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ABSTRACT In medical research, the rapid proliferation of condition-specific studies has led to
an information overload, making it challenging for researchers and practitioners to stay abreast of
the latest findings. This paper presents a comprehensive survey on leveraging Generative Pretrained
Transformers (GPTs) to summarize medical and biomedical artifacts systematically. We delve into the
current applications of GPTs in this domain, discussing their role in understanding and summarizing
research papers, medical dialogues, and medical records. Through a comparative analysis of recent studies
and methodologies, we highlight the effectiveness of GPTs in distilling complex medical information
into concise, understandable summaries. Our survey underscores the potential of GPTs as a tool for
navigating the information overload in medical research and bringing clarity to healthcare professionals.
This transformation will enhance patient care and outcomes, such as improving the accessibility and
comprehensibility of medical research, assisting in rapid information retrieval, and facilitating the
summarization of complex medical studies for broader audiences.

INDEX TERMS Biomedical, ChatGPT, Generative Pretrained Transformers, healthcare, medical, natural
language processing, summarization.

I. INTRODUCTION
In the rapidly evolvingmedical research landscape, the prolif-
eration of scholarly articles presents both an opportunity and
a challenge. The domain of medical research is dynamic and
ever-evolving, with new research findings and advancements
emerging at an unprecedented rate [1]. This rapid pace of
development is fuelled by the global collaborative efforts
of researchers, clinicians, and academics, who contribute to
the vast body of medical literature. While this wealth of
knowledge is undoubtedly a boon for advancing medical
science, it also presents a significant challenge. The sheer
volume of research articles, case studies, clinical trials,
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and reviews can be overwhelming, even for the most
diligent medical professionals [2], [3]. This challenge is
further compounded when focusing on medical evidence,
diagnosis, and treatment because comprehensive and up-to-
date knowledge is paramount [4].
The medical domain is overloaded with information.

Consequently, it is required to get precise information.
The need for an organized methodology to condense and
summarize medical information is unquestionable [5]. Such
a methodology would expedite the literature review process
and safeguard against the inadvertent exclusion of pivotal
studies [6]. It promises to give healthcare professionals
the means to deftly traverse the expansive ocean of data,
procuring pertinent insights and remaining informed about
the burgeoning developments within their specialties.
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FIGURE 1. Sections of the paper.

Within this milieu, Generative Pretrained Transformers
(GPTs) have surfaced as a beacon of potential. These sophis-
ticated linguistic models are grounded in the twin foundations
of Machine Learning (ML) and Natural Language Processing
(NLP). GPTs have demonstrated their ability to understand
and generate texts as humans [7]. Their applications have
spanned in various domains, ranging from the automation
of client services to the genesis of content, and presently,
they are on the verge of creating a paradigm shift in the
management of medical literature [8].
The advancements in NLP technology leverage state-of-

the-art models such as GPTs to condense medical research on
specific illnesses systematically. We will undertake a detailed
exploration of the workings of these models, examining
how they process vast datasets to understand and summarize
text effectively. The scrutiny will extend to their extant
deploymentswithin themedical research sphere and highlight
instances where they are successfully employed. Concur-
rently, we will navigate the potential pitfalls and challenges
inherent in the systematic summarisation endeavors of GPTs,
such as questions of veracity, partiality, and the ethical
ramifications therein.

Progressing beyond a mere assessment of the current land-
scape, this paper will foresee the transformative prospects of
GPTs in the domain of medical literature examination. Our
exploration will be twofold. Firstly, contemplate the avenues
for their enhancement and refinement to augment precision
and efficiency. Secondly, contemplate their expansive impact

on the medical profession and healthcare in a reflective and
forward-looking manner. The primary contributions of this
paper are described as below:

1) This paper reviews various applications and methodolo-
gies of text summarization in medical research

2) The role of GPT in medical research for information
extraction, summarization, sentiment analysis and clin-
ical decision support are explored.

3) The paper delves deep into the capabilities of GPTs
in literature review, data pre-processing and language
understanding.

4) Four case studies related to medical applications are
discussed.

5) The paper also briefly describes about various chal-
lenges and limitations of the existing GPTs.

6) Explored the future directions and aspects of GPTs are
explored.

The organization of the paper is depicted in Fig. 1. This
paper is divided into eight sections. Section I gives a brief
introduction andmotivation of this paper. Some of the already
existing works on summarization using GPT are described
in Section II. Section III explores the applications of GPT
in information extraction, summarization, sentiment analysis,
and clinical decision support. The power and potential of
GPTs are explained in Section IV. Different case studies
that use GPT for systematic summarization of medication
research are described in Section V. Section VI lists various
challenges and limitations of existing GPT models. The
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FIGURE 2. Timeline and evolution of GPT.

future directions are explained in Section VII, and finally,
Section VIII concludes the study by providing a summary.

II. LITERATURE REVIEW
The development of Transformer architecture [9] by Google
has tremendously changed the realm of Natural Language
Processing. The transformer has improved the efficiency
of NLP tasks such as classification, translation, language
modeling, etc. The transformer use a self-attention operation,
which is a weighted sum average of all the input vectors,
and every input vector is mapped to query, key and value
elements. The transformer has two functional blocks, viz.,
encoder and decoder. The input vectors are fed into the
encoder block, and the decoder block generates output
probabilities.

In 2018, GPT (Generative Pretrained Transformers) was
developed by OpenAI, which was pretrained on a large-scale
dataset using a self-supervised learning method [10]. The
introduction of GPT has simplified most of the NLP tasks.
GPT models were designed flexibly to fine-tune the model
with task or domain-specific data. Since then, OpenAI has
been constantly working on improving GPT architecture and
has released different versions of GPT, viz., GPT2, GPT3,
GPT3.5, and GPT4. The evolution of the generative models
is shown in Fig. 2.

The application of GPTs in the medical field, particu-
larly in the systematic summarization of medical and bio-
medical artifacts, has been the subject of several recent

studies. Batra et al. [11] leveraged the power of recent
advances in pre-trained and transformer-based NLP models
to perform text summarization over the COVID-19 Public
Media Dataset. They analyzed and compared the results of
BERT, GPT-2, XLNet, BART, and T5, which are among
the most popular extractive and abstractive summarization
models. The study found that BERT, a transformer autoen-
coder, outperformed the other models in SARS-CoV-2 news
summarization. As a result, they utilized BERT in their web
application ‘‘CoVShorts’’ to summarize COVID-19 articles.
The application serves the public by providing brief, concise,
and to-the-point summaries quickly, helping them stay up-to-
date with all the information related to COVID-19.

The research conducted by Zhu et al. [14] introduces
three large, deidentified medical text datasets: DISCHARGE,
ECHO, and RADIOLOGY, sourced from MIMIC-III [17],
containing varying numbers of report-summary pairs. For
automated abstractive summarization of these datasets,
the study employed pre-trained encoder-decoder language
models such as BERT2BERT, BERTShare, RoBERTaShare,
Pegasus, ProphetNet, T5-large, BART, and GSUM. Notably,
the BART model was enhanced by incorporating sampled
summaries from the training set as contextual guidance,
which bolstered both encoding and decoding processes.
This novel approach led to improved ROUGE scores and
BERTScore in the experiments.

The work by Cai et al. [15] emphasizes the importance
of effectively generating the ‘‘impression’’ section from
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TABLE 1. Summary of literature review.

the ‘‘findings’’ in radiology reports to foster efficient com-
munication between radiologists and referring physicians.
To ease radiologists’ workload, they introduced a specialized
abstractive summarization model tailored for chest radiology
reports. While existing NLP advancements like BERT
struggled with the domain-specific terminology of radiology,
they developed a domain-centric model, ChestXRayBERT.
This model was pre-trained on a collection of radiology
papers and further combined with a Transformer decoder.
When fine-tuned and evaluated on recognized datasets like
OPEN-I [18] and MIMIC-CXR [19], ChestXRayBERT
markedly outperformed other neural abstractive models. This
approach underscores the potential of customizing advanced
NLP tools for medical imaging, radiology, and the broader
realms of biomedicine and healthcare.

Training a neural network to generate a human-readable
and semantically correct summary is one of the very challeng-
ing tasks. Zhuang and Zhang [12] proposed a technique to
generate summaries using a Generative Adversarial Network
(GAN). The GAN architecture contains one generator and
two discriminators. The generator component is used to
encode the long input text. One of the discriminators

learns the input representation from the text encoding, and
another generator takes care of the generated summary
to be semantically similar to the original text context.
The GAN model was evaluated using the ROUGE score
with the CNN/Daily Mail dataset [20]. Also, the proposed
technique was compared with other state-of-the-art models.
The evaluation results proved that the summaries generated
from the GAN model are better than those of other compared
models. Though the standard dataset was used in research
work for summarization, this work also has great potential
in medical research.

Sheela and Janet [13] introduced a multi-document
summarization model that employs a novel optimization
algorithm, CAVIAR Sun Flower Optimization (CAV-SFO).
This is yet another work related to multi-document summa-
rization and shall also be extended to medical research. The
proposed model uses two classifiers, a GAN and a Deep
Recurrent Neural Network (Deep RNN), to score sentences
for summarization. The process begins with removing
duplicate content using the simHash method, then scoring
each sentence with a CAV-SFO-based GAN classifier. The
sentences are then pre-processed, and text-based features
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FIGURE 3. GPT workflow - describing various stages of pipeline to work with GPT.

are extracted for scoring by a CAV-SFO-based Deep RNN.
The outcomes from both classifiers are integrated, and a
final evaluation is calculated based on a multi-document
summarization scale.

The research by Garg et al. [16] delves into the capabilities
and implications of ChatGPT, a state-of-the-art AI tool
from OpenAI, within the medical domain. Addressing the
ever-evolving landscape of patient diagnosis, treatment,
and medical research, they embarked on a comprehensive
systematic review using PRISMA standards [21]. Their
exhaustive analysis of 118 selected publications illuminated
ChatGPT’s multifaceted role, spanning patient interactions
to research facilitation. However, they also highlighted the
inherent challenges of deploying such AI tools, like concerns
over originality, accuracy, and bias, especially in academic
writing. Their findings, particularly around the limitations of
ChatGPT (GPT- 3.5) in healthcare settings, signal a note of
caution. Nevertheless, they recognize its potential as a clinical
assistant, emphasizing its transformative impact in research
and scholarly endeavors.

The related works demonstrate the diverse applications and
methodologies employed in the field of text summarization
from different forms of data using advanced transformer
models. The literature survey presented in Section II is
summarized in Table. 1. While these works have made
significant strides in the field, there is still room for
exploration and improvement, particularly in the areas of
multi-document summarization and the generation of more
human-like summaries.

III. THE ROLE OF GPT IN MEDICAL RESEARCH
The domain of GPTs has witnessed substantial strides in
innovation over the past few years, a period marked by the
advent of progressively intricate GPT models. These models
can understand, generate, and even imitate the intricate details
of human speech [22]. The propulsion behind these strides
has been the confluence of the following factors [23]:

(i) The proliferation of expansive corpora of textual data
(ii) The advent of formidable computational infrastructures
(iii) The iterative refinement of machine learning paradigms

GPT models work by using a deep learning architecture
called the Transformer [9]. They process input text through
multiple layers of attention mechanisms, which allow the

model to focus on different parts of the text while generating
predictions for the next word. This is done using a
process called ‘‘self-attention,’’ where each word’s context
is considered relative to every other word in the sequence.
The model is trained to minimize prediction errors across vast
amounts of text data, learning patterns, syntax, and context to
generate coherent and contextually relevant responses.

Like any machine learning and deep learning algorithm,
working with GPT also has a workflow. Figure.3 shows
the workflow or the pipeline of utilizing GPT in any
application domain. The pipeline starts with data collection
and preparation by performing pre-processing operations
such as cleaning, tokenizing, and formatting. Once the data
is prepared, a suitable pre-trained model should be selected
and fine-tuned with the available data. Before inferencing the
model, the test data should be encoded in the way that was
done during the pre-training phase. Then, the outputs of the
model are decoded to represent understandable human texts.
If the results of the inference are satisfactory, then the model
can be moved to a production environment for deploying by
integrating the model into an application or service by using
APIs. After the deployment, the model’s performance should
be continuouslymonitored, and based on feedback, themodel
should be continuously re-trained.

GPT models are trained using vast text datasets, enabling
them to generate human-like responses. Collecting such
datasets can be challenging as they must represent various
topics while avoiding biases that could affect model outputs.
Training requires substantial computational resources due to
their complex architectures and large parameter sizes (e.g.,
GPT-3 has 175 billion parameters [24]), often involving
powerful GPUs or TPUs over weeks or months. Key
challenges include obtaining large, diverse, and high-quality
datasets, managing the complexity of model architecture,
and ensuring efficient use of resources. Evaluating model
performance can be complex due to the subjective nature
of language tasks. Metrics such as perplexity or BLEU
scores may not fully capture the quality of generated text
in all contexts, necessitating more comprehensive evaluation
strategies. Balancing model performance and avoiding biases
or errors in generated content is a constant challenge.

In the realm ofmedical research, the incorporation of GPTs
has emerged as an area of burgeoning interest. The medical
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FIGURE 4. Different roles of GPT in medical research.

sector abounds with a plethora of unstructured textual data
sources, such as Electronic Health Records (EHRs), clinical
narratives, scholarly articles, and feedback from patients.
This wealth of data harbors immense potential for extracting
salient insights, which, if harnessed correctly, could unlock
new vistas in medical understanding and patient care [25].
Figure. 4 shows the summary of different roles of GPT in
medical research. The rest of the sections briefly describe
these roles.

1) Information Extraction: A quintessential utility of
GPTs in the medical research paradigm is the extraction
of information [26]. This process entails distilling
structured data from the vague and large volume
of unstructured textual narratives. GPT algorithms,
for instance, can discern and isolate particular med-
ical entities such as pathologies, symptomatology,
pharmacological treatments, and medical interventions
from the labyrinth of clinical documentation [27].
The information thus garnered can be employed in
a spectrum of critical tasks, including categorizing
patients, monitoring disease patterns, and providing
clinical decision support systems.

2) Automated Summarization: Another crucial applica-
tion of GPTs in medical research is the generation of
concise summaries [28]. Confronted with the relentless
surge of scholarly medical writings, clinicians and
researchers find it increasingly arduous to remain
abreast of the latest discoveries [29]. Here, GPT
algorithms offer a lifeline by condensing extensive
research treatizes into digestible synopses, thereby
allowing medical professionals to quickly assimilate
the crux of research findings without perusing the full
text [11].

3) Sentiment Analysis: The field of sentiment analysis,
or opinionmining, is gainingmomentumwithin medical
applications of GPTs [30]. This analytic approach
involves parsing texts to deduce the sentiment conveyed
by the author. Applied within the medical context,
sentiment analysis can scrutinize patient feedback,
social media commentary, and other patient-originated

texts to glean insights into patient experiences, their
viewpoints, feelings about different treatment methods,
attitudes towards healthcare providers, and perspectives
on various medical conditions [31].

4) Clinical Decision Support: GPT models are increas-
ingly pivotal in augmenting clinical decision-making
processes [32]. By meticulously parsing and synthe-
sizing data from a patient’s electronic health record,
GPTs help clinicians render more nuanced and informed
medical decisions. For instance, GPT-driven algorithms
can analyze patient data and medical histories to
recommend potential diagnostic tests or treatments,
assisting clinicians in making informed decisions. These
systems can evaluate complex clinical scenarios, sug-
gesting the most relevant investigations or interventions
based on current medical guidelines and patient-specific
factors, thereby enhancing the efficiency and accuracy
of clinical decision-making process [33].

5) Research Trend Analysis: GPTs also serve as instru-
mental tools in dissecting and interpreting the trajectory
of medical research [34]. By sifting through voluminous
quantities of scholarly articles, GPTs can discern and
bring to light prevailing trends, predominant themes,
and discernible lacunae within the corpus of existing
research. This intelligence is invaluable for researchers
contemplating investigative avenues and funding bodies
tasked with allocating resources to foster scientific
inquiry.

GPT models hold immense potential for revolutionizing
medical research. They are crucial for parsing and under-
standing complex medical data, enabling more efficient
research processes. The relevance of GPT in this field
stems from its ability to process vast amounts of medical
literature and patient data, providing insights that can
accelerate medical discoveries and improve patient care.
The importance of GPT models lies in their capacity to
transform large, unstructuredmedical datasets into actionable
knowledge, making them invaluable tools in the ongoing
advancement of medical research and healthcare.

IV. THE POWER AND POTENTIAL OF GPTS IN MEDICAL
RESEARCH
The power and potential of GPTs in the realm of medical
research are vast and multifaceted. This section delves deeper
into the capabilities of these advanced AI models and how
they can revolutionize the field of medical research. Some
of the key tools and libraries used in medical research are
summarized in Table. 2.

1) Literature Review and Data Analysis: GPTs stand
at the vanguard of modernizing the medical litera-
ture review and data analysis processes [43], [44].
The large volume of medical literature defies manual
review; however, GPTs can be harnessed to parse
and synthesize this information, distilling essential
findings, discerning patterns, and contrasting disparate
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TABLE 2. Key NLP tools and libraries for medical research.

studies with finesse [45]. This enhances the literature
review’s efficiency and ensures comprehensive coverage
of original and innovative research.

2) Unprecedented Scale of Data Processing: The capac-
ity of GPTs to ingest and dissect data on a scale hitherto
unattainable presents remarkable advantages [46], [47].
Within medical research, this translates to the analysis
of thousands of documents—from scholarly articles to
clinical trial data—far surpassing the temporal capabili-
ties of human researchers. Such expeditious information
processing can expedite research trajectories, catalyzing
swifter breakthroughs and medical progress [48].

3) Advanced Natural Language Understanding: Engi-
neered with a sophisticated grasp of linguistic nuances,
GPTs can navigate the complex vocabulary of medical
science, interpreting intricate research findings and
emulating human prose [49]. This capability in language
processing offers a pathway for automating tasks that
are often repetitive yet essential, such as synthesizing
findings from various studies, deciphering complex data
sets, and preparing detailed research reports [43].

4) Predictive Capabilities: Beyond text generation and
comprehension, GPTs possess the predictive ability
to make inferences based on processed data [50].

FIGURE 5. Power and potential of GPTs in medical research.
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In medical research, such capabilities could encompass
predicting clinical trial outcomes, projecting epidemi-
ological trends, or unveiling nascent research frontiers
[51]. These predictive insights are invaluable, poten-
tially steering research and policy decision-making.

5) Customizability and Flexibility: The inherent gener-
alist design of GPT models is a key strength, offering
a broad base from which they can be finely tailored
to specific research requirements [52]. For example,
a GPT model can be specifically trained on a narrow
corpus of medical literature, relevant to a particular
area of study. This flexibility ensures that GPTs are
not only highly adaptable to diverse research needs
but can also be precisely customized for targeted
applications, significantly enhancing their practicality
and effectiveness in a range of research scenarios [53].

6) Democratization of Medical Research: GPTs have
the potential to democratize medical research by
automating complex analyses and rendering research
more approachable [54]. This democratization could
engender a broader, more extensive participation in
medical research, potentially igniting a restoration of
innovation and inclusivity in research findings and
outcomes. While hypothesis generation focuses on
aiding researchers in formulating research questions,
democratization extends beyond this by broadening par-
ticipation and diversity in research. It not only facilitates
a wider range of individuals and institutions to engage
in medical research but also promises to culturally shift
the research landscape towards more inclusivity and
innovation, thereby enriching the research outcomes and
contributions significantly.

7) Clinical Trial Design and Analysis: GPTs are poised
to revolutionize the framework of clinical trials such
as streamlining participant selection, orchestrating trial
protocols, and sift through complex trial data [55],
[56]. The integration of GPTs in this arena could
greatly enhance the precision and efficiency of trials,
thereby expediting the journey of novel therapies from
conception to clinical application.

8) PersonalizedMedicine: The capability of GPTs in data
analysis is particularly relevant to the rapidly growing
field of personalized medicine. By assimilating and
interpreting vast datasets, GPTs can pinpoint treatment
modalities tailored to the individual nuances of patients’
genetic profiles, lifestyles, and other pertinent factors
[57]. Such targeted analysis can culminate in highly
individualized and potentially more effective treatment
regimens.

9) Hypothesis Generation: The utility of GPTs extends
into the creative realm of hypothesis generation.
Through meticulous analysis of existing research and
data, GPTs can unveil areas where knowledge is
lacking and propose new avenues for investigation [58].
This capacity to generate viable research hypotheses
can direct scientific inquiry towards the most fertile

and uncharted territories of medical research, thereby
fostering a climate of innovation and discovery.

In summary, the power and potential of GPTs in medical
research are vast. However, realizing this potential will
require careful implementation, ongoing training and educa-
tion, and robust ethical and regulatory frameworks. Figure. 5
summarizes the overall power and potential of GPTs in
medical research.

V. CASE STUDIES OF MEDICAL APPLICATIONS
GPTs are currently used for systematic summarization
and various other applications of medical and bio-medical
research. The following subsection presents various case
studies to showcase the potential usage of GPTs in various
application domains of medical research.

A. SUMMARIZATION OF BIOMEDICAL RESEARCH USING
GPT-3
The medical research landscape is inundated with vast
amounts of information, with new studies being published at
an unprecedented rate. These publications carry vital insights
that can influence patient care, policy decisions, treatment to
a clinical condition, evidence for the treatment and further
research. However, the sheer volume of medical research
publications poses a challenge for professionals who need to
stay updated. This has spurred interest in leveraging advanced
language models, like GPT-3, to systematically summarize
medical research.

The study titled ‘‘Summarizing, Simplifying, and Syn-
thesizing Medical Evidence Using GPT-3 (with Varying
Success)’’ [59] embarked on amission to evaluate the efficacy
of GPT-3, specifically its GPT3-D3 variant, in summarizing
biomedical articles. The overarching goal was to determine
whether such state-of-the-art models could be trusted to distill
complex medical research into accurate, coherent, and useful
summaries. Some of the salient aspects of the study are as
follows:

1) Evaluation Framework:
a) Data Source: The study primarily sourced biomed-

ical abstracts for the summarization tasks. These
abstracts spanned various sub-domains within
biomedicine, ensuring a comprehensive evaluation.

b) Evaluation: Domain experts with formal medi-
cal training were enlisted to critically assess the
generated summaries. Their evaluations gauged the
summaries on parameters such as faithfulness to the
original text, coherence of content, and the utility of
the summarized information.

c) Tasks:
i) Single Document Summarization: GPT3-D3 was

tasked with producing summaries for individual
biomedical abstracts.

ii) Multi-document Summarization: The model was
challenged to synthesize information from multi-
ple documents into a singular summary.
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FIGURE 6. Usage of GPT for summarization in various domains of medical research.

2) Key Findings:
a) Performance Evaluation: GPT3-D3 exhibited a

remarkable ability to distill individual biomedical
abstracts into concise summaries. These metrics
included measures of coherence, accuracy, and con-
ciseness. Coherence assessed how logically con-
nected and understandable the summaries are, while
accuracy evaluated how faithfully the summaries
represent the original text. Conciseness measured the
effectiveness of the summaries in distilling the main
points without unnecessary verbosity. The majority of
these summaries were found to be coherent, capturing
themain essence of the research without distorting the
original message.

b) Analysis of Errors: The study delved deeper into
understanding the nature of errors made by GPT3-
D3. The study utilized qualitative analysis by domain
experts. These experts, with deep understanding of
biomedical content, compared the model-generated
summaries against original abstracts. Two prominent
error patterns emerged:
i) Minor Inaccuracies: These were subtle errors

where the model might have slightly misrep-
resented a detail from the original abstract.
While not drastically altering the meaning, these
inaccuracies could lead to misinterpretations in
certain contexts.

ii) Omissions: A more concerning pattern was the
omission of crucial details. In certain summaries,
GPT3-D3 left out key findings or implications,
which could impact the utility of the summary for
readers wanting a comprehensive overview.

c) Complexities in Multi-document Tasks: GPT3-
D3’s performance exhibited a noticeable decline in
the multi-document summarization task. Synthesiz-
ing information from multiple sources into a singular
cohesive summary proved challenging for the model.
The resulting summaries often lacked the depth

and breadth required to encompass the key findings
from all documents. The struggles faced by GPT3-
D3 in this task of summarizing medical research
articles highlighted the intricacies involved in multi-
document summarization. It underscored the need
for models to be better equipped to handle the
complexities of synthesizing diverse sources while
ensuring that no vital information is lost in the
process.

GPT3-D3’s involvement in biomedical summarization
showcased its significant potential and progress. Excelling in
single-document summarization, it highlighted the model’s
capabilities in distilling complex medical information. While
there are areas for improvement in multi-document tasks,
these challenges mark important steps towards advancing
language models. As the quest to transition from information
chaos to clarity in medical research continues, the study pro-
vides a roadmap highlighting both the milestones achieved
and the terrains yet to be conquered.

B. MEDICALLY AWARE GPT-3 AS A DATA GENERATOR FOR
MEDICAL DIALOGUE SUMMARIZATION
The scholarly investigation entitled ‘‘Medically Aware
GPT-3 as a Data Generator for Medical Dialogue Summa-
rization’’ [60] embarked upon an explorative endeavor to
ascertain the proficiency of GPT-3 in fabricating synthetic
training data, with a focus on encapsulating medically
salient information. The primary objective was to assess
the reliability of such experimental models in condensing
intricate medical dialogues into precise and intelligible
summaries.

The application of GPT-3 as the foundational mechanism
for synthesizing medical data represents a pioneering stride
in Large Language Models (LLMs). This distinctive use case
unveils a novel vista on integrating language models into the
medical sphere. The model could infer the informational con-
tent from only 210 human-annotated examples to replicate the
usefulness of a much larger collection of 6400 examples. This

7910 VOLUME 13, 2025



B. Palanisamy et al.: From Information Overload to Lucidity: A Survey on Leveraging GPTs

evidences the effectiveness and creativity of themethodology,
providing a solution to the enduring problem of data scarcity.

1) Components of the Research Study:
a) Data Genesis: The study aimed to catalyze the

transformation of 210 human-labeled instances into a
dataset. The major objective of the research method-
ology is to embody the richness and heterogeneity of
6400 examples into the dataset.

b) Utilization of GPT-3: GPT-3 played a very sig-
nificant role in the study. It underwent meticulous
training to engender synthetic training data that was
not only abundant in content but also replete with
clinical relevance.

2) Principal Discoveries:
a) Models Subjected to Evaluation:

i) The authors of [60] assessed the efficacy of GPT-
3-ENS (their proposed model) as a generator of
labeled data by comparing it with models archi-
tected for both abstractive and hybrid (abstractive
and extractive) summarization.

ii) PEGASUS [61] was employed for abstractive
summarization tasks. PEGASUS, which stands
for Pre-training with Extracted Gap-sentences
for Abstractive SUmmarization Sequence-to-
sequence models, is a deep learning model
developed by Google Research. It is designed
specifically for the task of abstractive text sum-
marization.

iii) Dr. Summarize (DRSUM) [62], along with its
high-performing variant (2M-PGEN), was uti-
lized for extractive summarization. DRSUM is a
model or system designed for extractive summa-
rization. The 2M-PGEN variant is an enhanced
version of the original model with improved
features like phrase generation capabilities or
modifications that allow it to handle larger
datasets or produce more accurate summaries.

b) Specifics of Implementation:
i) When interfacing with GPT-3 via the OpenAI

API, various parameters can be meticulously
tuned for optimal performance. These include
selecting the model type (e.g., davinci), defining
the input prompt, setting the maximum response
length (Max Tokens), and adjusting ‘Tempera-
ture’ for creativity in responses. Other parameters
like ‘Top P’ control response diversity, while
‘Frequency Penalty’ and ‘Presence Penalty’ man-
age repetitiveness and topic variety, respectively.
Additional settings like ‘Stop Sequences’ dictate
where the model stops generating text, and ‘Echo’
determines if the prompt is included in the
output. Advanced options like ‘Best Of’ and
‘Logprobs’ enabled finer control over output
quality and analytical insights, respectively, while

‘User Data’ provides context for more relevant
responses.

ii) GPT-ENS is a medically aware GPT-3 ensemble
algorithm used to generate the best summary
from the medical dialogues. The algorithm takes
dialogue snippets and labeled examples as input.
The authors have also introduced an in-house
extractor - MEDICALENTITYRECOGNIZER,
to extract the medical concept from the given text.
The extractor has access to the Unified Medical
Language System (UMLS) [63]. GPT3 was used
to generate a summary for the given dialogue snip-
pet sample. Then, the generator summary is fed
as an input to the extractor for extracting medical
context. This process is repeated for the specified
ensembling trails, and the best summary (the sum-
mary that has the highest recall value) is returned.

iii) The optimal number of instances for priming
GPT-3 was discerned to be 21, bounded by the
constraints of the context window length. The
context window length refers to the maximum
amount of text (in terms of tokens, which can
be words or parts of words) that the model can
consider at one time when generating a response.
For GPT-3, this limit is around 2048 tokens.

c) Training of Summarization Models with GPT-3-
ENS Data:
i) Models such as PEGASUS and DRSUM were

trained on both human-annotated data (H6400)
and data synthesized by GPT-3-ENS.

ii) Remarkably, with only 210 human-annotated
examples, GPT-3-ENS was adept at generat-
ing a enourmous volume of training data for
PEGASUS and DRSUMmodels, yielding perfor-
mance on par with or surpassing the reliance on
6400 human-annotated examples.

iii) The performance of PEGASUS was notably
enhanced when trained on data generated by
GPT-3-ENS, intimating that such data constitutes
high-quality training material for abstractive sum-
marization models like PEGASUS.

iv) Conversely, DRSUM’s performance was consis-
tent when utilizing GPT-3-ENS synthesized data,
hinting that such data may be optimally suited for
purely abstractive models.

d) Synergy of Human-Annotated and GPT-3-ENS
Synthesized Data:
i) Given the limitations of GPT-3’s priming context,

it was postulated that the most effective sum-
maries would emanate from a model trained on
a dataset amalgamating human and GPT-3-ENS
labeled examples.

ii) The introduction of a mixing parameter α allowed
for the calibration of the ratio of GPT-3-ENS
labeled examples to human-labeled data.
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iii) A composite dataset, integrating human-annotated
and GPT-3-ENS synthesized data, invariably bol-
stered nearly all automatedmetrics for PEGASUS
and DRSUM across all values of α.

iv) Clinicians exhibited a preference for summaries
derived frommodels trained on the mixed dataset,
affirming its superiority in capturing medical
information and the overall essence of the
summary.

These findings underscore the potential of GPT-3-ENS
in generating synthetic training data for medical dialogue
summarization and demonstrate its effectiveness when com-
pared with traditional human-labeled data. The study also
highlights the nuanced differences in performance when
the synthesized data is used for training different types of
summarization models.

C. CLINICAL REPORT SUMMARIZATION
The potential of GPT models has evolved tremendously.
Another area where GPTs can be applied in medical research
is clinical report summarization. The clinical reports, written
by radiologists, describe the findings of medical imaging for
diagnosis, treatment, and follow-up of diseases. The clinical
reports are crucial to review and understand the current state
of the patients, including their disease condition and the
effect of the treatment. It is crucial to collect and compile
information promptly and with precision. Chien et al. [64]
experimented with using GPTs to summarize radiologic
reports. The study was done on longitudinal aneurysm
reports. The study was conducted with the motive to harness
the benefits of GPTs and to understand their strengths and
weaknesses in medical research. A brief description of the
work is described as below:

1) SummarizationModels Used: The study compared the
performance of five advanced summarization models,
namely BARTcnn [65], LongT5booksum [66], LED-
booksum [67], LEDlegal [68], and LEDclinical [69],
with expert-generated summaries. In addition, publicly
available case reports of brain aneurysms from PubMed
were used to evaluate the open access and online model
GPT3davinci [70]. All of these are pre-trained models,
trained on large datasets and using billions of parameters
to generate summaries.

2) Clinical Data Collection: As part of this experimental
analysis, clinical imaging reports of 64 aneurysms from
52 patients were collected. These reports were obtained
between 2005 and 2022. Out of these 52 patients, 8 were
males and 44 were females. The study used a total
of 137 clinical imaging reports, which included three
different modalities for aneurysm imaging: MR angiog-
raphy, CT angiography, and DSA. Also, 100 clinical
reports on brain aneurysmswere collected fromPubMed
for experimental analysis.

3) Evaluation and Results: The summaries generated
by the GPT models are compared with the ground

truth summaries (which are expert-generated). ROUGE
(Recall-Oriented Understudy for Gisting Evaluation)
[71] and BERTscore [72] were used as evaluation
metrics. The summaries were also evaluated by four
experts based on different aspects such as information
accuracy, redundancy, comprehensiveness, and readabil-
ity. Although the generative models examined were
not specifically designed for clinical imaging reports,
they could summarize most of the crucial information
accurately. However, these models still have some
limitations and room for improvement. Among the
five state-of-the-art models tested, BARTcnn performed
the best in generating patient clinical reports. The
comparative analysis report indicated that GPT3davinci
performed superior in summarizing case reports, while
BARTcnn’s performance was second.

D. MEDICAL RECORD SUMMARIZATION
The task of summarizing medical records is another area
where GPTs are being applied. A state-of-the-art SOTA
GPT-4 [42] medical record summarization pipeline has been
developed by Width.ai, which utilizes advanced AI tech-
niques for efficient summarization of human written medical
prescription records. The article discusses the development
of a medical record summarization pipeline using GPT-4.
The pipeline is designed to handle the challenges of medical
record summarization, which include the complexity of
medical language, the need for high accuracy, and the
importance of maintaining patient privacy.

The pipeline is built in three stages:
1) Preprocessing: In this stage, the medical records are

cleaned and prepared for the model. Custom OCR
(Optical Character Recognition) was used to extract text
from the medical records. This is an essential step as the
accuracy of the extracted text improves the efficiency
of subsequent stages. This involves removing irrelevant
information, standardizing the format of the data, and
anonymizing patient information to maintain privacy.

2) Summarization: The cleaned data is then passed
through the GPT-4 model, which generates a summary
of themedical record. Themodel is trained to understand
medical language and to extract the most important
information from the record.

3) Postprocessing: The generated summaries are then
post-processed to ensure they are accurate and coherent.
This involves checking the summary against the original
record and making any necessary corrections.

The article also discusses the benefits of using GPT-4
for this task. GPT-4’s large model size and ability to
understand context make it well-suited to the complexity
of medical language. Furthermore, the model’s ability to
generate coherent and concise summaries can help healthcare
professionals quickly understand a patient’s medical history,
leading to more efficient and effective care. The article
concludes by noting that while the pipeline is promising, it is
still a work in progress.
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TABLE 3. Summary of various use-cases of GPT model used in medical domain for summarization.

A summary of the case studies discussed above is presented
in Table 3. Overall, GPTs have shown promise in systematic
summarization of medical research. They have the ability to
analyze large amounts of data, understand complex medical
information, and generate concise summaries. Ongoing
research and advancements in GPT technology aim to address
these challenges and further improve the effectiveness of
GPTs in solving the problem of systematic summarization in
medical research.

VI. CHALLENGES AND LIMITATIONS
In the realm of medical research summarization, the advent
and application of GPTs have brought forth a revolution-
ary potential [73]. However, as with any technological
advancement, particularly in the sensitive sphere of medical
science, there exists a suite of challenges and limitations that
require meticulous scrutiny [46]. From ensuring unwavering
accuracy in the distilled information to addressing the opaque
nature of these advanced models, the path to seamless
integration of GPTs into medical summarization is fraught

with complexities [74]. Additionally, the ethical quandaries
of handling patient data and the computational demands of
such models further complicate their ubiquitous adoption
[75], [76]. This section delves into these challenges, offering
a comprehensive analysis of the obstacles and considerations
that stakeholders must grapple with in harnessing the
capabilities of GPTs for medical research summarization.
Figure 7 provides the summary of various challenges and
limitations a GPT model has on medical research, which is
explained in the subsections below:

A. FAITHFULNESS AND ACCURACY
The application of GPTs in the systematic summarization of
condition-specific medical research requires a high degree
of accuracy and faithfulness to the original content [77].
Any deviation from factual accuracy can lead to mis-
understandings, misinterpretations, and potentially harmful
consequences.
1) Factual Inconsistency: The issue of factual incon-

sistency in medical summaries arises when the
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FIGURE 7. Challenges and limitation of GPT in medical research.

content produced does not align with established
facts or evidence-based medical practices [78], [79].
The implications of such discrepancies are profound,
potentially affecting clinical outcomes and patient care.
The primary factors contributing to these inconsistencies
include:
a) Training Data Quality: The accuracy of a machine

learning model is highly contingent on the quality
of its training data. In the context of medical
summaries, if the data includes inaccuracies or biases,
these can propagated through the model’s outputs
[80], [81]. Therefore, ensuring data integrity by
incorporating peer-reviewed and clinically verified
sources is essential to minimize such errors.

b) Model Interpretation: The complex nature of
medical terminology and concepts poses a significant
challenge to GPT models, which may result in misin-
terpretations [82]. Enhanced training approaches like
Unified Medical Language Systems (UMLS), Med-
ical Ontologies, Clinical Decision Support Systems
(CDSS), etc., that focus on the medical domain can
improve the model’s understanding, reducing the risk
of factual discrepancies.

c) Lack of Expert Supervision: The absence of
medical expert involvement duringmodel training can
lead to gaps in the model’s knowledge, particularly
regarding the nuances of medical accuracy [83],
[84]. Collaborative efforts between data scientists and
medical professionals can help bridge these gaps,
leading to more reliable summaries.

2) Misleading Information: In the domain of medical
research summarization, the propagation of misleading
information is a significant issue that undermines the
validity of conveyed findings [85]. Such misinformation
can stem from multiple factors, including but not
limited to:

a) Over-Simplification: The process of distilling com-
plex medical research into a summary can sometimes
result in the over-simplification of intricate concepts.
This over-simplification by GPT models may lead to
the omission of vital nuances and caveats that are
essential for a complete understanding of the medical
artifact.

b) Loss of Context: Summarization inherently involves
compressing extensive information into a more
digestible form. During this process, GPTs may
inadvertently omit crucial context, yielding sum-
maries that could misrepresent the original research’s
intentions or conclusions [86], [87]. This context loss
can change the perceived meaning of the research
findings and potentially guide readers to incorrect
interpretations.

c) Training Data Bias: Bias in the data used to train
GPTs can lead to skewed summarizations that reflect
these biases [88], [89], [90]. Such replication of
bias can have serious implications, especially in the
sensitive context of medical information.

d) Algorithmic Bias: The design of GPT algo-
rithms themselves may unintentionally introduce
bias, potentially affecting certain groups or medical
conditions disproportionately [91].

Mitigating the risk of misleading information requires
careful design of the summarization process, including
clear guidelines on what constitutes an acceptable level
of simplification, rigorous testing against biases, and
validation by medical experts.

Ensuring faithfulness and accuracy in the application of
GPTs for systematic summarization of medical artifacts is
a complex and multifaceted challenge [92]. It requires a
careful balance between the need for concise summarization
and the imperative to maintain factual accuracy and avoid
misleading information [93]. Collaborative efforts between
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AI researchers, medical experts, and regulatory bodies, along
with the implementation of robust validation processes, are
essential to address these challenges effectively.

B. INTERPRETABILITY AND EXPLAINABILITY
Interpretability and explainability are crucial in the context of
medical research, where understanding the reasoning behind
a decision or summary is often as important as the decision
or summary itself [94], [95]. These requirements pose a
unique challenges in the application of GPTs for systematic
summarization of medical research. These challenges are as
follows:

1) Black-Box Nature of Models: The utilization of GPTs
in medical research summarization introduces several
challenges due to their ‘‘black-box’’ nature, where the
internal mechanisms are not readily interpretable [96].
These challenges include:
a) Understanding Model Decisions: The decision-

making process within GPTs involves a complex
interplay of neural network weights and biases. This
complexity obscures the reasoning behind how spe-
cific summaries are generated, making it challenging
to dissect and understand the model’s rationale for its
outputs [97]. The ability to interpret these decisions is
crucial, especially when summaries influencemedical
decisions.

b) Trust and Acceptance: Medical professionals and
researchers often require clear justification for the
information they use, which is hindered by the opaque
nature of GPTs [98]. The absence of a transparent
explanation for how summaries are derived can lead
to skepticism and hinder the acceptance of such
advanced technologies in clinical practice.

c) Regulatory Compliance: The medical field is
subject to stringent regulations, including the need
for transparency in decision-support systems [99].
The black-box nature of GPTs poses a significant
challenge in meeting these legal mandates, as it can be
difficult to demonstrate the model’s decision-making
pathway in a way that satisfies regulatory standards.

Efforts to increase transparency include the development
of tools that visualize the decision-making process
within the model or the creation of simpler, more
interpretable models.

2) Complexity of Medical Language: Medical lan-
guage’s specialized and intricate nature poses significant
interpretability challenges for summarization models
like GPTs. GPT generated summaries often exhibit
complexities due to the specialized nature of medical
terminology and concepts. This necessitates a high
degree of domain-specific expertise for accurate inter-
pretation, potentially constraining their accessibility
to non-specialists [100]. Additionally, the inherent
ambiguity and nuanced language of medical texts pose
challenges for GPTs in capturing the full semantic

depth in summaries. Despite achieving technical cor-
rectness, these summaries may lack the contextual
nuances and detailed comprehension apparent to human
experts, leading to potential oversimplifications or
missed subtleties in representing the original research
content [101].

C. DATA PRIVACY AND ETHICAL CONSIDERATIONS
Data privacy and ethical considerations hold exceptional
significance in the medical sphere, particularly when han-
dling sensitive patient information and confidential research
findings. The application of GPTs for the systematic summa-
rization of medical research accentuates these considerations,
introducing several challenges:

1) Handling Sensitive Information: The deployment of
GPTs in the medical summarization process requires
the handling of delicate data, which, if not managed
correctly, could lead to breaches of confidentiality and
privacy [102], [103]. The following measures can be
adopted to mitigate potential breaches of confidentiality
and privacy:
a) Consent and Authorization: Acquiring proper

consent and ensuring necessary authorizations for the
use of sensitive medical data is a legal and ethical
imperative [104], [105]. This process is compounded
by varying regulations across jurisdictions, necessi-
tating a comprehensive approach to compliance.

b) Data Anonymization: The anonymization of per-
sonal data is critical to safeguard the privacy of indi-
viduals [106], [107]. It is crucial that the techniques
used for anonymization are robust enough to prevent
re-identification. Re-identification can be particularly
challenging with rich medical datasets where multiple
data points can lead to patient identification.

c) SecurityMeasures: Protecting sensitive medical data
demands stringent security protocols [108], [109].
This includes not only safeguarding the data during
the summarization process but also ensuring the
secure storage and transmission of information to
prevent data breaches.

2) Transparency in Research Summaries: Transparency
within the process of generating medical research
summaries is a critical component of ethical standards.
Ensuring that the information conveyed is both reliable
and verifiable requires the following:
a) Accuracy and Integrity: It is crucial that summaries

generated by GPTs remain true to the original
research content, preserving the scientific accuracy
and the integrity of the data [86]. Any alteration
or misinterpretation introduced in the summarization
process could have significant repercussions for
clinical practice and patient outcomes [110].

b) Disclosure of Methods: A transparent summariza-
tion process involves clear communication about the
algorithms and techniques employed [111]. This not
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only facilitates reproducibility and peer review but
also builds trust among medical professionals who
rely on these summaries for critical insights.

Data privacy and ethical considerations in leveraging
GPTs for systematic summarization of medical artifacts are
multifaceted and require careful attention to legal, regulatory,
and moral standards. Addressing these requirements is
imperative to maintain the integrity and trust in the use of
GPTs for medical research summarization. This involves
not only technical solutions but also a framework of
policies and procedures that prioritize the ethical handling
of data. As GPT technology continues to advance, it is
essential that these systems are designed and implemented
with a strong emphasis on privacy, security, and ethical
considerations, aligningwith the highest standards of medical
data governance.

D. SCALABILITY AND COMPUTATIONAL RESOURCES
The application of GPTs in the systematic summariza-
tion of medical artifacts requires significant computational
resources. Scalability, or the ability to efficiently process
large volumes of data and adapt to growing demands, is a
critical consideration. The challenges associated with this
requirement is as follows:

1) Processing Large Datasets: Medical research often
involves vast amounts of data, including clinical records,
research papers, and experimental results [112]. The
computational demand for processing and summarizing
vast datasets is significant [113]. Crafting algorithms
that are both fast and precise in processing large amounts
of data is a sophisticated endeavor [22]. Efficiency is key
to ensuring that the summarization process is practical
and scalable.

2) Real-time Summarization: In some medical applica-
tions, real-time summarization of research findings may
be required [114]. This presents the following additional
challenges:
a) Latency: Achieving minimal delay in the summa-

rization process is essential, as any significant latency
could impede timely decision-making in clinical
environments [115].

b) Concurrency: The ability to process several summa-
rization tasks concurrently puts a strain on computa-
tional resources. Optimizing these resources to handle
multiple requests without performance degradation is
critical [116].

3) Cost Considerations: The deployment and scaling of
GPTs for medical summarization necessitate consider-
able computational resources, which carry the following
associated costs:
a) Hardware Costs: The initial investment and main-

tenance of specialized hardware like GPUs, which
are required for their processing capabilities, can
represent a significant financial burden [117].

b) Cloud Computing Costs: Leveraging cloud services
offers scalability and flexibility but also incurs
ongoing costs that can accumulate, impacting the
financial viability of projects [118].

These cost factors must be carefully considered in the
context of medical summarization projects using GPTs
to ensure sustainable and cost-effective operation.

Scalability and computational resource considerations are
central to the successful application of GPTs in the systematic
summarization of medical artifacts.

VII. FUTURE DIRECTIONS
The rapid evolution of artificial intelligence, particularly
GPTs, has opened doors to unprecedented possibilities in
various sectors. GPTs have shown a tremendous performance
in medical research especially in the application of summa-
rization. Some of the existing works which uses the GPT
for medical research summarization is presented in Table 4.
In the realm of medical research, where the sheer volume
of data often overwhelms professionals, GPTs stand as a
beacon of hope [119]. Their capability to distill vast amounts
of information into concise, coherent summaries promises to
revolutionize the way researchers and medical professionals
interact with data [120]. As we delve into the future prospects
of GPTs in medical research summarization, it becomes
paramount to understand both the potential integrations
that can enhance research methods and the technological
advancements that will steer this transformation. This section
provides a holistic view of these dimensions, painting a
picture of the imminent future where GPTs and medical
research symbiotically evolve.

1) Enhanced Integration of GPTs forMedical Research
Summarization:
a) Research Database Query Systems: GPTs could be

harnessed as sophisticated query processors within
voluminous databases of medical research papers.
They are poised to interpret intricate queries pro-
pounded by scholars and return pertinent literature
or even precise excerpts that resonate with the
inquiry [121].

b) Automated Annotation and Emphasis Mechanisms:
By integrating GPTs with annotation systems for
scholarly papers, could autonomously accentuate
pivotal discoveries, experimental approaches, or out-
comes, thereby streamlining the review process [122].

c) Sophisticated Cross-referencing Tools: As medical
professionals and scholars peruse an article, GPTs
could be employed to instantaneously collate cognate
studies or furnish insights from ancillary literature,
an asset of incalculable worth for contextualizing the
expanse of a specific medical inquiry [123].

d) Automated Metadata Synthesis: GPTs can be pro-
grammed to synthesize metadata for fresh aca-
demic treatises when such metadata is unavailable.
This synthesis encompasses descriptors, abstracts,
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and classifications, thereby enhancing the effi-
ciency of indexing and retrieval from extensive data
sources [124].

e) Synergy with Scholarly Review Platforms: Within
forums where medical experts evaluate or deliberate
over scholarly papers, GPTs could suggest instanta-
neous synopses, facilitating a swift comprehension of
the literature during colloquies [125].

f) Tools for Trend Examination:While processing and
summarizing a large volume of academic papers over
time, GPTs could be integrated with tools that identify
and clarify emerging trends, prevalent methodologies,
and key discoveries within specific areas of medical
research. This capability would enable researchers
to quickly grasp the current state of research in
particular medical conditions, observing how themes
and treatment strategies have evolved.

g) Template-guided Reporting Constructs:GPTs might
be attuned to fabricate reports based on predefined
templates for scholars chronicling specific medical
conditions, thereby assuring uniformity across diverse
research papers.

h) Fusion with Visualisation Instruments: The sum-
mation of data-intensive research is often expedited
by graphical elucidation. GPTs could merge with
visualization apparatus to yield not merely tex-
tual condensations but also diagrammatic portray-
als contingent on the content of medical research
papers [128].

2) Technological Advancements of GPTs for Medical
Research Summarization:

a) Domain-Specific Refinement: A key future develop-
ment for GPT models is their refinement and calibra-
tion to specific medical domains. While these models
are generally trained on vast and varied datasets,
the ability to fine-tune them for particular medical
specialties or conditions is crucial. This ensures that
themodels develop a deep and nuanced understanding
of the unique complexities and terminologies inherent
in different medical fields [129].

b) Enhanced Contextual Comprehension: Future iter-
ations of GPT models are expected to exhibit sig-
nificantly improved contextual comprehension. This
means that they will be better equipped to grasp the
underlying context and intended meaning of medical
research findings [23].

c) Adaptive Feedback Mechanisms: Another progres-
sive aspect is the incorporation of adaptive feedback
mechanisms in GPT models. This involves the ability
of these models to learn iteratively from feedback,
thereby continuously improving the precision and rel-
evance of their generated summaries. Such a feature
allows for ongoing refinement of the summarization
process, making it more aligned with user needs

and expectations, and thereby improving the overall
quality and utility of the summaries over time [130].

d) Multimodal Functionalities: Future developments in
GPT models are also expected to include improved
multimodal functionalities. This refers to the ability
of these models to process and interpret data from
various modalities, including visual (images, charts)
and auditory (speech, audio recordings) inputs. [131].

e) IntegratedData Synthesis:Data synthesis is essential
when the available data is insufficient or to enhance
data privacy. A significant future direction for GPT
models is their enhanced ability to integrate and
synthesize different types of data. This involves not
just processing textual content but also incorporating
supplementary data formats such as graphs, charts,
and tables. The aim is to produce comprehensive
and holistic summaries that encompass all aspects
of research articles, including their various data
representations [132].

f) Automated Scholarly Referencing: GPTs may be
instructed to autonomously identify and reference
pertinent studies, thus upholding the accuracy
and integrity that is essential in the medical
discipline [133].

g) Instantaneous Abstracting: Technological progress
has expedited the operational tempo of GPTs,
enabling the generation of immediate summaries,
pivotal for real-time deliberations or pressing research
appraisals [134]. The future aspect here involves
further enhancing the speed and efficiency of GPTs
to support immediate, on-the-spot summarization and
analysis.

h) Seamless System Integration: Future advancements
should focus on integrating GPT models more
smoothly with various research tools, databases, and
analytical platforms. This integration is aimed at
making GPTs a ubiquitous and versatile component
in the medical research infrastructure, enhancing their
accessibility and utility across different platforms and
applications [135].

i) Augmented System Resilience: The future direction
is to improve the resilience of GPT models. This
involves using techniques like adversarial training
to make these models more robust and reliable,
especially when dealing with complex or ambiguous
medical texts [136]. The goal is to ensure consistent
quality in the generated summaries, regardless of the
complexity of the source material.

j) Progressive Knowledge Acquisition: An important
future aspect is the continuous learning capability of
GPT models. Instead of requiring complete retraining
to update their knowledge base, these models are
evolving to incrementally assimilate new information.
This aspect is particularly critical in the medical
field, where staying abreast of the latest research and
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TABLE 4. Applications of GPT models in medical research paper summarization.

findings is essential for maintaining the relevance and
accuracy of the models [137].

VIII. CONCLUSION
In conclusion, the application of GPTs in the systematic
summarization of medical research has shown significant
promise. This survey has provided a comprehensive overview
of the current state-of-the-art technologies and methods,
highlighting the power and potential of GPTs in transforming
the way medical research data is processed, understood, and
utilized. We have discussed the various applications of GPTs
in the medical field, from diagnosing and treating patients
to summarizing systematic reviews and medical records.
We have also highlighted the challenges and limitations
of GPTs, emphasizing the need for further research and
development to overcome these hurdles. The case studies
presented in this paper demonstrate the effectiveness of GPTs
in solving the problem of information overload in medical
research. As the field of artificial intelligence continues to
evolve, we anticipate that GPTs will play an increasingly
critical role in the systematic summarization of medical
research, leading to more efficient and effective healthcare
delivery. Further research should concentrate on overcoming
the existing constraints of GPT models in medical document
summarization. The future improvement should focus more
on enhancing the accuracy and reliability of summaries for
complex medical texts, ensuring they capture critical infor-
mation without misinterpretation. Additionally, exploring the
integration of GPT models with domain-specific medical
knowledge bases could enrich the contextuality and relevance
of the summaries. The development of tailored GPT variants,
trained on diverse medical literature and patient records,
may also be beneficial. These efforts will not only improve
the efficiency of processing medical documents but also
potentially aid in decision-making and providing insights in
healthcare settings.
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