
Received 30 October 2024, accepted 16 November 2024, date of publication 25 November 2024, date of current version 23 January 2025.

Digital Object Identifier 10.1109/ACCESS.2024.3505943

A Cloud API Personalized Recommendation
Method Based on Multiple Attribute Features
and Mashup Requirement Attention
LIMIN SHEN, YUYING WANG , CHENGYU LI, AND ZHEN CHEN
College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
Hebei Key Laboratory of Software Engineering, Qinhuangdao 066004, China

Corresponding author: Yuying Wang (yuyingwang@stumail.ysu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61772450 and Grant 62102348, in part
by the Natural Science Foundation of Hebei Province under Grant F2022203012, in part by the Science and Technology Research Project
of Hebei University under Grant QN2020183, and in part by the Project of Hebei Key Laboratory of Software Engineering under
Grant 22567637H.

ABSTRACT In current mashup-oriented cloud API recommendation systems, insufficient attention to
personalized development requirements remains a common issue, particularly regarding developers’ needs
for attributes such as functionality similarity and complementarity. This paper proposes a novel approach for
personalized cloud API feature representation and recommendation. We construct a graph of the cloud API
ecosystem with rich side information and design metapaths to capture and characterize various API features.
To fully leverage information from intermediate nodes in the metapaths and emphasize the significance
of different instances, we employ a translational distance model and graph neural network techniques
to aggregate cloud API feature information. Furthermore, we introduce mashup requirement attention,
a mechanism that customizes recommendations based on the specific needs of each mashup project, thereby
enhancing the accuracy and personalization of API recommendations. Extensive experiments on real-world
datasets demonstrate the effectiveness of the proposed method.

INDEX TERMS Attentionmechanism, cloud application programming interface, mashup-oriented, multiple
attribute features, personalized recommendation.

I. INTRODUCTION
With the rapid advancement of cloud computing technology,
there has been an exponential growth in the number of
cloud Application Programming Interfaces (APIs), making
them essential for service delivery, function replication, and
data export [1]. Lightweight composite services, known
as mashups, have gained significant attention due to their
flexibility and uniqueness. As web-based data integration
applications, mashups create value-added services by com-
bining content from various data sources. This technology
enables developers to leverage existing cloud APIs for the
rapid development of innovative and practical applications
that can swiftly respond to market dynamics and user needs.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jolanta Mizera-Pietraszko .

However, the expanding size of API repositories poses a
significant challenge: effectively identifying and selecting
APIs that align with specific development requirements has
emerged as a critical concern in cloud computing.

To address this challenge, recommendation algorithms
assist in selecting cloud APIs. The intelligent recommenda-
tion of cloud APIs not only improves development efficiency
and shortens project cycle time, but also fosters the robust
growth and widespread adoption of the cloud API economy.
Currently, mashup-oriented cloud API recommendations are
primarily based on collaborative filtering (CF) or content.
Collaborative filtering (CF) methods, which typically utilize
user-API or mashup-API interaction matrices, identify devel-
oper preferences through similarity analysis for personalized
recommendations [2]. These methods, however, rely heavily
on sufficient historical data, and their performance can be

VOLUME 13, 2025

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 13285

https://orcid.org/0000-0002-1520-5557
https://orcid.org/0000-0003-4424-7315
https://orcid.org/0000-0002-2298-5037

L. Shen et al.: Cloud API Personalized Recommendation Method Based on Multiple Attribute Features

hindered by high-dimensional and sparse matrices, leading
to cold-start issues and limited service representation [3], [4]
[5]. Content-based approaches, on the other hand, analyze
API description documents to match user requirements by
extracting semantic features and calculating their similarity
[6]. While these approaches avoid the cold-start problem,
they often underutilize additional information from the
service ecosystem, resulting in poor quality of the obtained
semantic features [7], [8].
To overcome the limitations inherent in both CF-based

and content-based methods, hybrid approaches have been
developed that combine the strengths of both methodologies.
These approaches utilize machine learning and deep learn-
ing techniques to extract semantic information while also
leveraging matrix decomposition and clustering techniques
to handle interaction information between mashups and
APIs [9], [10], [11]. The task of recommending cloud
APIs for mashups involves unique challenges, including the
need to understand the complex inter dependencies between
APIs and to adapt to the various functionalities required
by the mashup. Simple heuristic-based approaches, while
effective in straightforward recommendation scenarios, are
unable to capture the subtle relationships and rich contextual
information required for accurate API recommendations
in this domain. Therefore, state-of-the-art techniques such
as graph neural networks are employed to address these
challenges by leveraging structural information embedded
in the API knowledge graph and capturing multi-hop
interactions between APIs.

Thus, to enhance the accuracy of API recommendations,
increasing work has utilized the extensive knowledge accu-
mulated in the cloud API ecosystem [12]. As shown in
Fig. 1, data in the cloud API ecosystem essentially has a
graph structure, and knowledge graphs have been employed
to introduce side-information into cloud API recommen-
dations, alleviating the issues of data sparsity and result
homogeneity [13].

Despite the advancements of knowledge graph-based
recommendation methods in mashup-oriented cloud API
recommendation, several deficiencies remain. In the API
ecosystem, cloud APIs are characterized by a variety of
attributes, such as functionality similarity-how closely APIs
perform similar tasks-and functionality complementarity-
how APIs can work together to enhance overall capabilities.
These attribute characteristics are crucial in cloud API
recommendation. Specifically, complex mashups require not
only cloud APIs with similar functionality for specific
functionality enhancement but also APIs with different
functionality to complement each other in fulfilling more
complex requirements [14]. The similarity among cloud APIs
can be characterized by the tagging relationship of functional
tags, while complementarity is implicit in the invocation
relationships between APIs. These various attribute features
will not fully and accurately reflect the diverse charac-
teristics of cloud APIs if learned simultaneously without
differentiation.

Moreover, mashups exhibit varying preferences for differ-
ent types of API attributes based on their requirements. Some
mashups tend to integrate multiple cloud APIs with similar
functionalities to achieve specific feature enhancements. For
instance, in a mapping mashup, APIs such as Google Maps,
Google Earth, and Bing Maps may need to be integrated to
enhance the richness and accuracy of geographic information
services. In this process, the functional similarity between
APIs becomes a crucial factor to consider during integration.
Conversely, somemashups require cross-category cloudAPIs
to achieve functional complementarity. For example, a travel
service mashup might need to invoke various APIs such as
photo, map, and social APIs to provide comprehensive and
personalized services. In this scenario, the complementarity
between different APIs is crucial for constructing an effective
mashup. If various types of attribute features of cloud
APIs, delivered through different relationships, are treated
equally, some potential preference information of the mashup
might be overlooked, subsequently affecting the accuracy and
comprehensiveness of the recommendation system.

Confronting the aforementioned problem, this study pro-
poses a personalized cloud API recommendation method
that incorporates multiple attribute features and considers
attention related to mashup requirements. First, the method
constructs a cloud API ecosystem graph, including cloud
APIs, mashups, and their functional tags, and designs
metapaths to capture information implied by different
relationships between nodes. To fully consider the internal
information of the nodes in the metapaths and the impor-
tance of different metapath instances, the similarity and
complementary features of cloud APIs based on different
metapaths are encoded and aggregated using the transla-
tional distance model and graph neural network techniques.
In addition, an attention mechanism associated with mashups
is introduced, taking into account the potential preferences
of different mashups for similarity and complementarity.
This mechanism determines the importance of different
attribute characteristics of the cloud API for the requirements
of a given mashup, enabling the recommender system to
customize the recommendations according to the unique
requirements of different mashups. The different attribute
features are weighted and fused using these attention weights
to obtain a personalized feature representation of the cloud
API that is highly relevant to the requirements. Then,
based on the mashup’s requirements and the corresponding
personalized cloud API features, the probability of each
candidate cloud API being invoked by a given mashup is
predicted, and the cloud API with the highest probability is
selected to generate a recommendation list. This approach
aims to improve the effectiveness of personalized cloud
API recommendations for mashups, providing developers
with more accurate and personalized API recommendation
services.

The key contributions of this paper are as follows:
(1)We propose a novelmethod that encodes and aggregates

similarity and complementary features of cloud APIs using

13286 VOLUME 13, 2025

L. Shen et al.: Cloud API Personalized Recommendation Method Based on Multiple Attribute Features

FIGURE 1. A toy example of the cloud API ecosystem.

a combination of translational distance models and graph
neural networks, allowing for a more nuanced and accurate
representation of API attributes.

(2) We introduce a unique attention mechanism that
dynamically adjusts the importance of different API features
based on the specific requirements of a mashup, enhancing
the precision and personalization of API recommendations.

(3) We validate our approach using real-world datasets,
showing superior performance in mashup-oriented cloud API
recommendations. By incorporating developers’ preferences
for different functional attributes, our method yields more
accurate API recommendations aligned with specific devel-
opment requirements.

The remainder of the paper is structured as follows:
Section II summarizes the relatedwork. Section III introduces
the preliminary knowledge. Section IV details the specific
methodology used. Section V presents the experimental setup
and results. Section VI concludes the paper by summarizing
the study results and outlining future work.

II. RELATED WORK
Mashup has gained widespread adoption in software develop-
ment due to its innovative programming paradigm. By inte-
grating diverse cloud APIs, this technology significantly
accelerates the development of innovative applications.
In recent years, researchers have focused on developing
efficient API recommendation mechanisms to optimize the
mashup development process and enhance application per-
formance. This section presents an overview of representative
research in this area.

A. CF-BASED METHODS
Collaborative filtering methods mainly rely on user-API
or mashup-API interaction matrices to identify developer
preferences through similarity analysis for personalized
recommendations.

Xue et al. [3] proposed a deepmatrix decomposition frame-
work that extracts features directly from users’ interaction

data with APIs and integrates explicit and implicit ratings to
achieve Top-K recommendations. Fletcher [15] proposed a
regularized user preference-embedded matrix decomposition
method that considers both explicit and implicit personalized
preferences, significantly improving the accuracy and diver-
sity of the recommender system. Lian and Tang [4] proposed
a technique utilizing neural graph collaborative filtering and
higher-order connections between cloud APIs and users.
The importance of similarity computation in collaborative
filtering algorithms has been widely recognized, and some
studies have enhanced the accuracy of similarity computa-
tion by incorporating additional information. For example,
Botangen et al. [16] integrated geographic and functional
relevance into a probabilistic matrix decomposition model to
infer potential mashup invocation preferences. Meng et al.
[17] considered temporal effects to distinguish between stable
Quality of Service (QoS) measurements and temporal QoS
metrics in a collaborative filtering model based on traditional
neighbor relationships. Wang et al. [5] considered service
popularity in matrix decomposition byweighting all elements
to avoid recommending popular but useless API services.

These methods train effective recommendation models
with a large amount of data, improving recommenda-
tion effect and prediction efficiency, but there are some
issues: matrix decomposition models require sufficient
historical records, while mashup-API matrices are usually
high-dimensional and sparse, leading to similar feature
vectors and affecting service representation. In addition, new
services lack interaction records and face cold-start problems.

B. CONTENT-BASED METHODS
Content-based approaches analyze API description doc-
uments by parsing user queries, extracting semantics at
different levels, and calculating their similarity to user
requirements. The accuracy of matching mainly relies
on effective feature extraction from documents, and the
effectiveness of data feature mining directly affects the
result’s ability to meet user requirements.

VOLUME 13, 2025 13287

L. Shen et al.: Cloud API Personalized Recommendation Method Based on Multiple Attribute Features

Gong et al. [7] used functional keywords to index
APIs, constructed weighted undirected graphs to represent
services, transformed the matching of user requirements
with keywords into a minimum Steiner tree problem, and
utilized the minimum spanning tree algorithm to recommend
service combinations. Chen et al. [18] and Wu et al.
[19] further considered service compatibility and popularity,
applying deep reinforcement learning and dynamic planning
techniques to find the minimum Steiner tree. Topic modeling
represents the semantic functions of services more accurately
by modeling document vocabularies. Zhong et al. [8]
proposed a novel cloud API recommendation method that
models mashup descriptions and cloud API components
using an author-topic model, exploiting vocabulary features
of the reconstructed cloud API profiles. Zhang et al.
[20] proposed a new cloud API recommendation method
that complements mashup functional descriptions of the
called API service description document, identifying and
filtering terms that are not service-distinctive to improve
recommendation accuracy. Zhang et al. [21] proposed a
word embedding-based service representation method using
Gaussian mixture model and Word2vec to obtain service
representation vectors suitable for subsequent tasks like
clustering and recommendation. Bai et al. [22] applied
stacked denoising auto-encoders to use noise to simulate
uncertainty in user feature descriptions, reconstruct clean
input information, eliminate misleading uncertain words,
and improve result accuracy. Zhao et al. [23] proposed
a cloud API recommendation method combining feature
ensemble and learning to rank by integrating textual features,
nearest-neighbor features, API-specific features, and tagged
features from mashup and cloud APIs. Shi and Liu [24]
proposed a cloud API recommendation method based on
text extension and deep learning models, using a hierarchical
probabilistic topic model to augment sentence-level cloud
API descriptions and recommend cloud APIs based on
semantic similarity.

While the content-based approach avoids the cold-start
problem by mining the functional semantic information
of the service, it focuses on the representation of feature
vectors in the service description document. There is also
a large amount of information in the service ecosystem
that can enhance content representation, such as invocation
relationships between services andmulti-dimensional service
attributes, which are underutilized in the above literature,
resulting in poor quality of the obtained semantic features of
services.

C. HYBRID METHODS
Given the performance limitations of a single recom-
mendation model in mashup recommendation, researchers
developed a hybrid recommendation approach that combines
collaborative filtering with content-based recommendation.
Machine learning and deep learning techniques are utilized
to extract semantic information from service description

documents, while clustering and matrix decomposition
techniques are applied to identify similar services and learn
interaction information between mashups and APIs. The
hybrid approach incorporates the advantages of multiple
models to improve recommendation accuracy.

Cao et al. [9] use the similarity, popularity, and
co-occurrence of mashup and API as inputs, employing
a factorization machine for feature interaction learning to
alleviate the data sparsity problem. Zhang et al. [25] apply
topic models and category labels to predict service synergies
based on invocation records and recommend a prioritized
list of services. Ma et al. [10] use a convolutional neural
network for feature extraction, input vector representations of
text and tags into a multilayer perceptron combined with the
node2vec algorithm to learn low-dimensional representations
of mashups and services, and finally obtain the service scores.
Xiong et al. [26] combined nonlinear interactions between
mashups and APIs learned by a multilayer perceptron with
feature similarity extracted by word vectors, and input these
results into a fully-connected layer to predict service scores
and accomplish the combination recommendation task.
Ma et al. [27] further integrated an attention mechanism
to compute mashup similarity for interactive service
combination recommendations.

Although these approaches go beyond the limitations of
a single model, they still cannot fully satisfy the variety of
services required by users when making recommendations
in a comprehensive service library. Additionally, functionally
redundant services may reduce the recommender system’s
accuracy.

III. PRELIMINARIES
A. CLOUD API ECOSYSTEM GRAPH CONSTRUCTION
On the cloud API publishing and sharing platform, a substan-
tial amount of information about cloud APIs, mashups, and
function tags is recorded, as well as information about the
invocation and tagging relationships among them [28]. The
cloud API ecosystem graph G = (V, E) can be constructed
using this data, where V and E denote the set of nodes and the
set of edges, respectively. V consists of three types of nodes:
the set of cloud API nodes A = {a1, a2, · · · , a|A|}, the set
of mashup nodes M = {m1,m2, . . . ,m|M |}, and the set of
function tag nodes T = {t1, t2, . . . , t|T |}. E includes three
types of relationships: the invocation relationship between
mashups and cloud APIs, the tagging relationship between
cloud APIs and function tags, and the tagging relationship
between mashups and function tags [29].

As exemplified in Fig. 1, the mashup ‘‘CelebDomain’’
invokes four cloud APIs, including ‘‘google-maps’’, ‘‘net-
flix’’, ‘‘twitter’’, and ‘‘bing’’, and has the function tags
‘‘mapping’’, ‘‘entertainment’’, ‘‘video’’ and ‘‘celebrities’’;
the cloud API ‘‘Twitter’’ is tagged with the function tags
‘‘Social’’ and ‘‘Blogging.’’

To effectively analyze these complex relationships,
the concept of metapath is introduced. To facilitate the

13288 VOLUME 13, 2025

L. Shen et al.: Cloud API Personalized Recommendation Method Based on Multiple Attribute Features

description of our method in the following sections, the
definitions of the metapath and its instances are provided as
follows.
Definition 1 (Metapath): A meta-path is defined as a

sequence of node types and edge types that captures a
specific schema-level path within a heterogeneous graph G.
Formally, a meta-path P is represented as P : NT1

ET1
−−→

NT2
ET2
−−→ . . .

ETl
−−→ NTl+1, where NTi denotes a node type,

and ETi denotes an edge type. In the cloud API ecosystem

graph, an example of a meta-path is P1 : Mashup
invokes
−−−−→

API
invoked by
−−−−−−→ Mashup.

Definition 2 (Metapath Instance): A meta-path instance
refers to a specific instantiation of a meta-path within the
graph G. It corresponds to a concrete sequence of nodes and
edges that conforms to the structure defined by a given meta-

path. For instance, given the meta-path P1 : Mashup
invokes
−−−−→

API
invoked by
−−−−−−→ Mashup, a meta-path instance could be

the sequence: ‘‘CelebDomain’’
invokes
−−−−→ ‘‘Twitter’’

invoked by
−−−−−−→

‘‘SocialMediaAggregator’’.
By leveraging these definitions, the interactions between

different entities in the cloud API ecosystem can be sys-
tematically explored. The relationships in the ecosystem can
be effectively analyzed using metapaths and their instances,
as defined above, to facilitate an understanding of the
complex interactions in the cloud API ecosystem [30].

B. SIMILARITY AND COMPLEMENTARITY DESCRIPTION
Cloud APIs possess various attributes, including functional-
ity, performance, and security. In developing mashups based
on functionality proposed by developers, functional similarity
and functional complementarity are crucial for the effective
integration of diverse services and resources.

Functional similarity refers to the proximity of two or more
cloud APIs in terms of functional attributes [24]. Functional
tags of cloud APIs are key identifiers describing the
capabilities of the provided services and precisely defining
the core functional characteristics of each cloud API.When
two or more cloud APIs share one or more functional
tags, it indicates a degree of functional similarity among
these APIs. In recommender systems, evaluating functional
similarity between APIs aids developers in identifying and
utilizing similar APIs when building mashup applications,
thus maximizing the strengths and features of each API
and enhancing the system’s functionality, reliability, and
user experience. For example, Google Maps, Bing Maps,
and Yahoo Maps all offer mapping services and geographic
information features. Combining these APIs can provide
users with more comprehensive and accurate mapping
services, enabling developers to seamlessly integrate them
into mashup applications for various purposes such as travel
planning, logistics management, and local services.

Functional complementarity refers to the capability of two
or more cloud APIs to complement each other functionally to
jointly satisfy specific requirements [14]. The simultaneous

invocation of cloud APIs during mashup creation reveals
their collaborative potential, indicating functional comple-
mentarity. In recommender systems, assessing functional
complementarity between APIs helps identify combinations
that can work together to fulfill complex requirements, thus
offering more comprehensive and efficient recommendation
services. For example, in e-commerce, a complete shopping
experiencemay involve various segments like product search,
price comparison, payment, and logistics. To provide such an
experience, developers may need to integrate multiple APIs
with complementary features, such as a product search API
(e.g., Google Shopping API), a price comparison API (e.g.,
PriceGrabber API), a payment API (e.g., Stripe API), and
a logistics API (e.g., UPS API). These APIs collaborate to
provide users with a complete shopping experience, from
product search to the final receipt of goods.

C. PROBLEM FORMALIZATION
In the cloud API ecosystem, the invocation relationships
between mashups and cloud APIs can be defined as a matrix
Y ∈

|M |×|A|, where each element ym,a is represented in
binary form. 1 indicates that mashup m invokes API a, while
0 indicates no invocation relationship. The ultimate goal of
cloud API recommendation for mashups is to predict the
probability of a given mashup having potential interest in
candidate cloud APIs. This prediction uses the mashup-API
interaction matrix Y ∈

|M |×|A| and the cloud API ecosystem
graph G = (V, E), based on specific requirements. The
predictive function is represented as follows:

ŷm,a = F(m, a|Y ,G,Treqm, 2), (1)

where ŷm,a represents the probability of a mashup invoking
a cloud API, Treqm = {treq1, treq2, · · · , treqn} ∈ T
represents the set of functional tags required by the mashup,
and 2 denotes the model’s parameters.

IV. METHODOLOGY
To identify the most suitable cloud API for constructing a
mashup that meets a given requirement, it is essential to
accurately, comprehensively, and purposefully characterize
the feature representation of the cloud API. Fig. 2 illustrates
the overall framework of the proposed mashup-orient cloud
API recommendation method.The method mainly consists of
the following steps:

(1) Node representation and path instances extraction:
cloud API and mashup requirement features are embedded
into dense vectors. Based on the cloud API ecosystem graph,
metapaths are defined and path instances extracted

(2) Path instances encoding and aggregation: path
instances are encoded into feature vectors with a translational
distance model and aggregated using a graph attention neural
network to represent cloud API different features.

(3) Attention-based Fusion: a mashup requirement-related
attention fuse similarity and complementary features to
generate personalized cloud API representations.

VOLUME 13, 2025 13289

L. Shen et al.: Cloud API Personalized Recommendation Method Based on Multiple Attribute Features

FIGURE 2. The overall framework of the proposed mashup-oriented cloud API recommendation method.

(4) Prediction and recommendation: the invocation prob-
abilities of cloud APIs are calculated and ranked based on
mashup requirement and API features, recommending the
Top-N APIs with the highest probabilities of invocation.

While traditional heuristic-based approaches offer sim-
plicity and computational efficiency, they lack the ability
to model the complex dependencies and diverse functional
requirements inherent in mashup creation. These approaches
do not take into account the relational structure between
api’s, which is critical for recommending api’s that work
well together in a mashup. To overcome these limitations,
the approach utilizes graph neural networks (GNN) and
translational distance models. The graph neural network
aggregates information from neighboring nodes in the knowl-
edge graph to capture relational and contextual information
that is critical for accurate recommendations, thus providing
a more comprehensive understanding of the API outlook.

A. NODE REPRESENTATION
Functional tags provide succinct functional descriptions of
cloud APIs and mashups in the cloud API ecosystem.
By leveraging standardized functional tags, cloud API
characterization features and mashup requirements can be
represented in a unified vector space with fewer parameters.
Furthermore, this approach addresses issues related to
vocabulary discrepancies and language inconsistencies that

frequently emerge from the utilization of non-standardized
terminology and disparate language descriptions employed
by developers. For example, APIs with analogous functional-
ities may be described using disparate terminologies or in dis-
parate languages, which could result in potential challenges
in accurate recommendations. By focusing on functional tags,
it is possible to ensure that the recommendation system
is robust to such variances and remains consistent across
different contexts [31]. By combining multiple different
functional labels, cloud APIs and mashups can be well
characterized, which has been found to be successful in
many information systems and also applies to the cloud API
ecosystem [32].

Therefore, we utilize multi-hot encoding [33], each cloud
API or mashup can be represented as a vector in which
each dimension corresponds to a functional tag, capturing
capture the functionality or requirements. This approach
ensures that the representation can handle cases where an
API or mashup has multiple functional tags, providing a more
flexible encoding.

To achieve this, assume there are n functional tags.
We generate a multi-hot encoding vector of length n for each
API to represent the functional tags it contains. For example,
if an API a has the 1st and 3rd tags, its multi-hot encoding
would be [1, 0, 1, 0, . . . , 0], where 1 indicates that the cloud
API has this tag and 0 indicates not.

13290 VOLUME 13, 2025

L. Shen et al.: Cloud API Personalized Recommendation Method Based on Multiple Attribute Features

Next, we convert the multi-hot encoding vector into a
lower-dimensional embedding representation. Specifically,
we define an embedding matrix W ∈ Rn×d , where n is
the number of functional tags and d is the dimension of
the embedding vector. By looking up the corresponding
columns in the embedding matrix, each non-zero position in
the multi-hot encoding vector is mapped to its corresponding
embedding vector. Then, these embedding vectors are
averaged to obtain the final feature representation of the
cloud API:

ea =
1

|N tag
a |

∑
k∈N tag

a

xa,kWk , (2)

where N tag
a denotes the set of tags associated with the cloud

API a, xa,k is the value (0 or 1) in the multi-hot encoding
vector for the k-th tag, and Wk is the embedding vector for
the k-th column of the embedding matrix.

Similarly, for mashup requirements, which are also
described by functional tags provided by the developers,
the multi-hot encoding vector xm ∈ {0, 1}n can be used to
represent the features of the mashup. The mashup embedding
is calculated as:

em =
1

|Treqm|

∑
k∈Treqm

xm,kWk , (3)

where Treqm represents the set of functional tags required by
the mashup, and xm,k indicates whether the k-th tag is present
in the multi-hot encoding vector.

Through this process of multi-hot encoding and embed-
ding, the features of both cloud APIs and mashups can
be mapped into the same lower-dimensional vector space,
achieving a unified feature representation. This method not
only captures the relationships between functional tags but
also provides more accurate semantic information for the
recommendation system.

B. PATH INSTANCES EXTRACTION
In an information graph, two nodes are connected through
various semantic paths known as metapaths, which do not
rely on direct connections between nodes but are con-
structed based on higher-order relationships [30]. Using these
paths, similarities and complementarities between cloud API
nodes can be identified. According to the description in
Section III-B, in the cloud API ecosystem graph, if two
cloud API nodes form an indirect connection through one or
more functional tags as intermediary nodes, this connection
pattern indicates that these two cloud APIs have functional
similarities. If two cloud API nodes are both connected
to the same mashup node, this implies the potential for
them to exhibit functional complementarities, as they have
been co-invoked for the same application scenario. Based on
these relationships between the nodes, the set of metapaths
associated with the cloud API is formally defined as follows:

8 = {Psim,Pcompl}, (4)

where Psim denotes the similar metapath ‘‘cloud API - Func-
tion Tag - cloud API’’ and Pcompl denotes the complementary
metapath ‘‘cloud API - mashup - cloud API.’’ Different
metapaths can reveal various semantics, and a sequence of
nodes that follows the pattern defined by ametapath is termed
a path instance.

Based on the defined metapaths Psim and Pcompl, the
cloud API ecosystem graph is divided into two distinct
subgraphs. In each metapath-based subgraph, the set of path
instances where the target cloud API node is the endpoint is
obtained, denoted by pasim and pacompl. For example, to extract
the path instances related to cloud API node a1 in Fig. 2,
two subgraphs are first divided based on the aforementioned
metapaths: one subgraph contains only cloud API nodes and
tag nodes, and the other subgraph contains only cloud API
nodes and mashup nodes. Path instances that can represent
different attributes are acquired in each subgraph. Similar
path instances of cloud API node a1 based on metapath
Psim include ρ1 : a1 − tg1 − a1, ρ2 : a1 − tg2 − a1,
ρ3 : a2 − tg2 − a1, and ρ4 : a4 − tg2 − a1, i.e., p

a1
sim =

{ρ1, ρ2, ρ3, ρ3}. Similarly, complementary path instances are
denoted as pa1compl = {ρ5, ρ6, ρ7}.

C. INSTANCE ENCODING AND AGGREGATION
Given a target cloud API node a and a metapath P, the
encoding of path instances is employed to learn the contextual
information of the node and capture its hidden features. The
formalization of path instances is as follows:

ρ : eu
r1

−→ ev
r2

−→ ea, (5)

where ρ denotes an instance of the metapathP ending at node
a, and u, v denote other nodes in the path instance, and r1, r2
denote relationships between nodes. e denotes the embedding
of a node.

The previousmetapath-based graph embeddingmodel [34]
only considered information from the two endpoints of the
metapath and ignored all intermediate nodes, as shown in
Fig. 3 (a), resulting in significant loss of information. Inspired
by the knowledge graph embedding technique [35], [36],
we adopt a translational distance model similar to TransE to
design a path instance encoder, which utilizes all the nodes
and relationships in the path instances and encodes them into
a unified feature, as shown in Fig. 3 (b).
The basic idea of TransE is to represent associations

between entities and relations by vector operations, i.e., for
a triple (h, r, t), where h and t denote the head entity and
tail entity, respectively, and r denotes the relation, TransE
tries to make h + r ≈ t hold [36]. This means that
the vector of head entities h plus the vector of relations r
should be close to the vector of tail entities t . Thus, both
entities and relations are modeled and optimized in the same
vector space. Slightly different from the knowledge graph
embedding method transE described above, there are a total
of three nodes and two relations in a meta-path instance, and

VOLUME 13, 2025 13291

L. Shen et al.: Cloud API Personalized Recommendation Method Based on Multiple Attribute Features

FIGURE 3. Comparison of different encoding methods for metapath
instances.

the formulas adapted to meet our needs are as follows:

hρ
a = MEAN((eu + r1 + r2), (ev + r2)). (6)

Moreover, unlike knowledge graph embeddings, in this
study relations are not explicitly characterized but are
represented by learnable embedding vectors of the same
dimension as the nodes. This design enables the model to
learn the features of the relationships, thereby improving the
representation of path instance encoding.

After the path instances are encoded as independent feature
vectors, it is crucial to consider that the significance of
different path instances to the target node varies. According
to the graph attention neural network algorithm [34], the path
instances of the target node are weighted and summed.

αρ
a =

exp(σ1(qTp (ea||h
ρ
a)))∑

ρ′∈p exp(σ1(qTp (ea||h
ρ′

a)))
, (7)

where, || represents vector concatenation. p denotes the
instance set of the target node a on the metapath P . qp is
the attention vector, and σ1(·) is the activation function. The
attention coefficients and the corresponding path instance
features are linearly combined to obtain the cloud API node
feature representation based on the metapath P as follows:

ePa = σ2(
∑

ρ∈p
αρ
a h

ρ
a), (8)

where σ2(·) denotes the activation function. Based on the
metapath set defined in Section IV-B, the above aggregation
operation is performed for each metapath, and the feature
representation of the cloud API node under each metapath
{esima , ecompl

a } is obtained.

D. MULTIPLE ATTRIBUTE ATTENTION FUSION
After obtaining various attribute features of cloud APIs
from different metapaths, the feature representation set
esima , ecompl

a of cloud API node a is derived, containing diverse
semantic information. To achieve a comprehensive cloud
API representation, these various attribute features must

be fused. Existing methods typically utilize mean attention
or global self-attention to fuse various semantic features,
which evidently ignores the unique requirements of different
mashups. In cloud API recommendations for mashups,
different mashups have diverse preferences for similarity
and complementarity. This implies that semantic information
from different metapaths in the cloud API ecosystem graph
varies in importance for mashups with distinct requirements.

Therefore, considering the impact of diverse requirements
on the comprehensiveness and personalized represen-
tation of cloud API features, we designed a mashup
requirement-related attention module to fuse multiple
attribute features. Using the requirement features of a mashup
as a query and the various attribute features of a cloud API
as keys and values, we learn the weights of different attribute
features to determine their importance.

Specifically, for a given cloud API a, we first concatenate
the feature representation vectors under each metapath to
obtainEa = [esima , ecompl

a] and defineQ = emWQ,K = EaWK ,
and V = EaWV . Here, W is the weight coefficient, and
Q, K , and V are the outputs of the features after linear
transformation. The query Q and key K are used to calculate
the attention score, and the weights of each type of attribute
feature are obtained through the normalization process:

βm = softmax(
QKT
√
d

), (9)

where d is the dimension of the key matrix, and softmax is
the normalized exponential function.

Finally, the weights of each type of attribute features
related to the mashup are utilized as personalization filters to
fuse different meta-paths of cloud API node representations.
The final feature embedding of a cloud API node a for a given
requirement mashup m is defined as follows:

ema =

∑
P∈8

βPme
P
a . (10)

E. PREDICTIONS AND RECOMMENDATIONS
After computing the personalized embeddings relevant to
the target mashup, incorporating both cloud API similarity
and complementary features, the probability of the mashup
invoking the target cloud API is predicted.

ŷm,a = σ3(ema · em). (11)

The mashup-oriented cloud API recommendation involves
an implicit feedback problem, where a Sigmoid function
restricts the output to the (0,1) range to represent the
probability of a mashup invoking the cloud API. The
N cloud APIs with the highest invocation probabilities are
recommended for developers to use in mashup development.
The loss function is defined using cross-entropy:

Loss = −

∑
(m,a)∈Y

(ym,a log(ŷm,a)

+ (1 − ym,a) log(1 − ŷm,a)), (12)

where Y includes mashup-API interaction data and random
negative samples.

13292 VOLUME 13, 2025

L. Shen et al.: Cloud API Personalized Recommendation Method Based on Multiple Attribute Features

To present the proposed recommendation method, a work-
flow for mashup-oriented cloud API recommendation is
provided in Algorithm 1.

Algorithm 1 Cloud API Recommendation Method for
Mashups

Require: interaction matrix Ŷ = (ŷma)|M |×|A|, API ecosys-
tem graph G = (V, E), metapath set 8 = {Psim,Pcompl},
mashup requirement set Req = {Treq

m
|m ∈ M};

Ensure: Cloud API recommendation list;
1: Initialize cloud API feature representation;
2: for epoch = 1, 2, 3, . . . do
3: for target mashup m ∈ M do
4: Calculate requirement representation em by Eq.3;
5: for API a ∈ A do
6: for path P ∈ 8 do
7: Extract the path instances of API a;
8: Encode the path instances by Eq.6;
9: Aggregate the path instances of API a in

metapath P by Eq.7-8;
10: end for
11: Fusion multiple attribute features to obtain the

final feature representation ema related to the
mashup requirement by Eq.9-10;

12: Calculate the predicted probability ŷma by Eq.11;
13: end for
14: Rank the predicted probabilities and create Top-N

APIs list;
15: end for
16: Calculate the loss by Eq.12 and update the parameters.
17: end for
18: return Cloud API recommendation list

V. EXPERIMENTATION AND ANALYSIS
A. PREPARATION
1) DATASET AND EXPERIMENT SETTING
To compare and validate the effectiveness of the proposed
method, real data were collected from the ProgrammableWeb
platform using a web crawler. Specifically, the dataset
includes 6019 mashups, 1509 cloud APIs that have been
invoked at least once, and 440 attribute tags. The total number
of mashup-API invocations is 12564 and the mashup-API
matrix has a sparsity of 99.86%, which indicates a high
level of sparsity typically found in such recommendation
datasets.

After data cleaning, we obtained the refined experimental
dataset as shown in Table 1. Notably, this dataset does
not contain explicit mashup-API rating data, thus the
mashup-oriented cloud API recommendation problem is
framed as an implicit feedback task. Specifically, if a mashup
has historically invoked a cloud API, the corresponding
record is marked as 1, indicating the mashup’s requirement
for the cloud API. Conversely, cloud APIs that were not used
by mashups were marked as 0 to serve as negative samples.

TABLE 1. The statistics of the dataset.

For the experimental setup, he dataset was divided into
three parts: 80% for training, 10% for validation, and 10% for
testing. The embedding size was set to 64, and the learning
rate was set to 1 in the experiment. An early stopping strategy
was used: the algorithmwas deemed converged if the training
dataset loss increased or the Recall metrics on the validation
set decreased for 10 consecutive epochs.

2) EVALUATION INDICATORS
To evaluate the performance of top-N recommendation, two
commonly used metrics are chosen: recall and normalized
discounted cumulative gain (NDCG).

Recall is a metric used to evaluate how effectively the
system recommends relevant cloud APIs to developers.
It measures the proportion of relevant cloud APIs that are
successfully recommended to a mashup, and is defined as:

Recall =
|{Act APIs} ∩ {Rec APIs}|

|{Act APIs}|
, (13)

where {Act APIs} is the set of APIs that are actually invoked,
{Rec APIs} is the set of APIs recommended, | · | denotes the
size of the set.

NDCG is a measure of the quality of a recommender
system’s ranking. It assesses the usefulness of an item based
on its position in the ranked list of results. A higher score is
assigned to top-ranked relevant recommendations, indicating
their importance. The NDCG is defined as follows:

NDCG@k =

k∑
i=1

reli
log2(i+1)

k∑
i=1

rel∗i
log2(i+1)

, (14)

where reli is the relevance score of the item at position i in
the recommended list.rel∗i is the relevance score of the item
at position i in the ideal (perfectly sorted by relevance) list.

These metrics together provide a comprehensive eval-
uation of both the accuracy and ranking quality of the
recommended cloud APIs.

B. PERFORMANCE COMPARISON
1) COMPARISON METHODS
There is no widely recognized benchmark model dedicated
to mashup-oriented cloud API recommendation. To evaluate
performance, the proposed methods are compared with sev-
eral widely used recommendation methods, some of which
have been applied in the field of cloud API recommendation.

VOLUME 13, 2025 13293

L. Shen et al.: Cloud API Personalized Recommendation Method Based on Multiple Attribute Features

The baseline recommendation methods selected can be cat-
egorized into three groups: interaction-based methods (POP,
BPR [37], DMF [38]), content-basedmethods (DeepFM [12],
AFM [39]) and graph-basedmethods (KGCN [40], KGNNLS
[41], KGAT [42]). The following is a brief overview of the
aforementioned recommendation methods:

• The POP method makes recommendations based on the
popularity of cloud APIs in the dataset.

• The BPR algorithm utilizes the maximum a posterior
probability in a Bayesian framework to rank cloud APIs
and generate recommendations.

• DMF applies deep learning techniques to extend matrix
factorization for recommendations.

• DeepFM combines factorization machines and deep
learning techniques to enhance the performance of
recommendation systems.

• AFM optimizes the factorization machine by determin-
ing the importance of inter-feature interactions through
neural network learning.

• KGCN enriches the embedding representation by aggre-
gating information from neighboring nodes to capture
the local structure and extract personalized preferences.

• KGNNLS proposes a method based on label smooth-
ness to regularize edge weights and enhance model
generalization.

• KGAT combines graph neural networks and knowledge
graphs to integrate user behavior data and introduce
auxiliary higher-order information.

2) COMPARISON RESULTS
In the domain of mashup-oriented cloud API recommenda-
tion, traditional heuristics method, such as popularity-based
(POP) methods and Bayesian personalized ranking (BPR),
are frequently utilized due to their simplicity and ease of
implementation. However, these methods exhibit substantial
limitations in effectively capturing the complex dependencies
and functional requirements of application programming
interfaces within mashup contexts. For instance, the POP
approach relies exclusively on the frequency of usage of
application interfaces and neglects the specific functional
dependencies that exist between application interfaces and
their usage within the mashup ecosystem. Although BPR is
more sophisticated, it fails to leverage the structural infor-
mation inherent in API interactions, resulting in suboptimal
performance in complex recommendation scenarios.

The performance comparison in Table 2 shows that
methods integrating side information (DeepFM, AFM) and
graph-based approaches (KGCN, KGNNLS, KGAT, and
our proposed method) significantly outperform traditional
methods like POP, BPR, and DMF on recall and NDCG
metrics. This trend underscores the value of leverag-
ing additional data sources and structural relationships
for more effective recommendation strategies. Methods
that incorporate side information can capture attributes
beyond basic interactions, while graph-based methods
model the connections and dependencies between APIs,

providing a richer representation that boosts recommendation
accuracy.

Our proposed method stands out among graph-based
approaches, achieving at least a 5% improvement in recall and
a 10% increase in NDCG compared to other techniques. The
reasons behind this enhancement lie in our method’s ability
to integrate graph structural features, interaction data, and
edge information (e.g., cloud API features), enabling it to
capture the multidimensional relationships and dependencies
more effectively than the existing methods. The use of
multiple attribute features, such as functionality similarity
and complementarity, contributes to a more personalized and
precise recommendation list.

GNN-based models excel in capturing multidimensional
relationships and dependencies among APIs, thereby sig-
nificantly enhancing the accuracy of mashup-oriented rec-
ommendations. The proposed approach employs advanced
techniques to deliver recommendations that are both accurate
and tailored to the specific needs of developers, thereby
outperforming existing methodologies. Specifically, the
experiments substantiate the premise that integrating edge
information (e.g., cloud API features) into recommendation
algorithms enhances both relevance and accuracy. By inte-
grating graph structural features, interaction information, and
edge information into a personalized recommendation frame-
work for mashup applications, significant improvements
in recommendation accuracy and ranking rationality are
attained. These findings illustrate the critical role of diverse
information in the efficacy of cloud API recommender
systems and highlight the potential of the proposed method,
which integrates multiple attribute features, in delivering
efficient and personalized recommendations.

C. IMPACT OF INSTANCE ENCODERS
After completing the path instance extraction, we design a
path instance encoder based on the translational distance
model, aiming to enhance the accuracy of the recommender
system through a finer path representation. To evaluate
the impact of the proposed encoder on the performance
of the recommender system, we experimentally compare
it with several other commonly used encoding methods.
Specifically, we consider three different encoding strategies:
(1) only the information of endpoint nodes is utilized,
ignoring intermediate nodes; (2) all the information of
the nodes along the path is simply averaged; (3) all the
information of nodes and relationships on the path instances
is considered based on the translational distance model,
which is our proposed method.

The experimental results are shown in Fig. 4. Taking
top-10 recommendations as an example, we find that the
encoder based on the translational distance model improves
recall by 3.46% and NDCG by 2.08% compared to the
method that only considers endpoints. The method that
utilizes only the information of endpoint nodes, while
ignoring intermediate nodes, fails to capture the full
path structure, resulting in lower accuracy. Similarly, the

13294 VOLUME 13, 2025

L. Shen et al.: Cloud API Personalized Recommendation Method Based on Multiple Attribute Features

TABLE 2. Comparison of baseline methods and proposed method.

FIGURE 4. The impact of path instance encoding methods on
Recommendation performance.

method that averages the features of all nodes along the
path considers the node information but overlooks the
relationships between the nodes, which also affects the
model’s precision. Compared to this averaging approach,
our proposed method improves recall by 1.53% and NDCG
by 1.52%. These significant improvements indicate that the
translational distance model effectively captures the intrinsic
structure of path instances, thus providing a richer and more
precise instance representation for the recommender system.

These results suggest that incorporating intermediate node
information and the relationships between nodes plays a
crucial role in enhancing the recommendation quality. The
translational distance model’s ability to encode complex
path information allows it to uncover latent connections
that simpler encoding strategies might miss. As a result,
it facilitates a more comprehensive understanding of the
interactions within the graph, leading to improved recom-
mendation accuracy. This demonstrates the importance of
using sophisticated encoding techniques to fully exploit the
structural information present in path instances for cloud API
recommendation systems.

D. IMPACT OF MULTIPLE ATTRIBUTE FEATURES FUSION
METHODS
In this study, we explore the effectiveness of different
attention mechanisms in fusing multiple attribute features of
cloud APIs. In our experiments, we compare the performance
of equal attention, global self-attention, and our proposed
mashup-related attention mechanism. Fig. 5 illustrates the
performance of these three mechanisms with various top-N
values.

The experimental results show that equal self-attention and
global self-attention have similar effects when fusing cloud
API features, which suggests that both similar and comple-
mentary features are important for cloud API recommen-
dation without considering specific mashup requirements.
However, equal attention treats all the different attribute
characteristics as equally important, completely ignoring the
requirement preferences of a specificmashup, whereas global
self-attention focuses on the global characteristics of the
whole cloud API ecosystem without considering the specific
requirements of a mashup. As a result, both approaches are
unable to provide personalized recommendations targeted to
each mashup, thus limiting their effectiveness in achieving
highly personalized recommendations.

In contrast, our proposed mashup-related attention mecha-
nism demonstrates significant performance benefits across all
top-N values, with improvements in recall ranging from 6%
to 17% and in NDCG from 6% to 12% compared to the other
mechanisms. These performance improvements highlight the
ability of the attentionmechanism associatedwithmashups to

VOLUME 13, 2025 13295

L. Shen et al.: Cloud API Personalized Recommendation Method Based on Multiple Attribute Features

FIGURE 5. The impact of multiple attribute features fusion methods on
recommendation performance.

recognize the importance of different attribute features based
on the specific requirements of each mashup, and the superior
ability of cloud API recommendation method that leverage
this attention mechanism to meet the requirements of highly
personalized mashups.

E. ABLATION EXPERIMENT
In this study, we propose a cloud API recommendation
method combining metapath and attention mechanisms.
By distinguishing the similar and complementary features of
cloud APIs, we gain a deeper understanding of their intrinsic
connections and their roles in diverse requirement scenarios.
The proposed method leverages the ‘‘cloud API-Function
Tag-cloud API’’ metapath to capture similarity features and
the ‘‘cloud API-mashup-cloud API’’ metapath to identify
complementary features, thus providing a comprehensive
representation of cloud API characteristics.

To validate the effectiveness of the proposed method,
we conducted a series of ablation experiments, with the
results presented in Table 3. Specifically, ‘w/o ATA’ indicates
the removal of the similar metapath ‘cloud API-Tags-cloud
API’ from the experiment, while ‘w/o AMA’ indicates the

removal of the complementarymetapath ‘cloud API-mashup-
cloud API’. These experiments aim to separately evaluate
the impact of different metapaths on the performance of the
recommender system.

The experimental results clearly indicate that combining
similarity and complementary features significantly enhances
the recommender system’s performance compared to con-
sidering only a single feature. When similarity features
are excluded (‘w/o ATA’), the recommendation’s ability to
identify APIs that fulfill the same functional requirements
diminishes, leading to a significant recall drop to 80% and
NDCG drop to 47% for top-10 recommendations. This is
because without capturing similarity through the ‘cloud API-
Tags-cloud API’ metapath, the system fails to adequately
recognize APIs with similar functionalities, which are crucial
in scenarios where multiple services provide comparable
solutions.

On the other hand, when complementary features are
excluded (‘w/o AMA’), recall drops to 84% and NDCG drops
to 78%. The absence of the ‘cloud API-mashup-cloud API’
metapath hinders the system’s ability to identify APIs that
complement existing functionalities, reducing its capability
to recommend APIs that expand the mashup’s functionality.
Complementary features are essential for enriching the
mashup with diverse services, thus their absence significantly
impacts recommendation quality.

Moreover, excluding the attention mechanism (‘w/o atten-
tion’) causes recall to drop to 89% and NDCG to 84%.
The attention mechanism plays a critical role in assigning
appropriate weights to different path instances based on their
relevance to the target node, enabling the model to prioritize
more informative features. Without this mechanism, the
recommendation system treats all path instances equally,
leading to less accurate feature extraction and a consequent
decline in performance.

After comprehensive analysis, we conclude that the
application of metapath and attention mechanisms in each
metapath is vital for enhancing the performance of cloud
API recommendation systems. This combined approach
enables better alignment with mashup-oriented cloud API
requirements, providing more accurate and efficient recom-
mendation services.

F. CASE STUDY
To visualize the usability of the method, we provide an
example of a mashup-oriented cloud API recommendation.
Suppose a developer needs to create a mashup displaying
items being purchased or viewed by the user’s friends on a
shopping platform and providing the user with a rating system
as a reference. Based on the functional requirements, the
developer can select a combination of functional tags Social,
eCommerce, Reference from the cloud API ecosystem to
represent the required features of the mashup.

An attention graph neural network was used to learn the
similarity and complementarity features of candidate cloud
APIs respectively. Then, the attention score for similarity

13296 VOLUME 13, 2025

L. Shen et al.: Cloud API Personalized Recommendation Method Based on Multiple Attribute Features

TABLE 3. Comparison results of ablation experiments.

TABLE 4. Top-5 recommended list of the case.

TABLE 5. Top-5 recommended list of ablation experiments.

and the attention score for complementarity of cloud APIs
are computed for the mashup, which are 0.3024 and 0.6976,
respectively. Based on these scores, the features of candidate
cloud APIs are fused and used to predict the likelihood of the
mashup invoking the respective cloud APIs. The top-ranked
candidate cloud APIs are recommended to the mashup, and
the Top 5 recommendation list is shown in Table 4.

The mashup described actually invokes six APIs: amazon-
product-advertising (Advertising, eCommerce), amazon-
a9-opensearch (Search), youtube (Video, Media), face-
book (Social, Webhooks), amazon-simpledb (Database),
and amazon-marketplace-web-service (eCommerce). The
method successfully recommended three cloud APIs in
the Top 5 recommendations, at the 2nd, 3rd, and 4th
positions. The attention score suggests that both similarity
and complementarity should be considered when selecting
APIs for this functional mashup, with a higher requirement
for complementarity. The recommended cloud APIs do
contain diverse functional tags, providing versatility.

To further demonstrate the effectiveness of the proposed
method, the results of three cloud API recommendation
ablation experiments for this mashup are shown in Table 5.
When the recommendation considers only similarity, it

usually includes multiple cloud APIs with similar func-
tionality, which is not suitable for all types of mashups.
When the recommendation considers only complementarity,
it recommends multiple types of APIs but overlooks the
functional similarity between them, which may result in
the recommended APIs failing to satisfy the functionality of
the mashup. Using a global self-attention mechanism to fuse
different types of attribute features, the self-attention scores
for similarity and complementarity of cloud APIs for the
mashup to be developed are 0.5110 and 0.4890, respectively.
This approach fails to provide personalized recommendations
for mashups. To address these problems, the proposed
method employs a mashup-associated attention mechanism
to achieve a personalized cloud API recommendation
list.

VI. CONCLUSION
In this paper, we propose an innovative approach for
personalized feature representation and recommendation of
cloud APIs through analysis of the problems in the cloud
API mashup recommendation system. We recognize that to
satisfy developers’ personalized development requirements,
the recommender system must comprehensively consider

VOLUME 13, 2025 13297

L. Shen et al.: Cloud API Personalized Recommendation Method Based on Multiple Attribute Features

multiple attribute features of cloudAPIs, especially similarity
and complementarity. Firstly, proposed method involves
the construction of a cloud API ecosystem graph enriched
with side-information and the formulation of metapaths to
capture and characterize the multiple attributes of cloud
APIs. Utilizing the translational distance model and graph
neural network techniques, we successfully aggregated the
attribute features of cloud APIs within different metapaths.
Additionally, we achieved the intelligent fusion of various
attribute features by introducing an attention mechanism
closely related to mashup development requirements. This
fusion mechanism optimizes feature weights and generates
highly relevant personalized representations of cloud APIs,
thereby providing strong support for predicting the likelihood
of a mashup invoking the APIs. Extensive experimental
evaluations on real datasets validate its effectiveness. The
experimental results show that our recommendation method
has significant advantages in recalling correct cloud APIs
and improving recommendation performance, demonstrating
the potential of our approach in meeting personalized
development requirements. However, our approach also has
some limitations. One limitation is that the current model
may not fully capture the dynamic and evolving nature of the
cloud API ecosystem. Additionally, the model’s reliance on
pre-defined metapaths might limit its adaptability to diverse
and complex development scenarios.

In the future, we aim to address these limitations by incor-
porating more dynamic and temporal aspects into the model
and exploring adaptive metapath design methodologies.
We plan to explore and utilize multidimensional information
such as version, quality data, and vendor information to
enhance cloud API feature representation. Furthermore,
we will focus on designing adaptive metapaths to better
capture the diverse and evolving information within the
cloud API ecosystem. These enhancements will help us
to better utilize the diverse information in the cloud API
ecosystem and further improve the accuracy and efficiency
of recommendation systems.

REFERENCES
[1] Y. Wang, J. Chen, Q. Huang, X. Xia, and B. Jiang, ‘‘Deep learning-based

open API recommendation for mashup development,’’ Sci. China Inf. Sci.,
vol. 66, no. 7, Jul. 2023, Art. no. 172102.

[2] J. Xiang, W. Chen, Y. Wang, B. Liang, Z. Liu, and G. Kang, ‘‘Interactive
web API recommendation for mashup development based on light
neural graph collaborative filtering,’’ in Proc. IEEE Int. Conf. Comput.
Supported Coop. Work Des. (CSCWD), Rio de Janeiro, Brazil, 2023,
pp. 1926–1931.

[3] H. Xue, X. Dai, J. Zhang, S. Huang, and J. Chen, ‘‘Deep matrix
factorization models for recommender systems,’’ in Proc. 26th Int. Joint
Conf. Artif. Intell. (IJCAI), Melbourne, VIC, Australia, Aug. 2017, pp. 1–7.

[4] S. Lian and M. Tang, ‘‘API recommendation for mashup creation based
on neural graph collaborative filtering,’’ Connection Sci., vol. 34, no. 1,
pp. 124–138, Dec. 2022.

[5] F. Wang, L. Wang, G. Li, Y. Wang, C. Lv, and L. Qi, ‘‘Edge-cloud-enabled
matrix factorization for diversified APIs recommendation in mashup
creation,’’World Wide Web, vol. 25, no. 5, pp. 1809–1829, Sep. 2022.

[6] C. Sang, X. Deng, and S. Liao, ‘‘Mashup-oriented web API recommenda-
tion via full-text semantic mining of developer requirements,’’ IEEE Trans.
Services Comput., vol. 16, no. 4, pp. 2755–2768, Aug. 2023.

[7] W. Gong, C. Lv, Y. Duan, Z. Liu, M. R. Khosravi, L. Qi, and W. Dou,
‘‘Keywords-driven web APIs group recommendation for automatic app
service creation process,’’ Software, Pract. Exper., vol. 51, no. 11,
pp. 2337–2354, Nov. 2021.

[8] Y. Zhong, Y. Fan, W. Tan, and J. Zhang, ‘‘Web service recommendation
with reconstructed profile frommashup descriptions,’’ IEEE Trans. Autom.
Sci. Eng., vol. 15, no. 2, pp. 468–478, Apr. 2018.

[9] B. Cao, J. Liu, Y. Wen, H. Li, Q. Xiao, and J. Chen, ‘‘QoS-aware
service recommendation based on relational topic model and factorization
machines for IoT mashup applications,’’ J. Parallel Distrib. Comput.,
vol. 132, pp. 177–189, Oct. 2019.

[10] Y. Ma, X. Geng, and J. Wang, ‘‘A deep neural network with multiplex
interactions for cold-start service recommendation,’’ IEEE Trans. Eng.
Manag., vol. 68, no. 1, pp. 105–119, Feb. 2021.

[11] H. Wu, Y. Duan, K. Yue, and L. Zhang, ‘‘Mashup-oriented web API
recommendation via multi-model fusion and multi-task learning,’’ IEEE
Trans. Services Comput., vol. 15, no. 6, pp. 3330–3343, Nov. 2022.

[12] B. Cao, M. Peng, Y. Qing, J. Liu, G. Kang, B. Li, and K. K. Fletcher,
‘‘Web API recommendation via combining graph attention representation
and deep factorization machines quality prediction,’’ Concurrency Com-
putation: Pract. Exper., vol. 34, no. 21, p. e7069, Sep. 2022.

[13] Y. Chen, C. Gao, X. Ren, Y. Peng, X. Xia, and M. R. Lyu, ‘‘API
usage recommendation via multi-view heterogeneous graph representation
learning,’’ IEEE Trans. Softw. Eng., vol. 49, no. 5, pp. 3289–3304,
May 2023.

[14] P. He, W. Qi, X. Liu, L. Liu, D. You, L. Shen, and Z. Chen, ‘‘Association
rule guidedwebAPI complementary function recommendation formashup
creation: An explainable perspective,’’ in Proc. Int. Conf. Comput.
Supported Coop. Work Social Comput. (CSCWSC), Singapore, 2023,
pp. 73–83.

[15] K. K. Fletcher, ‘‘A quality-aware web API recommender system for
mashup development,’’ in Proc. IEEE Int. Conf. Serv. Comput. (SCC), San
Diego, CA, USA, Jun. 2019, pp. 1–10.

[16] K. A. Botangen, J. Yu, Q. Z. Sheng, Y. Han, and S. Yongchareon,
‘‘Geographic-aware collaborative filtering for web service recommenda-
tion,’’ Expert Syst. Appl., vol. 151, Aug. 2020, Art. no. 113347.

[17] S. Meng, Q. Li, S. Chen, S. Yu, L. Qi, W. Lin, X. Xu, and W. Dou,
‘‘Temporal-sparsity aware service recommendation method via hybrid
collaborative filtering techniques,’’ in Proc. Int. Conf. Serv.-Oriented
Comput., Hangzhou, China, Nov. 2018, pp. 12–15.

[18] H. Chen, H. Wu, J. Li, X. Wang, and L. Zhang, ‘‘Keyword-driven service
recommendation via deep reinforced Steiner tree search,’’ IEEE Trans. Ind.
Informat., vol. 19, no. 3, pp. 2930–2941, Mar. 2023.

[19] S. Wu, S. Shen, X. Xu, Y. Chen, X. Zhou, D. Liu, X. Xue, and
L. Qi, ‘‘Popularity-aware and diverse web APIs recommendation based
on correlation graph,’’ IEEE Trans. Computat. Social Syst., vol. 10, no. 2,
pp. 771–782, Apr. 2023.

[20] J. Zhang, Y. Fan, J. Zhang, and B. Bai, ‘‘Learning to build accurate service
representations and visualization,’’ IEEE Trans. Services Comput., vol. 15,
no. 3, pp. 1551–1563, May 2022.

[21] X. Zhang, J. Liu,M. Shi, and B. Cao, ‘‘Word embedding-based web service
representations for classification and clustering,’’ in Proc. IEEE Int. Conf.
Serv. Comput. (SCC), 2021, pp. 34–43.

[22] B. Bai, Y. Fan,W. Tan, and J. Zhang, ‘‘DLTSR: A deep learning framework
for recommendations of long-tail web services,’’ IEEE Trans. Services
Comput., vol. 13, no. 1, pp. 73–85, Jan. 2020.

[23] H. Zhao, J. Wang, Q. Zhou, X. Wang, and H. Wu, ‘‘Web API
recommendation with features ensemble and learning-to-rank,’’ in Proc.
CCF Conf. Big Data Comput. Appl. Services (BigDataCAS), Wuhan,
China, Sep. 2019, pp. 26–28.

[24] M. Shi, Y. Tang, and J. Liu, ‘‘Functional and contextual attention-based
LSTM for service recommendation in mashup creation,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 30, no. 5, pp. 1077–1090, May 2019.

[25] J. Zhang and Y. Fan, ‘‘Recommending collaborations with newly emerged
services for composition creation in cloud manufacturing,’’ Int. J. Comput.
Integr. Manuf., vol. 34, no. 3, pp. 307–326, Mar. 2021.

[26] R. Xiong, J. Wang, N. Zhang, and Y. Ma, ‘‘Deep hybrid collaborative
filtering for web service recommendation,’’ Expert Syst. Appl., vol. 110,
pp. 191–205, Nov. 2018.

[27] Y. Ma, X. Geng, J. Wang, K. He, and D. Athanasopoulos, ‘‘Deep
learning framework for multi-round service bundle recommendation in
iterative mashup development,’’ CAAI Trans. Intell. Technol., vol. 8, no. 3,
pp. 914–930, Sep. 2023.

13298 VOLUME 13, 2025

L. Shen et al.: Cloud API Personalized Recommendation Method Based on Multiple Attribute Features

[28] H. Yu, C. J. Woodard, and S. S. Sim, ‘‘Innovation in the programmable
web: Characterizing the mashup ecosystem,’’ in Proc. Int. Conf. Service-
Oriented Comput. (ICSOC), Sydney, NSW,Australia, Dec. 2008, pp. 1–10.

[29] K. Benouaret, R. Valliyur-Ramalingam, and F. Charoy, ‘‘Web service
composition: A survey of techniques and tools,’’ ACM Comput. Surveys,
vol. 48, no. 3, pp. 1–41, 2013.

[30] Y. Dong, N. V. Chawla, and A. Swami, ‘‘Metapath2vec: Scalable
representation learning for heterogeneous networks,’’ in Proc. 23rd ACM
SIGKDD Int. Conf. Knowl. Discov. Data Min., Halifax, NS, Canada,
Aug. 2017, pp. 135–144.

[31] K. Chen, H. Mao, X. Shi, Y. Xu, and A. Liu, ‘‘Trust-aware and location-
based collaborative filtering for web service QoS prediction,’’ in Proc.
IEEE 41st Annu. Comput. Softw. Appl. Conf. (COMPSAC), vol. 2, Turin,
Italy, Jul. 2017, pp. 143–148.

[32] X. Wang, H. Wu, and C.-H. Hsu, ‘‘Mashup-oriented API recommen-
dation via random walk on knowledge graph,’’ IEEE Access, vol. 7,
pp. 7651–7662, 2019.

[33] C. Li, L. Zheng, S.Wang, F. Huang, P. S. Yu, and Z. Li, ‘‘Multi-hot compact
network embedding,’’ in Proc. 28th ACM Int. Conf. Inf. Knowl. Manage.,
Beijing, China, Nov. 2019, pp. 459–468.

[34] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu, ‘‘Heteroge-
neous graph attention network,’’ in Proc. WWW, 2019, pp. 2022–2032.

[35] Z.Wang, J. Zhang, J. Feng, and Z. Chen, ‘‘Knowledge graph embedding by
translating on hyperplanes,’’ in Proc. 28th AAAI Conf. Artif. Intell. (AAAI),
Montreal, QC, Canada, 2014, pp. 1112–1119.

[36] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
‘‘Translating embeddings for modeling multi-relational data,’’ in Proc.
Adv. Neural Inf. Process. Syst. (NeurIPS), Lake Tahoe, NV, USA,
Dec. 2013, pp. 5–10.

[37] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, ‘‘BPR:
Bayesian personalized ranking from implicit feedback,’’ in Proc. 25th
Conf. Uncertainty Artif. Intell. (UAI), Montreal, QC, Canada, Jun. 2009,
pp. 18–21.

[38] T. Ramathulasi and M. R. Babu, ‘‘Enhanced PMF model to predict
user interest for web API recommendation,’’ in Handbook of Research
on Advances in Data Analytics and Complex Communication Networks.
Pennsylvania, PA, USA: IGI Global, 2022, pp. 131–139.

[39] Y. Cao, J. Liu, M. Shi, B. Cao, T. Chen, and Y. Wen, ‘‘Service
recommendation based on attentional factorization machine,’’ in Proc.
IEEE Int. Conf. Serv. Comput. (SCC), Milan, Italy, Jul. 2019, pp. 8–13.

[40] Y. Zhang, H. Yang, and L. Kuang, ‘‘A web API recommendation method
with composition relationship based onGCN,’’ inProc. ISPA, Exeter, U.K.,
2020, pp. 17–19.

[41] H. Wang, F. Zhang, M. Zhang, J. Leskovec, M. Zhao, W. Li, and Z. Wang,
‘‘Knowledge-aware graph neural networks with label smoothness regular-
ization for recommender systems,’’ in Proc. KDD, 2019, pp. 968–977.

[42] Z. Chen, T. Zhang, and X. Peng, ‘‘A novel API recommendation approach
by using graph attention network,’’ in Proc. QRS, Hainan, China, 2021,
pp. 6–10.

LIMIN SHEN received the B.S. and Ph.D. degrees
in computer science and technology from Yanshan
University, China. He is currently a Professor and
the Ph.D. Supervisor with the College of Computer
Science and Engineering, Yanshan University.
His research interests include service computing,
collaborative computing, and cooperative defense.

YUYING WANG received the M.S. degree from
the Institute of Electrical Engineering, Yanshan
University, Qinhuangdao, China, in 2018, where
she is currently pursuing the Ph.D. degree in
information science and engineering. Her research
interests include cloud API recommendation and
complementary recommender systems.

CHENGYU LI is currently pursuing the master’s
degree with the College of Information Science
and Engineering, Yanshan University. His current
research interests include recommenders and ser-
vice computing.

ZHEN CHEN received the B.S. and Ph.D. degrees
in computer science and technology from Yanshan
University, China, in 2010 and 2017, respectively.
He is currently an Associate Professor with the
College of Computer Science and Engineering,
Yanshan University. He is also a Postdoctoral
Researcher with the College of Information Sci-
ence and Engineering, Yanshan University. He is
also working on service computing, cloud comput-
ing, and collaborative computing.

VOLUME 13, 2025 13299

