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ABSTRACT The analysis of nail-fold anatomy can effectively evaluate microcirculation and diagnose
vascular-related diseases. Early detection of these conditions is crucial due to the risk of severe complications
if intervention is delayed. Extensive research supports the notion that nail-fold capillary morphology
serves as a critical biomarker for various disease processes, with the degree of capillary structural damage
potentially reflecting the involvement of internal organs. This study proposes a non-invasive methodology
for detecting nail-fold capillary morphology by integrating an object detection model for improvement
within a deep learning framework. We conducted an ablation study to enhance YOLOv8’s performance
in detecting nail-fold capillaries and classifying their morphology. Our enhancements included adding a
detection layer to improve the detection of various-sized objects, implementing Efficient Channel Attention
(ECA) mechanisms, and incorporating data augmentation techniques and hyper-parameter tuning. These
modifications yielded a notable improvement in mean Average Precision at IoU 0.50 (mAP@50), with
increases of 3.7% in mAP, 3.6% in precision, and 2.5% in recall compared to the baseline YOLOv8 model.
This culminated in a mAP@50 score of 79.9%. We also utilized Slicing-Aided Hyperinference (SAHI)
to enhance inference performance on untrained multi-scale images and smaller capillaries, demonstrating
significant effectiveness in real-time testing scenarios. The results from this research are promising for
advancing early-stage diabetes detection using nail-fold image analysis and could potentially enable real-
time applications in clinical environments.

INDEX TERMS Nail-fold capillaries, YOLOv8, ECA attention, diabetes, capillaroscopy, SAHI, object
detection, deep learning.

I. INTRODUCTION
Nail-fold capillaries are located beneath the proximal nail-
fold region of the fingers, oriented in a parallel arrangement
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along the dermis, as illustrated by the red rectangle in
Figure 1(c). These nail-fold microvascular abnormalities
are distinguishing features and play a significant role in
the pathogenesis of various systemic conditions, including
rheumatoid arthritis (RA) [1], systemic sclerosis (SSc) [2],
dermatomyositis (DM) [3], systemic lupus erythematosus
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(SLE) [4], [5], and diabetes mellitus [6]. The diagnostic
evaluation of nail-fold capillary alterations can be instru-
mental for early disease detection and monitoring, often
preceding the onset of clinical symptoms. Manifestations of
these abnormalities may include [1], [2], [3], [6], and [7]:

• Abnormal morphologies: Deviations from normative
capillary shape and structure, indicating potential under-
lying pathology.

• Sparse capillary density: A reduced number of dis-
cernible capillaries in the nail-fold area may correlate
with systemic vascular compromise.

• Microaneurysms or hemorrhages: Localized capillary
dilation or bleeding episodes indicate vascular integrity
disruption within the microcirculation.

These capillary assessments are vital for clinicians to
establish early therapeutic interventions and longitudinal
evaluations in affected patient populations.

Diabetes mellitus (DM) is an increasingly prevalent
chronic condition that presents significant public health
challenges, particularly in developing and newly industrial-
ized countries. Notably, the condition is largely preventable,
underscoring the need for timely interventions. In the
Americas, diabetes is responsible for 5.9% of mortality
in adults aged 20 and older, with type 2 diabetes (T2D)
disproportionately contributing to this burden [8], [9]. The
global incidence of T2D has risen sharply among adolescents
and young adults from 1990 to 2019, and projections
indicate that by 2030, around 470 million people will
be living with prediabetes, reinforcing the critical need
for effective preventive strategies [10]. DM is defined
by persistent hyperglycemia, characterized by consistently
elevated blood glucose levels [11]. This chronic state of
hyperglycemia leads to extensive damage to multiple organ
systems, particularly the vascular system, resulting in both
microvascular and macrovascular complications [6], [8].
Extensive research has elucidated the strong correlation
between chronic hyperglycemia and alterations in capillary
architecture. In diabetic patients, vascular neogenesis occurs
as a compensatory response to tissue ischemia, leading to sig-
nificant morphological changes within the microcirculation,
such as increased capillary diameter, enhanced tortuosity, and
reduced vessel density [12]. These alterations indicate disease
progression, declining glycemic control, and the onset of
systemic complications [13]. Thus, the importance of early
diabetes detection cannot be overstated. It is crucial for
optimizing therapeutic interventions and reducing the risk of
complications.

Nail-fold capillaroscopy (NFC) is a non-invasive, user-
friendly, and cost-effective technique providing critical
insights into viable tissues’ microvascular abnormalities.
Historically, the NFC has been employed to examine the
microvascular alterations in nail-fold capillaries associated
with various rheumatologic conditions [14]. The increasing
literature on NFC in rheumatic diseases highlights the
diversity of research applications and the technique’s efficacy
in clinical settings. Furthermore, The NFC has proven

beneficial in investigating other systemic disorders character-
ized by alterations in capillary architecture, such as diabetes
mellitus [15] and schizophrenia [16], among others [17].

The NFC technique employs a capillaroscope to cap-
ture high-resolution images of nail-fold capillaries. After
acquiring these images, clinicians, with their invaluable
expertise, conduct visual assessments and manual mea-
surements of various parameters, including the presence
of dilated capillaries, capillary morphology, and capillary
density quantified as the number of loops per millimeter.
This clinical analysis, driven by their expertise, is crucial,
but ensuring consistent and standardized evaluations across
healthcare providers remains a significant challenge. Efforts
have been made to automate the analysis of capillary
images, but variability in capillary size has yet to improve
outcomes. This inconsistency in size limits the training of
machine learning models and ultimately results in suboptimal
predictive performance, which could lead to misdiagnosis
or delayed treatment for patients. To address this limitation,
we proposed an enhanced-deep-learning-based method for
automated nail-fold capillaroscopy image analysis. This
approach leveraged object detection algorithms to detect
and classify individual nail-fold capillaries’ morphology
automatically, crucial parameters for medical diagnostics in
general and early diabetes mellitus diagnosis in particular
because it reflects the involvement of internal organs [6],
[18]. Furthermore, the enhanced deep learning framework
employed in our method demonstrated the ability to detect
capillaries within multi-scale, untrained microscopic images.
The main contributions include:

• We performed ablation studies employing various fea-
ture fusion techniques, including the Feature Pyramid
Network (FPN), the FPN-path-aggregation network
(FPN-PAN), and the bidirectional Feature Pyramid
Network (BiFPN), all integrated with You Only Look
Once version 8 (YOLOv8). The primary objective was
to evaluate the effectiveness of FPN-PAN within the
context of our specific dataset.

• We introduced enhancements to the YOLOv8, focusing
on integrating detection layers designed explicitly for
various-sized object detection. Additionally, we imple-
mented the Efficient Channel Attention (ECA) module
to refine feature extraction. Our approach included
advanced data augmentation techniques and rigor-
ous hyper-parameter optimization. These modifications
markedly improved model performance relative to
the YOLOv8 baseline, demonstrating their efficacy in
various detection tasks.

• To demonstrate the effectiveness of our proposed model,
we conducted a comparative analysis of multiple object
detection models. Comparison results included several
versions of the YOLO frameworks, Faster R-CNN, the
Real-Time Detection Transformer (RT-DETR), and the
scalable EfficientDet model.

• We implemented Slicing-Aided-Hyper-Inference
(SAHI)methodologies to improve inference performance
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on multi-magnification, untrained images, thereby
augmenting the detection capabilities of small objects.

The paper is organized as follows: Section II compre-
hensively reviews existing literature on nail-fold capillary
detection techniques. Section III details the experimental
framework and the dataset utilized in the study. Section IV
delineates the proposed models in depth. Section V discusses
the results from the ablation experiments conducted and
the comparison results. Section VI provides a thorough and
rigorous analysis, instilling confidence in the validity of our
findings. Finally, Section VII summarizes the conclusions
and recommends future research directions.

II. RELATED WORKS
Previous studies have examined a range of traditional object
detection methodologies rooted in computer vision, such as
template matching, Object-based Image Analysis (OBIA),
and knowledge-based detection techniques [19]. Demir
et al. employed the Contrast-Limited-Adaptive-Histogram-
Equalization (CLAHE) method to enhance the visibility of
capillaries in imaging. By improving image contrast, this
technique facilitates visualization and subsequent analysis
of these small vascular structures. Additionally, the authors
employed an adjustable thresholding mechanism to optimize
detection accuracy. Nonetheless, this approach may require
manual parameter tuning, which can be influenced by
external variables such as ambient lighting conditions and
dermal thickness [20].
Over the past decade, the field of object detection has

witnessed a profound transformation, largely propelled by
the emergence of deep neural networks [21]. These networks
have played a pivotal role in the development of robust object
detectors, which can be broadly categorized into two main
types: CNN-based models and Vision Transformer models.

CNN-based approaches can be classified into one-stage
and two-stage methods. One-stage detectors, such as YOLO
(2015-2024) and EfficientDet (2019) [22], are particularly
efficient for real-time applications that demand swift pro-
cessing. They achieve this by using a unified architecture
to process the entire input image in a single pass, enabling
direct predictions of both object classes and bounding box
coordinates. In contrast, two-stage methods like R-CNN
(2014), Fast R-CNN (2015), and Faster R-CNN (2016)
[23] first generate region proposals before classifying these
proposals, making them relatively more complex and slower.
On the other hand, Vision Transformers have emerged as
a promising avenue for object detection. Models like the
Detection Transformer (DETR) [24] introduced in 2020 and
the Real-Time Detection Transformer (RT-DETR) [25]
released in 2023 apply transformer architectures to object
detection tasks, showcasing the potential for high perfor-
mance, especially in scenarios where integrating context and
global reasoning is beneficial.

Vision transformer-based object detection models excel in
processing extensive datasets and managing intricate detec-
tion challenges, albeit at the cost of significant computational

resources [26]. The original DEtection TRansformer (DETR)
model, introduced in 2020 [24], employs transformers to
simultaneously predict bounding boxes and class labels from
an input image. Its architecture is built upon a Convolutional
Neural Network (CNN) backbone, a transformer encoder-
decoder structure, and dedicated prediction heads. However,
DETR’s prolonged inference times render it less suitable
for real-time applications. RT-DETR, released in 2023 [25],
enhances the model’s adaptability by providing flexible
speed tuning options through adjustable decoder layers to
mitigate this limitation. This allows for modifications tailored
to specific application requirements without necessitating
retraining of the entire model. Despite these advancements,
RT-DETR prefers larger datasets over smaller ones and
demands significant computational resources.

YOLO (You Only Look Once) represents a significant
advancement in object detection, enabling the processing
of images in a single forward pass through a convolu-
tional neural network. The model employs a grid-based
approach, allowing each cell to make simultaneous predic-
tions regarding bounding boxes, objectness scores, and class
probabilities. This architecture confers notable advantages
in terms of speed compared to other one-stage methods,
rendering YOLO particularly well-suited for real-time appli-
cations [27]. In 2021, research conducted by Tan et al.
identified YOLOv3 as presenting an optimal compromise
between detection speed and real-time performance when
contrasted with RetinaNet and SSD [28]. Subsequent studies
have established that YOLOv5 outperforms traditional two-
stage models such as Faster R-CNN in critical metrics,
including precision, recall, processing speed, and training
efficiency, particularly evident in specialized tasks like
screw head detection [29]. Most recently, Huang et al.
[30] introduced enhancements to YOLOv8, featuring a new
detection head designed to improve detection performance
across varying object sizes. Their findings indicate that
YOLOv8 significantly exceeds YOLOv3 and YOLOv5 in
terms of accuracy for small object detection tasks.

KV et al. [12] conducted a study using nail-fold capillaries,
where they implemented YOLOv2 and YOLOv3 to analyze a
dataset of 600 images from healthy and diabetic individuals.
Their objective was to accurately localize capillaries within
the nail-fold region and categorize them into five distinct
classes: normal, wide, elongated, tortuous, and hemorrhagic.
They devised a mathematical model to refine further patient
classification, classifying individuals as either ‘‘Normal’’
or ‘‘Diabetic’’. In 2023, Nguyen et al. advanced this
research by leveraging YOLOv5 and BiFPN to enhance
capillary detection precision. They developed a nail-fold
capillaroscopy dataset through microscopy, thoroughly anno-
tating it into four classes: ‘‘hairpin’’, ‘‘crossing’’, ‘‘bushy’’,
and ‘‘tortuous’’. Their model yielded a notable mean Average
Precision at IoU 0.5 (mAP@50) score of 74.2% [31].
While these studies underscore the effectiveness of deep
learning models, particularly YOLO variants, in detecting
microvascular alterations via nail-fold imagery, they fail to

VOLUME 13, 2025 1699



H. T. P. Nguyen, H. Jeong: Automated Morphology Detection of Nail-Fold Capillaries

address the inherent challenges of small object detection in
this domain. Moreover, the scalability of these findings to
untrained multi-scale images, which better reflect real-world
clinical scenarios, remains an open question.

In recent decades, there has been a growing emphasis
on improving the robustness of deep learning models,
resulting in various proposed methodologies to achieve
this objective. Critical strategies for augmenting model
robustness encompass [32]:

• Data: Data augmentation is an effective strategy for
enhancing model robustness by expanding the diversity
of the training dataset. This approach facilitates the
model’s invariance to specific features or concepts,
ultimately improving generalization performance [33].

• Architecture: Architectural robustness strategies encom-
pass a range of approaches, from optimizing individual
layers to refining entire network architectures. Enhanc-
ing network performance can be achieved by increasing
the depth or width of the architecture, which involves
adding layers or expanding the number of neurons in
each layer. Furthermore, refining the learning algorithm
and incorporating attentionmechanisms allowmodels to
compute weighted feature maps, enabling them to better
adapt to various imaging corruptions [34], [35].

• Optimization: Optimization-based strategies improve
robustness by adjusting learning objectives and conduct-
ing hyper-parameter tuning. These methods enhance
resilience against corrupted inputs while promoting the
acquisition of informative and discriminative features.
Modifications to the loss function or the training proto-
col are implemented to mitigate the risk of the model
learning shortcuts that could hinder generalization,
ultimately reducing vulnerability to brittleness [32].

We opted for YOLOv8 architecture in this study due to
its superior accuracy and efficient inference speed. This
choice is particularly beneficial for scenarios involving
limited datasets, constrained computational resources, and
applications demanding real-time performance. Our research
concentrated on several strategies to bolster YOLO’s robust-
ness, specifically focusing on data augmentation techniques,
architectural improvements, and optimization methods.

III. EXPERIMENTAL SYSTEM
A. HUMAN PARTICIPANTS
The study involved 126 individuals diagnosed with type 2
diabetes mellitus and 76 healthy controls for acquiring nail-
fold capillary images. The diabetic cohort consisted of par-
ticipants with verified diabetes histories sourced from Osaka
University Hospital, while the control group was drawn from
Chonnam National University. Both sets of images were
captured under identical experimental conditions. Notably,
the two groups had no significant body mass index (BMI)
discrepancies. All participants, out of their own volition,
received a comprehensive briefing regarding the study’s
objectives and methodologies, after which they provided

FIGURE 1. A description of an experimental system and environment for
recording nail-fold capillaries: (a) represents the total system
configuration, (b) represents the detail stand for regulating the
microscope, (c) represents how to record capillaries, and (d) represents
the recorded results of a healthy participant.

TABLE 1. The microscope hardware specifications.

informed consent to participate voluntarily, a testament to
their respect for research.

The study protocol adhered to the ethical principles
outlined in the Declaration of Helsinki and received approval
from the relevant ethics committee (No. 18546-6, December
07, 2021).

B. EXPERIMENTAL EQUIPMENT
Figure 1(a) illustrates the schematic of the experimental
setup, comprising a microscope, a monitor, and a computer
for real-time image visualization and analysis. Capillary
images were obtained using the GOKO BSCAN-Z (GOKO
Imaging Devices, Kanagawa, Japan), a compact vertical
cylindrical microscopy system noted for its enhanced
imaging capabilities (see Table 1 for specifications). The
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GOKO BSCAN-Z features a robust zoom function that
allows for high-resolution imaging without the need for
lens interchange. This function, coupled with a distinct
black central aperture, ensures clear and detailed images and
provides a smooth live video capture devoid of time lags.
As shown in Figure 1(b), the microscopy holder mounted
on the stand allows for 10 mm vertical movement along
the y-axis, facilitating precise adjustments between upper
and lower positions. The finger stand, a crucial component,
is designed for 10 mm of lateral movement along the
x-axis. This lateral movement allows for optimal positioning
of the finger from left to right, which is essential for
enhancing image capture. For z-axis adjustments, participants
can modulate their finger positioning to achieve clear views
of the capillaries. The system is complemented by a 14-
inch monitor, delivering real-time visualization of capillary
images across a spectrum of magnifications, from low to high
levels [36].
Tomitigate the impact of temperature on capillary diameter

measurements, participants were acclimatized for 15∼20
minutes in a temperature-controlled environment maintained
at 22∼25 ◦C before assessment. The evaluation encompassed
eight fingers, excluding the thumbs, from each hand.
Each finger underwent a cleansing procedure, followed by
applying immersion oil in the nail fold region to improve
image resolution and clarity. As illustrated in Figure 1(c),
participants were seated comfortably, with their fingers on
a designated stand beneath the capillary microscope. The
red rectangle in the figure delineates the nail-fold region
of interest. The researcher ensured optimal alignment for
real-time observation on computer display, capturing images
for subsequent analysis. Figure 1(d) presents a representa-
tive nail-fold capillary image acquired at a magnification
of 390×.

C. DATASET CONSTRUCTION
Maldonado et al. [37] have identified a higher prevalence
of specific capillary morphologies in patients with diabetes
mellitus, including tortuosity, bushy capillaries, capillary
ectasia, neoformation, microhemorrhage, bizarre capillaries,
and aneurysms. Furthermore, thework of Abd El-Khalik et al.
[38] suggests that this population’s most prevalent capillary
types are tortuous and branched capillaries and precapillary
oedema. Additionally, Shikama et al. [39] established a
significant positive correlation between the frequency of
crossing capillaries in the nail fold and the risk of type 2
diabetes mellitus. Building on these findings, our study aims
to identify and classify four distinct morphologies of nail-
fold capillaries into four classes: ‘‘hairpin’’, ‘‘tortuous’’,
‘‘crossing’’, and ‘‘bushy’’.

• Hairpin capillaries are characterized by capillaries that
resemble hairpins with a U-shape [40].

• Tortuous capillaries have multiple curves and curled but
do not cross over themselves [40].

• Crossing capillaries: the limbs cross once, twice,
or many [39].

FIGURE 2. Schematic illustrations and corresponding images of four
distinct classes of nail-fold capillary morphologies: (a) hairpin capillaries,
(b) crossing capillaries, (c) tortuous capillaries, (d) bushy and branching
capillaries.

• Bushy capillaries are characterized by small and multi-
ple buds along the limb branches [40].

Figure 2 depicts four distinct classes of nail-fold cap-
illaries through schematic illustrations and corresponding
images: (a) hairpin capillaries, (b) crossing capillaries,
(c) tortuous capillaries, and (d) bushy and branching cap-
illaries. The dataset comprises 3,283 images from diabetic
patients (an average of 26 images per human participant)
and 3,412 images from healthy controls (an average of
44.89 images per participant), all captured at 390× magni-
fication with a resolution of 640 × 480. After filtering out
duplicates and low-quality images, a refined subset of 1,279
images was selected for subsequent analysis. This dataset was
partitioned into an 80% training set and a 20% validation
set to facilitate model development and evaluation. The
capillary images were manually labeled using the modified
Openlabelling tool [41], categorizing the images into four
classes: ‘‘hairpin’’, ‘‘crossing’’, ‘‘torturous’’, and ‘‘bushy’’.
Random brightness and contrast adjustments were employed
to augment the training set, doubling the training dataset
to 2,046 images. A separate test set was created, consisting
of 19 multi-scale images acquired at various magnifications
ranging from 100× to 400×.

IV. METHODS
A. BASELINE MODEL
YOLOv8 [42] represents a state-of-the-art single-shot object
detection framework acclaimed for its optimal balance of
speed and accuracy, which is critical in inference tasks.
At its core, YOLOv8 employs CSPDarknet53 as the back-
bone architecture, a sophisticated deep neural network that
adeptly extracts features at multiple resolutions through a
progressive downsampling approach. A notable advancement
in YOLOv8 is its C2f module represented in figure 5, which
improves upon the C3 block of YOLOv5 by seamlessly
fusing high-level semantic features with low-level spatial
context [43]. This sophisticated integration significantly
boosts the model’s detection performance, particularly for
small objects, making it especially relevant for applications
such as nail-fold capillaroscopy analysis.

In the neck component, YOLOv8 employs an advanced
fusion mechanism called FPN-PAN. This mechanism is
significant as it integrates the architecture of the Feature
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FIGURE 3. The typical three kinds of feature fusion structures: (a) Feature
Pyramid Network (FPN), (b) Feature Pyramid Network and Path
Aggregation Networks (FPN - PAN), (c) Bi-directional Feature Pyramid
Network (BiFPN).

Pyramid Network (FPN) and Path Aggregation Network
(PAN), creating multi-scale feature pyramids. These pyra-
mids are crucial as they allow for a more effective fusion
of features derived from various depths of the backbone
network, resulting in enhanced feature representations that
are crucial for object detection tasks.

YOLOv8 architecture features a multi-head detection
system, where each head produces predictions for bounding
boxes, confidence scores, and class probabilities across
various scales in the input image. The model employs
binary cross-entropy loss (BCE Loss) for the classification
component. For the regression aspect, it utilizes a hybrid
of distribution focal loss (DFL) and Complete Intersection
over Union (CIoU) loss, significantly boosting performance,
especially for detecting smaller objects.

B. FEATURE NETWORKS
The Feature Pyramid Network (FPN) effectively integrates
multi-scale image features to improve object detection
accuracy. As depicted in Figure 3(a), FPN [44] architecture
utilizes input features from layers 3 to 5, represented as P⃗in =

(Pin3 ,P
in
4 ,P

in
5 ). By leveraging these varying levels of feature

maps, the network enhances the representation of objects at
different scales, facilitating improved detection performance
across a range of object sizes.

For an input size of 640 × 640, the feature levels
(Pin3 ,P

in
4 ,P

in
5 ) correspond to resolutions of 80× 80, 40× 40,

and 20 × 20, respectively. In the FPN context, multi-scale
features are synthesized via a top-down pathway, allowing
information integration across various resolutions.

Pout5 = Conv(Pin5 )

Pout4 = Conv(Pin4 + Resize(Pout5 ))

Pout3 = Conv(Pin3 + Resize(Pout4 )) (1)

FPN presents a practical method for feature fusion, yet
its unidirectional information flow constrains it from higher
to lower levels. To mitigate this limitation, FPN-PAN [45]
implements an additional bottom-up pathway, as illustrated
in Figure 3(b). This ‘‘PAN’’ mechanism employs downsam-
pling, similar to the upsampling operation (Resize) depicted
in Equation 1 to seamlessly integrate lower-level features
into the higher levels, thereby enhancing the comprehensive
exchange of information.

The BiFPN [22] further advances this concept by incorpo-
rating a direct connection from the original input feature map

to the output nodes at each level, facilitating the fusion of an
expanded range of features. This adjustment enriches feature
representation by incorporating low-level details directly into
the final predictions, as shown in Figure 3(c). Additionally,
the BiFPN optimizes the network architecture by removing
nodes with only a single input edge, streamlining the overall
design.

C. CHANNEL ATTENTION NETWORKS
Attention networks have significantly enhanced the efficacy
of deep convolutional neural networks (CNNs) in various
computer vision applications. They enable CNNs to prioritize
critical information in inputs while effectively reducing the
incorporation of irrelevant background data. Over the years,
many innovative attention mechanisms have emerged in the
field. In our study, we employ several attention modules,
namely the Convolutional Block Attention Module (CBAM)
[46] and the Global Attention Mechanism (GAM) [47],
to benchmark against our chosen mechanism, the Efficient
Channel Attention (ECA) [48]. We choose ECA due to
its utilization of efficient 1D convolution, which strikes a
balance between computational efficiency and performance
enhancement, all while adding minimal parameters and
incurring negligible overhead. This characteristic makes
ECA particularly advantageous for real-time applications,
thereby significantly boosting the overall performance of our
model [48].

The ECA mechanism [48] presents an innovative strategy
for facilitating channel-wise feature interactions without
necessitating dimensionality reduction while maintaining a
low model complexity. As illustrated in Figure 4, ECA
employs global average pooling to create a comprehensive
channel descriptor that effectively encapsulates the overall
feature distribution across channels. The module further
captures local cross-channel interactions by assessing each
channel’s k proximal channels. The channel weights are
dynamically computed via a 1D convolution operation, where
the kernel size k is adaptively determined based on the input
channel dimension (C). This kernel size k plays a critical
role in defining the scope of local cross-channel interaction
within ECA. The representation of ECA can be formulated as
follows:

ω = σ (Conv1dk (y)) (2)

where Conv1dk indicated the 1D convolution utilized a kernel
size k , y is the aggregated feature, and a sigmoid activation
function (σ ).

To effectively determine the coverage area, the authors
propose making the kernel size k for the 1D convolution
adaptively proportional to the number of channels C . Con-
sequently, the local region of coverage can be dynamically
calculated as follows:

k = ψ(C) = |
log2(C)
γ

+
b
γ

|odd (3)
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FIGURE 4. The architecture of Efficient Channel Attention (ECA).

where C is the channel dimension, C = φ(k) = 2(γ ∗k−b),
|k|odd represents the nearest odd number of k , and the hyper-
parameters b and γ are configured as 2 and 1, respectively.

D. ENHANCED BASELINE MODEL FOR OBJECT
DETECTION
Our proposed model significantly enhances YOLOv8 archi-
tecture, as Figure 5 depicts. The modifications we’ve made
to the original framework, enclosed within the red dashed
boxes, and the additional connection represented by the bold
black line, are crucial advancements in object detection.
Detecting small objects accurately is a formidable challenge
in YOLOv8n architecture. This difficulty stems from two
key factors: the limited feature representation in deep feature
maps due to the small size of the objects and the significant
downsampling employed.

Our model’s original architecture, utilizing an input size of
640 × 640 and defining a minimum detection scale of 80 ×

80, presented a challenge for objects with bounding boxes
smaller than this threshold. To address this issue and improve
various-sized object detection capabilities, we incorporated
an additional input from the second level of the backbone
network (C2f layer 2) into the neck component, establishing
a detection layer with a 160 × 160 scale, referred to as the
p2 detection layer, as depicted in Figure 5. This modification
significantly enhances the model’s ability to detect objects
across a broader spectrum, with resolutions of 160 × 160,
80 × 80, 40 × 40, and 20 × 20.
We incorporated the Efficient Channel Attention (ECA)

modules after C2f layers to selectively enhance the most
relevant channels in an image, thereby augmenting feature
representation. ECA stands out for its computational effi-
ciency and ease of implementation relative to other attention
mechanisms. To assess the efficacy of ECA, we performed
an ablation study, contrasting its performance with that of
various alternative attention methods.

E. HYPER-PARAMETER TUNING
Table 2 outlines the hyper-parameter configurations utilized
during our model training process. We made noteworthy
adjustments to the default values of the mosaic and
mixup data augmentation hyper-parameters introducingmore

TABLE 2. Used settings for hyper-parameter tuning.

variability and complexity into the training data. Figure 6
illustrates the mosaic data augmentation and mixup data
augmentation in the nail-fold capillary dataset. The mosaic
augmentation technique integrates four images into a single
training instance by stitching them together and applying a
random cutout, resulting in the final Mosaic image [49], [50].
Conversely, the mixup generates a novel image by averaging
two images, guided by a weighting parameter, while linearly
blending their respective labels to form a corresponding pair
[50], [51]. These augmentation strategies allow the model
to engage with a more diverse set of nail-fold capillary
scales and classes, spatial positions, and arrangements, which
enhances its detection capabilities for smaller objects, boosts
generalization to previously unseen data, and counteract
overfitting risks. This, in turn, contributes to improved model
robustness, a key aspect of our model’s performance. In our
implementation, the values of mosaic and mixup hyper-
parameters were optimized by Grid Search. The mosaic
data augmentation factor was reduced to 0.5 (default: 1.0).
At the same time, the mixup was set to 0.5 (default: 0.0).
These values are the probability of applying these data
augmentations in the training process ranging from 0.0 to 1.0.
These modifications explore the potential advantages of fine-
tuning these specific hyper-parameters relative to the default
settings applied in YOLOv8n.

F. SLICING AIDED HYPER INFERENCE
Slicing Aided Hyper Inference (SAHI) [52] presents an
innovative methodology to enhance small object detection
within computer vision. This technique utilizes a robust
framework that employs image slicing, segmenting the input
into overlapping patches to improve small objects’ visibility
and detection accuracy. The model ensures that small objects
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FIGURE 5. Our enhanced YOLOv8 architecture for nail-fold capillary detection.
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FIGURE 6. The illustration of the mosaic data augmentation and mixup
data augmentation in the nail-fold capillary dataset.

are adequately represented within the neural network’s
processing pipeline.

To specifically address the challenge of detecting various-
sized capillaries at lower magnifications, such as 100×
or 200×, we introduce a solution that synergizes our
enhanced YOLOv8n model optimized through training on
a custom dataset with the SAHI framework. By harnessing
the high-performance attributes of the refined YOLOv8n
architecture in conjunction with SAHI’s targeted approach to
tiny object detection, we achieve significant advancements in
the detection capabilities for minute capillaries.

G. PERFORMANCE METRICS
In this study, several metrics were used to evaluate model
performance, including Precision, Recall, and mean Aver-
age Precision (mAP), which were calculated using True
Positives (TP), False Positives (FP), False Negatives (FN),
and True Negatives (TN) [53]. GFLOPS, or giga floating-
point operations per second, is a measure of a model’s
computational complexity, with a higher FLOPS count
indicating increased model complexity, more processing
steps, and longer computation time. Frames per second (FPS)
refers to the frame rate, representing the number of individual
images a model can process each second. Low FPS can
negatively impact the model’s ability to perform real-time
tracking effectively.

FPS =
1

inference_time
(4)

where inference_time is the total time taken by a model to
process one image.

Precision is the proportion of true positives among
all positive predictions, evaluating the model’s ability to
minimize false positives:

Precision =
TP

TP+ FP
(5)

Recall is defined as the proportion of true positives among all
actual positives, measuring the model’s ability to identify all
instances of a class:

Recall =
TP

TP+ FN
(6)

Intersection over Union (IoU) quantifies the overlap
between a predicted bounding box and the ground truth
bounding box.

Average Precision (AP) calculates the area under the
precision-recall curve, providing a single value that summa-
rizes the model’s precision and recall performance.

Mean Average Precision (mAP) is mean average precision.

mAP =
1
N

N∑
i=1

APi (7)

where APi is the AP in the ith class and N is the
number of classes. mAP@50 calculated at an IoU thresh-
old of 0.50 across all classes. An analogous metric is
the mean Average Precision between thresholds 0.5 and
0.95 (mAP@50-95). It calculates the average precision across
a range of IoU thresholds from 0.5 to 0.95, offering a
more balanced and comprehensive assessment of the model’s
performance across varying levels of detection difficulty.

Mean absolute percentage error (MAPE) is a performance
metric for evaluating the precision of prediction quantities
relative to actual quantities.

MAPE =
100
n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (8)

where yi is the actual value, ŷi is the prediction value and n is
the number of fitted points.

V. RESULTS
A. RESULTS OF ABLATION STUDY
All experiments were meticulously conducted on an NVIDIA
GeForce RTX 4090 GPU with a driver version 550.54.14 and
24GB of memory. The deep learning framework utilized for
the experiments is PyTorch 2.1.1, with CUDA 11.8 running
on Python 3.8.18, ensuring the highest standards of accuracy
and reliability in our results.

Table 3 presents the outcomes of ablation studies that
assessed the effects of various feature fusion techniques—
specifically FPN-PAN, BiFPN, and FPN—on the perfor-
mance of the YOLOv8 model in the context of nail-fold
capillaroscopy image analysis. The FPN-PAN configura-
tion demonstrated the most substantial performance gains,
achieving a mean Average Precision at an Intersection
over the Union (IoU) threshold of 50% (mAP@50) of
76.2%, alongside the highest precision rate at 70.2%. These
outcomes underscore the significant potential of FPN-PAN in
image analysis. Moreover, it maintained the lowest parameter
count compared to the other methodologies explored. While
BiFPN excelled in recall, recording an actual identification
rate of 74.4%, FPN-PAN distinguished itself by delivering
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TABLE 3. The result of ablation experiments with feature fusion methods.

TABLE 4. The result of ablation experiments with attention modules.

TABLE 5. The result of ablation experiments with our proposed robustness methods. ‘‘Aug’’ means data augmentation.

FIGURE 7. The training and validation curves for various performance metrics: box loss, distribution focal loss, classification loss, precision, recall,
and mean average precision (mAP).

a more comprehensive balance of mAP@50, precision, and
parameter efficiency.

Table 4 summarizes the results of ablation studies assessing
the effectiveness of different attention modules—CBAM,
GAM, and ECA—when integrated into the YOLOv8 frame-
work. The ECA module demonstrated superior performance,
enhancing 0.2% without significantly increasing the number
of parameters, adding only 12 to the model. This minimal

parameter increase underscores the scalability of the ECA
module. Additionally, it maintains the GFLOPS efficiency
comparable to YOLOv8n. These findings highlight the
efficacy of ECA attention in enhancing model performance
while keeping the complexity low.

Table 5 displays the ablation studies’ outcomes on our
proposed robust models, which integrate an additional p2
detection layer, ECA attention, data augmentation, and
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FIGURE 8. (a) The Precision-Confidence Curve, (b) Precision-Recall Curve, and (c) Recall-Confidence Curve of our proposed model in four classes: bushy,
crossing, hairpin, tortuous, and all classes.

hyperparameter optimization. Incorporating the p2 detection
layer, ECA attention mechanism, and hyperparameter tuning
yielded performance enhancements in nail fold capillary
detection, resulting in increases of 1.4%, 0.2%, and 0.8%
in mAP@50, respectively. In contrast, data augmentation
decreased YOLOv8n’s detection accuracy by 2.1% in
mAP@50 for this specific application. This decrease can
be attributed to the introduction of noisy or irrelevant data
during the augmentation process, which the model struggles
to effectively utilize. Notably, combining data augmentation
with either ECA attention or the p2 detection layer sig-
nificantly improved detection robustness. For instance, the
‘‘YOLOv8n + ECA + Aug’’ configuration demonstrated a
1% improvement in mAP@50 over ‘‘YOLOv8n + ECA’’
without data augmentation. This indicates that the baseline
YOLOv8n model struggles to leverage augmented data
effectively, whereas our refined YOLOv8n model adapts
proficiently, resulting in enhanced generalization capabilities
with the integration of data augmentation.

The results from the ‘‘YOLOv8n + p2’’ configuration
underscore the effectiveness of the p2 detection layer, with
substantial enhancements of 0.7%, 1.2%, and 1.4% in Pre-
cision, Recall, and mAP@50, respectively. The integration
of the p2 detection layer has also led to a 2.8% decrease in
the total parameter count, a testament to the balance achieved
between model complexity and parameter reduction. This
balance is facilitated by the p2 head functioning at a higher
resolution with reduced channel usage, effectively managing
the trade-off between granularity and model complexity. The
reduction in total parameters is a clear indication of this
architectural modification’s success in maintaining model
efficiency while enhancing performance.

Our enhanced YOLOv8 model incorporates several key
advancements: the introduction of an additional detection
layer, implementation of Efficient Channel Attention (ECA),
various data augmentation techniques, and finely-tuned
hyperparameters. These enhancements lead to considerable
performance gains over the baseline YOLOv8n model, with
precision, recall, mAP@50, and mAP@50-95 improving
by 3.6%, 2.5%, 3.7%, and 2.8%, respectively. Notably,
these improvements are achieved with a reduced parameter

count—11.3% lower than YOLOv8n—thanks to the efficient
utilization of 1D convolutions in the ECA block and model
optimization. This optimization was carefully balanced,
ensuring efficacy for small object detection by maintaining
a low computational complexity of 9.3 GFLOPS, demon-
strating superior efficiency compared to the 1.2 GFLOPS of
YOLOv8n.

The training and validation loss curves for box, classifi-
cation, and distribution focal loss are illustrated in Figure 7,
along with precision, recall, and mean Average Precision
(mAP) metrics across the training epochs. The box loss
quantifies the error in bounding box predictions, while the
classification loss assesses the accuracy of object category
predictions. It’s important to note that the distribution focal
loss plays a critical role in addressing class imbalance by
emphasizing the training of difficult-to-classify instances.
Notably, after 200 epochs, the model exhibits a significant
improvement in precision, recall, and mAP, achieving stabi-
lization by epoch 217, at which point training was terminated.

In Figure 8, we present the precision-recall metrics for
our proposed model. Figure 8(a) illustrates the precision-
confidence curve, where maximum precision reaches one
at a confidence threshold of 0.931. Figure 8(b) displays
the precision-recall curve, highlighting a mean average
precision (mAP) of 0.799 across all classes at an IoU
threshold set to 0.5. The individual class mAPs are as
follows: bushy (0.737), crossing (0.852), hairpin (0.876), and
tortuous (0.729). Lastly, Figure 8(c) shows the recall curve,
providing additional insights into the model’s performance
across different confidence levels.

B. RESULTS OF COMPARATIVE ANALYSIS
Figure 9 illustrates a qualitative comparison of detection
outcomes between the baseline YOLOv8n and the enhanced
YOLOv8n model under varying conditions: (a) multiple
capillaries, (b) image blur, (c) backlight scenarios, and
(d) 100× magnification. The displayed results include
bounding boxes, class labels, and confidence scores for
capillary detection, where the confidence score reflects the
model’s certainty in its classifications.
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FIGURE 9. The comparison of the qualitative results between the original YOLOv8n and our improved YOLOv8n in various conditions: (a) Multiple
capillaries, (b) Blur image, (c) Backlight, and (d) 100x magnification.

FIGURE 10. The comparison of heatmaps generated with Eigen-CAM: (a) Original image, (b) YOLOv8n, (c) YOLOv8n + p2, (d) YOLOv8n +
ECA and (e) Our improved YOLOv8n.
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FIGURE 11. Category mAP@50 (%) comparison between YOLOv8n and
our improved YOLOv8.

FIGURE 12. The performance comparison of object detection models
trained on Nailfold capillary dataset.

The improved model demonstrates a superior performance
across all tested conditions, typically yielding higher con-
fidence scores for capillary identification than the original
YOLOv8n. Notably, the orange arrows in the blur and
backlight conditions indicate instances of misclassification
by the original YOLOv8n, which our improved model accu-
rately identified, providing reassurance about its accuracy.
Moreover, the green arrows highlight capillary detection
achieved by our model that the original YOLOv8n missed in
the blur, backlight, and 100× magnification contexts.

Figure 10 presents an Eigen-CAM visualization that elu-
cidates model predictions across five sample images, specif-
ically contrasting (b) the original YOLOv8n, (c) YOLOv8n
with an added p2 detection layer, (d) YOLOv8n equipped
with ECA, and (e) our enhanced version of YOLOv8n. The
heatmaps, derived from Eigen-CAM utilizing class activation
maps (CAM), delineate the focal regions within the visual
data the model prioritizes for its predictions, thus providing

FIGURE 13. Nailfold capillary detection model performance comparison,
FPS: frame rate, mAP: mean Average Precision. The radius of the circle
represents the number of model parameters. The larger the radius, the
greater the number of model parameters.

critical insights into the model’s attention distribution and
confidence levels.

For this visualization, the second-to-last layer was selected
to avoid interference from the detection output of the final
layer in YOLOv8. The heatmaps highlight that the brighter
regions signify areas of intense attention during inference.
Notably, the models incorporating the p2 detection layer, the
ECA, and our improved YOLOv8n exhibit a more refined
focus on nail fold capillaries. They also effectively downplay
attention to irrelevant background elements, reassuring
the audience about their efficiency. In stark contrast, the
original YOLOv8n tends to distribute its attention more
evenly between capillaries and adjacent backgrounds, which
could lead to unnecessary computational complexity and
diminished accuracy. Our improved YOLOv8n, however,
achieves superior precision in targeting capillary regions,
including smaller capillaries, demonstrating its efficacy in
this specific context.

Figure 11 illustrates the enhanced accuracy across various
object categories relative to the baseline YOLOv8 model.
Notably, there has been a noticeable and consistent increase
in mAP@50 for all classes since implementing our refined
model. The most significant improvements are observed in
the ‘‘tortuous’’ and ‘‘bushy’’ categories, which experienced
gains of 6.5% and 5.5%, respectively. These categories,
which represent a more specialized subset of capillaries
within the dataset, are the specific focus of our research.
Substantial advancements in detection performance for these
features are a testament to our efforts.

Figure 12 presents a comparative analysis of multiple
object detection models applied to our nail-fold capil-
laroscopy dataset, a crucial resource in studying microvascu-
lar abnormalities in various diseases. This includes YOLOv3
[54], as referenced in paper [12], and various iterations of
YOLOv5 [43] (specifically, the small, medium, large, and
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extra-large versions), along with Bi-FPN from paper [31].
We also evaluate YOLOv6 [55], YOLOv7 [56] (covering
versions YOLOv7, x, w6, e6, d6), YOLOv8 [42] (including
versions nano, small, medium, and extra-large), and a
modified iteration introduced in this work. Additionally,
we assess YOLOv9 [57] (versions c and e), EfficientDet [22]
(d0, d1, d2, and d3-d7, noting that latter versions encountered
memory issues), along with the Transformer-based Real-
Time Detection Transformer (RT-DETR) [25] and Faster
R-CNN [23].

In practical applications, models are typically optimized
to enhance both accuracy and inference speed, as rapid
inference is essential for effective deployment. Figure 13
illustrates the frames per second (FPS) performance across
several object detection architectures, including the YOLO
series, Faster R-CNN, EfficientDet, the transformer-based
RT-DETR, and our enhanced YOLOv8 model. In this
visualization, the radius of each circle indicates the model’s
parameter count, with larger circles representing greater
parameter complexity. Our model, with the lowest parameter
count, delivers the best mAP@50, with 714 FPS ranking
just behind YOLOv8n (833 FPS). This optimal interplay
between efficiency and accuracy underscores its superiority,
making it a compelling choice for real-time object detection
applications.

In figures 12 and 13, the nail-fold capillary detection
performance of RT-DETR, Faster R-CNN, and EfficientDet
is observed to be inferior to that of the YOLO family,
with these models also demonstrating longer inference times.
Consequently, they are not well-suited for this real-time
application. The suboptimal performance of Faster R-CNN
can be attributed to its limited ability to detect objects in
low-resolution images, primarily due to its weaker capacity
to capture local textures. In contrast, EfficientDet demands
substantial memory for training and exhibits prolonged
inference durations. While RT-DETR offers speed improve-
ments over DETR, its suitability for small datasets remains
limited. Whereas, YOLO-based models (from YOLOv3
through YOLOv9) demonstrate exceptional accuracy, with
our optimized YOLOv8n model outperforming all alterna-
tives even with a reduced parameter count. These findings
emphasize the model’s efficacy for real-time analysis in nail-
fold capillaroscopy applications. In summary, our research
indicates that the YOLOv8n model is the most suitable for
our specific application, offering a balance of accuracy and
efficiency.

VI. DISCUSSION
We enhance the detection accuracy of tiny capillaries
by integrating the model with the SAHI (Slicing Aided
Hyper Inference) framework. The comparative analysis of
the improved YOLOv8n model’s performance, and without
SAHI, is presented in Table 6. After training our improved
model, optimal weights are saved in the best.pt file, and the
SAHI technique is integrated for subsequent inference tasks.

Figure 14 illustrates the model’s performance across multi-
scale images at 100×, 200×, and 390× magnifications,
both with and without SAHI integration. Notably, at the
highest magnification (390×), the detection outcomes of
the standalone and SAHI-integrated models exhibit min-
imal differences. However, SAHI significantly enhances
the detection of tiny capillaries at lower magnifications
(100× and 200×), resulting in a 67.32% increase in
detection volume and a 35.6% reduction in Mean Absolute
Percentage Error (MAPE). Importantly, integrating SAHI
reduces inference time, achieving up to 50 frames per second
(FPS), making it not just suitable but highly practical for real-
time applications.

These findings underscore that SAHI is particularly
advantageous for low-magnification images, improving small
capillary detection. In contrast, the enhanced YOLOv8n
model alone is adequate for high-magnification (390×)
scenarios. Notably, the figures represent performance on
untrained multi-scale images at magnifications of 100×,
200×, and 390×, which deviated from the training dataset’s
magnification of 390×.

In this study, we employed several techniques to enhance
the robustness of the YOLOv8n model, achieving significant
improvements in detecting nail-fold capillaries. The year
2024 marked the introduction of YOLOv11, the latest
iteration in the YOLO series of object detection mod-
els, which redefined the state-of-the-art with its superior
accuracy, speed, and efficiency [58]. Table 7 provides a
comparative analysis of the results obtained by applying our
robustness techniques to YOLOv11. Compared to YOLOv8,
YOLOv11 demonstrates advantages in model simplicity and
computational speed, requiring fewer parameters. Specifi-
cally, YOLOv11n reduces the number of parameters and
GFLOPS by 14% and 22%, respectively, compared to
YOLOv8n. However, the mAP@50 of YOLOv11n is lower
than that of YOLOv8n on the nail-fold capillaries dataset.
When integrating our proposed techniques into YOLOv11n,
we observed improvements of 1.1%, 1.6%, 2.9%, and 3% in
Precision, Recall, mAP@50, and mAP@50-95, respectively,
while achieving a 6.3% reduction in the number of param-
eters. Despite these advancements, the combination of our
proposed methods with YOLOv8 outperforms YOLOv11,
with gains of 3.6%, 0.3%, 1.6%, and 0.4% in Precision,
Recall, mAP@50, and mAP@50-95, respectively. However,
YOLOv11 demonstrates its strengths in speed and model
complexity, making it a valuable addition to the YOLO
family.

In real-world applications, privacy and security concerns
often limit the number of samples that can be collected and
labeled for each class, sometimes to just a few. Techniques
such as small-sample learning, zero-shot learning, and the
development of domain-specific large models offer promis-
ing solutions to address these practical challenges [59],
[60]. Manually annotating the boundaries of blood vessels
presents significant challenges in practice, which requires
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TABLE 6. The result of comparison between our improved YOLOv8n with and without SAHI on test samples.

FIGURE 14. The results of multi-scale untrained images of our model with SAHI and without SAHI.

TABLE 7. The result of our techniques implementation for model robustness in YOLOv11.

collaboration between clinical experts and AI engineers.
One potential solution to address this difficulty is using
high-resolution images to improve the accuracy of manual
annotations. Additionally, post-processing techniques can be
applied to filter out unnecessary detections. To ensure robust
evaluation, metrics such as Average Precision (AP) at varying
object sizes (e.g., medium, small) can be employed to capture
performance across different sizes of objects better.

VII. CONCLUSION
This study presents an enhanced YOLOv8 model designed
to analyze non-invasive nail-fold capillaroscopy images.
We made essential modifications to optimize small capillary
detection, including increasing detection layers in themodel’s
head, integrating Efficient Channel Attention (ECA) mod-
ules, fine-tuning hyper-parameters, and applying advanced
data augmentation techniques. These enhancements result in
significant performance gains over the baseline YOLOv8n
model, with improvements of 3.6% in precision, 2.5%
in recall, 3.7% in mAP@50, and 2.8% in mAP@50-95.
Notably, the model maintains a low parameter count and

computational efficiency, making it suitable for real-time
applications.

Additionally, we investigate the combined utilization
of Slicing-Aided-Hyper-Inference (SAHI) techniques to
address the challenges associated with small object detection
in nail-fold capillary images captured at low magnification.
These techniques, which consider the scale of objects in
the image, lead to significant performance enhancements,
particularly in untrained and multi-magnification scenarios
involving minute capillaries. The results suggest the potential
development of a clinical tool that aids healthcare profession-
als in detecting and assessing nail-fold capillary morphology,
which is crucial for counting capillary numbers and serves
as an essential indicator in the early diagnosis of various
diseases. Future research will aim to broaden the model’s
applicability to diabetic patient detection, further illustrating
its potential clinical significance.
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