE OF THE ART: OPPORTUNITIES AND
CHALLENGES
The idea of autonomous mental development, at both the
individual and collective level, has been widely investigated
in areas such as cognitive psychology, neuroscience, and
philosophy, but has been also argued as a key property that
general artificial intelligence approaches should feature [64],
[86], especially with the recent advent of a new breed
of autonomous/cognitive agents based on generative AI
technologies [84], [87].

We hereby focus on the computational perspective, and in
particular on a set of selected approaches (Figure 3) that we
think can contribute to attack and implement different aspects

of the overall autonomous mental development vision, thus
making it possible to turn the vision into a reality. However,
although these approaches will play a fundamental role in
future implementations, several challenges have still to be
addressed to become practical tools for future autonomously
developing systems.

We do not focus here on the basic levels of individual
development, i.e., perception and embodiment, in that tools
already exist to give agents sophisticated sensing abilities
(e.g., convolutional neural networks to recognize objects,
scenes, and activities [42]) and the capability of controlling
their own actuators purposefully [51].

A. REINFORCEMENT LEARNING
The broad area of reinforcement learning shares with our
vision the objective of designing machines (i.e., agents)
capable of autonomously learning to act in a goal-oriented
way in a specific context [36]. The key idea is, given a goal
implicitly assigned to an agent, to provide the agent with
‘‘rewards’’ measuring the goodness of the actions it performs
toward the goal achievement (Figure 2). By properly
balancing purely exploratory actions and actions directly
focused on maximizing rewards, the agent eventually learns
how to achieve goals (i.e., it learns a policy guiding which
actions to apply in which situations).

Approaches based on reinforcement learning, and in
particular those based on deep learning [55], have indeed
recently achieved amazing results, such as agents capable of
achieving complex goals in complex environments. However,
the majority of current research efforts do not aim at building
systems with an explicit sense of agency and capable of
developing an interpretable (i.e., symbolic) world model: the
policy learned by the agent ismodel-free (i.e., sub-symbolic),
hence it tells nothing to the agent about the effects of its
actions, being only finalized at achieving a very specific goal.
This makesmost approaches highly ineffective in transferring
the learned policy to scenarios where the goals assigned
to agents change over time when the agent is immersed
in a different environment, or simply in an ever-changing
environment.

Curriculum-based approaches to machine learning go
somewhat in the direction of gradually developing the
capability to act in complex scenarios [12]. The agent is first
trained on simple tasks, and the gained knowledge (i.e., its
policy) is accumulated and exploited in increasingly complex
scenarios, where further skills can thus be effectively learned.
Yet again, most of these approaches are model-free and do not
focus on the development of a world model and of an explicit
sense of agency.

Reinforcement learning approaches based on intrinsic
rewards [73], instead, more closely exploit the idea of
exploring the world to develop a sense of agency. While
in traditional reinforcement learning rewards are extrinsic,
i.e., designed by a ‘‘teacher’’ as the scores in a videogame,
intrinsic rewards are developed by the agent itself to satisfy
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FIGURE 3. The galaxy of autonomous mental development.

its curiosity, i.e., when it autonomously discovers how to
achieve specific tasks. For example, in [15] intrinsic rewards
are computed as the error in forecasting the consequence of
the action performed by the agent given its current state.

In general, one can think of splitting the concept of the
environment into an external environment, with which the
agent interacts through action and perception, and an internal
one, which basically represents an interaction with the self.
This distinction allows to model both intrinsic and extrinsic
motivations within the same framework (i.e., through the
interaction with some environment). Yet, we remark that
intrinsic rewards do not necessarily derive from interactions
with the internal environment. Some intrinsic rewards, in fact,
are direct consequences of the concept of surprise or novelty,
as felt by the agent when observing something in the external
environment. In the well-known exploration vs. exploitation
trade-off that is typical of reinforcement learning, intrinsic
rewards can often be seen as an incentive for agents to
perform exploration, and thus to improve their knowledge of
the world and of their sense of agency.

Recent approaches based on the theory of affordances [37]
propose to have agents gradually learn the effects of their
actions: by having them act in constrained environments
where only a limited set of actions apply, they eventually
develop an explicit model of how their individual actions
affect the environment. That is, they develop a sense of
agency, which can be later exploited to build policies for the
achievement of specific goals.

Generally speaking, reinforcement learning can be a useful
tool to support the conceptual framework of autonomous
mental development. It follows the same principle of a gamer
exploring a new video game: the selection of a flow of
actions balanced between exploration and exploitation, the
continuous learning and refinement of strategies operated

by the gamer facing difficulties in the game, the building
of an internal knowledge about the game and the set of
strategies and behaviors (at the individual and collective
level) needed to achieve the final goal set by designers of
that particular game. Nevertheless, to bring the autonomous
mental development closer to reality, is necessary to go
beyond the perimeter of a specific game or a specific task
the agent is designed for, to give him the ability to generalize
and continuously adapt his behavior to several contexts and
situations it might be immersed to, exactly as humans do.

In summary, all the above reinforcement learning
approaches attack the key challenge of building general tools
to learn how to effectively achieve goals in an environment.
At the same time, though, it is increasingly recognized
that model-free approaches can hardly be used to let
agents autonomously develop generalizable and interpretable
policies of action, which would instead require the agents to
develop an explicit sense of agency, i.e., a symbolic causal
model of the world.

B. CAUSAL MODELS
Understanding and leveraging causality is recognized as a
key general challenge for AI in the coming years [74].
In particular, Pearl [65] has proposed the idea of a ‘‘causal
hierarchy’’ (also named ‘‘ladder of causation’’) to define
different levels of causality recognition and exploitation by
an intelligent agent (Figure 4).

The first level of the ladder consists of simply detecting
relations as associations (correlations), whereas the second
one assumes the possibility to intervene in the environment
(such as in reinforcement learning) and observe the (causal)
effects of the actions taken. Finally, the third level enables
reasoning and planning on the basis of counterfactual
analysis. Such layers correspond to some of the phases of
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FIGURE 4. Judea Pearl’s ‘‘ladder of causality’’ [66].

the autonomous development loop we defined: the first one
is mostly involved in the perception phase, whereas the
second one is associated with the development of a sense of
agency and to recognition of self and non-self. The final layer
clearly enables goal-oriented behavior, strategic thinking, and
collective coordination.

Graphical models such as Bayesian and causal networks
are among the ones that are most widely exploited in order to
build interpretable models of the world. Although traditional
Bayesian networks do not properly represent causal links,
but just conditional dependence relations between random
variables, they can be easily extended towards identifying
causal relations so that a link between two variables ‘‘A
is related to B’’ can be eventually recognized as a causal
link, i.e., ‘‘A causes B’’ [27]. In other scenarios, domain
knowledge can be exploited in order to assume that some
relations depicted in a Bayesian network actually represent
causal links, e.g., because some of the variables represent the
status of some actuators (causes) and others the state of some
sensors (effects) [46].

It is worth remarking that causality can be learned from
observational data alone but only with restrictive assumptions
about the data generation process and resulting distributions,
and about the ground truth model to be learnt. Instead,
it can be inferred with more relaxed assumptions after
experimental intervention. By freezing the values of some
variables, counterfactual analysis can be applied in order to
observe the behavior of the other variables: only in this way,
causal relations can be discovered.

Regarding the autonomous mental development vision,
causality learning and counterfactual analysis can be a very
useful tool. Indeed, they can be exploited to build a generic
model of the world, as well as to build effective action
planning towards an individual or shared goal, fixing the
wanted value of a target variable and understanding how to
tune the causes to obtain the desired outcome. Moreover,
observing how other agents behave and tuning variables to
obtain desired effects can support the strategic thinking phase
of autonomous development, strengthing the cycle at the
individual level. At the collective level, instead, causality can
support communication, coordination and institutions, since

it helps an agent understand what request made to the social
community brings to a desired outcome, what requests are
therefore needed to achieve a desired collective goal, and as a
final instance, what set of shared actions bring effectively in
time to achieve a desired state of the affairs.

A recent contribution that is in line with the ideas we
envision for autonomous development is the application of
curriculum learning to the problem of learning the structure of
Bayesian networks [97], or even causal networks. On a pure
sub-symbolic level, on the other hand, another recent work
proposes to learn causal models in an online setting [34], with
the aim of finding (and strengthening) causal links between
input and output variables.

We argue that key challenges in this area concern, again,
understanding how to synergistically exploit symbolic and
sub-symbolic model-free approaches to learn, represent, and
evolve causal models in autonomous development scenarios,
and how to use them to adaptively achieve goals.

C. MULTI-AGENT REINFORCEMENT LEARNING AND
EVOLUTIONARY APPROACHES
When multiple agents act in a shared environment, their
actions and their effectiveness in achieving goals are affected
by what others do. Game-theoretic approaches to strategic
thinking and their extension to population dynamics (i.e.
Evolutionary Game Theory) [31] have deeply investigated
this problem and the decision-making processes behind it.
In this context, it has also been shown that agents can
effectively learn in autonomy to improve their performance
in dealing with others [62].

However, when moving from theoretical settings (e.g.,
the prisoner’s dilemma) to complex and realistic scenarios
where agents have complex goals, peculiar phenomena
arise. The more one agent learns, the more it challenges
others, triggering a continuous increase in the complexity
of behavior, ultimately enabling it to incrementally learn
more sophisticated means to act. This somewhat resembles
the increase of complexity that agents face in curriculum
approaches to reinforcement learning. The key difference
is that, in the presence of multiple agents, the increase
in complexity and capabilities of agents is promoted and
self-sustained by the system itself, hence the term autocur-
ricula [44].

Recently, autocurricula-based approaches have produced
stunning results inmultiagent environments, both cooperative
and competitive. For instance, in a hide-and-seek scenario [5],
agents moving in a complex simulated environment have
learned how to effectively compete (hiders against seekers)
and cooperate (coalitions of cooperating seekers/hiders) in
very elaborated ways, in a continuous self-sustained learning
process. Indeed, we consider such approaches fundamental
towards the autonomous development of complex agent
societies. Yet, a deep understanding of the process that drives
the evolution of individual and collective behaviors is still
missing and is a key challenge for the next few years. To this
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end, providing agents with an explicit modelling (possibly
in causal terms) of the others’ behavior and of the overall
societal behavior, may be necessary [79]. Also, autocurricula
approaches do not currently account for the possibility of
explicitly interacting (e.g., through speech acts) with other
agents, which may prove fundamental to improve collective
learning and ‘‘crystallize’’ useful behaviors into coordination
protocols.

FIGURE 5. Learning to coordinate in a multi-agent system.

D. LEARNING TO COMMUNICATE AND COORDINATE
As already mentioned, agents may communicate and coor-
dinate: by explicit messages [40], by leaving traces in the
environment [48], or implicitly [50].

These forms of communication are already exploited
in multiagent learning, mostly to improve the individual
learning process by letting agents share information (e.g., for
merging their individual causal models of the world [53])
and coordinate actions [59]. However, these communication
approaches are usually assumed as innate capabilities of
agents, rather than one to be learnt. That is, agents have an a-
priori sense of agencywith respect to communication actions,
whereas in our vision it should be developed by learning
(Figure 5).

For example, with reference to explicit communication
acts, [30] proposes a voting game to let agents learn to
share a communication language and to develop a strategy
to communicate. In [28], it is shown that reinforcement
learning can be effectively applied to let agents learn how to
communicate in order to achieve a specific effect. Or, in [11]
it is shown howmore traditional prediction techniques, aimed
at guessing the right sequence of interactions among agents
(or compositions amongst services), can be applied to learn
to coordinate effectively based on past experience.

In the case of implicit communication, instead, forms
of implicit behavioral communications have been shown
to emerge in simple system components that purposefully
move in an environment [29], as they learn to affect
others with ad-hoc actions. Learning to use stigmergy to
effectively coordinate is under-explored in the literature,
which instead focuses on the opposite – using stigmergy
to boost learning. Nevertheless, some early experiments

show that it appears indeed possible to learn stigmergic
forms of communication [51]. On the opposite, stigmergic
mechanisms appear underexplored in the literature, yet, as are
the general mechanisms that can let a population of agent
learn to use environmental or behavioral signals to coordinate
their behavior [3], [75].

In any case, the development of general approaches to let
agents develop fully-fledged forms of communication and
coordination is still under-explored. Doing so may call for
agents to develop not only a model of the world but an overall
model of the society supporting the autonomous development
at the collective level, i.e., a social sense of agency explicitly
modelling how communications and coordination actions
affect other agents in the shared environment.

Coordination approaches built on the notion of social
commitment [6] may be interpreted as somewhat going
in this direction, as they are concerned with modelling
the pre-requisites and effects that social actions (such as
communications) require to the action performer and expect
on the action receiver, respectively. Hence, similarly to
how causal relationships between actuators and sensors
are built by modelling the structural relationships between
actions and their observable effects (as perceived by sensors),
commitments model the relationships between interacting
agents in terms of social actions (cause) and expectations
(effect). Nevertheless, these approaches are not currently
exploring the possibilities of autonomously learning such
commitments and their effects, as they are concerned with
giving an external designer the means to engineer interaction
protocols at design time.

E. EMERGENCE OF INSTITUTIONS
Whereas learning to communicate is about understanding
how to use communication to coordinate actions with others,
enabling and sustaining global collective achievement of
goals requires ‘‘institutionalized’’ means of acting at the
collective level, i.e., a set of shared beliefs and of shared social
conventions and norms aimed at ruling collective actions [26].

The mechanisms leading to the spontaneous emergence of
institutions in human society [63], including the mechanisms
to promote and sustain altruistic and cooperative behavior
(e.g., reputation and shared rewards [61]) have been widely
investigated [60]. However, most approaches to building
multiagent systems assume such mechanisms as explicitly
designed [26].
Yet, some promising studies related to the emergence of

institutionalized behaviors in multiagent systems have been
undertaken (see [57] for a recent survey). Such a research
topic is concerned, on the one hand, with understanding
the mechanisms and the necessary conditions that make
social norms arise in agent societies, and, on the other
hand, with understanding how to individually engineer agents
so that norms may arise spontaneously without the need
for prescriptive approaches defining the norms beforehand,
at design time.
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In the autonomous development perspective, the sponta-
neous emergence of recurrent social behavior supports the
collective level loop, letting agents learn how to commu-
nicate, coordinate and, as the last step, how to correctly
adhere to emerging norms. In this context, a social norm
can be described as ‘‘the belief that a given behavior is
prescribed within the population’’. Such a belief may be
acquired by an agent in a variety of ways, e.g. by observing
peers’ actions, by asking for / inferring their strategy behind
an action, or by learning from past experience through
repeated coordination games [54]. For instance, [93] proposes
a collective learning framework where agents learn to adopt
norms in repeated coordination. In this way, agents eventually
learn that a social norm has emerged, and ‘‘institutionalize’’
their behavior in their (social) decision-making processes
implicitly, by behaving so as to comply with the norm.
Another interesting work [8] integrates rational thought,
reinforcement learning, and social interactions to model
norms emergence in a society: agents incrementally develop
a social behavior (a social norm) while internalizing it within
their cognitive model. The emergence of a shared norm
and its institutionalization, naturally let agents recognize the
existence of others in the self/non-self step. Then, due to its
cyclic nature, the process is eventually repeated, letting the
agent refine its collective or individual behavior concerning
its purpose as individual or as part of the community.

However, most of current research efforts only consider
implicit representations of norms, that is, do not bother in
making agents capable of explicitly modeling an emergent
norm as soon as agents somewhat recognize its existence,
so as to exploit such representation in future reasoning.
This deprives agents of a useful model of the social world,
that could help shape their social sense of agency in terms
of the causes and effects of their social actions on other
agents in the society, as defined by norms themselves.
Also, the development of general models and tools to
support the proper learning and evolution of institutionalized
mechanisms of coordination, through the construction of
explicit norms representations and their adoption by agents
within their cognitive models is still missing, and so are the
solutions to the many problems involved in this process. For
instance: how to avoid that an agent learns that free-riding is
better than abiding by norms? How to avoid inconsistencies
and misunderstandings in norms interpretation? Can the col-
lective level loop of the autonomous development framework
be enough to balance such challenges?

F. GENERATIVE TECHNOLOGIES
Generative AI focuses on creating ‘‘original’’ content.
This primarily includes textual documents (there including
software code), but is now expanding to images, video, and
audio [85]. It operates primarily in three phases: training
of a ‘‘large’’ foundation model [88], that is, a huge deep
neural network architecture (billions of parameters) trained
on a huge corpus of heterogeneous documents; tuning of

the model, that is, refining its training by tailoring it to the
specific application domain and intended usage; usage and
feedback, where consumer applications or end users exploit
the model while (explicitly or not) giving positive or negative
feedback in return (used to evaluate and improve the model).

Given the relevance of language for humans, in terms of
both reasoning (‘‘inner monologue’’) and verbal and written
communication, it is natural that especially Large Language
Models quickly started to pervade any application domain in
which textual understanding and text generation are either the
objective of the domain (e.g. contents writing) or a preferred
means of interaction with human users (e.g. chatbots). Then
Multi-Modal models followed, for their ability to work
with visual data, another cornerstone sensory modality for
humans.

Accordingly, it is already apparent that generative AI can
play a central role in autonomous mental development at
least in the perception and communication ‘‘steps’’. For the
former, the capability of interpreting multi-modal inputs can
greatly enhance the ability of intelligent software agents
to perceive their environment and make sense of complex
situations, by seamlessly merging multiple data streams.
Also, they can learn to recognize novel situations while in
operation (via fine-tuning and in-context learning), again
from multi-modal sources. For the latter, not only software
agents can now interact more naturally with humans via
text, speech, and visual input/output, but they could leverage
the same capability to interact with other agents as well.
Systems where multiple generative agents self-coordinate to
achieve collective goals are already appearing [22], and they
complement the traditional communication and coordination
protocols (such as those conceived and developed in the
multi-agent systems community [9]) with more flexible and
fluid conversations, often resembling human negotiation.
A generative AI can even dynamically create new software
agents (by producing code instead of narrative text), to dele-
gate them specific tasks.

It is also worth emphasising that being language and vision
two especially prominent factors in human-like reasoning,
they can effectively facilitate and support planning actions
toward the achievement of a goal [82], and coordinating
activities based on capabilities, requirements, and roles [22].
This adds sense of agency and goal-orientedness to the
‘‘steps’’ of our proposed conceptual framework that gen-
erative AI can impact. For instance, a debate is currently
unfolding about the capability of generative AI technologies
to perform causal reasoning [32], [35], [81]: confirming this
achievement would be a breakthrough as this is a cornerstone
of autonomous mental development in humans, underlying
planning abilities and goal achievement.

V. HORIZONTAL CHALLENGES
The presented approaches and techniques are still at the
research stage, and many research challenges have been
identified for each of them in the previous section. Moreover,
it is possible to identify several additional ‘‘horizontal’’
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challenges, i.e., of a general nature independently of the
specific approach.

The nature of such challenges, in our opinion, makes
them specifically suited for being pursued by the most
diverse research communities in the area of machine learning,
reinforcement learning, autonomous agents and multi-agent
systems.

A. ENGINEERING
Many of the presented approaches are grounded in machine
learning, a discipline with plenty of years of research behind
it, but in which good engineering practice is still often
disregarded, and traditional software engineering problems
are sometimes considered mundane. Systems are often
developed ad-hoc for a specific task or problem domain, with
little attention to modularity, reusability, and dependability,
thus missing the flexibility to adopt them across different
domains, tasks, datasets [67]. In addition, given that the
diverse approaches presented can each contribute important
pieces to the overall vision of autonomous development,
sound engineering approaches are needed to try to integrate
such a heterogeneous plethora into a coherent whole.

A notable example of the difficulty of providing reusable,
robust, and fully controllable integrations between machine
learning-based approaches and traditional software engineer-
ing paradigms (e.g. the agent-oriented one) is given by recent
literature about generative AI-based autonomous/cognitive
agents [84], [87]. These represent multi-faceted and horizon-
tal research challenges that, in our opinion, could and should
be profitably attacked by the those research communities
interested in the engineering of complex systems.

B. CONTROLLING EVOLUTION
Autonomous development raises the issue of somewhat
controlling how behaviors evolve, as an individual learns new
skills and tasks, and as the collective learns new ways of
coordinating and acting together [44]. How can we steer a
learning process towards desired outcomes without putting
bias in it? How can we constrain the boundaries within which
individual and collective behaviors should stay (e.g., in terms
of safety)? What interventions can we make to re-direct an
agent or a collective that has taken an unpredictable or unsafe
development path?

Again, generative AI is a recent notable example of the
difficulty of answering these questions, as ‘‘hallucination‘‘,
bias, and misinformation are proving resistant to any attempt
to mitigate them. Experience in self-adaptive components
based on feedback, as well as in the study of emergent
behaviors in self-organising systems can help in finding
proper technical answers, and – why not – ethical ones [90].

C. INNATE VS. ACQUIRED KNOWLEDGE
Besides the trade-off between autonomous learning and
‘‘safety boundaries’’, that should be preserved no matter
what, another trade-off needs to be set for autonomous

development approaches to suit the real world: what should
be learned from scratch and what could be assumed as given?
In other terms, what is a realistic and effective trade-off
between innate and acquired knowledge? The answer is
difficult to give as it depends on many factors and is highly
domain-dependent [7].

It can be argued that, in most domains, knowledge about
the available sensory and actuation capabilities (intended
both in a physical or purely computational world) could be
taken as innate knowledge that agents have either since design
or automatically acquired upon deployment: this would
account for embodiment and perception in our conceptual
framework. The same could be said for basic communication
skills, both direct and indirect, such as sending and receiving
messages or depositing and reacting to signals in a shared
environment. However, the ability to compose such basic
skills into coordination patterns and protocols, or even further
to collectively and explicitly construct shared norms out of
them could be left to appropriate learning routines. Similarly,
at the individual level, the ability to operate on actuators to
affect the environment, and the ability to do so as part of
a sequence of activities meant to achieve a prescribed goal,
can be delegated to autonomous development. In any case,
the methodologies and tools to precisely assess the impact
of such choices on the process of autonomous development
itself are still missing.

D. HUMANS IN THE LOOP
The more autonomous development technologies will
advance, the more humans will have to actively interact with
them. This interaction will raise technical issues (Will we
have ‘‘handles’’ to control or block such systems in some
ways and to some extent? Could large languagemodels be the
key to interact with and control such systems?) and ethical
problems (Will we be rather ‘‘handled’’ by these systems
and subjects to their decisions?). Some of these problems
already emerged, like in the moral machine experiment [4]
or in AI-based hiring technology.

Technical challenges nurture research in the HCI
and distributed systems communities (there included the
self-organising and self-adaptive systems). Ethical and moral
ones will be meat for politicians and lawyers, although deep
joint work with technical experts will always be necessary.
A key ingredient involves institutions since they represent
humans as a group: laws and regulations need to be developed
to regulate the global actors in day-by-day technology usage.
Nevertheless, a deeper interaction between researchers in
science and technology and public institutions is needed to
support the regulation design phase.

E. SUSTAINABILITY
Algorithms for autonomous development will most likely
require extensive computational resources. For example, the
mentioned ‘‘hide and seek’ experiment by OpenAI involved a
distributed infrastructure of 128,000 preemptible CPU cores
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and 256 GPUs on GCP [5]: the default model optimized over
1.6 million parameters taking 34 hours to reach the fourth
stage over six of agents skills progression. Generative AI
technologies make these numbers seem like a joke: OpenAI
involved the use of 25,000NVIDIAA100GPUs to train GPT-
4. Each server with these GPUs consumes about 6.5 kW,
leading to an estimated energy usage of 50 GWh during
the training phase. For context, all data centres in Sweden
currently consume about 3,000 GWh of energy. The energy
used for a single training session of GPT-4, which is 50 GWh,
would represent approximately 2% of this total capacity.
OpenAI also disclosed that GPT-3 runs on a server cluster
that uses a total of 91 GWh per year for serving with GPT-4.

These examples are a sort of best-in-class project; anyway,
it is clear that if self-developing systems will be based
on similar learning approaches, they will require massive
amounts of computational resources. Therefore, a key
challenge for the community will be to devise algorithmic
and system-level means to make autonomous development
systems sustainable, and affordable by others other than the
big technology players.

F. EXPLAINABILITY
Being able to inspect and explain the decision-making
process of AI systems is already a hot topic, so much so that
the entire research field of XAI, eXplainable AI, has been
born [25].

We already commented several times on how such
problems should be accounted for also for autonomous
development, possibly with the help of causal models.
This is indeed a key challenge for self-adaptive and,
especially, for self-organising research, too, where explaining
global behaviors, patterns, and configurations emerging
from local interactions is mostly still considered the
‘‘holy grail’’.

G. PERFORMANCE ASSESSMENT
Properly assessing the performance of autonomous develop-
ment is another challenge per se. It is not straightforward to
identify well-established benchmarks and metrics that cover
the wide spectrum of properties and skills that developmental
agents need to acquire as they evolve. Yet, some inspiration
can come from related fields. For example, recently there has
been an effort to develop benchmarks for autonomous agents
interacting with a given environment, even with natural
language specifications [68].

Similar ideas come from the related field of curriculum
learning and continual learning, where novel benchmarks
are designed to capture also ad-hoc metrics, such as
forgetting (i.e., avoiding forgetting old tasks and skills
when learning new ones), memory overhead and compu-
tational efficiency [23], [76]. Other metrics coming from
the area of reinforcement learning, like average reward
and time (i.e., episodes) needed to fulfil a task might be
appropriate [70].

VI. CONCLUSION
In this paper, we have elaborated upon the vision of
autonomous development, at both the individual and collec-
tive level. Although the road towards fully realizing the vision
is still a long one, several ideas in the areas of learning,
causality, and multiagent systems, are already showing its
potential feasibility.

From our side, with the aim of starting implementing some
of the concepts presented in the paper, we are currently
experimenting with Bayesian networks and causal models to
learn dependencies between variables that represent sensors
and actuators within a smart environment. In a simplified
smart home setting, we showed how an agent is able to
learn the effect of one of its own actions, thus acquiring the
sense of agency, the necessary precondition towards goal-
orientedness [46]. The training set consists of a collection of
observations where the agent performs random actions and
observes their effect on the rest of the environment. Once the
learning phase is completed, the agent is eventually able to
understand what to do to reach the desired state of affairs.
At the collective level, our preliminary experiments show
how different agents are able to learn to cooperate to achieve a
goal they could not achieve individually. We assumed that the
agents could share their observations, thus providing training
examples to a single data set that can be used to learn a single,
general model. By learning from the joint set of observations
and actions, the two agents learn that they need to cooperate
and coordinate their actions.

As a continuation of this strand of research, we are now
moving to a distributed learning setting, where agents do
not fully share their observations to agree on a single global
(causal) model of their shared environment [52]. Rather,
they cooperate to refine their own local causal models
whenever they recognize partial, missing, or wrong infor-
mation, by organizing a coordinated distributed intervention
protocol meant to obtain the additional information needed
to disambiguate, refine, complete, or correct their own local
models.

As part of our future work, we plan to investigate how
digital twins could enable the learning paradigms described
so far [47]. In particular, in many application domains such as
smart factories, one could envisage a hierarchical architecture
where digital twins collect and integrate data coming from
heterogeneous physical devices, building more and more
abstract models and representations. In addition, as from
Subsection V-G, we plan to work towards identifying suitable
metrics to assess and test the effectiveness of our proposals.

REFERENCES
[1] K. Ahuja, D. Mahajan, Y. Wang, and Y. Bengio, ‘‘Interventional

causal representation learning,’’ in Proc. Int. Conf. Mach. Learn., 2023,
pp. 372–407.

[2] M. Alaa, A. A. Zaidan, B. B. Zaidan, M. Talal, and M. L. M. Kiah,
‘‘A review of smart home applications based on Internet of Things,’’
J. Netw. Comput. Appl., vol. 97, pp. 48–65, Nov. 2017.

[3] R. Aras, A. Dutech, and F. Charpillet, ‘‘Stigmergy in multiagent
reinforcement learning,’’ in Proc. 4th Int. Conf. Hybrid Intell. Syst. (HIS),
Dec. 2004, pp. 468–469.

5918 VOLUME 13, 2025



M. Lippi et al.: Autonomous Mental Development at the Individual and Collective Levels

[4] E. Awad, S. Dsouza, R. Kim, J. Schulz, J. Henrich, A. Shariff, J.-F.
Bonnefon, and I. Rahwan, ‘‘The moral machine experiment,’’ Nature,
vol. 563, no. 7729, pp. 59–64, Nov. 2018.

[5] B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew, and
I. Mordatch, ‘‘Emergent tool use from multi-agent autocurricula,’’ 2019,
arXiv:1909.07528.

[6] M. Baldoni, C. Baroglio, R. Micalizio, and S. Tedeschi, ‘‘Programming
agents by their social relationships: A commitment-based approach,’’
Algorithms, vol. 12, no. 4, p. 76, Apr. 2019.

[7] E. Bates, J. L. Elman, M. H. Johnson, A. Karmiloff-Smith, D. Parisi,
and K. Plunkett, ‘‘Innateness and emergentism,’’ in A Companion to
Cognitive Science. Hoboken, NJ, USA: Blackwell Publishing Ltd, 2017,
pp. 590–601.

[8] R. Beheshti, ‘‘Normative agents for real-world scenarios,’’ in Proc. Int.
Conf. Auton. Agents Multi-Agent Syst., 2014, pp. 1749–1750.

[9] F. Bellifemine, A. Poggi, and G. Rimassa, ‘‘Developing multi-agent
systems with a FIPA-compliant agent framework,’’ Softw., Pract. Exper.,
vol. 31, no. 2, pp. 103–128, Feb. 2001.

[10] K. Bellman, J. Botev, A. Diaconescu, L. Esterle, C. Gruhl, C. Landauer,
P. R. Lewis, P. R. Nelson, E. Pournaras, A. Stein, and S. Tomforde, ‘‘Self-
improving system integration: Mastering continuous change,’’ Future
Gener. Comput. Syst., vol. 117, pp. 29–46, Apr. 2021.

[11] H. BenMahfoudh, G. Di Marzo Serugendo, N. Naja, and N. Abdennadher,
‘‘Learning-based coordination model for spontaneous self-composition of
reliable services in a distributed system,’’ Int. J. Softw. Tools Technol.
Transf., vol. 22, no. 4, pp. 417–436, Aug. 2020.

[12] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, ‘‘Curriculum
learning,’’ in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009, pp. 41–48.

[13] J. Bongard, V. Zykov, and H. Lipson, ‘‘Resilient machines through
continuous self-modeling,’’ Science, vol. 314, no. 5802, pp. 1118–1121,
Nov. 2006.

[14] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar,
P. Lee, Y. T. Lee, Y. Li, S. Lundberg, H. Nori, H. Palangi, M. T. Ribeiro,
and Y. Zhang, ‘‘Sparks of artificial general intelligence: Early experiments
with GPT-4,’’ 2023, arXiv:2303.12712.

[15] Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and A. A. Efros,
‘‘Large-scale study of curiosity-driven learning,’’ in Proc. Int. Conf. Learn.
Represent., 2018, pp. 1–15.

[16] S. Bussmann and K. Schild, ‘‘Self-organizing manufacturing control:
An industrial application of agent technology,’’ in Proc. 4th Int. Conf.
MultiAgent Syst., Jul. 2000, pp. 87–94.

[17] G. Butterworth, ‘‘Origins of self-perception in infancy,’’ Psychol. Inquiry,
vol. 3, no. 2, pp. 103–111, Apr. 1992.

[18] N. Cambier, R. Miletitch, V. Frémont, M. Dorigo, E. Ferrante, and
V. Trianni, ‘‘Language evolution in swarm robotics: A perspective,’’
Frontiers Robot. AI, vol. 7, p. 12, Feb. 2020.

[19] L. Canese, G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Giardino,
M. Re, and S. Spanò, ‘‘Multi-agent reinforcement learning: A review
of challenges and applications,’’ Appl. Sci., vol. 11, no. 11, p. 4948,
May 2021.

[20] S. Casper et al., ‘‘Open problems and fundamental limitations of
reinforcement learning from human feedback,’’ Trans. Mach. Learn.
Res., pp. 1–42, Dec. 2023. [Online]. Available: https://jmlr.org/tmlr/
papers/bib/bx24KpJ4Eb.bib

[21] Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, H. Chen, X. Yi,
C. Wang, Y. Wang, W. Ye, Y. Zhang, Y. Chang, P. S. Yu, Q. Yang, and
X. Xie, ‘‘A survey on evaluation of large language models,’’ ACM Trans.
Intell. Syst. Technol., vol. 15, no. 3, pp. 1–45, Jan. 2024.

[22] W. Chen, Y. Su, J. Zuo, C. Yang, C. Yuan, C.-M. Chan, H. Yu, Y. Lu,
Y.-H. Hung, C. Qian, Y. Qin, X. Cong, R. Xie, Z. Liu, M. Sun, and
J. Zhou, ‘‘AgentVerse: Facilitating multi-agent collaboration and exploring
emergent behaviors,’’ 2023, arXiv:2308.10848.

[23] N. Díaz-Rodríguez, V. Lomonaco, D. Filliat, and D. Maltoni, ‘‘Don’t
forget, there is more than forgetting: New metrics for continual learning,’’
2018, arXiv:1810.13166.

[24] Z. Durante et al., ‘‘An interactive agent foundation model,’’ 2024,
arXiv:2402.05929.

[25] R. Dwivedi, D. Dave, H. Naik, S. Singhal, R. Omer, P. Patel, B. Qian,
Z. Wen, T. Shah, G. Morgan, and R. Ranjan, ‘‘Explainable AI (XAI):
Core ideas, techniques, and solutions,’’ ACM Comput. Surv., vol. 55, no. 9,
pp. 1–33, Sep. 2023.

[26] M. Esteva, J. A. Rodriguez-Aguilar, C. Sierra, P. Garcia, and J. L. Arcos,
‘‘On the formal specification of electronic institutions,’’ in Agent Mediated
Electronic Commerce. Berlin, Germany: Springer, 2001, pp. 126–147.

[27] K. Fadiga, É. Houzé, A. Diaconescu, and J.-L. Dessalles, ‘‘To do or
not to do: Finding causal relations in smart homes,’’ in Proc. IEEE Int.
Conf. Autonomic Comput. Self-Organizing Syst. (ACSOS), Sep. 2021,
pp. 110–119.

[28] J. N. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson, ‘‘Learning
to communicate with deep multi-agent reinforcement learning,’’ 2016,
arXiv:1605.06676.

[29] N. A. Grupen, D. D. Lee, and B. Selman, ‘‘Low-bandwidth com-
munication emerges naturally in multi-agent learning systems,’’ 2020,
arXiv:2011.14890.

[30] S. Gupta and A. Dukkipati, ‘‘Winning an election: On emergent strategic
communication in multi-agent networks,’’ in Proc. Int. Conf. Auto. Agents
Multiagent Syst., 2020, pp. 1861–1863.

[31] T. A. Han, ‘‘Emergent behaviours in multi-agent systemswith evolutionary
game theory,’’ AI Commun., vol. 35, no. 4, pp. 327–337, Sep. 2022.

[32] Z. Hu, Y. Zhang, R. Rossi, T. Yu, S. Kim, and S. Pan, ‘‘Are large language
models capable of causal reasoning for sensing data analysis?’’ in Proc.
Workshop Edge Mobile Found. Models (EdgeFM), Tokyo, Japan, 2024,
pp. 24–29.

[33] M. C. Huebscher and J. A. McCann, ‘‘A survey of autonomic computing—
Degrees, models, and applications,’’ ACM Comput. Surv., vol. 40, no. 3,
p. 7, 2008.

[34] K. Javed, M. White, and Y. Bengio, ‘‘Learning causal models online,’’
2020, arXiv:2006.07461.

[35] Z. Jin, Y. Chen, F. Leeb, L. Gresele, O. Kamal, L. Y. U. Zhiheng, K. Blin,
F. G. Adauto, M. Kleiman-Weiner, M. Sachan, and B. Schölkopf,
‘‘Cladder: Assessing causal reasoning in language models,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 36, A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine, Eds., Red Hook, NY, USA: Curran
Associates, 2023, pp. 31038–31065.

[36] L. P. Kaelbling, M. L. Littman, and A. Moore, ‘‘Reinforcement learning:
A survey,’’ J. Artif. Intell. Res., vol. 4, pp. 237–285, May 1996.

[37] K. Khetarpal, Z. Ahmed, G. Comanici, D. Abel, and D. Precup, ‘‘What can
I do here? A theory of affordances in reinforcement learning,’’ inProc. 37th
Int. Conf. Mach. Learn., 2020, pp. 5243–5253.

[38] J. Kirchenbauer, J. Geiping, Y. Wen, J. Katz, I. Miers, and T. Goldstein,
‘‘A watermark for large language models,’’ in Proc. Int. Conf. Mach.
Learn., Jan. 2023, pp. 17061–17084.

[39] S. Kounev, P. Lewis, K. L. Bellman, N. Bencomo, J. Camara,
A. Diaconescu, L. Esterle, K. Geihs, H. Giese, S. Götz, P. Inverardi,
J. O. Kephart, and A. Zisman, ‘‘The notion of self-aware computing,’’
in Self-Aware Computing Systems. Cham, Switzerland: Springer, 2017,
pp. 3–16.

[40] Y. Labrou, T. Finin, and Y. Peng, ‘‘Agent communication languages: The
current landscape,’’ IEEE Intell. Syst., vol. 14, no. 2, pp. 45–52, Mar. 1999.

[41] B.M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman, ‘‘Building
machines that learn and think like people,’’ Behav. Brain Sci., vol. 40,
p. e253, Jan. 2017.

[42] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[43] R. Legaspi and T. Toyoizumi, ‘‘A Bayesian psychophysics model of sense
of agency,’’ Nature Commun., vol. 10, no. 1, pp. 1–11, Sep. 2019.

[44] J. Z. Leibo, E. Hughes, M. Lanctot, and T. Graepel, ‘‘Autocurricula and the
emergence of innovation from social interaction: A manifesto for multi-
agent intelligence research,’’ 2019, arXiv:1903.00742.

[45] M. Lippi, S. Mariani, M. Martinelli, and F. Zambonelli, ‘‘Individual and
collective self-development: Concepts and challenges,’’ inProc. 17th Conf.
Comput. Sci. Intell. Syst. (FedCSIS), Sofia, Bulgaria, Sep. 2022, pp. 15–21.

[46] M. Lippi, S. Mariani, and F. Zambonelli, ‘‘Developing a ‘sense of agency’
in IoT systems: Preliminary experiments in a smart home scenario,’’ in
Proc. IEEE Int. Conf. Pervasive Comput. Commun. Workshops Affiliated
Events (PerCom Workshops), Mar. 2021, pp. 44–49.

[47] M. Lippi, M. Martinelli, M. Picone, and F. Zambonelli, ‘‘Enabling
causality learning in smart factories with hierarchical digital twins,’’
Comput. Ind., vol. 148, Jun. 2023, Art. no. 103892.

[48] M. Mamei and F. Zambonelli, ‘‘Programming stigmergic coordination
with the TOTA middleware,’’ in Proc. 4th Int. Joint Conf. Auton. Agents
Multiagent Syst., 2005, pp. 415–422.

[49] G.Marcus and E. Davis, ‘‘Insights for AI from the humanmind,’’Commun.
ACM, vol. 64, no. 1, pp. 38–41, Jan. 2021.

VOLUME 13, 2025 5919



M. Lippi et al.: Autonomous Mental Development at the Individual and Collective Levels

[50] S. Mariani and A. Omicini, ‘‘Anticipatory coordination in socio-technical
knowledge-intensive environments: Behavioural implicit communication
in MoK ,’’ in AI*IA 2015 Advances in Artificial Intelligence. Cham,
Switzerland: Springer, 2015, pp. 102–115.

[51] S. Mariani and F. Zambonelli, ‘‘Learning stigmergic communication
for self-organising coordination,’’ in Proc. IEEE Int. Conf. Autonomic
Comput. Self-Organizing Syst. (ACSOS) Toronto, ON, Canada, Sep. 2023,
pp. 47–56.

[52] S. Mariani and F. Zambonelli, ‘‘Distributed discovery of causal networks
in pervasive environments,’’ in Proc. IEEE Int. Conf. Pervasive Comput.
Commun. Workshops Affiliated Events (PerCom Workshops), Biarritz,
France, Mar. 2024, pp. 1–6.

[53] S. Meganck, S. Maes, B. Manderick, and P. Leray, ‘‘Distributed learning
of multi-agent causal models,’’ in Proc. IEEE/WIC/ACM Int. Conf. Intell.
Agent Technol., Sep. 2005, pp. 285–288.

[54] M. Mihaylov, K. Tuyls, and A. Nowé, ‘‘A decentralized approach for
convention emergence in multi-agent systems,’’ Auton. Agents Multi-Agent
Syst., vol. 28, no. 5, pp. 749–778, Sep. 2014.

[55] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-
level control through deep reinforcement learning,’’ Nature, vol. 518,
no. 7540, pp. 529–533, 2015.

[56] T. M. Moerland, J. Broekens, A. Plaat, and C. M. Jonker, ‘‘Model-based
reinforcement learning: A survey,’’ Found. Trends Mach. Learn., vol. 16,
no. 1, pp. 1–118, 2023.

[57] A. Morris-Martin, M. De Vos, and J. Padget, ‘‘Norm emergence in
multiagent systems: A viewpoint paper,’’ Auto. Agents Multi-Agent Syst.,
vol. 33, no. 6, pp. 706–749, Nov. 2019.

[58] C. Müller-Schloer, ‘‘Organic computing: On the feasibility of controlled
emergence,’’ in Proc. 2nd IEEE/ACM/IFIP Int. Conf. Hardw./Softw.
Codesign Syst. Synthesis (CODES+ISSS), A. Orailoglu, P. H. Chou, P. Eles,
and A. Jantsch, Eds. NY, USA: IEEE, Aug. 2004, pp. 2–5.

[59] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, ‘‘Deep reinforcement
learning for multiagent systems: A review of challenges, solutions, and
applications,’’ IEEE Trans. Cybern., vol. 50, no. 9, pp. 3826–3839,
Sep. 2020.

[60] M. A. Nowak, ‘‘Five rules for the evolution of cooperation,’’ Science,
vol. 314, no. 5805, pp. 1560–1563, Dec. 2006.

[61] M. A. Nowak andK. Sigmund, ‘‘Evolution of indirect reciprocity,’’Nature,
vol. 437, no. 7063, pp. 1291–1298, Oct. 2005.

[62] A. Nowé, P. Vrancx, and Y. M. De Hauwere, ‘‘Game theory and
multi-agent reinforcement learning,’’ in Reinforcement Learning. Berlin,
Germany: Springer, 2012, pp. 441–470.

[63] E. Ostrom, Governing the Commons: The Evolution of Institutions for
Collective Action. Cambridge, U.K.: Cambridge Univ. Press, 1990.

[64] P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner, ‘‘Intrinsic motivation systems
for autonomousmental development,’’ IEEE Trans. Evol. Comput., vol. 11,
no. 2, pp. 265–286, Apr. 2007.

[65] J. Pearl, ‘‘The seven tools of causal inference, with reflections on machine
learning,’’ Commun. ACM, vol. 62, no. 3, pp. 54–60, Feb. 2019.

[66] J. Pearl and D. Mackenzie, The Book of Why: The New Science of Cause
and Effect. NY, USA: Basic Books, 2018.

[67] B. Porter and R. Rodrigues Filho, ‘‘Distributed emergent software:
Assembling, perceiving and learning systems at scale,’’ in Proc. IEEE
13th Int. Conf. Self-Adaptive Self-Organizing Syst. (SASO), Jun. 2019,
pp. 127–136.

[68] C. Rawles, S. Clinckemaillie, Y. Chang, J. Waltz, G. Lau, M. Fair, A. Li,
W. Bishop, W. Li, F. Campbell-Ajala, D. Toyama, R. Berry,
D. Tyamagundlu, T. Lillicrap, and O. Riva, ‘‘AndroidWorld: A
dynamic benchmarking environment for autonomous agents,’’ 2024,
arXiv:2405.14573.

[69] P. Rochat, ‘‘Self-perception and action in infancy,’’ Exp. Brain Res.,
vol. 123, nos. 1–2, pp. 102–109, 1998.

[70] C. Romac, R. Portelas, K. Hofmann, and P. Y. Oudeyer, ‘‘TeachMyAgent:
A benchmark for automatic curriculum learning in deep RL,’’ in Proc. Int.
Conf. Mach. Learn., 2021, pp. 9052–9063.

[71] M. Salehie and L. Tahvildari, ‘‘Self-adaptive software: Landscape and
research challenges,’’ ACM Trans. Auton. Adapt. Syst., vol. 4, no. 2,
pp. 1–42, 2009.

[72] Ş. Sarkadi, ‘‘An arms race in theory-of-mind: Deception drives the
emergence of higher-level theory-of-mind in agent societies,’’ in Proc.
IEEE Int. Conf. Autonomic Comput. Self-Organizing Syst. (ACSOS),
Toronto, ON, Canada, Sep. 2023, pp. 1–10.

[73] J. Schmidhuber, ‘‘Formal theory of creativity, fun, and intrinsic motivation
(1990–2010),’’ IEEE Trans. Auto. Mental Develop., vol. 2, no. 3,
pp. 230–247, Sep. 2010.

[74] B. Schölkopf, F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner, A. Goyal,
and Y. Bengio, ‘‘Toward causal representation learning,’’ Proc. IEEE,
vol. 109, no. 5, pp. 612–634, May 2021.

[75] S. Shaw, E. Wenzel, A. Walker, and G. Sartoretti, ‘‘ForMIC: Foraging via
multiagent RL with implicit communication,’’ IEEE Robot. Autom. Lett.,
vol. 7, no. 2, pp. 4877–4884, Apr. 2022.

[76] T. Srinivasan, T.-Y. Chang, L. P. Alva, G. Chochlakis, M. Rostami, and
J. Thomason, ‘‘CliMB: A continual learning benchmark for vision-and-
language tasks,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 35, 2022,
pp. 29440–29453.

[77] A. Stein, S. Tomforde, J. Botev, and P. R. Lewis, ‘‘Special issue on
lifelike computing systems,’’ Artif. Life, vol. 29, no. 4, pp. 390–393,
Nov. 2023.

[78] A. Stoytchev, ‘‘Self-detection in robots: A method based on detect-
ing temporal contingencies,’’ Robotica, vol. 29, no. 1, pp. 1–21,
2011.

[79] B. Subagdja and A. H. Tan, ‘‘Beyond autonomy: The self and life of social
agents,’’ in Proc. 18th Int. Conf. Auto. Agents MultiAgent Syst., 2019,
pp. 1654–1658.

[80] Z. Ullah, F. Al-Turjman, L. Mostarda, and R. Gagliardi, ‘‘Applications
of artificial intelligence and machine learning in smart cities,’’ Comput.
Commun., vol. 154, pp. 313–323, Mar. 2020.

[81] J. Vallverdú, Generative AI and Causality. Singapore: Springer, 2024,
pp. 55–61.

[82] K. Valmeekam, S. Sreedharan, M. Marquez, A. Olmo, and
S. Kambhampati, ‘‘On the planning abilities of large language
models (A critical investigation with a proposed Benchmark),’’ 2023,
arXiv:2302.06706.

[83] D. Vernon, G. Metta, and G. Sandini, ‘‘A survey of artificial cognitive
systems: Implications for the autonomous development of mental capabil-
ities in computational agents,’’ IEEE Trans. Evol. Comput., vol. 11, no. 2,
pp. 151–180, Apr. 2007.

[84] L. Wang, C. Ma, X. Feng, Z. Zhang, H. Yang, J. Zhang, Z. Chen,
J. Tang, X. Chen, Y. Lin, W. X. Zhao, Z. Wei, and J. Wen, ‘‘A survey on
large language model based autonomous agents,’’ Frontiers Comput. Sci.,
vol. 18, Mar. 2023, Art. no. 186345.

[85] X. Wang, G. Chen, G. Qian, P. Gao, X.-Y. Wei, Y. Wang, Y.
Tian, and W. Gao, ‘‘Large-scale multi-modal pre-trained models: A
comprehensive survey,’’ Mach. Intell. Res., vol. 20, no. 4, pp. 447–482,
Jun. 2023.

[86] J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur,
and E. Thelen, ‘‘Autonomous mental development by robots and animals,’’
Science, vol. 291, no. 5504, pp. 599–600, Jan. 2001.

[87] Z. Xi et al., ‘‘The rise and potential of large language model based agents:
A survey,’’ 2023, arXiv:2309.07864.

[88] S. Yang, O. Nachum, Y. Du, J. Wei, P. Abbeel, and D. Schuurmans,
‘‘Foundation models for decision making: Problems, methods, and
opportunities,’’ 2023, arXiv:2303.04129.

[89] Y. Yang, M. Taylor, J. Luo, Y.Wen, O. Slumbers, D. Graves, H. B. Ammar,
and J. Wang, ‘‘Diverse auto-curriculum is critical for successful real-
world multiagent learning systems,’’ in Proc. 20th Int. Conf. Auto. Agents
Multiagent Syst., 2021, pp. 1–6.

[90] A. Yapo and J. Weiss, ‘‘Ethical implications of bias in machine learning,’’
in Proc. 51st Hawaii Int. Conf. Syst. Sci., 2018, pp. 1–8.

[91] J. Ye, S. Dobson, and F. Zambonelli, ‘‘Lifelong learning in sensor-based
human activity recognition,’’ IEEE Pervasive Comput., vol. 18, no. 3,
pp. 49–58, Jul. 2019.

[92] M. Yim, Y. Zhang, and D. Duff, ‘‘Modular robots,’’ IEEE Spectr., vol. 39,
no. 2, pp. 30–34, Feb. 2002.

[93] C. Yu, M. Zhang, and F. Ren, ‘‘Collective learning for the emergence of
social norms in networked multiagent systems,’’ IEEE Trans. Cybern.,
vol. 44, no. 12, pp. 2342–2355, Dec. 2014.

[94] J. Zhang, X. Yao, J. Zhou, J. Jiang, and X. Chen, ‘‘Self-organizing
manufacturing: Current status and prospect for industry 4.0,’’ in Proc. 5th
Int. Conf. Enterprise Syst. (ES), Sep. 2017, pp. 319–326.

[95] W. Zhang, ‘‘Large decision models,’’ in Proc. 32nd Int. Joint Conf. Artif.
Intell., 2023, pp. 7062–7067.

[96] W. Xin Zhao et al., ‘‘A survey of large language models,’’ 2023,
arXiv:2303.18223.

[97] Y. Zhao, Y. Chen, K. Tu, and J. Tian, ‘‘Learning Bayesian network
structures under incremental construction curricula,’’ Neurocomputing,
vol. 258, pp. 30–40, Oct. 2017.

5920 VOLUME 13, 2025



M. Lippi et al.: Autonomous Mental Development at the Individual and Collective Levels

[98] M. Zhuge et al., ‘‘Mindstorms in natural language-based societies of
mind,’’ 2023, arXiv:2305.17066.

MARCO LIPPI received the Ph.D. degree in
computer and automation engineering from the
University of Florence, in 2010.

He was a Research Assistant with the
Universities of Florence, from 2010 to 2011;
Siena, from 2011 to 2014; and Bologna,
from 2014 to 2016. From March to June 2014,
he was a Visiting Scholar with the Laboratoire
d’Informatique Paris 6 (LIP6), Université Pierre et
Marie Curie, Paris. He has been an Assistant and

Associate Professor with the University of Modena and Reggio Emilia, since
2016. Since 2024, he has been an Associate Professor with the University
of Florence. His research interests include machine learning and artificial
intelligence, natural language processing, explainability, and neuro-symbolic
learning, with applications in many fields, and especially in healthcare and
the legal domain. In 2012, he received the ‘‘E. Caianiello’’ Prize for the Best
Ph.D. Thesis in the field of neural networks.

STEFANO MARIANI received the Ph.D. degree
in computer science and engineering from the
University of Bologna, in 2012.

From April to July 2013, he was a Visiting
Scholar with the Technical University of Wien,
Austria. Following, he had postdoctoral research
positions with the Universities of Bologna and
the University of Modena and Reggio Emilia.
He is currently a tenure-track Researcher with
the University of Modena and Reggio Emilia.

He has published one monograph, more than 20 journal articles, and over
60 conference papers, where he delivered over 20 talks. His research
interests include distributed computing, pervasive systems, multi-agent
systems, socio-technical systems, coordination, self-organization, multi-
agent reinforcement learning, and causal discovery, with applications to the
Internet of Things, healthcare, and traffic management.

MATTEO MARTINELLI received the Ph.D.
degree in industrial innovation engineering from
the University of Modena and Reggio Emilia,
in 2024.

From October 2022 to April 2023, he was a
Visiting Scholar with the Institut für Steuerung-
stechnik der Werkzeugmaschinen und Fertigung-
seinrichtungen (ISW), University of Stuttgart,
Germany. He is currently holding a postdoctoral
research position with the University of Modena

and Reggio Emilia, with a research focus on the application of digital twins,
distributed, intelligent systems and modern technologies in the industrial
domain. In these areas, he has published in several international conferences
and journals.

FRANCO ZAMBONELLI (Fellow, IEEE) received
the Laurea degree in electronic engineering and the
Ph.D. degree in computer science and engineering
from the University of Bologna, in 1992 and 1997,
respectively.

He is currently a Full Professor with the
University of Modena and Reggio Emilia. He has
published over 130 articles in peer-reviewed
journals and has been invited speaker at many
conferences and workshops. He has been the

Scientific Manager of the EU FP6 Project CASCADAS and a coordinator
of the EU FP7 Project SAPERE and the PRIN 2017 Project Fluidware. His
current research interests include pervasive computing, multi-agent systems,
self-adaptive, and self-organizing systems, with applications to healthcare
and smart cities.

Prof. Zambonelli is an ACM Distinguished Scientist and a member of the
Academia Europaea. He received the 2018 Influential Paper Award of the
International Foundation for Autonomous Agents and Multiagent Systems.
He is on the Editorial Board of the ACM Transactions on Autonomous and
Adaptive Systems, SN Computer Science, IEEE Technology and Society
Magazine, Computer Journal (BCS), and International Journal of Pervasive
Computing and Communications.

Open Access funding provided by ‘Università degli Studi di Modena e Reggio Emilia’ within the CRUI CARE Agreement

VOLUME 13, 2025 5921


