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ABSTRACT This paper introduces a motion-corrected, free-breathing dynamic contrast-enhanced (DCE)
MRI reconstruction method, termed low-rank plus sparse (L+S) with soft weighting. We designed a soft
weighting matrix that smoothly transitions spokes between the target and other motion states to suppress
motion blurring. The optimized fast iterative shrinkage-thresholding algorithm (FISTA) was employed
to solve the L+S optimization problem, enabling faster convergence and better image quality. A DCE-
MRI computer simulation framework, based on a modified Shepp-Logan model, was used as ground
truth to quantify the motion suppression errors. Both simulation and clinical datasets demonstrate that the
proposed method provides superior motion correction, higher temporal resolution, and over 5 times faster
reconstruction speed than existing motion-corrected GRASP frameworks.

INDEX TERMS Compressed sensing, DCE-MRI, motion correction, parallel imaging, reconstruction
efficiency, soft weighting.

I. INTRODUCTION
Dynamic contrast-enhanced (DCE) MRI induces significant
signal intensity changes in tissues by the injected contrast
agent. Tumors and normal tissues exhibit distinct signal
variation curves [1], [2], [3], [4], making DCE-MRI a
powerful tool for detecting tumors and other lesions [5],
[6]. Achieving high spatio-temporal resolution is crucial to
accurately capture tissue’s dynamic signal variation. Multiple

The associate editor coordinating the review of this manuscript and

approving it for publication was Marco Giannelli .

three-dimensional (3D) images are required to be rapidly
acquired in different dynamic phases, which poses significant
challenges to MRI systems.

Over the past decades, various reconstruction frameworks
have been developed for DCE-MRI to reconstruct highly
under-sampled datasets. Golden Angle Radial Sparse Parallel
(GRASP) combines the acceleration ability of parallel imag-
ing and compressed sensing to achieve a high acceleration
factor (AF) in reconstruction [7], [8]. It employs a stack-
of-stars golden-angle radial sampling pattern to achieve fast
and uniform 3D k-space coverage. The acquired spokes are
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evenly subdivided into multiple time frames according to
acquisition time order [9]. GRASP explores the temporal
incoherence across these time frames and recovers the image
series with excellent quality.

However, the spokes within a single time frame
may be acquired at different motion states. Although
the stack-of-stars sampling pattern provides enhanced
motion robustness, periodic respiratory and cardiac motions
remain challenging for DCE-MRI, often leading to motion
blurring [10], [11].

To further reduce motion blurring in DCE-MRI, motion-
corrected GRASP techniques, such as extra-dimension
(XD) GRASP [12] and respiratory-weighted (RACER)
GRASP [13], were developed. Both XD-GRASP and
RACER-GRASP introduce additional motion state subdivi-
sions within each time frame, providing additional motion
state information for DCE-MRI [14], [15], [16], [17]. XD-
GRASP reconstructs multiple motion states simultaneously,
while RACER-GRASP combinesmotion states with different
weighting factors to lock a desired motion state. However,
this motion state subdivision increases the under-sampling
ratio. XD-GRASP struggles with reconstruction at high
temporal resolution due to excessive AF [13], whereas
RACER-GRASP achieves better reconstruction quality at
high temporal resolution by using a weighted combination of
motion states. Nevertheless, RACER-GRASP shows worse
motion suppression when reconstructing the intermediate
motion state.

Meanwhile, reconstruction of the additional motion
state increases the computation burden of both XD-
GRASP and RACER-GRASP [18], [19]. Although self-
calibrating GRAPPA operator gridding (GROG) has
been implemented to accelerate the reconstruction, the
computation cost remains challenging for clinical
applications [16], [20].

Beyond these two motion-resolved GRASP methods,
various motion-resolved methods, such as MostMco [21]
and MoCoLoR [22], have been developed. However, these
methods primarily focus on dynamic MRI reconstruction and
are associated with a higher computation burden. Alternative
motion correction approaches in DCE-MRI including motion
registration, outlier spokes removal, and increasing temporal
resolution, etc., have also been explored [23], [24], [25],
[26], [27]. However, these methods cannot provide adequate
motion state information and may compromise acquisition
efficiency.

Low rank plus sparse (L+S) decomposition is a
widely used model for DCE-MRI reconstruction, providing
improved tissue contrast and temporal fidelity, especially at
high AF reconstruction [28], [29], [30]. L+S decomposition
employs an iterative shrinkage-thresholding algorithm
(ISTA) [31] to obtain the optimal solution, significantly
enhancing reconstruction efficiency compared to NLCG
in GRASP-based methods by reducing the number of
gridding and de-gridding procedures. Hence, combining
L+S decomposition with motion-resolved techniques is a

promising approach for improving the motion-corrected
DCE-MRI reconstruction.

In this work, we developed a motion-resolved DCE-MRI
reconstruction method by incorporating a soft-weighting
matrix into the standard L+S decomposition model, termed
‘‘L+S with soft-weighting,’’. This approach preserves high
reconstruction efficiency, enhances motion suppression, and
provides richmotion state information for DCE-MRI simulta-
neously. Amodified fast ISTA (FISTA) algorithm [31] is used
to recover motion-resolved images from the proposed model
efficiently. Additionally, a computer simulation framework
was developed to evaluate the performance of different
reconstruction schemes. Further details about this research
can be found in the author’s Ph.D. thesis [32].

II. METHODS
The proposed ‘‘L+S with soft weighting’’ method extends
L+S decomposition by incorporating an additional motion
suppression mechanism. The goal of the proposed method is
to establish a new free-breathing DCE-MRI reconstruction
framework, as illustrated in Figure 1, which provides merits
that include time-efficient reconstruction, enhanced motion
suppression, and flexible motion resolution simultaneously.

A. MOTION ESTIMATION AND MOTION CORRECTED
GRASP
The stack-of-stars golden angle radial sampling scheme
repeatedly acquires the central k-space line along the partition
dimension which can present the projection profiles of
the object during the scanning. By applying the principal
components analysis (PCA) algorithm [33] to evaluate these
projection profiles, the motion signal can be estimated
without the need for external gating devices [15].

Based on the estimated motion signal, the radial spokes
within each time frame are resorted according to their
respiratory displacement. XD-GRASP bins these resorted
spokes into four different motion states, and the motion-
resolved images are reconstructed by solving the following
optimization problem:

argminx =
1
2

∥Ex − d∥
2
2 + λT ∥TV T x∥1 + λM ∥TVMx∥1

(1)

where E is the multi-coil encoding operator with a number of
c coil field maps followed by an under-sampled non-uniform
fast Fourier Transform (NUFFT) operator, x is the image
series with additional motion state dimension to be recon-
structed, d is acquired the c-coil dataset. TV T and TVM
are total variation (TV) operators applied on the temporal and
motion state dimensions with corresponding penalty factors
λT and λM , respectively. XD-GRASP provides additional
rich motion state information at the cost of reduced temporal
resolution and reconstruction efficiency.

Like the XD-GRASP, RACER-GRASP subdivides the
resorted spokes in each time frame into four motion states.
The difference is that it explores the sparsity of each
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FIGURE 1. L+S with soft weighting reconstruction framework. 3D dynamic MRI datasets are typically acquired by the stack-of-stars hybrid
sampling pattern. A one-dimensional (1D) FFT operator is applied on the kz dimension to decompose the 2D slices’ k-space from the 3D
datasets. NUFFT is directly implemented for the composite k-space dataset before the time frame subdivision to obtain the reference images.
Field maps are estimated using the Walsh algorithm [38] on the reference images. A respiratory motion signal is extracted from the repeatedly
acquired k-space center along the slice dimension with PCA [15]. Continuously acquired k-space data are sorted into multiple time frames
according to the temporal order and resorted further based on the respiratory motion signal. The soft weighting matrix directly assigns a
specific weighting factor to each spoke to lock down the desired motion state. By shifting the weighting factor in the soft weighting matrix, the
reconstructed image series provides additional motion dimension without the cost of temporal resolution.

motion state along the temporal dimension separately but not
among these motion states. RACER-GRASP combines these
reconstructed motion states with different weighting factors
in the k-space domain as the final output.

argminx =
1
2

∥REx − d∥
2
2 + λT ∥TV T x∥1 (2)

where R contains m motion weighting factors for a total
of m respiratory motion states, R decayed exponentially
from the desired motion state to other motion states.
This delicate combination of motion states alleviates the
computation burden caused by motion subdivision, while
RACER-GRASP can support motion-corrected reconstruc-
tion at higher temporal resolution than XD-GRASP. Motion-
resolved RACER-GRASP reconstruction can be achieved by
switching the distribution of weighting factors in R.

B. L+S WITH SOFT WEIGHTING
L+S decomposition subdivides the acquired datasets into the
low-rank components L and sparse components S [28], [29],
[34]. L and S represent the steady background components

and the dynamic varied components of the DCE-MRI
dataset, respectively. By exploring the sparsity of S with an
appropriate transform, a sparser representation of dynamic
components can be achieved.

L+S converts the acquired dynamic dataset from the k-
space domain into a space-time (y-t) matrix M . The row
and column of M represent spatial pixel series and temporal
series, respectively. A low-rank y-t matrix L is obtained by
applying singular value decomposition (SVD) and singular
value thresholding (SVT) onM . Another sparse y-t matrix S

is derived by subtracting the original matrix M from the
low-rank matrix L. L contains a limited number of non-zero
singular values, while S contains a few non-zero entries.
Due to the compressed background information, S shows
better sparsity than the original matrix on y-t space, which
benefits compressed sensing reconstruction. Like GRASP-
based frameworks, L+S decomposition adopted temporal
TV as the sparsity transform. Temporal TV applies a finite
differences operator along the columns of the y-t matrix S.
With a sparser representation of S, the number of sparse
coefficients required for image recovery is reduced, allowing
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dynamic MRI reconstruction at increased AF. The image
series in the L+S decomposition can be obtained as:

argminL,S =
1
2

∥E (L + S) − d∥
2
2 + λL ∥L∥∗ + λT ∥TV T S∥1

(3)

where the nuclear norm ∥L∥∗ and the l1 norm ∥TV T S∥1
present the sum of the singular values of the L and the sum of
the absolute value of S’s entries in the temporal TV domain,
respectively. λL and λT are two penalty factors that trade off
the data consistency versus the complexity of the solution
given by the nuclear norm of L and the l1 norm of S.
To achieve themotion-corrected L+S reconstruction, a soft

weighting matrix W has been developed and integrated
into the framework, forming L+S with soft weighting. The
soft weighting matrix directly assigns a specific weighting
factor to each motion-resorted spoke to lock down the
desired motion state, eliminating additional motion state
reconstruction and reducing the computation burden. The
motion-corrected reconstruction can be achieved by solving
the following problem using the proposed method.

argminL,S =
1
2

∥W {E (L + S) − d}∥
2
2 + λL ∥L∥∗

+ λT ∥TV T S∥1 (4)

where W contains n weighting factors for a total of n spokes
within each time frame.

RACER-GRASP binned the spokes within a time frame
into fourmotion states and assigned an exponentially decayed
weighting factor to these motion states. The R in RACER-
GRASP induced a ‘‘stair-step’’ weighting matrix on spokes,
as shown in Figure 2a. Hence, the weighting factors in
R performed as a ‘‘hard bandpass’’ filter among resorted
spokes, introducing abrupt weighting truncation for the
spokes on motion dimension. Meanwhile, R provides a
worse weighting factor distribution when reconstructing the
intermediate motion state within the motion cycle.

To address these limitations in motion-corrected recon-
struction, the weighting factors in W in the proposed
method are generated by a modified sigmoid function.
The modified sigmoid function enables a smooth transition
between weighting factors for the spokes in the desired
motion state and weighting factors for the spokes in other
motion states, alleviating the unexpected truncation artifacts.
The generation ofW is mathematically expressed as:

W (t) =
1

1 + e−t
+ C, t ∈ [n1n2] (5)

where n1 and n2 are two constants delicately designed to
select certain segmentations of the sigmoid curve with a
smooth but rapid transition among respiratory motion states.
C is a constant of a small value so that all the spokes are
involved in the iterative reconstruction, while the under-
sampling ratio and artifacts can be alleviated.

By accurately controlling the contribution from spokes
acquired at different motion states during iterative recon-
structions, improved motion suppression can be achieved

TABLE 1. L+S with soft weighting and optimized FISTA for dynamic MRI
reconstruction.

by the soft weighting matrix than motion state subdivision.
Apart from edge motion states, the soft weighting matrix
provides good weighting factor distribution for feasible
motion states by combining two opposite sigmoid functions,
enabling effective motion suppression in reconstructing any
motion states. By shifting the weighting factors in the soft
weighting matrix, motion-resolved reconstruction can be
achieved at high motion resolution without compromising
temporal resolution.

C. OPTIMIZED FAST ITERATIVE SHRINKAGE
THRESHOLDING ALGORITHM
ISTA is used in the standard L+S decomposition model to
solve the optimization problem. The convergence of ISTA
can be further accelerated by combining the previous two
iterative stages with specific coefficients, named FISTA.
FISTA retains the computational simplicity characteristic of
ISTA while improving convergence rates [35], [36], [37].
In this work, we applied FISTA to solve the proposed L+S
model with the soft weighting matrix. W remains inactive
during the initial two iterations to minimize the under-
sampling artifacts caused by theW .

Table 1 summarizes the optimized FISTA for solving
the proposed model. Initially, the input image series matrix
is subjected to an SVD operator as M = U6VH .
A soft thresholding operator 3λ is defined as 3λ (x) =
x
|x| max (|x| − λ, 0), in which x and λ are a complex number
and a real-valued threshold respectively. The SVT operator,
a combination of 3λ and the SVD operator, is implemented
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FIGURE 2. The weighting factor distribution of the RACER-GRASP and the proposed soft weighting matrix in a time frame with 100 spokes.
(a) A comparison of the stair-step weighting function used in RACER-GRASP and the modified sigmoid function used in the soft weighting
matrix on edge motion state. (b) The soft weighting matrix generated by combined sigmoid functions for reconstructing feasible motion
states. (c) Shifting the weighting factor in the soft weighting matrix with a certain step size for reconstructing different motion states.

to process the singular value of M as SVTλ (M) =

U3λ (6)VH . After thresholding the singular value of M
by 3λ, a low-rank matrix L is obtained. Based on the low-
rank and sparse decomposition, the dynamic matrix S can be
derived as S = M − L.

During the kth iteration of FISTA, the input image series
Rk is generated by a specific linear combination of output
image series M in the previous two iterations. The current
low-rank matrix Lk is obtained by SVT (Rk − Sk−1), and the
dynamic matrix Sk is obtained by Rk − Lk−1. To explore a
sparser representation of the dynamic matrix, Sk is converted
into the temporal TV transform domain and processed by
another soft-thresholding operator 3λT . The ultimate kth

sparse matrix is then recovered based on the remaining sparse
coefficients as Sk = T−1(3λT (T (Rk − Lk−1))). The output
image seriesMk is figured out by subtracting (Lk + Sk) with
the residual aliasing artifacts weighted by the soft weighting
matrixW as Mk = Lk + Sk − E∗(W (E(Lk + Sk ) − d)). W
remains inactive during the initial two iterations to minimize
the under-sampling artifacts.

The input image series for next iteration Rk+1 is then
created with a specific linear combination of current iteration
output Mk and previous iteration output Mk−1 as Rk+1 =

Mk+((tk−1)/tk+1)(Mk−Mk−1), where tk is an iteration step

coefficient. (tk − 1)/tk+1) gradually reduces the contribution
of Mk−1 for the next iteration. The algorithm will proceed
with iterations until the relative change in the solution falls
below 10−5 or themaximum number of iterations is achieved.

This algorithm modified the effect of W in the first two
iterations. The additional under-sampling artifacts caused by
W can be minimized in the subsequent iteration. Due to the
weighted contribution of spokes in the following iteration,
the reconstructed image series Mk is gradually approaching
the desired motion state. The optimized FISTA algorithm
can suppress motion blurring and alleviate under-sampling
artifacts simultaneously.

D. COMPUTER SIMULATION WORK
A computer simulation framework was developed to eval-
uate motion blurring for different reconstruction schemes,
as shown in Figure 3. A two-dimensional (2D) modified
Shepp-Logan phantom with 768 × 768 voxels was created,
incorporating dynamic contrast variation and periodic rigid
motion. The phantom consists of two static background
sections and five dynamic sections. The gray levels of the two
background sections were set to 1 and 0.2, respectively, and
remained constant throughout the simulation, representing
the tissues without contrast enhancement in DCE-MRI.
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FIGURE 3. Flowchart of data acquisition during dynamic variation and rigid motion period. Eight field maps were integrated into phantom
before data acquisition, forming multiple virtual coil channels. The simulation of data acquisition contains a total of 1100 steps between the
pre-contrast phase and the venous phase. Two data acquisitions were executed at each time point, producing a fully sampled reference DCE
series and a continuous DCE phantom dataset.

A dynamic variation curve was designed based on several
clinical DCE-MRI datasets. The virtual duration of the curve
is 157 s, with a peak at 32.9 s. The gray levels of the dynamic
sections were initialized to 0 at the start of the simulation.
Their signal intensity varied according to the dynamic curve,
simulating the tissues with dynamic contrast enhancement in
the DCE-MRI.

A periodic motion variation curve was also designed
to accompany the dynamic variation curve. The virtual
duration of the curve is 157 s, and includes 48 virtual
respiratory cycles, simulating the respiratory motion at
a rate of 18.3 cycles/minute. The motion degree of the
curve model ranges from −15◦ to +15◦. Three dynamic
sections were designated as motion sections, which rotated
according to the motion curve, simulating tissues with both
dynamic contrast enhancement and respiratory motion in
DCE-MRI.

The Bloch equation simulation was performed using
MATLAB 2022b (MathWorks, Natick, MA). During the
simulation, the dynamic variation duration with respiratory
motion was uniformly divided into 1100 discrete time
steps, resulting in a time interval of approximately 0.14s.
Additionally, eight exponentially decayed field maps were
incorporated to systematically modulate the signal intensity

of the phantom model on a pixel-by-pixel basis, thereby
generating multiple virtual coil channels (c=8). T2 decay
was ignored while a homogeneity B0field was assumed
throughout the computer simulation.

E. DATA ACQUISITION
The phantom datasets were acquired using a golden-angle
radial sampling pattern. A radial spoke is continuously
acquired among these discrete time steps. The ultimately
under-sampled dataset consists of eight virtual coils, a total
of 1100 spokes across 1100 time steps, each containing
768 readout points. Subsequently, an average image, without
subdivision into time frames, was directly reconstructed
using a multi-coil NUFFT operator to estimate field maps.

A fully sampled k-space dataset was acquired at each
discrete time point, simulating the reference k-space series.
This fully sampled k-space dataset was acquired with
768 readout points and 1200 (768 ×π /2) spokes. Therefore,
1200× 1100 spokes were generated for the reference datasets
over the dynamic simulation period. The resulting matrix size
for the reference series dataset was 768 × 1200 × 1100,
incorporating eight virtual coils.

A free-breathing liver DCE-MRI dataset provided by
Feng [12] was utilized to evaluate the effectiveness of various
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reconstruction schemes for motion suppression. This liver
dataset was acquired from a healthy volunteer using a stack-
of-stars golden angle FLASHpulse sequence. The acquisition
parameters were as follows: TR/TE = 3.52 ms/1.41 ms, flip
angle = 12◦, FOV = 360 × 360 × 240 mm3, number of
partitions = 80, with 60% slice reduction and 6/8 partial
Fourier applied along the slice dimension. The slice kspace
dataset consists of twelve channels and 1100 spokes, each
with 512 readout points. To prevent readout aliasing and grid-
ding artifacts caused by NUFFT, oversampling was applied
along the readout direction. The central 384 data points on
each spoke were remained. After slice decomposition, the 2D
liver dataset underwent coil unstreaking and coil compression
before the reconstruction. This process reduced the dataset
size from 384∗1100∗12 to 384∗1100∗8.

F. IMAGE RECONSTRUCTION
The phantom and liver datasets were subdivided into
11 frames with a temporal resolution of 100 spokes/frame
(∼13s/frame). The corresponding AF is 12 for the phan-
tom and 8 for liver datasets. The simulation dataset
was reconstructed with a 512 × 512 × 11 matrix size
by NUFFT, GRASP, XD-GRASP, RACER-GRASP, L+S
decomposition, and L+S with soft weighting, respectively.
The liver dataset was reconstructed using NUFFT, GRASP,
XD-GRASP, RACER-GRASP, and L+S with soft weighting,
yielding a matrix size of 384 × 384 × 11.
Each frame was subdivided into four motion states from

inspiration to expiration for both XD-GRASP and RACER-
GRASP (25 spokes/motion state) during the reconstruc-
tion of the phantom and liver datasets. GROG gridding
was implemented to accelerate RACER-GRASP in the
liver dataset reconstruction. The end-expiration state was
selected in the reference and three motion-corrected schemes
for both datasets to ensure a fair comparison. Multiple
reconstructions for the proposed L+S with soft weighting
scheme were performed on the liver dataset, incorporat-
ing shifted soft weighting matrices. The shift step size
for the soft weighting matrix was set to eight spokes
along the motion dimension, and 12 motion states were
reconstructed.

Additional reconstructions were conducted with XD-
GRASP, RACER-GRASP, and the proposed method with
temporal resolutions of 96 spokes/frame (∼12s/frame),
64 spokes/frame (∼8s), and 32 spokes/frame (∼4s) at the
end-expiration state.

The optimization in three GRASP-based schemes was
solved using NLCGwith 24 iterations. The iteration for ISTA
and optimized FISTA was set to 20 and used to solve the
optimization problems in L+S decomposition and L+S with
soft weighting, respectively. All reconstructions were per-
formed using MATLAB 2022b on an Intel Core i7-10700 PC
with a 2.9 GHz processor, and each scheme’s reconstruction
efficiency was evaluated through 10 repetitions to ensure an
accurate assessment.

G. RECONSTRUCTION PARAMETER DESIGN
The performance of DCE-MRI reconstruction schemes is
highly dependent on the design of the weighting factor for
temporal sparsity constraints. To optimize the regularization
parameter for GRASP, XD-GRASP, RACER-GRASP, L+S
decomposition, and L+S with soft weighting, a series of
reconstructions were performed using these five frameworks
with varying λT values ranging from 0.1 × Ms to 0.8 × Ms,
whereMs represents the maximum magnitude of the directly
reconstructed image series by themulti-coil NUFFT operator.
The variation step size of λT was set to 0.05 × Ms. Two
experienced radiologists were invited to assess the image
reconstructed by all five schemes across different λT values.
An optimized value λT = 0.4× Ms was implemented for all
reconstruction schemes.

The motion suppression parameters for XD-GRASP and
RACER-GRASP follow their initial setups. In the proposed
method, the weighting function parameters n1 and n2 were
tailored to 23 and 97, respectively, yielding a soft weighting
matrix with a seamless transition between the target and
other motion states. The constant parameter C was set to
1/64, effectively alleviating the under-sampling ratio and
maintaining motion suppression.

III. RESULTS AND DISCUSSION
A. MOTION CORRECTION AND RECONSTRUCTION
EFFICIENCY
Figure 4 presents three representative contrast phases of
simulated phantom images reconstructed using GRASP,
L+S decomposition, XD-GRASP, RACER-GRASP, and the
proposed L+S with soft weighting. All the reconstruction
schemes successfully suppressed under-sampled streaking
artifacts. However, significant motion blurring was obtained
in standard GRASP and L+S decomposition. In comparison,
XD-GRASP, RACER-GRASP, and the proposed method
exhibited reduced motion blurring artifacts.

A comparison of reference to five reconstruction schemes
in the zoomed view of a motion region at the end-
expiration state in the venous phase is shown in Figure 5.
The motion-corrected GRASP schemes effectively sup-
pressed motion blurring. However, due to the excessive
AF induced by motion subdivision, reconstructed images
using XD-GRASP show relatively low SNR and some
residual streaking artifacts. By combining motion states
with specific weighting factors, RACER-GRASP alleviated
the AF and achieved better image quality than XD-
GRASP. The proposed method demonstrates superior motion
suppression and image quality simultaneously. Error maps
calculated from the five schemes indicated that the pro-
posed method produced fewer errors than XD-GRASP and
RACER-GRASP.

Figure 6 and Table 1 summarize the reconstruction perfor-
mance of the different schemes in reconstructing the phantom
dataset. The soft weighting matrix had minimal impact on
the iteration cycle time in the L+S decomposition model
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FIGURE 4. A comparison of 6 reconstruction schemes in three representative phase contrasts at the end-expiration state in the phantom
dataset. All the image series were reconstructed at AF= 12 and 100 spokes/frame. Significant motion blurring was observed in NUFFT,
GRASP, and L+S decomposition. All XD-GRASP, RACER-GRASP, and L+S with soft weighting compressed motion blurring effectively. Some
residual streaking artifacts were obtained at the edge of the phantom in XD-GRASP.

FIGURE 5. A comparison of 5 different reconstruction schemes in the venous phase at the end-expiration stage in the phantom
dataset. Three rows of image series correspond to the venous phase image, the zoomed view of a motion region in the venous phase,
and the error map in these reconstruction schemes. Significant motion errors were obtained in GRASP and L+S decomposition. L+S
with soft weighting shows fewer residual motion artifacts than XD-GRASP and RACER-GRASP. Minimum correction errors were
achieved by L+S with soft weighting.
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FIGURE 6. A comparison of reconstruction efficiency of different frameworks in reconstructing the phantom dataset. (a) The curve of
RMSE versus iteration number for venous phase image reconstructed with three L+S-based frameworks. The proposed method, L+S with
soft weighting matrix and FISTA, shows the highest convergence efficiency. (b) The curve of the RMSE versus iteration number for venous
phase image reconstructed with different frameworks. (c) The curve of CPU computation time versus iteration number for phantom image
series reconstructed with three L+S-based frameworks. (d) The curve of CPU computation time versus iteration number for phantom
image series reconstructed with different frameworks.

TABLE 2. Mean DCE signal, reconstruction time, and RMSE of the different reconstruction schemes in reconstructing the phantom dataset. Minimum
motion-corrected errors were obtained using the proposed method. Two L+S-based frameworks show much higher reconstruction efficiency than the
GRASP-based frameworks. Soft weighting and FISTA introduce a negligible computation burden in the L+S model. The proposed method also shows a
higher dynamic contrast signal than other motion-corrected reconstruction schemes.

but did reduce convergence speed. The application of the
FISTA algorithm in the L+Swith soft weighting significantly
improves the convergence speed and maintains the short
iteration cycle time. Using the selected motion section in

the reference as a benchmark, the RMSE values for GRASP,
L+S decomposition, XD-GRASP, RACER-GRASP, and
L+S with soft weighting were 0.037, 0.038, 0.033, 0.024 and
0.020 respectively, demonstrating the feasibility of the
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FIGURE 7. A comparison of different reconstruction schemes in three representative phases with respiratory motion in the liver
DCE-MRI dataset with a temporal resolution of 100 spokes/frame. The reconstruction period for GRASP, XD-GRASP, RACER-GRASP,
and the proposed method is 170.436 s, 560.524 s, 106.012 s, and 58.315 s, respectively. GRASP suffered significant motion-blurring
artifacts. XD-GRASP compressed motion blurring but some residual streaking artifacts remained. RACER-GRASP and L+S with soft
weighting compressed the motion blurring and achieved better image quality than XD-GRASP. Unexpected convolution artifacts were
obtained in RACER-GRASP (labeled by red arrow).

proposed computer simulation framework for quantitatively
evaluating the motion correction. The proposed method
achieved the lowest motion error, highlighting the robustness
of the soft weighting approach for motion suppression.
GRASP exhibited low reconstruction efficiency, requiring
approximately 15 minutes to complete the computation.
The motion state subdivision increases computation time
for XD-GRASP and RACER-GRASP, resulting in much
worse reconstruction efficiency. The reconstruction time for
L+S decomposition and the proposed method was 273.278 s
and 275.356 s, respectively. The additional computation
cost introduced by the soft weighting matrix and FISTA
remained negligible compared to themotion subdivision. As a
result, L+S with soft weighting demonstrated much higher
reconstruction efficiency than XD-GRASP and RACER-
GRASP.

Figure 7 compares different reconstruction schemes for the
liver dataset at the end-expiration state. GRASP still exhibited
significant motion blurring, while XD-GRASP and RACER-
GRASP efficiently reduced motion blurring by employing
motion subdivisions. Some residual streaking artifacts were
observed in XD-GRASP, while fewer artifacts were presented
in RACER-GRASP and the proposed method. However,
RACER-GRASP with GROG introduced some convolution
artifacts.

Figure 8 presents a zoomed view of the liver section
in three representative phases for XD-GRASP, RACER-
GRASP, and the proposed method. Less motion blurring was
observed in RACER-GRASP, whereas the proposed L+S
with soft weighting method demonstrated the best tissue
details and motion suppression, particularly in the arterial
phase. The average reconstruction time for GRASP, XD-

GRASP, RACER-GRASP, and L+S with soft weighting
was 170.436 s, 560.524 s, 106.012 s, and 58.315 s,
respectively. Although GROG improved the reconstruction
efficiency of RACER-GRASP significantly, it introduced
unexpected convolutional artifacts. The proposed method
achieved the highest reconstruction efficiencywithout GROG
acceleration.

Figure 9 illustrates an additional reconstruction of the
proposed method with 12 motion states between inspiration
and expiration. By shifting the soft weighting matrix with
a small step size along the motion dimension, the proposed
method reconstructed the image series at both high temporal
and motion resolutions, enabling the exploration of liver
tissue variations caused by respiratory motion in DCE-
MRI. The transparent display of tissue variation throughout
a respiratory cycle may provide valuable information for
diagnosing diseases related to respiratory function.

Figure 10 compares different motion-corrected meth-
ods in the venous phases at the end-expiration state in
the liver DCE-MRI dataset with temporal resolutions of
96 spokes/frame, 64 spokes/frame, and 32 spokes/frame.
XD-GRASP failed at higher temporal resolution due to
the excessive under-sampling ratio and therefore is not
shown. Both RACER-GRASP and the proposed method
supported motion-corrected DCE-MRI reconstruction at
high temporal resolutions. Better background structures and
fewer image degradations were observed by the proposed
method.

B. PERFORMANCE ANALYSIS
The golden angle radial sampling pattern repeatedly
acquires the k-space center, providing an averaging effect
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FIGURE 8. A zoomed view of the liver section in three representative phases reconstructed by GRASP, XD-GRASP, RACER-GRASP, and L+S with
soft weighting. Respiratory motion leads to blurring artifacts while unclear vessel structures were obtained in the GRASP. Minimum motion
artifacts were obtained in the proposed method, especially in the arterial phase (labeled by red arrows).

FIGURE 9. 12 motion states reconstructed by the proposed method with shifted respiratory weighting factors in the liver DCE-MRI dataset.
Feasible motion states reconstruction was certified. The image series with high motion resolution explores the tissue variation caused by
respiratory motion.

and suppressing motion artifacts. However, periodic rigid
motions can still lead to blurring artifacts, degrading
the image quality in DCE-MRI. Both commonly used

DCE-MRI reconstruction frameworks, GRASP and L+S
decomposition, are significantly influenced by rigid motion,
resulting in blurred vessel details in the reconstructed images.
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FIGURE 10. A comparison of different motion-corrected methods in reconstructing the liver DCE-MRI dataset in venous phases at
end-expiration state with temporal resolutions of 96 spokes/frame(∼ 12s/frame), 64 spokes/frame (∼ 8s/frame), and
32 spokes/frame (∼ 12s/frame). XD-GRASP shows failed reconstruction at higher temporal resolution and is not displayed here. The
increased temporal resolution degraded the motion suppression quality in RACER-GRASP, while less degradation was obtained using
the proposed method. The proposed method provides improved tissue structures (labeled by red arrow) at a much higher temporal
resolution.

XD-GRASP and RACER-GRASP were developed to
improve conventional GRASP by reducing motion blurring
through additional motion state subdivisions. By utilizing the
inherent self-guiding property of the stack-of-stars sampling
scheme, motion signals can be accurately estimated without
requiring extra hardware devices. XD-GRASP and RACER-
GRASP resorted acquired spokes within each time frame
based on the estimated motion signal and subdivided them
into multiple motion state groups. This approach minimizes
the difference in motion states among spokes within the
same group. XD-GRASP and RACER-GRASP provide
rich motion state information in addition to the temporal
dimension information.

XD-GRASP employs two TV operators to simultaneously
explore temporal sparsity among time frames and motion
sparsity among motion state groups. By reconstructing each
motion state individually, XD-GRASP effectively suppresses
motion blurring and provides additional motion state infor-
mation. However, the k-space in each temporal frame is
already highly under-sampled, and the extra motion state
subdivision further increases the under-sampling ratio. The
number of spokes within a time frame must be increased
to support motion subdivision. Consequently, the temporal
resolution of the reconstructed image series is typically
limited in the motion-resolved methods. Despite efforts to
control the AF by reducing the temporal resolution, residual
streaking artifacts are frequently observed in XD-GRASP.

To mitigate streaking artifacts caused by an excessive
under-sampling ratio, RACER-GRASP explores the temporal
sparsity of each motion state individually and combines
these motion states using specific weighting factors. By care-
fully adjusting these weighting factors, the end-expiration

state can be locked as the output, effectively suppressing
motion blurring and streaking artifacts. Compared to XD-
GRASP, RACER-GRASP is significantly less affected by
motion state subdivision regarding reconstruction temporal
resolution. Multiple motion states can be reconstructed in
RACER-GRASP by adjusting the weighting factor design for
each motion state. However, RACER-GRASP shows poorer
reconstruction quality in intermediate motion states due to the
limitations of the weighting function design.

In addition to motion correction, reconstruction efficiency
is crucial for online clinical applications. The reconstruction
efficiency of GRASP is relatively low due to repetitive grid-
ding and de-gridding operations in NLCG. This efficiency
is further reduced in XD-GRASP and RACER-GRASP due
to motion subdivision, which significantly increases the
computation burden in NLCG. Motion subdivision often
extends the reconstruction process to dozens of minutes.
The reconstruction efficiency of GRASP-based schemes can
be improved by employing the GROG algorithm, which
converts non-Cartesian-based datasets into Cartesian-based
datasets before iterative reconstruction, thereby reducing the
computational cost of gridding. However, the performance
of GROG interpolation heavily depends on reference kernel
training, which may introduce unexpected convolutional
artifacts during reconstruction.

Compared toGRASP-based schemes, L+S-based schemes
can provide much higher reconstruction efficiency in DCE-
MRI. A soft weighting matrix has been introduced with L+S
decomposition to suppress motion blurring and maintain
high reconstruction efficiency simultaneously. The proposed
L+S with soft weighting implements a soft weighting matrix
to control the contribution of spokes acquired at different
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motion states within each time frame. Using a sigmoid
function, the matrix coefficients provide a smooth transition
between the stopband and passband. The motion state of
the output image series can be accurately locked with
less interference from other motion states, achieving better
motion suppression. The additional under-sampling ratio
introduced by the soft weighting matrix is typically less
than that by motion subdivision, resulting in fewer streaking
artifacts in the proposed method.

To accelerate convergence and further reduce streaking
artifacts, an optimized FISTA algorithm is employed to find
the optimal solution for the proposed model. During the first
two iterations of FISTA, the soft-weighting matrix remains
inactive, allowing the initial image series to be reconstructed
with fewer streaking artifacts for the subsequent iterative
reconstruction. Under the influence of the soft weighting
matrix, the time series gradually converges toward the target
motion state during the remaining iterations. Ultimately, the
proposed method achieves motion-corrected reconstruction
with significantly higher temporal resolution in DCE-MRI
than conventional motion-resolved methods.

The soft weighting matrix has minimal effect on the
iteration cycle time in ISTA but does reduce the convergence
speed. Applying the FISTA algorithm to the L+S with
soft weighting significantly improves the convergence speed
while the short iteration cycle time of L+S decomposition
is maintained. Moreover, the number of gridding and de-
gridding steps in FISTA is considerably less than that of
NLCG. As a result, the proposed L+S with soft weighting
achieves significantly higher reconstruction efficiency than
GRASP-based schemes, even when GRASP schemes are
accelerated using GROG gridding.

Besides motion suppression and reconstruction efficiency,
another significant advantage of the proposed method is
its ability to perform feasible motion state reconstruction.
The under-sampling ratio often limits the motion state
resolution in conventional motion-resolved methods. The
motion suppression quality of RACER-GRASP is typically
limited at the intermediate state of the motion cycle.
By shifting the weighting factors in the soft weighting
matrix along the motion dimension, the proposed method
can provide abundant motion phase information similar to
XD-GRASP but with higher motion state resolution. With a
sufficiently small step size, our method can generate a motion
animation that captures the entire respiratory motion period.
Furthermore, due to the removal of motion subdivision,
the proposed method is not constrained by the minimum
number of spokes as in XD-GRASP or RACER-GRASP. The
proposed L+S with soft weighting demonstrates excellent
motion suppression in DCE-MRI with both high temporal
resolution and improved motion state resolution.

The motion suppression performance of DCE-MRI con-
ventional reconstruction schemes is typically evaluated visu-
ally by experienced radiologists. Acquiring a fully sampled
DCE-MRI dataset as the reference is challenging, and
there are no standard evaluation criteria for quantifying the

performance of different reconstruction schemes. Therefore,
a computer simulation framework was developed in this
work. The advantage of computer simulation is that the
ground truth, such as motion phases, can be simulated and
accurately obtained. The motion suppression of the proposed
method and other reconstruction schemes can be compared
and evaluated using metrics like error maps. The proposed
method achieved the minimum RMSE, demonstrating the
feasibility of this new computer simulation framework for
quantitatively assessing motion suppression.

IV. CONCLUSION
This study proposes a new motion-corrected reconstruction
framework, L+S with soft weighting, for free-breathing liver
DCE-MRI. By combining low-rank decomposition, a soft
weighting matrix, and FISTA, the proposed method enables
rapid DCE-MRI reconstruction with improved motion sup-
pression, high temporal resolution, and rich motion state
information compared to XD-GRASP and RACER-GRASP.
The proposed method provides improved image quality with
exceptionally high motion state resolution, demonstrating
its potential for detecting liver structural and functional
disorders in clinical settings.
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