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ABSTRACT In the realm of Brain-Computer Interface (BCI) research, the precise decoding of motor
imagery electroencephalogram (MI-EEG) signals is pivotal for the realization of systems that can be
seamlessly integrated into practical applications, enhancing the autonomy of individuals with mobility
impairments. This study presents an enhancedmethod for the precise recognition ofMI tasks using EEGdata,
to facilitate more intuitive interactions between individuals with mobility challenges and their environment.
The core challenge addressed herein is the development of robust algorithms that enable the accurate
identification of MI tasks, thereby empowering individuals with mobility impairments to control devices
and interfaces through cognitive commands. Although there are many different methods for analyzing
MI-EEG signals, research into deep learning and transfer learning approaches for MI-EEG analysis remains
scarce. This research leverages the superlet transform (SLT) to transformEEG signals into a two-dimensional
(2-D) high-resolution spectral representation. This 2-D representation of segmented MI-EEG signals is
then processed through an adapted pretrained residual network, which classifies the MI-EEG signals. The
effectiveness of the suggested technique is evident as the achieved classification accuracy is 99.9% for
binary tasks and 96.4% for multi-class tasks, representing a significant advancement over existing methods.
Through an intensive comparison with present algorithms assessed in variety of performance evaluating
metrics the present study emphasize the exceptional ability of proposed approach to accurately classify the
different MI categories from the EEG signals and which is a great contribution to the field of BCI research
field.

INDEX TERMS Motor imagery (MI), deep neural network (DNN), superlet transform (SLT),
brain–computer interface (BCI).
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I. INTRODUCTION
Electroencephalography (EEG) signals are a gateway to
the brain’s electrical activity enabling the capture of the
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dynamical oscillations at the center of neuronal interactions
across various stages of consciousness, mental processes and
stimuli response [1]. As a result, it has become a valuable
tool in both medical diagnostics and cognitive neuroscience.
MI-EEG, which forms the crux of neuroscientific researches,
is devoted to the analysis of brain activity generated during
the mental simulation of movements, from which the neural
bases ofmotor planning can be deciphered. It creates the basis
for future therapeutic practices and BCI (brain-computer
interface) technologies [2]. BCIs represent a brand new
technological frontier in bridging human mental states with
external apparatus, thereby enabling immediate communi-
cation and regulation by neural signals decoding hence
paving the way for new ways of interaction without body
movement necessary. There are various techniques to record
brain activity that range from invasive and semi-invasive to
non-invasive approaches. Of all non-invasive methods like
electroencephalography (EEG), Magnetoencephalography
(MEG), Positron Emission Tomography (PET), Functional
Magnetic Resonance Imaging (fMRI) and optical imaging,
EEG is the outstanding choice. This preference is due to its
non-invasiveness, portability potential of users, higher time
resolution and lower cost [3]. BCIs can leverage MI-EEG
signals in diverseways to enhance control, holding significant
promise in fields that necessitate decoding user thoughts for
imagined actions, including gaming, neuro-prosthetics, and
neurorehabilitation. For instance, utilizing EEG recordings of
left- and right-hand motor imagery can enable the movement
of a target, offering a novel communication pathway to
compensate for lost motor function. This technology holds
the potential to provide amyotrophic lateral sclerosis patients
with a clear binary response to queries, thereby enhancing
their overall quality of life [4]. Within the realm of scholarly
literature, researchers have extensively explored signal pro-
cessing techniques, encompassing methodologies grounded
in time, frequency, and time-frequency analysis. Notably,
only a limited subset of these approaches has exhibited
the requisite robustness to merit in-depth consideration for
further research. The commonly used feature extraction
algorithms include wavelet transform (WT) [5], [6], [7]
wavelet packet decomposition (WPD) [8], [9], common spa-
tial patterns (CSP) [10], [11], empirical mode decomposition
(EMD) [12], [13], empirical wavelet decomposition (EWT)
[14], [15], Fourier decomposition method (FDM) [16], [17],
and so on. Various differential evolution algorithms such
as ant colony optimization (ACO) and artificial bee colony
(ABC) were proposed by [18] for optimum feature selection.
Traditionally extracted features often rely on manual design,
necessitating extensive expertise. Therefore, the automatic
identification of significant features from EEG signals is of
considerable importance. Deep learning effectively handles
non-linear and non-stationary data, automatically deriving
useful features from the raw data. In recent years, some deep
learning methods [19], [20], [21], [22] are employed for the
classification of EEG signals where data is converted into
its time frequency (TF) representation such as Short-time

Fourier transforms (STFTs), continuous wavelet transforms
(CWTs). The cutting edge technique transformer is also
employed by numerous researcher in deep learning field [23],
[24], [25], [26], [27], [28]. Authors has utilized spatiotem-
poral features for various classification tasks. However, the
dataset available for deep learning techniques is limited,
necessitating the need for more data to effectively train the
models. This constraint guides us to employ transfer learning
techniques to overcome it. Therefore, there are somemethods
combining traditional feature extraction methods with deep
learning methods [29], [30]. In this approach, researchers
leverage transfer learning by converting one-dimensional
(1-D) data into two-dimensional (2-D) data, which is then
trained and evaluated using pre-trained networks. In the
proposed methodology, raw MI-EEG data is converted into
2-D data using superlet transform and then classified using
pretrained residual CNN models for binary and multiclass
classification. Contribution of the study:

• The proposed method distinguishes itself by utilizing
superlet transform to generate distinct and informative
features for motor imagery tasks. These features, when
fed into a CNN architecture, demonstrably increase
classification accuracy.

• To thoroughly assess the effectiveness of our algo-
rithm, we implemented an ablation study using three
pre-trained residual networks. This systematic anal-
ysis reveals the contributions of each component
and conclusively demonstrates the algorithm’s superior
performance.

• Detailed evaluation on two different datasets reveals
superior generalization capabilities compared to SoTA
benchmarks, highlighting the robustness and adaptabil-
ity of our proposed network.

• We introduce a pioneering method for motor imagery
recognition in BCI by utilizing the superlet transform,
offering a unique high-resolution approach.

Following an introduction, the article progresses through
a structured analysis: Section II details about the utilized
Dataset, Section III provides a detailed description of the
methodology used, while Section IV delivers the results and
analysis., and Section V summarizes the key insights and also
discuss the future scopes.

II. EXPERIMENTAL SETUP
The computational experiments were performed on a
high-performance workstation featuring an Intel Core i7-10th
generation 16-core processor running at 3.80 GHz, with a
Linux 22.04 operating system, 128 GB of RAM, and an
NVIDIA Quadro RTX 5000 GPU with 16 GB of memory.
MATLAB 2022b was used for all experiments.

Research onMI-EEG signals leverages numerous datasets,
each varying in subject count, electrode number, trial
duration, total trials, sampling frequency, and MI task types.
Among these, the most utilized datasets by researchers are
BCI competition IVa and BCI IV 2a. This article utilized
dataset IV-A from the BCI Competition-III, which is a
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publicly available dataset of EEG signals for brain-computer
interface research [31]. The dataset contains EEG data from
five healthy subjects who performed right-hand (RH) and
right-foot (RF) motor imagery (MI) tasks. EEG data were
acquired from 118 out of 128 electrodes according to the
international 10/20 system. Visual cues were displayed for
3.5 seconds to indicate the MI task. The unified dataset of
280 trials was split into training, validation, and test sets for
individual subjects. The sampling frequency of the signal
is 100 Hz. The timing diagram of dataset is shown in Figure 1.

FIGURE 1. Timing diagram for binary class dataset.

The other adapted dataset for classifying multiclass motor
imagery (MI) is BCI IV2a [32]. This study employed a
dataset comprising 22 EEG channels and 3 EOG channels to
observe the brain activity of 9 individuals as they imagined
performing four distinct tasks: the main code: didgeridoo
left hand (LH), right hand (RH), tongue (T), feet (F). Data
gathering took place at 250Hz rate. The motor imagery task
was conducted within a time frame of 2 to 6 seconds. In this
study, segmentation was carried out at the 4-secondmark, and
a total of 22 channels were employed. The timing diagram of
dataset is depicted in Figure 2.

FIGURE 2. Timing diagram for multi class dataset.

In the study, the dataset was divided into three subsets
to facilitate training, validation, and testing of the ResNet
models. Sixty percent of the input data was allocated for
training, ensuring that the model had sufficient data to
learn meaningful patterns. Twenty percent of the data was
used for validation, allowing the model’s performance to be
monitored during training, while the remaining 20% was
reserved for testing to assess the model’s generalization

capability on unseen data. Segmentation of the EEG signals
was tailored to the type of dataset being used. For the binary
classification dataset, a segmentation window of 3.5 seconds
was applied, while for the multiclass classification dataset,
the window was set to 4 seconds. This segmentation
ensures that the input data was divided into manageable
portions that reflect meaningful temporal structures in the
signals. The learning rate for fine-tuning the deep CNN
model, particularly ResNet, was set to 1e-5, striking a
balance between convergence speed and model performance.
The network was trained for a maximum of 50 epochs,
with each epoch consisting of 1,027 iterations. In total,
51,350 iterations were performed, which allowed the model
ample opportunity to adjust its parameters and minimize the
loss function effectively.

III. METHODOLOGY
The methodological framework of our study is outlined
here. Subsection III-A provides a foundational understand-
ing of the Time-Frequency (TF) representation technique,
employed for feature extraction and signal characterization.
Subsection III-B delves into the specifics of the deep learn-
ing architecture, unveiling its network topology, activation
functions, and optimization algorithms. Here, a CNN based
framework is proposed for classification of RH, LH, F,
and T movements. The MI-EEG signal is segmented and
transformed into 2D TF spectrogram using SLT. Then, these
are applied to different residual pretrained network. Based
on extracted features from pretrained network, the classifier
identifies the label of the class.

The superlet transform offers a significant advantage in
EEG signal analysis by enhancing time-frequency resolution
through adaptive and variable bandwidths, enabling the
capture of subtle oscillatory patterns and temporal variations
critical for EEG classification. Similarly, the ResNet model,
with its residual connections, addresses the vanishing gradi-
ent problem, allowing deeper architectures to efficiently learn
complex features inherent in EEG signals. This combination
improves the overall efficiency by leveraging precise feature
extraction from the superlet transform and robust learning
capabilities of ResNet, resulting in superior classification
performance and faster convergence. Figure 3 shows the step-
by-step approach used in the article.

A. SUPERLET TRANSFORM
STFT and CWT are established techniques for analysing
the TF characteristics of signals. However, both approaches
involve a trade-off between time and frequency resolution.
The superlet transform (SLT) overcomes this limitation by
employing a set of wavelets, offering improved TF resolution
and reduced ‘‘leakage’’ compared to a single wavelet [33].
Table 1 summarizes the key advantages and disadvantages of
each method, highlighting their suitability for different signal
characteristics, resolution requirements, and desired repre-
sentations. SLT provides a new spectral estimation which
provides the information on high frequency components
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FIGURE 3. Pipeline of the suggested approach.

of signal [34]. SLT intrinsically enhances signal clarity by
suppressing noise through the integration of responses from
multiple wavelets. This noise suppression occurs naturally
as a result of the combined wavelet responses. SLT offers
superior adaptability and enhanced time-frequency resolution
and has a relatively high computational complexity compared
to traditional methods such as STFT and CWT. SLT’s
multi-scale nature, which allows for better signal analysis
at various frequencies, requires multiple convolutions and
scales to be computed simultaneously. This increased pro-
cessing demands more computational resources and time,
particularly when working with large datasets or real-time
applications. The added computational overhead is a key
consideration in practical deployment, and efforts to optimize
SLT implementations for more efficient computation will
be important for its wider adoption in resource-constrained
and real-time environments. In our research, we employ the
Morlet wavelet as the foundational mother wavelet. The
Superlet Transform of a signal g(t) can be mathematically
represented as the geometric mean of the responses from the
individual wavelets, which is defined as follows:
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The integration of multiple wavelets enhances TF represen-
tation in SL. The parameters t and s are scaling and shifting

parameters in the signal. SL constitutes a finite group of
wavelets sharing the same central frequency f and extending
across multiple bandwidths with c1, c2, . . . , ck indicating the
number of cycles in the individual wavelets.
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where σ is the standard deviation in k th order SL.

B. CNN MODELS
CNN models consist of feature extraction layers, such as
convolutional layers, activation layer, batch normalization
layers, and pooling layers, that learn to extract features and
patterns from the input data and classification layer such
as fully connected layers, softmax layers, and classification
layer that gives the final decision of the input data [35].
In this study, we leverage the concept of transfer learning
by utilizing the pre-trained ResNet architecture for the task
of motion recognition. The ingenious design of ResNet lies
in its utilization of residual connections, which significantly
enhances the learning capability of deep neural networks by
focusing on residual functions rather than direct mappings.
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TABLE 1. Difference between various TFR methods.

This strategic approach effectively mitigates the issue of
gradient vanishing or exploding, thus preserving the integrity
of the learning process. The ResNet framework is distin-
guished by its incorporation of MaxPool and Average Pool
layers. Specifically, ResNet 101, a deep convolutional neural
network featuring 101 layers, exemplifies the advanced
iteration of ResNet. It employs residual blocks to master
residual functions, thereby overcoming learning degradation
due to gradient issues. Structurally, ResNet 101 is organized
into 33 convolutional layers divided into four distinct
sets, characterized by varying filter counts and repetition
frequencies. The sequence begins with a set of 64 filters
repeated thrice, progresses to 128 filters repeated four times,
advances to 256 filters repeated 23 times, and concludes with
512 filters repeated thrice. After every convolutional layer,
there is a batch normalization layer and a ReLU activation
function, guaranteeing effective and nonlinear processing.
The architecture initiates with a 64-filter convolutional layer
with a 7 × 7 kernel size, culminating in a fully connected
layer equipped with 1000 nodes and a softmax function
for classification. Capable of categorizing images into
1000 different objects, ResNet 101 demonstrates remarkable
accuracy across a plethora of benchmark datasets and various
computer vision challenges. Figure 4 represents the layered
structure of ResNet 101.

C. EVALUATION METRICS
System performance can be assessed using a variety of per-
formance metrics, such as accuracy, sensitivity, specificity,
etc. A true positive (TP) correctly determines the presence
of a condition or characteristic. A false positive (FP) claims
erroneously that a condition or characteristic exists.TN is
one that accurately identifies the absence of a condition.
FN claims erroneously that a condition or characteristic does
not exist [36], [37]. In Fig.5, the confusion matrix for the
binary class is depicted.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(4)

Senstivity =
TP

TP+ FN
(5)

Specificity =
TN

TN + FP
(6)

Precision =
TP

TP+ FP
(7)

F − measure =
2TP

FN + FP+ 2TP
(8)

IV. RESULTS AND DISCUSSION
In this section, the performance of three residual pretrained
networks is evaluated. Notably, ResNet 101 achieved the
highest classification accuracy, reaching 99.9% for the binary
dataset and 96.4% for the multiclass dataset. Throughout our
experiments, the ADAM optimizer with a learning rate of
0.00001 was consistently employed. It’s noteworthy that, for
the purpose of this study, all samples related to foot and
right-hand motion were amalgamated across all five subjects.
The data were segmented into 3.5-second intervals for binary
classification, while for the multiclass dataset, samples were
combined and then segmented into 4-second intervals. The
time-frequency representation (TFR) superlet transform was
subsequently applied to the segmented data. Subsequently,
the dataset was divided into training, validation, and test sets
in an 80:20 ratio. The 2-D representation resulting from these
processes served as input for various ResNet architectures.

The ResNet18 architecture demonstrated an accuracy of
82.8% in recognizing hand and foot motion, as illustrated
in Figure 6 (a). The corresponding confusion matrix for the
test dataset revealed that out of 1,595 hand and foot samples,
289 foot and 259 hand samples were misclassified, resulting
in the overall test accuracy of 82.8%. In the case of the
ResNet50 architecture Figure 6 (b), an impressive accuracy
of 99.4% was achieved for hand and foot motion recognition.
The confusion matrix indicated only 10 foot and 9 hand
samples were misclassified out of the 1,595 samples in the
test dataset. Furthermore, the performance of the ResNet101
architecture Figure 6 (c) reached an outstanding accuracy of
99.9%. In this case, all 1,595 foot samples were correctly
identified, and out of the 1,595 hand samples, 1,592 were
accurately classified as hand samples, with only 3 samples
misclassified as foot samples.

The ResNet18 model achieved a notable accuracy rate
of 95.3% in identifying MI-EEG signals, as depicted in
Figure 7 (a). The analysis of the test dataset’s confusion
matrix shows accurate classification of 6017 LH, 6429 RH,
6317 F, and 5736 T samples, culminating in an overall test
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FIGURE 4. Architecture of Resnet 101.

FIGURE 5. Confusion matrix.

accuracy of 95.3%. For the ResNet50 model, presented in
Figure 7 (b), the accuracy slightly improved to 95.9% for
MI-EEG signal classification. According to its confusion
matrix, there were 324 LH, 230 F, and 342 T samples
incorrectly classified, while RH samples were identified
with perfect accuracy. The ResNet101 model, illustrated in
Figure 7 (c), further enhanced the performance, reaching
an accuracy of 96.4%. Misclassifications included 333 LH
samples as T and RH, alongside 10 RH, 254 F, and 327 T
samples incorrectly classified, showcasing the nuanced
improvements in MI-EEG signal recognition across different
ResNet architectures.

Simulation outcomes for the test datasets, employing the
Superlet Transform (SLT) across the three ResNet models
(ResNet 101, ResNet 50, and ResNet 18), are concisely
summarized in Tables 2 and 3, covering both datasets. Out Of
these, the ResNet 101 model exhibits superior performance,

TABLE 2. Detection summary of models using SLT and deep learning
model for binary class dataset.

TABLE 3. Detection summary of ResNet-101 using SLT and deep learning
model for multi-class dataset.

achieving an accuracy rate of 99.9% for the binary class
dataset and 96.4% for the multiclass dataset.

As shown in Figure 8, SLT proves to be a more reliable
and effective method for accurately identifying the MI-EEG
signals. As compared to CWT and STFT, SLT has attained
better classification accuracy. SLT achieves an impressive
error or misclassification rate of only 0.1%, which is
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FIGURE 6. Confusion matrix of pretrained ResNet model for binary class dataset.

FIGURE 7. Confusion matrix of pretrained ResNet model for multi class dataset.

FIGURE 8. Classification accuracy (%) of different of TFR methods.
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FIGURE 9. Traininng plot for binary class data for Resnet 101.

FIGURE 10. Traininng plot for multiclass data for Resnet 101.

almost negligible. Compared to STFT and CWT, which have
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TABLE 4. Comparative analysis of the proposed method and current leading-edge techniques for binary classification datasets.

TABLE 5. Comparative analysis of the proposed method and current leading-edge techniques for multiclass classification datasets.

classification accuracies of 82.9% and 96.4% respectively,
SLT outperforms both methods by attaining an accuracy of
99.9% and 96.4%.

For binary class data, the training process for ResNet 101 is
represented by Figure 9 which was conducted over 50 epochs
with a total of 5,100 iterations, averaging 102 iterations per
epoch. The training duration was 153 minutes and 19 seconds
with a constant learning rate of 1e-5. By the end of the train-
ing, the model achieved an impressive validation accuracy
of 99.92%, indicating strong performance on the validation
set. The accuracy curve shows a steady increase from around
50% to almost 100%, with the model converging around
iteration 3,500. Similarly, the loss decreased consistently
from approximately 0.7 to just above 0.1. Validation occurred
every 100 iterations, and both accuracy and loss curves
demonstrate stable and effective model training across the
entire process.

For multi class data, the training process for ResNet
101 is represented by Figure 10 which was conducted over
50 epochs, with a total of 51,350 iterations, averaging 1,027
iterations per epoch. The training duration was 2476 minutes
with a constant learning rate of 1e-5. The validation accuracy
achieved was 96.40%, indicating that the model performed
well on unseen data. The accuracy steadily improved
throughout the training from around 20% to 96%, while
the loss decreased from approximately 1.6 to below 0.2.
Validation was performed every 100 iterations, and both the
accuracy and loss curves show a consistent convergence over
time, confirming the model’s stability and effectiveness.

Tables 4 and 5 compare the effectiveness of the sug-
gested model with leading-edge methods across binary and
multiclass datasets. Kervic and Subasi employed WPD on

a constrained sample set, securing a 92.8% accuracy [38].
Sadiq et al. explored 2D modelling with EWT, achieving a
95.3% classification accuracy [39]. Utilizing CSP for feature
extraction, Rashid et al. reported a 93.6% accuracy [40].
A strategy involving Euclidean alignment (EA) with either
an LDA or LR classifier by Xiong and Wei yielded an
85.6% accuracy [13]. Analysing signals with CSP, Xu et al.
and Sakhavi et al. reported accuracies of 76.8% and 74%,
respectively [41], [42]. Chaudhary and Agrawal’s application
of wavelet transform resulted in an 85.6% accuracy [21],
while Riyad et al., utilizing EEGNet, achieved 74% [43].
The proposedmethodology achieved notably higher accuracy
when compared to Leading-edge techniques as clearly
demonstrated in the Table 4 and 5.

V. CONCLUSION
In our research, we introduced the application of the
Superlet Transform (SLT) for analysing motor imagery EEG
data in time-frequency space and assessed the efficacy of
three distinct residual CNN models for both binary and
multiclass classification tasks. Utilizing transfer learning
techniques on a pretrained network, we evaluated model
performance through accuracy, sensitivity, F-1 score, and
precision metrics, derived from confusion matrices on test
datasets. Our comparative analysis spanned model depth,
layer count, parameter volume, approaches for TF signal
representation, along with training and evaluation durations.
Findings revealed that SLT-enhanced feature extraction
notably boosts classification outcomes over current leading
methods, with the residual CNN architectures showing
superior accuracy rates. Specifically, ResNet 101 stood
out, delivering an exceptional 99.9% accuracy for binary
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classifications and 96.4% for multiclass dataset. A key
consideration for achieving such high accuracy involved the
optimal selection of order and time spread parameters for the
SLT process.

By incorporating time-frequency (TF) representation,
researchers can achieve a deeper and more precise under-
standing of the intricate, dynamic changes in brain activity
across both temporal and spectral domains. This approach
facilitates the identification of subtle patterns linked to
distinct motor imagery tasks, enhancing analytical accuracy.
Moreover, the integration of pretrained networks through
transfer learning accelerates the analytical process by
leveraging extensive knowledge from large-scale datasets,
overcoming the constraints of traditional methods. This
powerful combination has the potential to drive significant
advancements in brain-computer interface (BCI) technolo-
gies, enabling more intuitive and adaptive control systems for
assistive devices, thus greatly enhancing the quality of life for
individuals with mobility challenges. Additionally, it paves
the way for innovations in neurorehabilitation, cognitive
neuroscience, and neurofeedback applications, fostering
broader progress in the understanding and application of
neural mechanisms.
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