
Received 17 November 2024, accepted 17 December 2024, date of publication 23 December 2024,
date of current version 7 January 2025.

Digital Object Identifier 10.1109/ACCESS.2024.3521407

Cypress Copilot: Development of an AI Assistant
for Boosting Productivity and Transforming
Web Application Testing
SURESH BABU NETTUR 1,∗ , SHANTHI KARPURAPU 1,∗ , UNNATI NETTUR 2,
AND LIKHIT SAGAR GAJJA3
1Independent Researcher, Virginia Beach, VA 23456, USA
2Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
3Department of Computer Science, BML Munjal University, Gurugram, Haryana 122413, India

Corresponding authors: Shanthi Karpurapu (shanthi.karpurapu@gmail.com) and Suresh Babu Nettur (nettursuresh@gmail.com)

∗Suresh Babu Nettur and Shanthi Karpurapu are co-first authors.

ABSTRACT In today’s fast-paced software development environment, Agile methodologies demand rapid
delivery and continuous improvement, making automated testing essential for maintaining quality and
accelerating feedback loops. Our study addresses the challenges of developing and maintaining automation
code for web-based application testing. In this paper, we propose a novel approach that leverages large
language models (LLMs) and a novel prompt technique, few-shot chain, to automate code generation for
web application testing. We chose the Behavior-Driven Development (BDD) methodology owing to its
advantages and selected the Cypress tool for automating web application testing, as it is one of the most
popular and rapidly growing frameworks in this domain. We comprehensively evaluated various OpenAI
models, including GPT-4-Turbo, GPT-4o, and GitHub Copilot, using zero-shot and few-shot chain prompt
techniques. Furthermore, we extensively validated with a vast set of test cases to identify the optimal
approach. Our results indicate that the Cypress automation code generated by GPT-4o using a few-shot
chained prompt approach excels in generating complete code for each test case, with fewer empty methods
and improved syntactical accuracy and maintainability. Based on these findings, we developed a novel
open-source Visual Studio Code (IDE) extension, ‘‘Cypress Copilot’’ utilizing GPT-4o and a few-shot chain
prompt technique, which has shown promising results. Finally, we validate the Cypress Copilot tool by
generating automation code for end-to-end web tests, demonstrating its effectiveness in testing various web
applications and its ability to streamline development processes. More importantly, we are releasing this tool
to the open-source community, as it has the potential to be a promising partner in enhancing productivity in
web application automation testing.

INDEX TERMS Agile software development, behavior driven development, large language model, machine
learning, prompt engineering, software testing, cypress, selenium, web application, AI assistant tools,
GitHub Copilot, code generation, test case generation, test automation, zero-shot, few-shot, OpenAI, GPT-3,
GPT3.5, GPT-4, GPT-4o.

I. INTRODUCTION
Agile methodologies drive rapid delivery and continuous
improvement in the fast-paced world of modern software
development. In order to maintain quality while dealing with

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

faster development cycles, it is crucial to have automated
testing in place to ensure that new code integrates seam-
lessly and remains free of defects [1]. The global test
automation market is witnessing a surge in demand, with
an expected compound annual growth rate (CAGR) of
18.6% from 2021 to 2031. This report underscores the
need for advanced testing solutions to meet this rapidly

VOLUME 13, 2025

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 3215

https://orcid.org/0009-0007-7453-7870
https://orcid.org/0009-0004-0957-2010
https://orcid.org/0009-0000-3476-4656
https://orcid.org/0000-0003-3264-185X


S. B. Nettur et al.: Cypress Copilot: Development of an AI Assistant for Boosting Productivity

growing demand1. Despite the advantages of adopting test
automation, the process of developing and maintaining
automation code for web-based applications can be a sig-
nificant drain on time and resources. Our research proposes
an optimal approach that not only identifies the best LLM
and prompt techniques for generating automation code but
also promises to speed up the automation coding process.
This acceleration could lead to a substantial improvement in
software quality and a significant reduction in delivery times,
while also allowing development teams to focus on innova-
tion and reducing the burden of repetitive tasks. As part of our
study, we reviewed various popular test automation frame-
works and tools to determine the best options for applying our
research approach.We considered the BDDmethodology and
the Cypress automation tool in our approach to generating the
automation code.

We chose the BDD methodology in our study due to
its advantages in fostering collaboration between techni-
cal and non-technical stakeholders, ensuring that software
meets both functional and business requirements [2], [3], [4].
BDD centers on creating executable specifications written
in the human-readable Gherkin language, which is easily
understood by both developers and domain experts2,3. This
methodology addresses unclear, missing requirements and
bridges the gap between technical implementations and busi-
ness objectives [5].

We selected the Cypress automation tool in our study
because of its extensive adoption and significant advantages.
Cypress is widely used, with 5.3 million weekly down-
loads4,5. It is renowned for its ease of use and powerful
features for end-to-end web application testing [6]. It runs
directly in the browser, offering faster and more reliable
tests with minimal setup. Additionally, Cypress is rated as
one of the top three automation frameworks by LambdaTest
and BrowserStack6,7, and it has over a million reposito-
ries using it8. We aim to develop a novel tool, ‘‘Cypress
Copilot,’’ which generates automation code specifically for
Cypress based on the optimal LLM and prompt techniques
derived from our research approach. We aim to benefit many
teams using this popular framework by enhancing their test-
ing efficiency and productivity with Cypress Copilot. In our
research, we have comprehensively evaluated various Open
AImodel variants such as GPT-4-Turbo, GPT-4o, andGitHub
Copilot with zero-shot and few-shot chain prompt techniques
and proposed an optimal solution. Results demonstrate that
the Cypress automation code generated by our approach has

1https://www.transparencymarketresearch.com/test-automation-
market.html

2https://cucumber.io/docs/
3https://docs.specflow.org/projects/specflow/en/latest/Gherkin/Gherkin-

Reference.html
4https://www.npmjs.com/package/cypress
5https://www.cypress.io
6https://www.browserstack.com/guide/best-test-automation-frameworks
7https://www.lambdatest.com/blog/best-test-automation-frameworks/
8https://github.com/cypress-io/cypress/network/dependents

better code completeness, maintainability, and is prone to
fewer syntax errors.

A. BDD METHODOLOGY
In this section, we discuss BDD methodology at a high level
and the Cypress automation code implementation for BDD
scenarios to benefit those new to test automation or with
diverse professional backgrounds. BDDmethodologymainly
involves discovery, formulation, automation, and validation
phases (Figure 1) in iterative cycles, ensuring continuous col-
laboration between stakeholders and maintaining alignment
between business requirements and system behavior.

FIGURE 1. BDD methodology stages.

1) DISCOVERY
This phase involves understanding and discovering the user
story requirements by discussing the application’s expected
behavior. Stakeholders and team members collaborate to
define scenarios, examples, and acceptance criteria.

2) FORMULATION
In this phase, the behaviors discovered during the Discovery
phase are formulated into concrete examples and specifi-
cations, also known as Gherkin/BDD/cucumber scenarios.
These examples are often written in a structured format,
such as Given-When-Then, to describe the behavior in an
easy-to-understand and implement.

Figure 3 presents a basic BDD scenario using the Gherkin
language to demonstrate login functionality. In this example,
each line corresponds to a step in the scenario. The ‘‘Given’’
step sets the initial state by confirming the user is on the login
page. The ‘‘When’’ step represents the user’s action of enter-
ing valid credentials and clicking the login button. Finally,
the ‘‘Then’’ step specifies the expected result, which is the
user being redirected to the dashboard page. This structure
improves readability and allows non-technical stakeholders
to easily follow and understand the behavior being tested.

3) AUTOMATION
The automation phase involves writing code and implement-
ing automated tests based on the BDD scenarios created in
the Formulation phase. These tests are designed to verify that
the application behaves as expected according to the specified
scenarios.

4) VALIDATION
In this phase, the power of BDD scenarios is unleashed as
they are executed to confirm that the application aligns with
the specified behaviors. The scenarios are carefully reviewed
to verify that all requirements are met and to identify any
potential issues or discrepancies.

3216 VOLUME 13, 2025



S. B. Nettur et al.: Cypress Copilot: Development of an AI Assistant for Boosting Productivity

In the subsequent section, we discuss the steps involved in
the test automation phase, as our proposed approach aims to
automate the code generation.

5) AUTOMATION STAGE
The automation stage involves translating BDD scenarios
into executable test code. The main steps include creating
a feature file with the BDD scenarios formulated for a user
story and implementing a step definition file, which contains
the step methods for the corresponding BDD scenario steps
(steps are lines in BDD scenarios that start with keywords
such as Given, When, and Then, as well as other Gherkin
language keywords). Within each step method, implement
code to perform actions on web elements (such as buttons,
lists, radio buttons, etc.). Once the automation framework and
code are set up and executed, the script launches the web
application under test, and the automated tests are executed
and validated.

FIGURE 2. BDD automation procedure.

FIGURE 3. Feature file with login functionality scenario.

One of the important best practices in implementing
web application automation tests is to adopt the Page
Object Model (POM) design pattern, as shown in Figure 2.
POM encapsulates web elements and their interactions into
reusable components by representing each page or compo-
nent of the web application with a corresponding page object
class, which declares the web elements and methods for
interacting with them9. This design enhances maintainability

9https://github.com/JoanEsquivel/cypress-cucumber-boilerplate/

FIGURE 4. Step definition file that includes implementation of each BDD
scenario step.

FIGURE 5. POM class implementation.

by centralizing locators and interactions, making it easier
to update web elements in one location. Additionally, POM
promotes code reusability and readability and reduces redun-
dancy in test scripts, making it essential for efficient and
scalable automation frameworks. Figures 3, 4 and 5 demon-
strate a simple Cypress automated test for login functionality,
with and without POM.

II. RELATED WORKS
Recent advancements in software testing have increas-
ingly incorporated ML and NLP techniques, particularly

VOLUME 13, 2025 3217



S. B. Nettur et al.: Cypress Copilot: Development of an AI Assistant for Boosting Productivity

leveraging LLMs. Liu et al. developed GPTDroid, a tool
that automates mobile app GUI testing using GPT-3.
GPTDroid treats the testing process as a question-and-answer
task, generating and refining test scripts based on the app’s
responses [7]. Similarly, Yoon et al. introduced DroidAgent,
an autonomous agent that uses LLMs to interact with mobile
apps and accomplish task goals during GUI testing [8].
Dwarakanath et al. proposed a novel method employing com-
puter vision to simulate human behavior in software testing.
Their approach interprets textual test scripts and interacts
with the application under test (AUT) based on visual input,
emulating human testers [9]. Extending this line of work,
Hu et al. created AUITestAgent, a natural language-driven
GUI testing tool that automates interactions and verifies
functionality based on test requirements written in plain
language. This tool extracts GUI interactions and employs
a multidimensional data extraction strategy to validate app
responses [10]. Yu et al. introduced RoboTest to advance GUI
testing further. This non-intrusive GUI testing framework
uses a visual-based robotic arm and novel screen and widget
detection algorithms to simulate human testing across various
screen sizes [11]. YazdaniBanafsheDaragh et al. developed
a deep learning-based GUI testing approach that generates
valid inputs for application testing using captured screen-
shots, eliminating the need to know the application’s internal
workings [12]. Lastly, Feng et al. presented CAT, a Retrieval
Augmented Generation (RAG) system, to facilitate cost-
effective UI automation testing for WeChat. CAT system
successfully automated many UI tests and identified numer-
ous bugs [13].
In unit test generation, Pan et al. explored using LLMs

and static analysis to generate high-coverage, compliable unit
tests for programming languages like Java and Python, focus-
ing on enhancing readability and developer-friendliness [14].
Wang et al. proposed a method that improves unit test cov-
erage and line/branch analysis by decomposing complex
methods into smaller slices, allowing LLMs to concentrate
on each slice [15]. Lops et al. developed AgoneTest, a sys-
tem that generates and evaluates unit test suites for Java
projects using LLMs, comparing human-written tests with
LLM-generated ones to boost efficiency and scalabil-
ity [16]. Gu et al. introduced TestART, which enhances
LLM-generated tests through a co-evolutionary process com-
bining automated test generation and iterative repair [17].
Yang et al. evaluated open-source LLMs and commercial
models like GPT-4 for unit test generation in Java projects.
They highlighted the impact of prompt design and LLM
limitations in test generation [18]. Fakhoury et al. devel-
oped TiCoder, an interactive workflow that enhances code
generation accuracy by clarifying user intent through tests,
reducing cognitive load, and improving AI-generated code
evaluation [19]. Alshahwan et al. introduced TestGen-LLM,
a tool that refines human-written unit tests using LLMs to
ensure measurable improvements and resolve issues such as
hallucinations [20].

For API testing, Sri et al. explored automated REST
API test generation using LLMs, leveraging OpenA’s capa-
bilities to automate the creation of complex test scenarios
based on Postman test cases [21]. Pereira et al. introduced
APITestGenie, a tool that generates API test scripts from
business requirements and API specifications using LLMs.
This tool aims to improve productivity by automating test
script generation, although human validation is recom-
mended before integration into CI/CD pipelines [22].

As part of our previous research on automating test case
creation, we examined LLMs for generating BDD scenarios
using zero- and few-shot prompts. We demonstrated that
models like GPT-3.5 and GPT-4 produced accurate, error-
free BDD tests, with the few-shot prompt technique yielding
the best results [23]. In this manuscript, we further extend
our research on automating the generation of test automation
code using popular tools such as Cypress. Despite signifi-
cant advancements, we identified an untapped opportunity
to leverage LLM-driven automation for generating code for
end-to-end test cases in web applications. This presents a
promising area for further exploration, with the potential to
develop novel approaches that could enhance testing produc-
tivity and significantly improve overall quality.

III. METHODOLOGY
Our proposed methodology aims to comprehensively eval-
uate various OpenAI model variants and prompt design
techniques to assess their effectiveness in generating Cypress
automation code for the given BDD scenarios. Figure 6
illustrates the evaluation procedure for the generated Cypress
automation code across approximately 260 test cases (BDD
scenarios covering 56 user stories). The process begins by
reading feature files containing BDD scenarios from a CSV
file. Each feature file corresponds to the BDD scenarios
for a specific user story. The feature file is paired with a
prompt, using either zero-shot or few-shot chain techniques,
along with model parameters such as temperature, top_p,
and max_tokens sent to the OpenAI API endpoint. The
generated Cypress automation code is stored in a CSV file
by iterating through all feature files. The above mentioned
is implemented in Python using Google Colab framework
for each OpenAI model variant, specifically GPT-4-Turbo
and GPT-4o, and executed the program with zero-shot
prompts. Additionally, the few-shot chain prompt technique
was evaluated exclusively on GPT-4o, as it is OpenAI’s
best-performing model and is expected to perform better
than GPT-4-Turbo10. The code for all models is available
in the GitHub repository11. After the Cypress code gen-
eration step, the generated code is evaluated for various
criteria, including syntax issues and the effectiveness of
code generation. We comprehensively evaluated various
OpenAI model variants and prompt design techniques within

10https://github.com/openai/simple-evals?tab=readme-ov-
file#benchmark-results

11https://github.com/karpurapus/Cypress-Automation-LLM/

3218 VOLUME 13, 2025



S. B. Nettur et al.: Cypress Copilot: Development of an AI Assistant for Boosting Productivity

this proposed methodology, which integrates automated code
generation with rigorous validation.

FIGURE 6. Cypress code generation from BDD scenarios and evaluation
procedure.

The following sections provide an overview of the key
components of our proposed methodology.

A. DATASET
We have not come across a comprehensive, publicly avail-
able dataset of user stories from real-time projects. While
some datasets include user stories from various research
experiments or public repositories, they generally do not
represent real-time projects. In order to closely mimic real-
world scenarios, for this study, we have collected a diverse
set of approximately 55 user stories related to BDD scenar-
ios from our previous research on the automation of BDD
scenarios12 [23]. Our dataset includes user story data from
Mendeley13 and a blog post14 that highlights the most com-
monly occurring user stories across different domains. This
dataset is hosted in a public GitHub repository15, where
we invite the software development research community to
contribute and collaborate in enhancing and expanding this
dataset. This compilation ensures a comprehensive repre-
sentation of use stories across various domains, providing a
robust foundation for analysis in our study. The Table 1 shows
the list of user stories considered.

We have carefully curated a dataset that spans a broad
spectrum of user stories from various application contexts,
ensuring coverage across multiple domains. These applica-
tions cater to distinct user needs, ranging from seamless
real-time interactions and customizations to essential service-
driven solutions. This diversity provides a robust foundation
for validating our test automation code generation approach,
as it reflects a wide array of functional requirements and
user interaction patterns. Our dataset also incorporates key
features such as data filtering, form handling, user customiza-
tion, and administrative functionalities, which are critical for
creating an adaptable automation solution. By leveraging this
dataset, we aim to validate the effectiveness of our approach

12https://github.com/karpurapus/BDDGPT-Automate-Tests
13https://data.mendeley.com/datasets/7zbk8zsd8y/1
14https://www.parabol.co/blog/user-story-examples/
15https://github.com/karpurapus/BDD-Cucumber-scenario-Dataset

TABLE 1. Brief description of applications and various user stories
considered for automation code generation.

in mimicking real-world automation demands and handling
complex functionalities typical of real-time projects.

VOLUME 13, 2025 3219



S. B. Nettur et al.: Cypress Copilot: Development of an AI Assistant for Boosting Productivity

B. PROMPT TECHNIQUES
Prompt engineering involves creating clear and concise
instructions or queries to guide LLMs in performing specific
tasks. These prompts improve model comprehension and
performance by providing explicit guidance, reducing ambi-
guity, and ensuring accurate responses.Wei et al. demonstrate
that instruction tuning is an effective method for refining
models through fine-tuning with datasets described using
explicit instructions [24]. The zero-shot learning capabilities
enable the model to understand and perform tasks effectively
without additional training [25], [26]. LLMs have impressive
zero-shot capabilities, but they may struggle with complex
tasks. A few-shot prompting addresses this issue by including
examples directly within the prompt. This technique helps
the model learn in context and perform better by condition-
ing it with minimal instances and examples for subsequent
tasks [27], [28], [29], [30], [31], [32].

As part of this research, we developed and introduced a
novel few-shot chain prompt technique. This method involves
providing prompts in a sequence, with each prompt building
on the outputs of the previous ones. This technique is ben-
eficial for handling complex task execution, such as writing
Cypress automation code that achieves maximum function-
ality with minimal required code changes to run effectively
on the application under test. The few-shot chain prompt
technique is implemented in two steps, aligning with the
BDD automation implementation procedure described in the
BDD methodology section. As shown in Figure 7, In Step 1,
the few-shot technique provides the model with an example
feature that includes BDD scenarios and their corresponding
step definition code. Based on the example, the model then
generates the Cypress step definition code for the requested
BDD scenarios. In Step 2, we apply the few-shot technique
once again.

The model is presented with an example step definition
paired with its corresponding POM class code. It is also
given with the step definition generated in Step 1 and asked
to produce the corresponding POM class code. The model
then uses this information to generate the POM class code
corresponding to the step definition from Step 1. The example
code used for this prompt technique is sourced from a GitHub
repository9 that incorporates automation for the Sauce Labs
web application.16

The example code referenced in Figure 4, along with the
instructions for generating the step definition JavaScript code
included in Figure 8, is utilized as part of Step 1 to demon-
strate the process. Similarly, the example code mentioned
in Figure 5, along with the instructions shown in Figure 9
to generate the POM class Cypress code, is used as part of
Step 2.

C. OPEN AI MODELS
We listed the OpenAI models considered for evaluation,
as detailed in Table 2. The selected models include:

16https://www.saucedemo.com

FIGURE 7. Few-shot chain prompt technique.

FIGURE 8. Step 1 instructions in few-shot chain prompt technique.

FIGURE 9. Step 2 instructions in few-shot chain prompt technique.

D. EVALUATION
We systematically assessed the effectiveness and quality of
the code generation process by focusing on two critical
aspects: completeness and quality. This comprehensive eval-
uation aims to identify strengths and areas for improvement
in the generated code.

3220 VOLUME 13, 2025



S. B. Nettur et al.: Cypress Copilot: Development of an AI Assistant for Boosting Productivity

TABLE 2. Open AI models considered for Cypress code generation.

Code Generation Completeness Evaluation: Our evalua-
tion of the completeness of code generation is a comprehen-
sive process that involves measuring several vital parameters.
This approach provides a robust assessment of the generated
code. Specifically, we analyze:

1) STEP METHODS GENERATED
This metric evaluates the total number of step methods gen-
erated by each OpenAI model for the corresponding steps for
all BDD scenarios in all user stories, offering insights into the
completeness of the code generation process using various
OpenAI models. Fewer generated step methods indicate a
lack of code for the given steps of the BDD scenario.

2) STEP METHODS WITHOUT IMPLEMENTATION
This metric evaluates the total number of step methods gen-
erated without any code (i.e., methods that are generated but

17https://platform.openai.com/docs/models/gpt-4o#4ofootnote

lack implementation) for all BDD scenarios in all user stories
for each model. It highlights areas where the generated code
is incomplete andmay require further development to be fully
functional.

3) POM CLASS METHODS GENERATED
This metric evaluates the total number of POM methods
generated by each model for the corresponding steps for all
BDD scenarios in all user stories, offering insights into the
completeness of the code generation process using various
OpenAI models.

4) POM CLASS METHODS WITHOUT IMPLEMENTATION
This metric evaluates the total number of POM class methods
generated without any code (i.e., methods that are generated
but lack implementation) for all BDD scenarios in all user
stories for eachmodel. It highlights areas where the generated
POM code is incomplete and may require further develop-
ment to be fully functional.

5) FRACTION OF STEP METHODS WITH IMPLEMENTATION
As illustrated in Equation (1), we calculated fraction of
step methods implementation by dividing the number of
step methods with implementation by the total number of step
method for each user story, encompassing all BDD scenarios
within that story.

Fraction of step‘methods with implemenation

=
No.of step methods generated with implementation

Total No. of step methods generated
(1)

6) FRACTION OF STEP METHODS WITHOUT
IMPLEMENTATION
Similarly, the fraction of step methods without implemen-
tation is computed by dividing the number of step methods
lacking implementation by the total number of step methods
for each user story, encompassing all BDD scenarios within
that story, as shown in Equation (2). This metric is computed
for each user story, encompassing all BDD scenarios within
that story

Fraction of Step methods with out implemenation

=
No. of step methods generated without implementation

Total No. of step methods generated
(2)

7) FRACTION OF POM METHODS WITH IMPLEMENTATION
As illustrated in Equation (3), as shown at the bottom of
the page, we calculated fraction of POM methods imple-
mentation by dividing the number of POM methods with

Fraction of POM methods with implementation =
No.of POM class methods generated with implementation

Total No. of POM class methods generated
(3)

VOLUME 13, 2025 3221



S. B. Nettur et al.: Cypress Copilot: Development of an AI Assistant for Boosting Productivity

implementation by the total number of POM methods for
each user story, encompassing all BDD scenarios within that
story. This metric is computed for each user story, encom-
passing all BDD scenarios within that story.

8) FRACTION OF POM METHODS WITHOUT
IMPLEMENTATION
The fraction of POM methods without implementation is
computed by dividing the number of POM methods lacking
implementation by the total number of POM methods for
each user story, encompassing all BDD scenarios within that
story, as shown in Equation (4), as shown at the bottom
of the page. This metric is computed for each user story,
encompassing all BDD scenarios within that story.
Code Generation Quality Evaluation: To assess the quality

of the generated code, we focused on identifying syntax and
runtime errors. This evaluation includes:

9) SYNTAX AND RUNTIME ERRORS
This metric assesses syntax and runtime errors in the gen-
erated code, ensuring it adheres to the correct grammatical
rules of the programming language (JavaScript). Identifying
syntax errors guarantees code correctness while evaluating
runtime errors helps detect issues that arise during execution,
ensuring the overall code runs smoothly and error-free.

By thoroughly examining these factors, we aim to ensure
the completeness and quality of the generated code, thereby
validating the reliability and effectiveness of Cypress code
generation using various OpenAI models. This evaluation
helps identify the optimal prompt technique and model that
performs best across the defined metrics.

IV. RESULTS AND DISCUSSIONS
As outlined in the methodology section, we generated
Cypress code for BDD scenarios across all 55 user sto-
ries, evaluating various OpenAI models and prompts. The
subsequent sections present the findings from the different
experiments conducted. Visual representations have been
employed to convey critical findings and offer comprehensive
insights into the experiments.

Figure 10 highlights the impact of GPT-4o with a few-shot
chain prompt on code generation sufficiency for test cases,
compared to GPT-4-Turbo, GitHub Copilot, and GPT-4o
with a zero-shot prompt. Among these, we observed
GPT-4o with a few-shot chain prompt excels in generating
a higher number of step methods, leading to more effective
implementation of BDD scenario steps and offering superior
code coverage for test cases (BDD scenarios). This improved
performance is attributed to the few-shot chain prompt tech-
nique, which results in more complete code with fewer

FIGURE 10. Code generation completeness across various models.

unimplemented methods compared to GitHub Copilot,
GPT-4o, and GPT-4-Turbo, which use zero-shot prompting.
The increased number of step methods and the resulting
superior code coverage are key factors that makeGPT-4owith
a few-shot chain prompt stand out.

The enhanced step method implementation observed in
GPT-4o with zero-shot prompt compared to GPT-4-Turbo
with zero-shot can be attributed to advancements in GPT-4o.
On the other hand, the lower step method implementation by
GitHub Copilot with a zero-shot prompt is partly due to errors
in generating almost 10% of total BDD scenarios and the fact
that GitHub Copilot is based on a GPT model version prior
to GPT-4o.

Amon all models, GPT-4o with a few-shot chain prompt
demonstrates the highest number of step methods, which can
be attributed to the effectiveness of the few-shot chain prompt
technique. In terms of POMmethods, while there is no direct
measure of code coverage extent, the higher number of POM
methods in GPT-4o with a few-shot chain prompt can be
linked to generating more step methods and adherence to
best coding practices. Specifically, this technique declares
all web elements as properties within the class and groups
actions associated with web elements according to scenario
steps. This approach results in more POM methods than
GPT-4o and GPT-4-Turbo with a zero-shot prompt and
enhances maintainability by organizing code more effec-
tively. Keeping web elements and their associated actions
structured and modular makes the resulting code easier to
update and maintain and improves overall code quality.

Howeve, these results only demonstrate the overall per-
formance of the models. Therefore, we conducted a detailed
analysis to cover the variability aspects across all the feature
files (55 feature files with 5 BDD scenarios, one feature file
for each user story). The subsequent section discusses the
details.

Fraction of POM class method with out implemenation =
No. of POM class methods generated without implementation

Total No. of POM class methods generated
(4)

3222 VOLUME 13, 2025



S. B. Nettur et al.: Cypress Copilot: Development of an AI Assistant for Boosting Productivity

FIGURE 11. Fraction of Step methods with implementation.

In the box plot (Figure 11) we show the fraction of step
methods with implementation for all BDD scenarios in user
stories for each model. GPT-4-Turbo with a zero-shot prompt
shows the lowest median fraction of 0.62 with substantial
variability, as indicated by an interquartile range (IQR) from
0.33 to 0.87. In contrast, GPT-4o with a zero-shot prompt
demonstrates better performance with a higher median frac-
tion of 0.93, a narrower IQR of 0.89 to 1.0, and fewer
outliers. GitHub Copilot with zero-shot prompt has a median
fraction of 0.79, with a tight IQR between 0.85 and 1.0 and
only minor outliers, reflecting highly reliable performance.
GPT-4o with a few-shot chain prompt achieves the highest
median fraction of 0.995, with its IQR remaining close to
1.0, indicating near-perfect performance despite occasional
outliers below 0.9.

FIGURE 12. Fraction of Step methods without implementation.

The box plot (Figure 12) evaluates the fraction of
Step methods without implementation for all BDD sce-
narios in user stories for each model. GPT-4-Turbo with
zero-shot prompt has a median fraction of 0.11, indicating
it leaves almost 10% of methods unimplemented, with an
IQR spanning from 0.0 to 0.18 and a few outliers above 0.4.
GitHub Copilot with zero-shot shows a higher median frac-
tion of around 0.2 and a broader IQR span of 0.0 to 0.34,
with noticeable outliers, suggesting it leaves a more sig-
nificant percentage of methods unimplemented and exhibits
less consistent performance. GPT-4o with zero-shot prompt
has a median fraction of 0.07, with an IQR spanning
from 0.0 to 0.11. GPT-4o with a few-shot chain prompt

achieves the best performance with a median fraction close to
0.0 and a narrow IQR, indicating it leaves very few methods
unimplemented, though occasional outliers above 0.1 are
observed.

Our analysis shows that GPT-4o with a few-shot chain
prompt delivers the highest and most consistent implemen-
tation in step method generation. GPT-4o with a zero-shot
prompt follows with high and reliable implementation but
slightly lower performance. GitHub Copilot with a zero-shot
prompt ranks third, demonstrating reliable performance but
with more variability compared to GPT-4o with the zero-
shot prompt. GPT-4-Turbo with zero-shot prompt shows
the lowest implementation and more variability, suggesting
inconsistent performance across BDD scenarios.

In the box plot (Figure 13) we show the fraction of
POM methods with implementation for all BDD scenar-
ios in user stories for each model. GPT-4-Turbo, GPT-4o
with a zero-shot prompt, and GPT-4o with few-shot chain
prompts demonstrate higher POM methods implementation
(Figure 13), with their results clustering near 1.0, indicat-
ing that they consistently generate a higher number of fully
implemented methods with minimal variance. In contrast,
GitHub Copilot with zero-shot prompt exhibits a wide range
of variability, withmanymethods falling below 0.5, reflecting
less consistency and less no of fully implemented methods
generation. Additionally, we observed that in almost seven
instances, GitHub Copilot with zero-shot prompt threw errors
related to being unable to generate the required code.

FIGURE 13. Fraction of POM methods with implementation.

The box plot (Figure 14) shows the fraction of unimple-
mented POM class methods across GPT-4-Turbo, GPT-4o,
GitHub Copilot with zero-shot prompt, and GPT-4o with
a few-shot chain prompt. GPT-4-Turbo, GPT-4o, and
GPT-4o with a few-shot chain prompt show low and consis-
tent fractions of unimplemented methods, clustering near 0.
In contrast, GitHub Copilot exhibits high variability, with
some results exceeding 0.8, indicating more frequent and
inconsistent unimplemented methods. Although the POM
methods implementation is good for most models - GPT-4-
Turbo with zero-shot prompt, GPT-4o with zero-shot prompt,

VOLUME 13, 2025 3223



S. B. Nettur et al.: Cypress Copilot: Development of an AI Assistant for Boosting Productivity

FIGURE 14. Fraction of POM methods without implementation.

and GPT-4o with few-shot chain prompt, we observed that
GPT-4o with a few-shot chain prompt model outperforms all
others in terms of variance and the high number of POM
methods generated.

Overall, the results highlight the superior performance
of GPT-4o models, particularly when enhanced with a
few-shot chain prompt, in generating fully implemented
POM methods. The minimal variance we observed in the
GPT-4o few-shot chain prompt model indicates that pro-
viding additional context and examples helps optimize the
quality and consistency of the generated code. On the other
hand, GitHub Copilot with zero-shot prompt demonstrates
lower implementation, suggesting it may need further refine-
ment to handle complex automation tasks, such as POM
method generation within the Cypress framework using BDD
methodology. It is important to note that GitHub Copilot
observations are specific to the context of Cypress code gen-
eration with BDD, and we may not be generalizable to other
coding tasks or methodologies.
Code Generation Quality: To set up the automation repos-

itory, one can follow the general structure provided by the
Cypress-Cucumber Boilerplate9 or set up their own. We used
this repository to set up the code generated from OpenAI
models. While using this specific boilerplate is not manda-
tory, the foundational setup may remain similar to ensure
compatibility with the generated code. The prerequisites
include installing Node.js, which comes with Node Package
Manager (npm), and installing essential npm packages like
Cypress and Cypress-Cucumber Preprocessor.

The models generate code for two main types of files: step
definition.js files, which define the test steps, and POM class
files, which handle web application automation (web element
interactions). These files are integrated into the automation
repository, and no modifications are made initially. After the
addition of the code, we executed test cases (BDD scenarios)
using Cypress commands such as ‘‘npx cypress open’’ for
interactive testing or ‘‘npx cypress run’’ for headless exe-
cution. After running the tests, we captured and analyzed
various syntax and runtime errors reported in the log file
during the Cypress test execution. The log files were further

analyzed to categorize the major error types and how the
errors occurred across the models. Table 3 describes the error
type details.

TABLE 3. Cypress error descriptions.

The aggregation of syntax errors across all models,
as shown in Figure 15, reveals that GPT-4-Turbo with
zero-shot prompt had the highest incidence of errors (36%),
followed by GPT-4o with zero-shot prompt (32%), fol-
lowed by GitHub Copilot with zero-shot (24%), and then
GPT-4o with a few-shot chain prompt technique (only 8%).
We showed the distribution of syntax error types in Figure 16,
GPT-4o a with few-shot chain prompt encountered only one
type of syntax error compared to other models. GitHub
Copilot and GPT-4-Turbo, GPT-4o with zero-shot prompt
exhibited a variety of syntax error types, requiringmore effort
to fix compared to GPT-4o with a few-shot chain prompt.
The implementation of all models is available in GitHub

3224 VOLUME 13, 2025



S. B. Nettur et al.: Cypress Copilot: Development of an AI Assistant for Boosting Productivity

FIGURE 15. Syntax error distribution.

FIGURE 16. Syntax error type distribution.

repository18. Overall, these findings highlight the pivotal role
of advanced prompt engineering techniques in enhancing
the performance of LLMs for Cypress test automation code,
particularly in handling BDD scenarios. This is especially
significant despite improvements in GPT-4o’s ability to man-
age complex tasks.

V. VISUAL STUDIO EXTENSION DEVELOPMENT
Our results demonstrate that the GPT-4o with a few-shot
chain prompt proposed in this manuscript offers superior
code generation effectiveness with fewer errors. As a result,
we have developed the Cypress-Copilot tool, a Visual Studio
Code extension leveraging this technique. Designed to sup-
port the Cypress developer community, this extension aims
to enhance user productivity through its usability-focused
features. After installing the extension, users can follow the
steps outlined in Figure 17 below to integrate and utilize
the tool effectively. The extension will be made available
following acceptance of the paper.

Figure 17 illustrates our recommendation to streamline
workflow for developers using the Cypress Copilot extension

18https://github.com/karpurapus/OpenAIModels_BDD

FIGURE 17. Cypress Copilot Visual studio extension workflow.

within the Visual Studio Code IDE. The process begins when
the user inputs a BDD scenario into Visual Studio Code,
facilitated by the extension, which connects to the OpenAI
GPT-4o API. This integration provides automated sugges-
tions for Cypress test code based on the BDD scenarios,
significantly enhancing productivity by minimizing manual
coding efforts. The user can then integrate the suggested
code into their automation repository, typically hosted on a
platform such as GitHub. The final step involves updating
web element identifiers as needed and executing the tests after
making any necessary code adjustments.

FIGURE 18. Cypress copilot user interface.

The user interface of the Cypress Copilot extension is
shown in Figure 18. In this interface, the user needs to
enter the BDD scenarios and click on ‘‘Generate Code.’’
The extension then suggests code primarily for step def-
initions and POM implementations, displaying the results

VOLUME 13, 2025 3225



S. B. Nettur et al.: Cypress Copilot: Development of an AI Assistant for Boosting Productivity

in separate output boxes. We validated the Cypress Copi-
lot extension by conducting web end-to-end (E2E) tests
in production environments, utilizing demo websites such
as OrangeHRM,SauceLab,and ComputerAssetManagement
(Table 4). These demo websites provide environments where
automation code can be safely tested and evaluated without
disrupting live web services. The automation code generated
by the Cypress Copilot extension for these demo websites
is publicly available, allowing others to try the tool and
execute the code in similar environments and observe the
results firsthand. We refrained from using publicly avail-
able websites (production environments) for generating the
automation code due to permission constraints. Also, running
automation scripts on live websites without explicit consent
could result in unintended interactions, such as multiple hits
on the website by external users, especially as we are making
the automation code publicly available. This could negatively
affect the website’s user experience or operational integrity.
Our goal is to share the generated automation code, enabling
others to run it in controlled, non-production environments
that closely mimic real-time scenarios, while avoiding any
potential disruptions to public web services. The objective
was to assess the effectiveness and productivity of the code
generated by our Cypress Copilot extension.We evaluated the
accuracy and efficacy of the generated Cypress code by mea-
suring the ratio of updated lines of code to the total number
of lines generated. The code generated for automating these
websites, along with the nature of the changes made to ensure
successful execution, is stored in GitHub repositories19,20,21.
The results from Figure 19 and 20 indicate a generally high

level of Cypress automation code accuracy across different
web applications. The trends reveal that bot POM class files
and step definition files require few corrections, suggesting
that the initial implementations are largely reliable. Also,
we didn’t observe any syntax errors in the code. Overall,
the data reflects consistent performance, with only minor
code adjustments necessary, highlighting the effectiveness of
Cypress Copilot extension.

VI. LIMITATIONS AND FUTURE IMPROVEMENTS
Interestingly, we observed that increasing the level of detail
in BDD scenarios leads to generating code that closely aligns
with the expected behavior. For example, in an e-commerce
website, if the product search filter’s sorting option requires
selecting and applying a filter, the BDD scenario should
encompass both steps to ensure that the code generated
by Cypress Copilot accurately represents the application’s

19https://github.com/karpurapus/Cypress-Validation-On-Websites-
OrangeHRM

20https://github.com/karpurapus/Cypress-Validation-On-Websites-
ComputerAssetManagement

21https://github.com/karpurapus/Cypress-Validation-On-Websites-
Saucelab

22https://opensource-demo.orangehrmlive.com/web/index.php/auth/
login

23https://www.saucedemo.com/
24https://computer-database.gatling.io/computers/

TABLE 4. Demo web site details.

behavior. In addition, we observed that the maximum number
of BDD scenarios that can be provided to Cypress Copilot for
code generation depends on the model output token limit. For
example, GPT-4o (gpt-4o-2024-08-06) has a 16,384-token
limit. Therefore, we recommend inputting a number of tests
(BDD scenario) based on whether the output can accommo-
date the required code generation.

The cypress copilot results we presented in this study
are based on a limited number of instances, primarily due
to the restricted availability of diverse demo websites for
automation testing. Although the number of websites tested is
limited, the quality and effectiveness of code generation have
been rigorously evaluated across a diverse dataset, encom-
passing nearly 260 test cases, as detailed in the Results
and Discussion section. The approach taken for evaluation
indicates that the method for generating automated tests and
validation is comprehensive and is anticipated to demonstrate
significant robustness, suggesting that major discrepancies
in outcomes are unlikely when applied to a more diverse
set of web applications. As Cypress Copilot is validated in

3226 VOLUME 13, 2025



S. B. Nettur et al.: Cypress Copilot: Development of an AI Assistant for Boosting Productivity

FIGURE 19. Step definition code generation.

the future across a broader range of web applications, poten-
tially with contributions and feedback from the open-source
community, we anticipate the findings will receive additional
support in terms of overall code effectiveness and quality.

While test case coverage in terms of meeting requirements
is not the focus of our current study, as we are primarily
evaluating code generation quality and effectiveness, we see
it as an important area for future work. In the next phase of
this research, we plan to explore and obtain comprehensive
test case suites from real-time projects. We intend to consider
a wide range of complexities, from simple to highly intricate
test scenarios, to evaluate the proposed approach.

FIGURE 20. POM code generation.

The key benefit of using Cypress Copilot lies in its ability
to streamline test automation code generation, significantly
reducing the manual effort required for test development
and validation. By automatically generating code that aligns
with application behavior, the tool accelerates the automation
process and enhances development efficiency. Its seamless
integration with BDD workflows ensures that the gener-
ated tests accurately represent user scenarios and business
requirements. Cypress Copilot also aids in the onboarding
of new team members by providing clear, generated code
examples that accelerate learning. This reduces the learning
curve for testers and developers, enabling faster contributions
to the project. Furthermore, it promotes the standardization of
coding practices across teams by generating consistent, well-
structured code, which helps maintain high-quality codebases

VOLUME 13, 2025 3227



S. B. Nettur et al.: Cypress Copilot: Development of an AI Assistant for Boosting Productivity

and simplifies code reviews. Cypress Copilot’s ability to
generate quick and efficient code can facilitate seamless inte-
gration into CI/CD pipelines, resulting in faster turnaround
times for feature implementation and ultimately reducing
time to market.

VII. CONCLUSION
In this study, we demonstrated superior performance in gen-
erating automation code for web application testing when
we applied LLMs in combination with our novel few-shot
chain prompt technique. We selected the BDD methodology
and Cypress automation tool for web application automation
testing. Among various OpenAI models, namely GPT-4o,
GPT-4-Turbo, and GitHub Copilot with zero-shot prompt,
GPT-4o with a few-shot chain prompt demonstrates supe-
rior performance in generating sufficient code for test cases,
enhancing code maintainability, and reducing syntax errors.
Based on this optimal technique, we developed the novel
‘‘Cypress Copilot’’ open-source tool with aim to significantly
improve testing efficiency and boost productivity by min-
imizing manual coding efforts. Validation of the Cypress
Copilot Visual Studio Code extension confirms its practi-
cal applicability and effectiveness in testing various web
applications. We are releasing this tool to the open-source
community, as it has the potential to be a promising partner
in enhancing productivity in web application automation test-
ing. In future, we plan to extend the validation of Cypress
Copilot-generated code to a broader range of web applica-
tions and integrate community feedback to enhance the tool’s
performance and reliability.We believe the foundational find-
ings from our research may serve as part of the key building
blocks for a comprehensive end-to-end AI testing solution.
By this, we mean a solution that spans the entire testing life-
cycle, including developing test scenarios for requirements,
test execution, and defect identification. Furthermore, our
findings have the potential to encourage further research and
inspire new ideas in this field.

REFERENCES

[1] S. Tyagi, R. Sibal, and B. Suri, ‘‘Adopting test automation on agile develop-
ment projects: A grounded theory study of Indian software organizations,’’
in Agile Processes in Software Engineering and Extreme Programming,
vol. 283, H. Baumeister, H. Lichter, and M. Riebisch, Eds., Cham,
Switzerland: Springer, 2017, doi: 10.1007/978-3-319-57633-6_12.

[2] G. Downs, ‘‘Lean-agile acceptance test-driven development: Better
software through collaboration by ken pugh,’’ ACM SIGSOFT Softw.
Eng. Notes, vol. 36, no. 4, p. 34, Aug. 2011, doi: 10.1145/1988997.
1989006.

[3] L. P. Binamungu, S. M. Embury, and N. Konstantinou, ‘‘Characterising
the quality of behaviour driven development specifications,’’ in Proc. 21st
Int. Conf. Agile Processes Softw. Eng. Extreme Program. Copenhagen,
Denmark: Springer, Jun. 2020, pp. 87–102.

[4] H.M.Abushama, H. A. Alassam, and F. A. Elhaj, ‘‘The effect of test-driven
development and behavior-driven development on project success factors:
A systematic literature review based study,’’ in Proc. Int. Conf. Comput.,
Control, Electr., Electron. Eng. (ICCCEEE), Feb. 2021, pp. 1–9.

[5] C. Solis and X. Wang, ‘‘A study of the characteristics of behaviour driven
development,’’ in Proc. 37th Euromicro Conf. Softw. Eng. Adv. Appl., Oulu,
Finland, Aug. 2011, pp. 383–387, doi: 10.1109/SEAA.2011.76.

[6] F. Mobaraya and S. Ali, ‘‘Technical analysis of selenium and cypress
as functional automation framework for modern web application test-
ing,’’ in Proc. 9th Int. Conf. Comput. Sci., 2019, pp. 27–46, doi:
10.5121/csit.2019.91803.

[7] Z. Liu, C. Chen, J. Wang, M. Chen, B. Wu, X. Che, D. Wang, and
Q. Wang, ‘‘Make LLM a testing expert: Bringing human-like inter-
action to mobile GUI testing via functionality-aware decisions,’’ in
Proc. IEEE/ACM 46th Int. Conf. Softw. Eng., Apr. 2024, pp. 1–13, doi:
10.1145/3597503.3639180.

[8] J. Yoon, R. Feldt, and S. Yoo, ‘‘Intent-driven mobile GUI testing with
autonomous large language model agents,’’ in Proc. IEEE Conf. Softw.
Test., Verification Validation (ICST), Toronto, ON, Canada, May 2024,
pp. 129–139, doi: 10.1109/icst60714.2024.00020.

[9] A. Dwarakanath, N. Dubash, and S. Podder, ‘‘Machines that test software
like humans,’’ 2018, arXiv:1809.09455.

[10] Y. Hu, X. Wang, Y. Wang, Y. Zhang, S. Guo, C. Chen, X. Wang, and
Y. Zhou, ‘‘AUITestAgent: Automatic requirements oriented GUI function
testing,’’ 2024, arXiv:2407.09018.

[11] S. Yu, C. Fang, M. Du, Y. Ling, Z. Chen, and Z. Su, ‘‘Practi-
cal non-intrusive GUI exploration testing with visual-based robotic
arms,’’ in Proc. IEEE/ACM 46th Int. Conf. Softw. Eng., Apr. 2024,
pp. 1–13.

[12] F. YazdaniBanafsheDaragh and S. Malek, ‘‘Deep GUI: Black-box GUI
input generation with deep learning,’’ in Proc. 36th IEEE/ACM Int. Conf.
Automated Softw. Eng. (ASE), Melbourne, VIC, Australia, Nov. 2021,
pp. 905–916, doi: 10.1109/ASE51524.2021.9678778.

[13] S. Feng, H. Lu, J. Jiang, T. Xiong, L. Huang, Y. Liang, X. Li, Y. Deng,
and A. Aleti, ‘‘Enabling cost-effective UI automation testing with retrieval-
based LLMs: A case study inWeChat,’’ in Proc. 39th IEEE/ACM Int. Conf.
Automated Softw. Eng., Oct. 2024, pp. 1973–1978.

[14] R. Pan, M. Kim, R. Krishna, R. Pavuluri, and S. Sinha,
‘‘Multi-language unit test generation using LLMs,’’ 2024,
arXiv:2409.03093.

[15] Z. Wang, K. Liu, G. Li, and Z. Jin, ‘‘HITS: High-coverage LLM-based
unit test generation viamethod slicing,’’ inProc. 39th IEEE/ACM Int. Conf.
Automated Softw. Eng., Oct. 2024, pp. 1258–1268.

[16] A. Lops, F. Narducci, A. Ragone, and M. Trizio, ‘‘AgoneTest: Automated
creation and assessment of unit tests leveraging large language models,’’
in Proc. 39th IEEE/ACM Int. Conf. Automated Softw. Eng. New York, NY,
USA: Association for Computing Machinery, Oct. 2024, pp. 2440–2441,
doi: 10.1145/3691620.3695318.

[17] S. Gu, C. Fang, Q. Zhang, F. Tian, and Z. Chen, ‘‘TestART: Improving
LLM-based unit test via co-evolution of automated generation and repair
iteration,’’ 2024, arXiv:2408.03095.

[18] L. Yang, C. Yang, S. Gao, W. Wang, B. Wang, Q. Zhu, X. Chu, J. Zhou,
G. Liang, Q.Wang, and J. Chen, ‘‘On the evaluation of large languagemod-
els in unit test generation,’’ in Proc. 39th IEEE/ACM Int. Conf. Automated
Softw. Eng., Oct. 2024, pp. 1607–1619.

[19] S. Fakhoury, A. Naik, G. K. Sakkas, S. Chakraborty, and S. K. Lahiri,
‘‘LLM-based test-driven interactive code generation: User study and
empirical evaluation,’’ IEEE Trans. Softw. Eng., vol. 50, no. 9,
pp. 2254–2268, Sep. 2024, doi: 10.1109/TSE.2024.3428972.

[20] N. Alshahwan, J. Chheda, A. Finogenova, B. Gokkaya, M. Harman,
I. Harper, A. Marginean, S. Sengupta, and E. Wang, ‘‘Automated unit test
improvement using large language models at meta,’’ in Proc. 32nd ACM
Int. Conf. Found. Softw. Eng., Jul. 2024, pp. 185–196.

[21] S. D. Sri, R. C. S. P. Raman, G. Rajagopal, and S. T. Chan,
‘‘Automating REST API postman test cases using LLM,’’ 2024,
arXiv:2404.10678.

[22] A. Pereira, B. Lima, and J. P. Faria, ‘‘APITestGenie: Automated API test
generation through generative AI,’’ 2024, arXiv:2409.03838.

[23] S. Karpurapu, S. Myneni, U. Nettur, L. S. Gajja, D. Burke, T. Stiehm,
and J. Payne, ‘‘Comprehensive evaluation and insights into the use of
large language models in the automation of behavior-driven development
acceptance test formulation,’’ IEEE Access, vol. 12, pp. 58715–58721,
2024.

[24] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du,
A. M. Dai, and Q. V. Le, ‘‘Finetuned language models are zero-shot learn-
ers,’’ in Proc. 10th Int. Conf. Learn. Represent., 2022.

[25] W. Wang, V. W. Zheng, H. Yu, and C. Miao, ‘‘A survey of zero-shot
learning: Settings, methods, and applications,’’ ACM Trans. Intell. Syst.
Technol., vol. 10, no. 2, pp. 1–37, Mar. 2019, doi: 10.1145/3293318.

3228 VOLUME 13, 2025

http://dx.doi.org/10.1007/978-3-319-57633-6_12
http://dx.doi.org/10.1145/1988997.{\protect \penalty -\@M }1989006
http://dx.doi.org/10.1145/1988997.{\protect \penalty -\@M }1989006
http://dx.doi.org/10.1109/SEAA.2011.76
http://dx.doi.org/10.5121/csit.2019.91803
http://dx.doi.org/10.1145/3597503.3639180
http://dx.doi.org/10.1109/icst60714.2024.00020
http://dx.doi.org/10.1109/ASE51524.2021.9678778
http://dx.doi.org/10.1145/3691620.3695318
http://dx.doi.org/10.1109/TSE.2024.3428972
http://dx.doi.org/10.1145/3293318


S. B. Nettur et al.: Cypress Copilot: Development of an AI Assistant for Boosting Productivity

[26] Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata, ‘‘Zero-shot learning—
A comprehensive evaluation of the good, the bad and the ugly,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 41, no. 9, pp. 2251–2265,
Sep. 2019.

[27] Y. Song, T. Wang, P. Cai, S. K. Mondal, and J. P. Sahoo, ‘‘A compre-
hensive survey of few-shot learning: Evolution, applications, challenges,
and opportunities,’’ ACM Comput. Surv., vol. 55, no. 13, pp. 1–40,
Dec. 2023.

[28] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child,
S. Gray, A. Radford, J. Wu, and D. Amodei, ‘‘Scaling laws for neural
language models,’’ 2020, arXiv:2001.08361.

[29] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, and S. Agarwal, ‘‘Lan-
guage models are few-shot learners,’’ in Proc. 34th Int. Conf. Neural
Inf. Process. Syst. Red Hook, NY, USA: Curran Associates, 2020,
pp. 1877–1901.

[30] S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Hajishirzi,
and L. Zettlemoyer, ‘‘Rethinking the role of demonstrations:
What makes in-context learning work?’’ in Proc. EMNLP, 2022,
pp. 1–14, doi: 10.18653/v1/2022.emnlp-main.759. [Online]. Available:
https://par.nsf.gov/biblio/10462310

[31] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,
B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin,
E. Grave, and G. Lample, ‘‘LLaMA: Open and efficient foundation lan-
guage models,’’ 2023, arXiv:2302.13971.

[32] T. Sun, Z. He, Q. Zhu, X. Qiu, and X. Huang, ‘‘Multitask pre-training
of modular prompt for Chinese few-shot learning,’’ in Proc. 61st Annu.
Meeting Assoc. Comput. Linguistics. Toronto, ONT, Canada: Association
for Computational Linguistics, 2023, pp. 11156–11172.

[33] J. Huang and J. Zhang, ‘‘A survey on evaluation of multimodal large
language models,’’ 2024, arXiv:2408.15769.

[34] T. Ball, S. Chen, and C. Herley, ‘‘Can we count on LLMs? The
fixed-effect fallacy and claims of GPT-4 capabilities,’’ 2024,
arXiv:2409.07638.

[35] I. Siroš, D. Singelée, and B. Preneel, ‘‘GitHub copilot: The perfect code
compLeeter?’’ 2024, arXiv:2406.11326.

[36] W. Cheng, K. Sun, X. Zhang, and W. Wang, ‘‘While GitHub copi-
lot excels at coding, does it ensure responsible output?’’ 2024,
arXiv:2408.11006.

[37] M. Borg, D. Hewett, D. Graham, N. Couderc, E. Söderberg,
L. Church, and D. Farley, ‘‘Does co-development with AI assistants
lead to more maintainable code? A registered report,’’ 2024,
arXiv:2408.10758.

[38] J. Jiang, F.Wang, J. Shen, S. Kim, and S. Kim, ‘‘A survey on large language
models for code generation,’’ 2024, arXiv:2406.00515.

[39] J. Res, I. Homoliak, M. Perečíni, A. Smrč ka, K. Malinka, and
P. Hanacek, ‘‘Enhancing security of AI-based code synthesis with
GitHub copilot via cheap and efficient prompt-engineering,’’ 2024,
arXiv:2403.12671.

[40] V. Majdinasab, M. J. Bishop, S. Rasheed, A. Moradidakhel, A. Tahir, and
F. Khomh, ‘‘Assessing the security of GitHub Copilot’s generated code—
A targeted replication study,’’ in Proc. IEEE Int. Conf. Softw. Anal., Evol.
Reengineering (SANER), Mar. 2024, pp. 435–444.

[41] B. Zhang, P. Liang, X. Zhou, A. Ahmad, and M. Waseem, ‘‘Demys-
tifying practices, challenges and expected features of using GitHub
copilot,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 33, pp. 1653–1672,
Dec. 2023.

SURESH BABU NETTUR received the B.Tech. degree in computer science
engineering from Acharya Nagarjuna University, Guntur, India, and the
M.Sc. degree from Birla Institute of Technology and Science (BITS), Pilani,
Rajasthan, India.

He has over two decades of experience from conceptualization and design
to developing software automation solutions, with a strong focus on scalable
solutions for various platforms across banking, healthcare, telecom, and
manufacturing industries using Agile and Waterfall methodologies. He has
worked extensively in various industries, particularly financial services,
developing complex applications using technologies, such as Spring Boot,
RESTful Web Services, and DevOps tools. In addition, he is proficient
in leveraging AI tools, such as GitHub Copilot and OpenAI models to
enhance productivity and code quality, incorporating these innovations into
both development and testing processes. His experience includes leading
cross-functional teams, managing onsite-offshore development models, and
leveraging cloud platforms like AWS. He is also skilled in Agile methodolo-
gies, Test-Driven Development (TDD), and the design and implementation
of service-oriented architectures (SOA). His work is driven by a passion for
delivering innovative solutions through AI and machine learning, integrating
these technologies into software engineering, healthcare, and finance for
impactful and sustainable outcomes.

SHANTHI KARPURAPU received the B.Tech. degree in chemical engi-
neering from Osmania University, Hyderabad, India, and the Master of
Technology degree in chemical engineering from the Institute of Chemical
Technology, Mumbai, India.

She has over a decade of experience leading, designing, and developing
test automation solutions for various platforms across healthcare, banking,
and manufacturing industries using Agile and Waterfall methodologies. She
is experienced in building reusable and extendable automation frameworks
for web applications, REST, SOAP, and microservices. She is a strong
follower of the shift-left testing approach, a certified AWS cloud practitioner,
and amachine learning specialist. She is passionate about utilizingAI-related
technologies in software testing and the healthcare industry.

UNNATI NETTUR is currently pursuing the bachelor’s degree in com-
puter science with Virginia Tech, Blacksburg, VA, USA. She possesses
an avid curiosity about the constantly evolving field of technology and
software development, with a particular interest in artificial intelligence. She
is passionate about gaining experience in building innovative and creative
solutions for current issues in the field of software engineering.

LIKHIT SAGAR GAJJA is currently pursuing the bachelor’s degree in com-
puter science with BML Munjal University, Haryana, India. He is evident
in showing his passion for the dynamic field of technology and software
development. His research interests include artificial intelligence, prompt
engineering, and game-designing technologies, highlighting his dedication
to obtaining hands-on experience and developing innovative solutions for
real-time issues in software engineering.

VOLUME 13, 2025 3229

http://dx.doi.org/10.18653/v1/2022.emnlp-main.759

