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ABSTRACT The freshwater resource is invaluable and indispensable for any nation like the Republic of
Korea. Recently, deep learning (DL), AI models have become more popular and applied frequently for
surface water studies. The Segment Anything Model (SAM) has been developing sharply and takes an
adaptable approach with the ability to perform zero-shot inference. Although, pre-trained SAM was trained
with millions of images (a billion masks), applying it to remote sensing data reveals limitations of inaccurate
results and unlabeled classes, particularly for themore complex and noise data fromSynthetic-aperture Radar
Images. Hence, we fine-tune the SAM model and other popular CNN models of YOLOv8, U-net(ResNet50),
and DeepLab(ResNet50,EfficientNet) for lake semantic segmentation usingmulti-SARRS datasets of Kompsat-5,
ALOS-2, Sentinel-1, and a combination of the three datasets (data link) for model result comparisons.
This study’s accuracy assessment showed the SAM was the most precise model (accuracy overall ≈ 0.95)
followed by the DeepLab(ResNet50), YOLOv8, U-net(ResNet50), and DeepLab(EfficientNet) model. Almost all
models segmented highly accurate lake areas fitted well with ground-truth masks, nevertheless, the SAM
(code link) presented the most well-performance model. The YOLO deals well with larger datasets and
requires deeper trains to gain higher accuracy outputs. In addition, this research investigated the responses
of each DL model to the SAR dataset proving a need for fine-tuning model results on SAR RS for better
lake segmentations.

INDEX TERMS Fine-tunning, Republic of Korea, reservoir, SAM, space-borne SAR.

I. INTRODUCTION
The attention of authorities/decision markers and scientists
has been drawn to freshwater issues due to their impor-
tance [1] in several aspects such as agricultural irrigation,
electrical hydropower, climate regulation on the positive
side and flooding potential [2], and environmental changes
on the negative aspects. Dozens of methods developed
for water bodies from space data with wide variations
of accuracies and scales like thresholding, classification
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algorithms, object-based analysis, multispectral indices, and
newer machine learning and deep learning approaches [3],
[4] have assisted better water-related management and mon-
itoring of this valuable resource. Besides, research scientists
endeavor for better cutting-edge techniques to optimize water
extractions from space data. Convolutional Neural Networks
(CNNs) have demonstrated a promising method of robust,
accurately identifying water bodies by learning from large
training datasets [5].

The CNNs have indicated a powerful and common in
deep learning and contributed to escalating applications in
geosciences like water body extractions [2], integrating with
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TABLE 1. Some underline work using SAM and remote sensing data for water extraction.

the Google AI platform [6], landslide detection [7], many
fields of study, practical medical [8], [9], and object detec-
tions [10], [11]. The advantages and limitations of deep
learning are frequently discussed. Although CNNs gain the
ability to learn and extractmeaningful features from low-level
feature edges and texture to high-level concepts of object
shape and semantic concepts as well as state-of-the-art per-
formance to achieve various computer vision tasks like image
classification, semantic segmentation [4], [12], and earth
surface mapping [6], [13], challenges pose to uncertainty
and error of model results working with complex airborne
synthetic-aperture radar (SAR) images which have much
noise (speckles) [14], ambiguous object edges and that can-
not be avoided [15]. Even the water bodies are the most
distinguishable objects in the SAR images due to low val-
ues of backscatter of radar beans on the unwavering water
surfaces [16], current SAMGeo employed image encoder of
Masked Autoencoder (MAE) pre-trained Vision Transformer
(ViT) adopted for geospatial data has been released [17]
remaining some limitations of unlabeled training [18], and

unappealing results in remote sensing applications [19].
Hence, the number of studies in this domain is considered
negligible [20].

A. RELATED WORK
This section highlights the latest previous studies that applied
SAM, integration of SAMwith other networks, or using SAM
to support supplementation tasks of feature segmentation
in geosciences and water studies (Table 1). This summary
indicates plenty of the SAM’s applications in nonidentical
topics of parcels, roofs, roads, water, and trees [21] and solar
panels [22], transportation of airplanes, and ships [23] e.g.
in the remote sensing domain. Additionally, the abilities of
the SAM to work with a wide range of data types includ-
ing high-resolution remote sensing, aerial orthophoto, drone
(also video) [24], and terrestrial imagery [25] are indicated.
The aforementioned studies employed different metrics to
evaluate the model performances with the most commonly
assessed ratios being the OA and IoU and the accuracy varied
from 0.6 to 0.9.
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Besides the SAM, other popular CNNs such as U-net,
DeepLad, and EfficientLab have been applied for close-range
imagery for water body segmentation showing the out-
standing performance of the SAM model compared to the
rest-employed networks [26]. Yakiyama et al. deployed the
SegNet to automatically segment river water gaining an accu-
racy above 0.9 using images captured by an RGB sensor.
Recently, Pedro et al. trained the Mask R-CNN model for
surface water mapping using the high-resolution images of
PlanetScope showing the model’s ability to mask the small
ponds with Intersection over Union (IoU) from 0.62 to 0.95.
The survey of Huang et al. [4] demonstrated an overview
of related works of deep learning models for the semantic
segmentation of remote sensing images (SSRSI). The sur-
vey additionally summarised the remote-sensed data sources
used for the segmentation domain. It gave main research
directions of supervised SSRSI, semi-and weakly super-
vised, unsupervised domain adaption (UDA), multi-modal
data fusion, and a pre-trained model for SSRSI. This study
also posed the main challenges of large-scale variation, class
imbalance, large image size, and limited labeled data of
remote sensing compared to natural images. You Look Only
Once (YOLO) is a rapidly developing model for numer-
ous applications in many study fields, however, the main
uses are on natural images. That is why we compare the
YOLO (v8) results with the SAM performances in this
study.

B. INTRODUCTION TO THE USE OF SAM FOR WATER
BODY SEGMENTATION
The Segment Anything Model (SAM) developed by Meta AI
has been proven a groundbreaking method of image segmen-
tation, working with a wide range of image datasets [33].
Although over 1 billion masks from 11 million photos are
used to train the base SAM and gain capabilities on numerous
tasks [34], the model’s applications in geosciences are limited
and results are often unsatisfactory due to the different special
imaging properties of remote sensors compared to common
RGB natural cameras [35]. Currently, there has been some
work on using the SAM for generating segmentation results,
however, it is limited to the absence of class information and
the fragmentation and inaccuracy of the predicted bound-
aries [36]. As the model supports any purpose of segmenting
objects, input prompts are essential to specify the modeling
target. On the other hand, the SAM has abilities of zero-shot
and text prompts (besides input (points) and box prompts)
which seems to be improper for segmentations of remote
sensing data since mostly the classified features must be
specified and labeled properly. A new version of SAM for
geospatial data called GeoSAM is adopted from pre-trained
SAM using final Vision Transformer (ViT) but trained with
44 thousand complex masks published with 4 model sizes
of ViT-tiny, l, b, and h offering its ability to work with
remote sensing data with several options. Besides, there is an
open-source Python package integrating the GeoSAM with

popular Python libraries like Leafmap [37], rasterio [38], and
geopandas [39] providing users with a friendly interface and
minimal effort of coding [37].

C. WHY A FINE-TUNED SAM IS NEEDED
Based on the recommendation of [31] and [40] about
fine-tuning the SAMmodel might enhance the proficiency of
the model on remote sensing data, we have done a pre-test
of the SAM model to extract the reservoir boundary of
some lakes using high-resolution SAR images of Kompsat-5
(Korea Multi-Purpose Satellite-5) images and found unsatis-
factory results shown in Figure 1. Since zero-shot and text
prompts did not work for the Kompsat-5 images, we tested
one-shot, five-shots (3 foreground, 2 background), and box
prompts shown in columns 2,3 and 4 of Figure 1. The
box prompt seemed to be the most appropriate prompting
method, however, it still generated large uncertainty in all
model sizes (b and h), except a fine segmentation (Fig.1x).
In addition, using the SAMautomatic semantic segmentation,
objects are segmented without labels tagged to them [25]
and in geosciences it makes limited sense. Although more
than 1.1 billion masks trained the SAM [19] mostly from
natural images, SAM does often generalize well with over-
head images (remote sensing) but fails in some cases due to
the unique characteristics of remote-sensed imagery [40] and
the number of masks for training from SAR image remains
unknown. Hence, the SAM-producing unsatisfactory result of
water surface extractions on the SAR images is explainable
due to the dissimilar characteristics between optical and SAR
images.

D. THIS STUDY OUTLINES
we work toward addressing the challenges, achieving the
following contributions:

1) We fine-tuned SAM using the collections of around
1400 SAR images and more than 2000 masks for sur-
face water semantic segmentation for the first time.
This could enhance the SAM’s ability to mask the
lake’s boundary on SAR images while its capability is
still limited (code link).

2) Extensive evaluation of other current popular
CNNs (U-net(ResNet50), DeepLab(ResNet50), Deep-
Lab(EfficientNet) comparingwithmost curent developing
models of YOLOv8 and SAM.

3) Collecting SAR data over Korean territory, process-
ing the data, and extracting the masks and labels.
This is the most time-consuming task but impor-
tant as the models cannot be trained without input
data.

4) Performing extensive modeling and analyses of the
model outputs and evaluating the model perfor-
mances. From cross-comparisons of the model and
used datasets, we suggest the appropriate model and the
best data for the aim of lake extraction and future study
orientation.
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FIGURE 1. Pre-test for SAM performance on Kompsat-5 images.

II. REGIONS OF INTEREST AND DATA PREPARATION
A. KOREAN RESERVOIRS
Mountainous areas occupy a major proportion of Korean
territory with a mixture of mountains, hills, and coastal
plains [41]. The country has neam annual precipitation lower
(1300 mm) in the north and higher on the southern coast
(1800 mm) [42]. Due to this kind of terrain and climatic
conditions, freshwater management has become more impor-
tant to secure the indispensable drinking and irrigating water
resource. Thus, thousands of reservoirs and ponds have been
built, spreading in the entire Korea, however, they are located
more in the South (Figure 1). Most of the lakes/reservoirs
(90%) are small and medium sizes (storage capacity < 1 mil-
lion m3) and dozens of them are larger than a hundred
hectares. 54% of the lakes were constructed 70 years ago [43].
The lake surfaces are changing conditions such as freezing
in winter, vegetated (lotus, floating duckweed), and clearer
in early spring and autumn. Therefore, monitoring the lake
water status from space is a challenging task in South Korea.
Although your experiment is on the South Korean regions as
a case study, after fine-tuning the DL models, they can be
applied to any other regions.

B. REMOTE SENSING DATA
Six scenes of level L1 Setinel-1A scanned at the Inter-
ferometric Wide swath (IW) mode covering the entire
SouthKorean territory provided freely by the European Space
Agency (ESA), 16 images processed at level 1D (provided
by Korea Aerospace Research Institute (KARI)), and 59
ALOS/PALSAR-2 (ALOS-2) processed at level 2.2 provided
without charges by Japan Aerospace Exploration Agency
(JAXA) were collected for clipping sub-images (photos)
for model input data preparation. Other information about
the data resolution, and acquisition date are summarized in
Table 2 and the image footprints are depicted in Fig. 2.

TABLE 2. Summary of SAR remote sensing data collected for
lake/reservoir extractions over the South Korean territory.

C. METHODOLOGY
1) FRAMEWORK OF METHODOLOGY
The general working procedures of this study for lake bound-
ary segmentation are depicted in Fig. 3 with three main
parts: data preparation, model training, and model deploy-
ment (inferencing). In the first part,

Dimage including Dtrain

= {(In_train,Wx ,Hy)
n_train−1
i=0 ,Dval = (In_val,Wx ,Hy)

n_val−1
i=0 ,

and Dtest = (In_test ,Wx ,Hy)
n_test−1
i=0 }

are created. Before all images used for training and validation
are masked and labeled ‘‘lake’’, they are resized to make their
size identical (Dmask including

Dtrain_mask = {(In_train_mask ,Wx ,Hy)
n_train_mask−1
i=0 , and

Dval_mask = (In_val_mask ,Wx ,Hy)
n_val_mask−1
i=0 }).

In the model fine-tunning phase, we developed the SAM
and YOLOv8 semantic segmentation models in PyTorch
(AppendixA) and theU-NET(ResNet50), DeepLabV3(ResNet50),
DeepLabV3(EfficientNet) in TensorFlow framework
(Appendix B). Additionally, the pre-trained SAM encoder is
frozen to exploit the pre-trained parameters learned from the
large dataset. The zero-shot prompt is given to eliminate the
human interaction in the fine-tuned process. We applied
the Adaptive moment estimation (Adam) to keep track of the
exponentially decaying average of past gradients, learning
rate, and bias correction in all the models (fM ). In the testing
phase, the Adam is re-used to calculate the loss function
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FIGURE 2. Maps of lake locations and acquired SAR remote sensing scene footprints for this study experiment.

values (LV ) using the validation dataset. We saved the best
model checkpoint for the model inferencing stage. Finally,
the saved model checkpoints are recalled to segment the lake
boundaries and overlaid on them on the test images in Dtest
for visualizations.

To optimize the training strategy, we start to train all
models for 50 epochs with a learning rate of 10−4. After
analyzing accuracymetrics, particularly the loss function, and
segmentation results, we will decide which model must be
trained deeper to gain higher accuracy. By doing that much
training time will be saved.

2) DATA PROCESSING
As only the Sentinel-1 images were collected at the lower
level of L1, we did image pre-processing including Orbit
Correction, Thermal Noise and RGD Border Noise Removal,
Radiometric Calibration, Speckle Filter (Lee Sigma), and
Range Doppler Terrain Correction for enhancement of
images quality. The data providers already pre-processed the
ALOS/PALSAR-2 (ALOS-2) and Kompsat-5 images and we
just converted the digital values to decibels (dB) for bet-
ter visualization. Since the images are clipped in different
sizes, we resized them to a width of 1024 and a height of
720 pixels. There is a large number of masking and annota-
tion (labeling) tools. We elected the CVAT tool and masked
the lake boundaries for our convenience. Although some
automatic and semi-automatic masking tools are available,

FIGURE 3. Workflow of lake surface semantic segmentation using Deep
Learning (DL) models and SAR images, AL = algorithm, S1 = Sentinel-1.

we do it manually to use our maximum knowledge of drawing
accurate lake boundaries for the models learned from rather
than from other models. The outcome of this step is the
Dtrain/val(image,mask)/test(image), summarized in Table 3, ready
for the model inputs.

3) SAM DESCRIPTION
A new Segment Anything Model (SAM) model has been
introduced by Meta AI Research since 2023 [34] and is
well-trained using a billion masks and around 11 million
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FIGURE 4. The architecture of A) SAM, adopted from [26], [34], B) our fine-tunned SAM.

TABLE 3. Statistics of datasets extracted from SAR remote sensing
images.

FIGURE 5. The ResNet-50 backbone for PyTorch implementation adopted
from [26], [51].

licensed and privacy-respecting photos captured worldwide.
Thus, its name is given by claiming its ability to segment

FIGURE 6. The architecture of U-net(ResNet50), modified from [26], [54].

any real objects without additional training [44]. The SAM
includes three main components of image encoder, a flexible
prompt encoder, and a mask decoder (Fig. 4A).

a: IMAGE ENCODER
An inputted image is computed once in the image encoder
before applying a prompt for the model. In this step, the
model uses a Vision Transformer (ViT) that undergoes pre-
training through the application to exploit the changing vari-
ant of the masked autoencoders (MAE) technique. Formerly,
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FIGURE 7. The architecture of DeepLab(ResNet50), adopted from [26], [55].

FIGURE 8. The EfficientNetV2 architecture, adopted from [57].

TABLE 4. Model size in respective of the number of parameters and
mean training time per epoch in second.

the ViT is adjusted slightly to handle high-resolution inputted
datasets [45].

b: PROMPT ENCODER
Inputted images are embedded and passed through con-
volutions with prompt inputs to the decoder stage. Two

TABLE 5. Accuracy metrics calculated for DL models’ validations using
the Kompsat-5 dataset.

TABLE 6. Accuracy metrics calculated for DL models’ validations using
the ALOS-2 dataset.

TABLE 7. Accuracy metrics calculated for DL models’ validations using
the Sentinel-1 dataset.

TABLE 8. Accuracy metrics calculated for DL models’ validations using a
combination of Kompsat-5, ALOS-2, and Sentinel-1 datasets.

desperate prompts are the dense prompt (masks) and sparse
(SAM provides zero-shot prompts in case of automatic
tasks, points, boxes, and text) prompts. The model encodes
the tex-prompt using pre-existing text encoder from Rad-
ford et al. [46]. Besides, the dense prompts are embedded
employing convolutions and summed together the image
embedding element-wise.

c: MASK DECODER
The mask decoder effectively connects the image embed-
ding and prompt embedding to generate output masks.
The output token is inherited from a previous study by
Dewi et al. [47] and employed an amended version of the
Transformer decoder block from Vaswani et al. [48]. Finally,
the mask generation is completed using a dynamic mask
prediction head after the decoder block.

4) RESNET-50
The ResNet-50 model has proven its robust deep learn-
ing architecture with extreme efficacy in many computer
vision applications. There are 50 layers built in the ResNet-
50 architecture (Fig. 5) incorporating a bottleneck design
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FIGURE 9. The YOLOv8 architecture with a modified CSPDarknet53 backbone (adopted from [59]).

for its base building blocks [49]. The model is well rec-
ognized for its exceptional capacity and efficient train
design. The residual connections or facilitation of informa-
tion propagation is the ResNet architecture incorporated skip
connections. This is done throughout the network while mit-
igating the issue of disappearing gradients. Extensive photo
datasets such as ImageNet have been used for pre-training
and rendering the model for diverse image classification
applications [50].

5) U-NET(RESNET50)
U-Net is one of the well-known CNN models for its
superior image segmentation performances of several types
of images and datasets [52]. The U-net architecture
including an encoder for downsampling, a decoder for
upsampling, and feature fusion forms an U-shaped figure
(Fig. 6) [53]. The ResNet50 used in this study serves
as the encoder, meanwhile, a custom decoder presupposes
the upsampling and convolutional layers. The integrating
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FIGURE 10. Training and validating (Val.) loss calculated for (A) U-net(RetNet50), (B) DeepLab(RetNet50), (C) DeepLab(EfficientNet), (D) YoloV8, and (E)
SAM for reservoir segmentation with different SAR dataset.
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FIGURE 11. Model accuracy metrics of overall accuracy (OA), IoU, and K calculated in the validations for the SAR datasets.

TABLE 9. Summary of model performance quality for DL Lake semantic segmentation using the SAR remote sensing data.

features from different resolutions are assisted by skip
connections [54].

6) DEEPLAB(RESNET50)
DeepLab models featuring Atrous Spatial Pyramid Pool-
ing (ASPP) and an encoder-decoder structure have been
developed as a series and the DeepLabV3+ is a variant
of this stream [55]. The ASPP performs pooling opera-
tions at different grid scales and the ResNet50 is integrated
into the encoder pathway. The concatenation connects the
1 × 1 convolution and the upsampling in the decoder
phase to generate the semantic segmentation masks (Fig. 7).
In the upsampling procedure, the spatial resolution is
enhanced by transposed convolutions and enriched by skip
connections.

7) EFFICIENTNETV2 ARCHITECTURE
In 2021, Huang [56] proposed a family of CNNs including
the EfficientNet and it did the scaling on the CNN like
depth/wide and how depth/wide the network in the respective
number of layers and the image resolution. In the Efficient-
Net, the dimensions of the network are scaled up (24 channels
to 1280 channels for the M-size network) using a com-
pound scaling approach [57]. TheMobile inverted Bottleneck

Convolution (MB-Conv) as a baseline network and scale-up
EfficientNet is employed in Fig. 8. As the EfficientNetV2
[58] has high performances, short training time, and training
efficacy, it was selected to be integrated with the DeepLab
in this study. The EfficientNetV2 is developed in small (S),
medium (M), and large (L) sizes, Fig. 8 is a demonstration of
the M-size network.

8) YOLOV8 ARCHITECTURE
You Only Look Once (YOLO) is a fast-growing model in
the computer vision domain, introduced in 2015 [11], and
currently (7/2024) V10 is proposed. Version 8 was released
in January 2023 by Ultralytics [44] and built based on
the foundations of YOLOv6 and YOLOv7. The YOLOv8
architecture inherits the backbone design from the formal
version of 5 with changes in the CSPLayer and the C2f
module (Fig. 9). Combining the contextual and high-level
characteristics of cross-stage partial bottleneck with two
convolutions in the C2f results in an improvement of accu-
racy and efficiency the YOLOv8 backbone [44]. Five model
scales of YOLOv8n (nano), YOLOv8s (small), YOLOv8m
(medium), YOLOv8l (large), and YOLOv8x (extra-large)
with the same model size of 640 pixels are developed for
options of uses. More complex models typically generate
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FIGURE 12. Deep learning model segmentation results on Kompsat-5 images, GT Mask is a short form of ground-truth mask.

higher accuracy of model outputs, however, correspondingly
higher demands on computational speed and memory are
required.

9) MODEL EVALUATION METRICS
For the model performance evaluation, we rely on common
evaluated metrics which are frequently used in deep learning
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FIGURE 13. Results of model segmentation quantity and quality of the
U-Net, DeepLab(ResNet50), DeepLab(EfficientNet) (a), YOLOv8x, and
SAM(vit-h) (b), experiment on the Kompsat-5 dataset.

model evaluations calculated based on agreement between
predicted and ground-truth masks. These metrics are the
overall accuracy (OA), Intersection over Union (IoU), Recall,
Precision, coefficient(Fs), and Kappa (k) solved by:

OA = 1−
TP+ TN

TP+ FP+ FN + TN
× 100% (1)

IoU =
TP

TP+ FP+ FN
× 100% (2)

Recall =
TP

TP+ FN
× 100% (3)

Precision =
TP

TP+ FP
× 100% (4)

Fs =
2TP

2TP+ FP+ FN
× 100% (5)

k =
P0 − Pe
1− Pe

Pe =
(TP+ FN ) (TP+ FP)

τ 2

+
(FN + TN ) (FP+ TN )

τ 2
,

P0 =
TP+ TN

τ
, τ = TP+ FP+ FN + TN (6)

where, TP stands for True Positive which refers to the number
of pixels accurately segmented as lakes; FP is the short of
False Positive meaning the land pixels are wrongly classi-
fied as lake surface (label 1). The TN (True Negative) and
FN (False Negative) indicate the land pixels are correctly
segmented as background and the lake pixels are wrongly
categorized as non-water (label 0), respectively.

We applied the model evaluation quantification scheme
proposed by [26] based on the IoU values to interpret and
categorize the model performances into qualified labels of
‘‘Excellent’’ when the IoU > 0.90, ‘‘Good’’ if 0.850 ≤ IoU
≤ 0.90, ‘‘Moderate’’ if 0.75 ≤ IoU ≤ 0.85, ‘‘Poor’’ if 0.65
≤ IoU < 0.75, and ‘‘Failed’’ if IoU > 0.65. This method
of interpreting model performances is applied constantly for
each model implementation.

III. EXPERIMENTS
A. MODEL SETUP
In the fine-tuning phase, we modified the origin SAM archi-
tecture from [60] with three new parts (Fig. 4B) of 1) Image
patches: the inputted images and masks are pacified to the

shape of [61] respectively for fitting well with the torch com-
putational size. 2) Tensor filter: the patched images andmasks
are filtered for valid indices (̸= 0 or lake mask/masks present
in the mask patches), meaning that only tensors with mask
valid indices and corresponding images are kept and passed
through the convolutions and this also assisted the boosted
computation and reduced time of processing. 3) We trained
the fine-tuning SAM (from pre-traind SAM, the ‘‘sam-vit-
base’’) with bounding boxes as prompts which are defined
by regular grids (20 × 20 pixels) in the presence of the
ground truth masks. The model trains were implemented by
our resource of a 13th Gen Intel(R) Core (TM) i9-13900
2.00 GHz Desktop with 64.0 GB (63.7 GB usable) RAM
and NVIDIA GeForce RTX 4090 GPU (55.9 GB memory),
applied the algorithm 1 (appendix A) for model train, evalu-
ation and algorithm 3 (appendix C) for the model inferences.
Similarly, the YOLOv8 proceeded with the Pytorch platform
based on its original code.

Other models of U-net(ResNet−50), and Deep-
Lab(ResNet−50,EfficientNetV2) of lake surface segmentation are
performed in Python utilizing the TensorFlow core library
within Python 3 Google Compute Engine backend (GPU).
For the accelerated computations in the Colab, the resources
of an NVIDIA Tesla T4 (15GB) GPU, an Intel Xeon CPU
with two cores running at 2.30 GHz, and 12.7 GB of RAM
were utilized. All the model code is written in Jupyter Note-
book (∗.ipynb) to exploit some advantages such as flexible
run management, and friendly code editing interfaces. The
model performances are summarized within Algorithm 2
(appendix B) and Algorithm 3 for the model training, evalu-
ation, and deployment. All the model trains (including SAM
and YOLO) on the datasets using default parameters and
50 epochs, batch size of 8 images, and a learning rate of 1×
10−5. The model parameters from the checkpoint with the
lowest validation loss were saved for the model inferences.

Table 4 summarizes the number of DL model parameters
and the computational time (in seconds) of eachmodel epoch.
Overall, there are positive proportions between the model
sizes (number of parameters including trained and non-
trainable) and the computational time. The lightest model
of DeepLab(EffcicientNet) consumed 5 seconds to process an
epoch with the Kompsat-5 data and 39 seconds with the
combination of all the SAR datasets. On the other hand, more
complex models and larger input data prolonged the model
processing time of the U-net(ResNet50) model to 5.5 min-
utes for the combination data. It is noted that the YOLOv8
and SAM models (marked by ∗) were implemented in the
local PC and GPU system boosting the second largest model
(YOLOv8) to only 8 seconds for the Kompsat-5 dataset and
19 seconds for the combined dataset. The biggest SAM (636
million parameters) needed 78 and 394 seconds to complete
an epoch of the Kompsat-5 and the combination datasets,
respectively. Hence, the SAM model took nearly 5.5 hours
to process the whole model train of 50 epochs on the combi-
nation data.
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FIGURE 14. DL segmentation results on ALOS-2 images, GT Mask is a short form of ground truth mask.

B. EXPERIMENT RESULTS
This section presents model performance evaluations by the
loss function for all models and datasets (Fig. 10), model
accuracy metrics of overall accuracy (OA), IoU, and Kappa

(k) (Fig. 11). The sub-sections describe selected showcased
segmented lakes for each dataset.
Loss Functions: Fig. 10 shows different scenes of the

model’s loss functions (LF) in training and validating

VOLUME 13, 2025 1739



N. H. Quang et al.: Fine-Tunned SAM for Reservoir Extractions Compared With Popular CNNs

FIGURE 15. Results of model segmentation quantity and quality of the
U-Net, DeepLab(ResNet50), DeepLab(EfficientNet) (a), YOLOv8x, and
SAM(vit-h) (b), experiment on the ALOS-2 dataset.

50 epochs, however, the loss values decreased and the LF
values of the trainingwere higher than the values of validation
meaning the good signs of the model convergence. Nonethe-
less, there were some epochs where the validating FL values
were greater than those of training for the YOLOmodel using
theKompsat-5 and the combination dataset. After epoch 40th,
the YOLO’s FLs came to the normal scene of the training
values smaller than the validating values. The U-net’s FL
(A) was stable and improved slightly after the 15th epoch.
In contrast, the YOLOv8 LF (D) continuously fluctuated and
decreased until epoch 50 (around 0.2) for all the datasets and
its LFs remained highest compared to all other models. The
LFs of the DeepLab(ResNet50) (B) and DeepLab(EfficientNet) (C)
sunk sharply in the first 10 epochs and remained at low values
of nearly zero. The SAM LFs (E) gradually decreased for
all datasets and reached the lowest values at the end of the
training process. There was no obvious difference in the LFs
between the uses of the datasets except for the more stability
of the LFs and the U-net train and validation started with low
values of LF (0.28) of the combination of all data and reached
the best epoch early at the 9th. The model checkpoints were
saved at the ± 10 epoch for U-net(ResNet50), at the 27th epoch
for YOLO using Kompsat-5 data, and all others saved at
the end of the training for model inferencing (employment)
marked by the red circles.
Overall accuracy (OA), Intersection over Union (IoU), and

Kappa (k):The box plots in Figure 11 show the SAM segment
performances (pink boxes) were most accurately depicted in
several instances where the OA, IoU, and k median values
(red lines) were higher and their outliers (the error caps and
the black diamond markers) smaller than those of the other
models. On the contrary, YOLO’s accuracy metrics were at
their lowest values (median values marked in red around 0.8),
and its outliers were deeper with some values approaching
0.1. However, the YOLO metrics were improved in their
values much when the model was applied to the combina-
tion dataset. The DeepLab(RetNet50) and DeepLab(EfficientNet)
performances (green and blue boxes) were in second and
third place, respectively. The U-Net accuracy metrics were
slightly higher than the YOLO’s values in general, however,
the U-Net performed well with the Sentinel-1 data by the OA,
IoU, and K were slightly under the SAM metrics. In a cross-
comparison between the metrics, the OA values were higher
than the IoU and the K values for all datasets and there was no
clear difference between the IoU and K values. Furthermore,

the combination of all datasets showed the highest metric
values, shortest error caps, and fewer outliers (black diamond
markers). There was no clear prevalence of the Kopmsat-5,
ALOS-2, and Sentinel-1 over each other based on the box
plots of OA, IoU, and K. We might need to assess other
metrics of each dataset for more details.

1) ON KOMPSAT-5 DATASET
a: MODEL ACCURACY METRIC COMPARISON
Comparisons of the precision metrics of the five models
calculated in themodel’s validations applied for the Kompsat-
5 dataset can be provided in Table 5. The SAM(vit-h) was the
most accurate with the largest values of OA, IoU, precision,
Fs, and K with the five largest values marked in red. The
results demonstrated that the DeepLad(ResNet50) validation
was the second most accurate performance based on the
OA, IoU, Precision, Fs, and K values. They were slightly
lower than the SAM’s metrics and the DeepLad(ResNet50)’s
Recall surpassed all other values. The YOLOv8x was the
poorest, however, all the metric values were higher than
0.7 and Fig. 10 showed its LFs could be further improved
after the 50th epoch. The performances of U-net(ResNet50)
and DeepLab(EffcicientNet) models were similar. These model
accuracy metrics might partly related to the segmentation
results as the model took the images randomly.

b: SHOWCASED EXAMPLES OF LAKE SEGMENTATIONS
These are good examples of DL lake semantic segments using
SAR images of Kompsat-5 when prompts were not applied
to any model (Fig. 12) and the promptless were also used
for other following datasets. Although the Kompsat-5 images
contain much noise on the water surfaces, the six lakes were
segmented accurately by all the models. Despite some false
positives (FT) of the small pond in the images (Lake #1
and #2) segmented by the SAM, YOLO (red mask), (run
on Pytorch platform), and DeepLab(ResNet50) models (without
predictedmask), and some small areas of false negatives (FN)
in all images depicted by the green areas (YOLO and SAM)
and light blue of U-net, DeepLab(ResNet50,EfficientNet) (on Ten-
sorflow, Keras platform), most lake areas were segmented
at high accuracy (approximately 90%). In this example set,
the U-net, DeepLab(ResNet50), and SAM results surpassed the
DeepLab(EfficientNet) and YOLOv8 results faintly by visual
assessment. Note that all the images in a column are the same,
the images of the YOLO and SAM rows were displayed in
the brighter mode to highlight the predicted masks. That is
applied identically to other showcased examples.

c: MODEL QUALITY ASSESSMENT
Fig. 13 shows lake prediction quality classifications divided
into quality sets ranging from ‘‘excellent’’ to ‘‘failed
‘‘ for the Kompsat-5 validation images by (a) U-Net,
DeepLab(ResNet50,EfficientNet) (group Keras, TensorFlow) and
(b) YOLO, SAM (group Pytorch). The DeepLab(ResNet50) and
DeepLab(EfficientNet) shared the same 41 excellent images out
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FIGURE 16. DL segmentation results on Sentinel-1 images, GT Mask is a short form of ground truth mask.

of a total of 65 images occupied around 60%. However, the
good DeepLab(ResNet50) images were 18 while categorized
11 for DeepLab(EfficientNet), hence, the DeepLab(ResNet50)

validation surpassed the DeepLab(EfficientNet)’s in general.
Both models had no poor image and a low number of moder-
ate. The U-net model quality was lowest among the Keras,
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FIGURE 17. Results of model segmentation quantity and quality of the
U-Net, DeepLab(ResNet50), DeepLab(EfficientNet) (a), YOLOv8x, and
SAM(vit-h) (b), experiment on the Sentinel-1 dataset.

TensorFlow group. SAM predominated YOLO in quality
with 46 images (71%) labeled as excellent for the SAM
and 22 excellent images (32%) for YOLO and the poor and
failed cases of the SAM model were also lower than those
of YOLO. Only in the good category, the YOLO had more
images (15≈24%) classified into ‘‘good’’ while the SAM
had 7 (11%).

2) ON ALOS-2 DATASET
a: MODEL ACCURACY METRIC COMPARISON
There was a different story that the DeepLab(ResNet50) sur-
passed all other DL models using the ALOS-2 dataset while
its IoU, Precision, Fs, and K values were greatest (marked in
red in Table 6). The SAM(vit-h) was in second place followed
by U-Net, DeepLab(EffcicientNet), and YOLOv8x. Compared
to the Kompsat-5 metrics (Table 5), the ALOS-2 matrics
weremarginally higher, however, the its averaged IoU (0.792)
was lower than the sum of Kompsat-5’s IoU (0.796). That
might be somewhat depicted in the segmentation results of
the ALOS-2 dataset.

b: SHOWCASED EXAMPLES OF RESERVOIR
SEGMENTATIONS
The clear demonstrations of excellent predicted masks by the
DeepLab(ResNet50) model overlaid with the ALOS-2 images
(Fig. 14) with just a small false negative (FN) on the top-left
of Lake #1. More errors or false negatives (FN) and false pos-
itives (FP) appeared in the results of the DeepLab(EfficientNet)
and YOLO models with mostly FN cases (non-predicted
mask of DeepLab(EfficientNet) and red areas of YOLO model).
Remarkedly, nearly the entire lake in image Lake #4 was
not predicted as surface water by the YOLO model and was
a ‘‘poor’’ case. There were several small non-water areas
segmented as lake (FN) compared to the ground truth masks
by the U-net and DeepLab(ResNet50) in the top-left of Lake #3
and at the bottom of Lake #6 images. These FN predictions
(green masks) were also found in the results of the SAM
model. The results of lake segmentation of all five models
agreed well with the model accuracy metrics even though
these were randomly selected images.

c: MODEL QUALITY ASSESSMENT
In the Keras, TensorFlow group (Fig 15a), the Deep-
Lab(ResNet50) performed well repeatedly with 63 images clas-
sified as ‘‘excellent’’ occupying 57% of all validated images

(111). However, the DeepLab(EfficientNet) had 53 images
(48%) of good level and only 15 images (13.5%) of mod-
erate quality images compared to 17 images (15.3%) of the
DeepLab(ResNet50) model. U-net’s results were the poorest,
however, had a low number of poor and failed classifica-
tions as well. In the Pytorch group (Fig 15b), the SAM
presented a prevailing model over the YOLO in semantic
segmentation lakes using SAR images with 62% of excellent
images compared to 32.4% of the YOLO model. In addi-
tion, the SAM results had only 10 and 2 images categorized
as ‘‘poor’’ and ‘‘failed’’ performance, respectively. Another
good aspect of the YOLO model is that it produced good
results for 32 images, otherwise, SAM produced good results
for 21 images.

3) ON SENTINEL-1 DATASET
a: MODEL ACCURACY METRIC COMPARISON
Sentinel-1 presented the best data for lake segmentations
using DLmodels wheremost of themetric values were higher
than those of Kompsat-5 and ALOS-2 datasets (Table 7).
Comparing the results of different DL models we found
that the SAM model produced the highest accuracy met-
ric values with impressive overall accuracy (OA) of 0.988,
and IoU of 0.982, for example. An interesting finding was
that the U-net with an OA of 0.913 surpassed the other
models in the Keras-TensorFlow model group, followed by
the DeepLab(ResNet50), and DeepLab(EfficientNet). There was
a remarkable improvement of the YOLOv8x performances
but its accuracy metrics remained the lowest among all the
models.

b: SHOWCASED EXAMPLES OF RESERVOIR
SEGMENTATIONS
The most accurate set of DL-predicted masks overlaid
with the test images of Sentinel-1 is depicted in Fig. 16.
Despite the complexity in sharp of Lakes #1, 5, and 6, and
much noise in the lake surfaces of image Lake #5, and 6,
the U-net, DeepLab(ResNet50,EfficientNet), and SAM models
segmented the lake masks fitted well with the ground-truth
masks. The water bodies (foreground) of Lake #2, and 3 were
in the perfect condition for the model prediction with no
noise and contrasted well with the land (background), low
values of received backscatters. Therefore, all models seg-
mented the lake areas correctly. The foreground of Lake #4
was fine but affected by a bridge and the SAR backscat-
ter value on the bridge was very high which led to the
DeepLab(EfficientNet), YOLO, and SAM did not segment the
bridge as lake surface. That is an example of the challenges
of water surface segmentation in dealing with objects on
them. Furthermore, Lake #1 consists of several branches
(octopus tentacles) that could be a reason for the poor and
nearly failed segmentations of the DeepLab(EfficientNet), and
YOLO models. In addition, the image of Lake #6 includes
some small ponds that were not recognized and segmented by
most models except the DeepLab(ResNet50) with a positive true
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FIGURE 18. DL segmentation results on the combination of Kompsat-5, ALOS-2, and Sentinel-1 images, GT Mask is a short form of ground truth mask.

(PT) of the bigger pond on the image top. Cross-comparing
between the models, the U-Net, DeepLab(ResNet50), and SAM
were in the first class and the differences between them

were not clearly shown. Otherwise, the DeepLab(EfficientNet)
and YOLO’s performances were moderately less accu-
rate. To recap, all the models segmented the lake areas
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FIGURE 19. DL model segmentation quantity and quality of the U-Net,
DeepLab(ResNet50), DeepLab(EfficientNet) (a), YOLOv8x, and SAM(vit-h) (b),
experiment on the combination of Kompsat-5, ALOS-2, and Sentinel-1
datasets.

FIGURE 20. YOLOv8x loss function trained for 50 epochs (a), 100 epochs
(b), 200 epochs (c), and 300 epochs (d).

well when trained and validated for the Sentinel-1
dataset.

c: MODEL QUALITY ASSESSMENT
Similar to the model accuracy metric comparisons (Table 7),
there was no surprise that the U-net with the highest met-
ric values produced more segmented images (78, 75.7%)
classified as ‘‘excellent’’ and the slightly under this qual-
ity level was the DeepLab(ResNet50andEfficentNet) model with
76 and 73 excellent images, respectively (Fig. 17a). Other
quality levels of ‘‘Good, Moderate, Poor, and Failed’’ were
thoroughly similar, assigned to the three models with low
numbers (1 to 5) of poor and failed images. Nevertheless,
the SAM frequently had better semantic segmentation results
than the YOLO when they were trained with 50 epochs,
and with the Sentinel-1 dataset, this scene has remained for
the Pytorch group (Fig.17b). That is demonstrated by the
statistics of the dominant number of 85 and 25 of ‘‘Excellent’’
and ‘‘Good’’, the lower number of ‘‘Poor’’ and ‘‘Failed’’ of
zero and 3 for SAM compared to 48 and 12 of ‘‘Excellent’’
and ‘‘Good’’, 7 and 6 of ‘‘Poor’’ and ‘‘Failed’’ for the YOLO
model.

4) ON THE COMBINATION OF ALL DATASETS
a: MODEL ACCURACY METRIC COMPARISON
There was an interesting change in model accuracy metrics
of the DL models where the YOLOv8x accuracy is improved
compared to applying it to individual datasets (Table 8). Even
though YOLOv8x ranked in third place, its precision was
enhanced to the first (0.962) meaning that the YOLO model
handled the large dataset well. DeepLab(ResNet50) was the
best at this experiment with its recall (0.948), Fs (0.938),

and K (0.908) were the highest values. The SAM(vit-h) was
in second place with its OA of 0.971 and recall, precision,
Fs, and K values ranged at the second-best. Although the
U-Net(ResNet50) metrics were the lowest, the differences in
their accuracy between the models were minor and no model
completely prevailed over all others.

b: SHOWCASED EXAMPLES OF LAKE SEGMENTATIONS
Agreed well with the accuracy metrics in Table 8, the seg-
mentation results showed most of the model’s segmented
lake areas fitted well with the ground-truth masks where
the DeepLab(ResNet50) predicted masks approached perfec-
tion. The Kompsat-5 image of Lake #7 consisted of many
radar-scattering speckles (salt and pepper) resulting in large
areas of false positive (FP) segmentation of the lake by the
U-Net(ResNet50), reversely not a challenge for other models.
However, the Sentinel-1 images of Lake #8 also had a large
number of speckles, the speckle values were still lower than
most pixel values of the land (background), thus all the
models segmented this lake accurately. An interesting point
is that the two small water areas at the end of the small part
of the lake (could be small water bodies) in the Kompsat-5
image Lake #8 were not masked as lakes in the ground-
truth data, on the other hand, segmented as lake areas by the
only DeepLab(ResNet50) model. If it is claimed as a missed
ground-truth mask, the result of the DeepLab(ResNet50) model
will not be assigned as a failed negative, however, other
models produced false positives. Comparing the YOLO and
SAM models, minor differences could be found in more
green pixels (FN) of the SAM compared to the YOLO’s FN.
In addition, the two models had mostly identical FP pixels
(red) in all images. In general, all models performed well
with the combination dataset except for a large FP of U-net
in Lake #7.

c: MODEL QUALITY ASSESSMENT
The model performances were more uniform in qual-
ity (Fig. 19a&b) where the differences between models
were narrowed when we trained and tested with a larger
dataset (train/validation = 1110/279). In Fig. 19a, the
DeepLab(ResNet50) model continuously led in producing more
excellent lake segmentations in the Keras-TensorFlow group
with (163 images, occupied 58.4%) while the U-net and
DeepLab(EfficientNet) have achieved 119 (42.6%) and 123
(44.1%) of excellent cases, respectively. The number of
images classified into other quality rankings of ‘‘Good’’,
‘‘Moderate’’, ‘‘Poor’’, and ‘‘Failed’’ decreased gradually
from 60 to 20 images and the variations of differences
were lower except for the ‘‘Moderate’’. This trend was also
depicted by theYOLO and SAM results in Fig. 19b. However,
both YOLO and SAM had the largest number of excellent
images 179 (64.2%) and 192 (68.8%), respectively.

IV. DISCUSSIONS
These study experiment results demonstrated improvement
in the lake segmentations of the SAM model compared to
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FIGURE 21. Testing training depth affects the segmentation results of the YOLOv8x model on the ALOS-2 dataset.

the SAM pre-test presented in the introduction section. That
could assert that our initial hypothesis of a need to fine-tune
SAM was right. Although the SAM pre-trained was trained
on an unprecedentedly large segmentation dataset (more than
11 million images and one billion masks (SA-1)) [19], their
performance for remote sensing data was also tested. It came
up with limitations like SAM segmented masks without
class information, supported by [36], and a fine-tuning SAM
technique for remote sensing datasets recommended by [33]

to enhance model proficiency. In addition, we assume that
most of the SA-1 images were optical, and a small propor-
tion were from space-bone sensors. Therefore, when dealing
with SAR images, with different characteristics with optical
data, the SAM model produces uncertainty and errors in its
results. In addition, shorter wavelength radar sensors (band-x,
3.2 cm) like Kompsat-5 are more sensitive to the smaller
surface roughness [62] including water surfaces affected by
winds and floating vegetation. This is a great source of noise
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Algorithm 1 Train for lake surface extraction Pytorch plat-
form
1 Model configuration# setting model parent

parameters for the training task
2 Device=Torch.cuda.device connection()
3 Bath_size = {a} #number of Baths = In/a
4 Model.to(device)
5 Epoch_number = {e}
6 Model Initializing: Parameter 8M, Val loss Lval = ∞

7 Data pipe # Prepare training, validating,
and testing input images

8

{
DimageDtrain = {(In_train,Wx ,Hy)

n_train−1
i=0 ,

Dval = {(In_val ,Wx ,Hy)
n_val−1
i=0 },

9

{
Dtest = {(In_test ,Wx ,Hy)

n_test−1
i=0 }

Dtest_mask = {(In_test_mask ,Wx ,Hy)
n_test−1
i=0 }

19 D_dict = {
20 ‘‘image’’: [Image.fromarray (Dimage) for image in

Dtrain],
21 ‘‘label’’: [Image.fromarray (Dmask ) for mask in

Dtrain_mask ],}
22 Dinput = Dataset.from_dict(D_dict)

10 Initialization: model = pretrained(sam-vit-base)
11 optimizer = Adam()
12 loss = monai.losses.DiceCEloss()
13 dataset = dataloader(Dinput )

14 Training SAM: for epoch ∈ {e} do
15 Foreach batch (Dtrain, Dtrain_mask ) ∈ Dinput do #
training data loader

16 Model_output = model(pixcelvalue = batch
[pixel_values].to(device)), # @GPU

17 L̂T :i:i+B−1 ← fM
(
DT :i:i+B−1, θM

)
LDCEi:i+B−1

18 DiceCEloss(DT :i:i+B−1,LDCEi:i+B−1)
19 θM ←
20 AdamOp(θM , ∇θM

1
B

∑i+B−1
j=i LDCEj, α)

21 LT ← 1
N train/B

∑N train/B
i=1

∑i+B−1
j=1 LDCEj

22 Print(LT );
23 Model Evaluation:

24 Foreach batch (DFval_B, D
F
val_mask_B) ∈ Dinput do #

validating dataloader
38 Model_output = model(pixcelvalue = batch

[pixel_values].to(device)), # @GPU
39 L̂FT :i:i+B−1← fM

(
DFT :i:i+B−1, θM

)
LDCEi:i+B−1

40 DiceCEloss(DFT :i:i+B−1,LDCEi:i+B−1)
41 θM ←
42 AdamOp(θM , ∇θM

1
B

∑i+B−1
j=i LDCEj, α)

43 LV ← 1
Nval/B

∑Nval/B
i=1

∑i+B−1
j=1 LDCEj

44 Print(LV );
45 Save model checkpoint: while LV < LV−Best save

model fM ,

in SAR remote-sensing data creating big challenges for not
only traditional methods of water extractions but also modern
deep learning models. These study’s results showed signifi-
cant improvement in water surface segmentations of example
lakes in the Kompsat-5 images reaching up to around 90%.
Even though we have not done pre-tests for the ALOS-2,
and Sentinel-1 data, we believe that after the DL models
are trained they can be employed to extract the lake water

Algorithm 2 Train for lake surface extraction Tensorflow-
Keras platform

1. Seeding for Reproducibility: system_config(seed_values)
2. Random.seed(s)
3. Os.enviroment(o)
4. system_config←

5. Data pipe
6. Dinput =

{(
In,Wx ,Hy

)n
i=0 ,

(
Mn,Wx ,Hy

)n
i=0

}
,

Dtest =
(
It ,Wx ,Hy

)t
i=0

7. Dtrain = slpit(Dinput ,ratio = 0.8),
Dval = slpit(Dinput ,ratio = 0.2),

8. Readimage,mask
(
Dtrain,Dval

)
= x, y←

9. Tensorflow sparse (x,y) = x,y←
10. Building the model

11. Conv_block (x)
12. x= (Conv2D(f=2,p=same),

BatchNor(x), Aciva tion(relu))
13. Encoder Block (x, p)
14. x= Conv_block (x, p)
15. P=MaxPool2D(2,2)
16. x←
17. Decoder_block (x)
18. x= (Conv2DT(), Concatenate(),

conv_block())
19. x←
20. Build_model(input_shape)→

input=keras.Input(I nput_shape)
21. build: Encoder, Bridge, Decorder, output
22. model←

23. Initialization: model = pretrained(model)
24. Opt=(Adam(lr), loss(‘‘binary’’), metric(‘‘acc’’)
25. Callback = (Checkpoint(ver=1), Reduce

LROP(m on=v_loss, f, p),
EarlyStopping(p=30))

26. Model train: for epoch ∈ {e} do
27. Foreach batch (Dtrain,Dtrain_mask ) ∈ Dinput

do #t raining data loader
28. Model_output = model.fit(data = . . . .{x,y},
29. callback(), opt(θM ))
30. L̂T :i:i+B−1 ←

fM
(
DT :i:i+B−1, θM

)
LLROPi:i+B−1

31. ReduceLROnPlateau(DT :i:i+B−1,
LLROPi:i+B−1)

32. θM ←
33. AdamOp(θM , ∇θM

1
B

∑i+B−1
j=i LLROPj, α)

34. LT ← 1
N train/B

∑N train/B
i=1

∑i+B−1
j=1 LLROPj

35. Print(LT );
36. Model validation:

37. Foreach batch (Dval ,Dval_mask ) ∈ Dinput
do #vali dating dataloader

38. Model_output = model.fit(data = {x,y},
callback(), opt(θM ))

39. L̂V :i:i+B−1 ←
40. fM

(
DV :i:i+B−1, θM

)
LLROPi:i+B−1

41. ReduceLROnPlateau(DT :i:i+B−1,
LLROPi:i+B−1)

42. θM ←
43. AdamOp(θM , ∇θM

1
B

∑i+B−1
j=i LLROPj, α)

44. LV ← 1
Nval/B

∑Nval/B
i=1

∑i+B−1
j=1 LLROPj

45. Print(LV );
46. Save model checkpoint: while LV < LV−Best save

model fM ,
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Algorithm 3Model test for tested dataset

1. Input: Dtest =
(
It ,Wx ,Hy

)t
i=0→ trained fM

2. Model parameter: θM
3. Output: Predictions on test images:

4. output = fM (Dtest:i),Inputprompt
(optional) , tensor (pt)),

#calculate Accuracy metrics
5. masks←
6. Overlaid predicted masks with

corresponding images
7. Plot ()

surfaces on these data correctly (more than 80%), not only
for regions of South Korea but for any lakes and seservoirs.

For individual datasets (Kompsat-5, ALOS-2, and
Sentinel-1), the YOLO presented poorer results compared to
the outputs of other models with 50-epoch trains. However,
in the results of loss function (LF) analysis, we found that
the YOLO’s LFs could be improved (decreased) more after
the 50th epoch, and that is a good sign of a potential accu-
racy amelioration for this model. Therefore, the 50-epoch
train could be an overly shallow fine-tune but sufficient for
the U-net(ResNet50) and DeepLab(ResNet50,EfficientNet), previous
studies fine-tunned the YOLO for 120 [63], 250 [64], and
300 epochs [65], [66]. That is a reason for deeper training
tests for the YOLO on the poorest results of ALOS-2 (Fig. 20)
and, interestingly, the YOLO LF was continuously decreased
to 100 epoch (best validation at 89th epoch), when the number
epoch set for 200 the FL improved to 200th epoch and (val.
of 149). While the deeper train was set for 300 epochs, the
FL of training continued to improve to the end of the training
phase but the validation LF did not improve at epoch 50. That
could be an overfitting of the model after the epoch 149might
be due to our small dataset’s limitation (553 images). In addi-
tion, the test of YOLO lake segmentation also demonstrated
the higher accuracy of its results (less red and green pixels)
when the number of training epochs increased (Fig. 21). It is
additionally a good showcase of when the model overfitting,
the segmentation accuracy is not improved as we have not
seen an improvement of the 300-epoch compared to the
200-epoch trains. As DL model trains are time and resource-
consuming (Table 4), it is worth discussing the trade-offs
between computational time and model accuracy. A longer
training time may ensure a better model result, however, this
is only the case for model convergence. Another considered
aspect is the model’s sizes related to its number of parameters
(size n to x of YOLO, ViT-tiny, small, base, large, and huge
of the SAMmodel e.g.), meaning that setting up a more com-
plex model will cost more time and computational memory
and, reversely, can gain more accurate model outputs. It is
recommended to examine available resources, input datasets,
and expected model accuracy to decide on chose appropriate
model configuration.

The results of DL lake/reservoir segmentations with differ-
ent models and datasets demonstrated the supervisor of this
modeling technique with a strong focus on the interested tar-
gets (lakes). That is unlike most pixel-based and object-based
classification methods the post-classifications often require
extra work for cleaning the model outputs (model result
refinement) to produce good final results [67], sometimes we
must use other tools to refine the results [68]. Nonetheless,
the DL model’s outcomes in this study are well clean except
for some small false negatives (small ponds that were out
of our masking and annotating task target) that require some
elimination but it is a negligible task. Additionally, the level
of errors in the results depends on the quality of the inputted
SAR images and aforementionedly regarding the types of
SAR sensors, and the surface roughness and types. Although
open water surfaces are most inherently detectable, particu-
larly with a longer wavelength such as Sentinel-1 (band-C,
5.6cm) and ALOS-2 (band-L, 22.9 cm) which appear dark
and strongly related to SAR power function compared to
other land types (background) [69], common thresholding
(Otsu, KI) and Chan-Vese segmentation had some limita-
tions dealing with vegetation intervention in water bodies
and recommended further deep learning techniques to obtain
higher accuracy [70]. The fine-tuned SAM can be applied to
analogous C, L, and X band SAR images, however, it may
reveal potential limitations for the other SAR sensors as they
have distinctive characteristics with the used data in this
study.

Besides model accuracy, the quality of overall perfor-
mances is valuable information for choosing a suitable DL
model for a particular task and at a specific resource. Addi-
tionally, it often requires an intensive review of present topics
and an understanding of DL aspects such as DL concepts,
research gaps, computational infrastructure or platform, and
applications [71]. Every DL model has their pros and cons
like the SAM had the most robustness and generality but it
is highly complex and time-consuming in the training pro-
cess (Table 9). The YOLO is also complex however, it is
fast, particularly in object detection (suitable for real-time
operation) [72]. The model selection is also based on the
priority of the modeling purposes, for example when we have
a good computational infrastructure (CPU, RAM, GPU; e.g.)
and model accuracy is the main focus, the SAM, YOLO, and
DeepLab(ResNet50) are more relevant. However, the responses
of each DL model to a dataset will be different, for example,
the YOLOv8x dealt better with larger datasets rather than
smaller ones, and the slower model convergence (more train-
ing epochs required), (we set a learning rate of all model was
10−5). It is noted that larger training datasets might warranty
higher model outputs [73] and reduce the risk of overfitting
and spurious correlations [74], however, we need to recall the
current resources. This could be a future research direction
searching for optimal algorithms to deal with large datasets
and lower the barriers of required computational resources.
Hence, the limitations of time and scalability of DL models
can be solved.
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V. CONCLUSION
Through our intensive experiments of the DL models for
semantic water bodies (lake and reservoirs) segmentations,
DL models are promising avenues for this task with high
accuracy and model implementation efficiency. The SAM
presented an excellent tool for its most accurate results,
however, the model runs are time-consuming. Although,
for the individual datasets, the YOLO demonstrated poor
performances, for the largest dataset of the combination
of all images, the YOLOv8x indicated its robustness with
highly accurate results and computational time effectiveness.
The DeepLab(ResNet50) is also highly recommended with
the second most precision results and followed by the U-
net(ResNet50), and the DeepLab(ResNet50) models. Despite the
DL models are possibly more popular and applied for optical
images, this work proves that they can work effectively with
SAR remote sensing data for specific aims (surface water
extraction e.g.). Also, this research collected more than 1300
SAR images of lakes, when it comes to DL modeling, larger
datasets may produce higher accuracy results and prevent
model overfitting. In general, DL models are recommended
in the remote sensing domains, particularly for SAR data.

APPENDIX A
See Algorithm 1.

APPENDIX B
See Algorithm 2.

APPENDIX C
See Algorithm 3.
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