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ABSTRACT Learned image compression (LIC) is increasingly gaining attention. To improve the
perceptual quality of reconstructions, generative LIC has been studied, using generative models such
as Generative Adversarial Networks (GANs). State-of-the-art generative LIC methods have achieved
remarkable performance even in low bit rate settings. Unlike most approaches trained from scratch,
we propose a generative LIC that utilizes a pre-trained codebook-based generative model, Vector-Quantized
GAN (VQGAN). Specifically, our model is designed to exploit its powerful image-generation capabilities
to enhance compression performance. Our approach reconstructs an image from a transmitted bitstream
in two steps: (1) estimating VQGAN tokens and feeding them into the pre-trained VQGAN decoder, and
(2) modifying the decoder’s intermediate features to address artifacts and distortions. Our preliminary
experiments reveal that the information allocation between (1) and (2) is pivotal for reconstruction quality.
Moreover, we found that the ideal allocation varies based on the target bit rate. Motivated by these findings,
we propose a novel Dual-Conditioned training. Through the training, the model learns to adjust the total
bit rate and information allocation between (1) and (2) based on two conditional inputs. Subsequently,
we explore the conditional inputs to achieve the optimal results for each target bit rate. This training
strategy enables us to effectively exploit the generation capability of VQGAN across different bit rates.
Our method, named Dual Conditioned VQGAN-based Image Compression (DC-VIC), outperforms state-
of-the-art generative LIC methods in rate-distortion-perception performance. Code will be available at
https://github.com/iwa-shi/DC_VIC

INDEX TERMS Generative adversarial networks, image compression, VQGAN.

I. INTRODUCTION
Image compression is a pivotal technology in the digital
era. While traditional image compression algorithms (e.g.,
JPEG, HEVC, and VVC) are hand-crafted, learned image
compression (LIC) has been studied for several years [1],
[2], [3], [4]. Utilizing end-to-end optimization using large
image datasets, state-of-the-art LIC methods [5], [6] have
surpassed the performance of the latest standard codec,
VVC [7]. However, most LIC methods optimized for
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rate-distortion (RD) performance suffer from blurred artifacts
in reconstructions at lower bit rates. To address this, several
methods [8], [9], [10], [11], [12], [13] aim to enhance rate-
distortion-perception (RDP) performance [14]. Suchmethods
use generative models (e.g., Generative Adversarial Net-
works (GANs) [15] and Diffusion model [16]), significantly
improving the perceptual quality of reconstructed images.
We refer to these methods as generative LIC.

While most generative LIC models are trained from
scratch, the integration of pre-trained models into generative
LIC has been underexplored. In this paper, we leverage
a pre-trained Vector Quantized GAN (VQGAN) [17] for
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FIGURE 1. High-level overview of our DC-VIC. It reconstructs the original
image by two processes: (1) VQGAN token estimation and (2) VQGAN
decoder feature modification. Accurate token estimation is important to
leveraging the VQGAN decoder’s image generation ability. On the other
hand, the decoder feature modification improves reconstruction fidelity
by rectifying artifacts and distortion introduced by the VQGAN decoder.
To adjust the total bit rate and information allocation between (1) and (2)
in the encoding part, we introduce conditional inputs, βrate and βvq,
respectively. We adjust these two inputs to obtain high compression
performance for various target rates.

generative LIC. VQGAN uses an encoder to convert an
image into a sequence of discrete tokens through vector
quantization with a learnable codebook. The decoder then
reconstructs the image from these tokens. The main reasons
for incorporating VQGAN into our LIC model are twofold.
Firstly, the codebook’s capacity to represent a wide range
of images is valuable. A compact yet expressive codebook
facilitates effective image compression, akin to the concept
of traditional dictionary-based compression methods [18],
[19], [20]. Secondly, the decoder’s capability to reconstruct
high-quality images has been demonstrated in various image
generation applications [21], [22], [23]. Motivated by these
attributes, we aim to fully exploit the potential of pre-trained
VQGAN for enhanced image compression.

The high-level overview of our Dual-Conditioned
VQGAN-based Image Compression (DC-VIC) is illustrated
in Fig. 1. On the encoder side, the original image and
its VQGAN tokens are merged and encoded into a single
bitstream. The decoding process involves two key steps:
(1) VQGAN token estimation and (2) modification of the
VQGAN decoder’s features. Initially, VQGAN tokens are
estimated and fed into the pre-trained VQGAN decoder for
image reconstruction. During the reconstruction, we modify
the decoder’s intermediate features to mitigate artifacts
and distortions introduced by VQGAN. This adjustment
significantly enhances reconstruction fidelity compared to
using VQGAN reconstruction directly as the final output
[24], [25]. Accurate token estimation is pivotal for exploiting
the VQGAN decoder’s image reconstruction capabilities.
On the other hand, modifying the decoder’s features is also
important to enhance reconstruction fidelity. However, the
amount of information sent to the decoder side is limited,
which prompts the question: How should we determine
the allocation of information between (1) token estimation
and (2) feature modification? Our preliminary experiments
revealed that this information allocation is crucial for
enhancing RDP performance. In addition, we found that the
optimal allocation varies according to the target bit rate.

A straightforward approach for finding the optimal allo-
cation would be training separate LIC models with various
hyperparameters. However, this leads to substantial training
costs. To address this issue and efficiently balance informa-
tion allocation, we introduce the novel Dual Conditioned
Training. Our LIC model incorporates two conditional
inputs, βrate and βvq, as illustrated in Fig. 1. These inputs are
integrated into the model, enabling it to dynamically adjust
the overall bit rate and information allocation between token
estimation and VQGAN decoder feature modification within
a single model. After the training, we explore the conditional
inputs to achieve optimal compression performance for each
target bit rate. Moreover, we fine-tune the model using
only the selected conditional inputs, further improving the
performance. This training strategy enables our DC-VIC to
effectively exploit the generation capabilities of pre-trained
VQGAN at different bit rates without training multiple
models.

Our contributions are summarized as follows:
• We propose a novel Dual-Conditioned VQGAN-based
ImageCompression (DC-VIC). Unlike existingmethods
[24], [25], it reconstructs images via (1) VQGAN
token estimation and (2) VQGAN decoder feature
modification.

• Our preliminary experiments demonstrate that the bal-
ance of information allocation between token estimation
and decoder feature modification is critical for achieving
optimal compression performance. Furthermore, the
optimal allocation varies depending on the target bit
rates. To the best of our knowledge, this is the first work
that has found these phenomena.

• To effectively adjust the information allocation and
total bit rate within a single model, we propose
Dual Conditioned Training. It enables us to explore
optimal conditional inputs for each target bit rate. We
also conducted extensive experiments to validate each
strategy within our training method.

• DC-VIC outperforms the state-of-the-art generative LIC
methods in RDP performancewhile using a singlemodel
for multiple bit rates. Our method also demonstrates
robust performance across various VQGAN variations.

II. RELATED WORK
A. LEARNED IMAGE COMPRESSION (LIC)
Since the first end-to-endVAE-based learned image compres-
sion method [1], a number of methods have been proposed.
Typical LIC models are optimized to minimize the following
rate-distortion (RD) loss function:

L = λR+ D, (1)

where R represents the approximated bit rate after compres-
sion and D denotes the distortion measured by metrics such
as MSE and MS-SSIM. A hyperparameter λ determines the
balance between bit rate and distortion. To improve RD per-
formance, some studies have focused on enhancing entropy
estimation, including Hyperprior [2], 2D context model [26],
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[27], Channel Autoregressive Model (Charm) [3], M2T [6],
Multirate Progressive Entropy Model [28], Transformer-
based Entropy Model [29], Multi-Reference Entropy Model
[30] and Checkerboard Entropy Model [31]. Other studies
have improved the architecture of encoders and decoders.
Specifically, several approaches have incorporated advanced
modules such as Residual Blocks [32], Multi-scale Residual
Blocks [33], Lightweight Attention modules [34], Graph-
attention [35] and Shifted Window-based Attention [5],
[36], [37]. Additionally, another line of research explores
overfitting-based LIC methods [38], [39], [40], which
optimize lightweight neural networks for single images
and transmit the network weights. These advanced entropy
estimators and modern deep-learning architectures have sig-
nificantly improved rate-distortion performance, surpassing
even the latest standard codec, VVC [7].

B. GENERATIVE LIC
While LIC methods achieved superior RD performance,
preserving perceptual quality at a low bit rate is still
challenging. Due to the distortion-perception trade-off [41],
LIC models optimized to minimize distortion suffer from
reduced perceptual quality. Specifically, these models tend
to reconstruct images with blur artifacts in an effort to
minimize average distortion (e.g., pixel-level squared error).
This issue becomes more pronounced at low bit rates, where
there is insufficient information to accurately reconstruct fine
details. To mitigate this problem, generative LIC methods
have been studied [8], [9], [10], [11], [12], [42], [43], [44],
[45], [46]. These methods incorporate generative models
such as generative adversarial networks (GAN) [15] and
diffusion model [16], improving rate-distortion-perception
(RDP) trade-off [14].

While most existing generative LIC methods are trained
from scratch, we propose a novel generative LIC model
that uses a powerful pre-trained generative model, Vector
Quantized GAN (VQGAN) [17]. Only a few existing
works have utilized a pre-trained model in generative LIC.
Xu et al. [43] proposed a LIC method using the inversion
of a pre-trained diffusion model to achieve high perceptual
quality. However, due to its expensive computation cost, the
application is limited to low-resolution images. ILLM [12]
uses a pre-trained VQ-VAE [47] to train the discriminator.
Hence, the image-generation ability of VQ-VAE is not
directly utilized for image reconstruction. Mao et al. [24] and
Jiang et al. [25] leverage pre-trained VQGAN autoencoder
for image reconstruction. Mao et al. [24] transform VQGAN
token indices into a bitstream using a zip algorithm, with the
bit rate controlled by dynamically adjusting the codebook
size via K-means clustering. Jiang et al. [25] adjust the bit
rate bymasking and transmitting a subset of the token indices.
However, both methods use the VQGAN’s reconstruction
as the final output image. This limits reconstruction fidelity
due to the inherent constraints of the VQGAN autoencoder,
resulting in higher distortion. In contrast, we modify the
intermediate feature in the VQGAN decoder via spatial

feature transform (SFT) layers [48], [49], improving recon-
struction fidelity. Moreover, our Dual-Conditioned training
optimizes the information balance between VQGAN token
estimation and decoder feature modification, providing a key
distinction from other approaches.

C. CONDITIONAL TRAINING IN LIC
Some LIC methods use conditional training to obtain an
adaptive model. In conditional training, the LIC model takes
a conditional input as well as an original image to control
the model behavior. Most of these methods are designed for
variable-rate LIC, where a single model can compress an
image into different bit rates. Specifically, λ in (1) is used as a
conditional input for the model. The model is then trained to
adjust the bit rate according to the condition. Some methods
[51], [52], [53] focus on image compression for machine
vision tasks, where the LIC model is optimized to enhance
the performance of downstream tasks, such as classification
and segmentation, after compression. These models are
conditionally trained to adapt to various tasks, enhancing
performance across multiple applications. Additionally,
other methods [9], [10] use conditional training to control
distortion-perception trade-off [41]. It enables users to choose
high-fidelity (less distortion) compression or high-realism
compression, improving practicality.

To integrate the conditional input into the model, sev-
eral methods have been proposed, such as scaling latent
representation [54], conditional convolution [55], interpola-
tion channel attention [56], spatial feature transform [57],
β-conditioning [9], and visual prompt [53]. We use a similar
method as β-conditioning [9] to inject conditional inputs.
However, instead of adjusting the distortion-perception trade-
off, we use it to control two different factors: total bit
rate and the information allocation between VQGAN token
estimation and decoder feature modification. We will show
the effectiveness of controlling these factors with a single
model to achieve optimal RDP performance.

D. VQGAN AND ITS APPLICATION
In image generation research, vector quantization (VQ) is
widely used. Guyon et al. introduced the Vector Quantized
Variational AutoEncoder (VQ-VAE) [47], where each pixel
in a latent representation is vector-quantized using a learned
codebook. Specifically, an encoder E transforms an original
image x ∈ RH×W×3 into a latent ẑ = E(x) ∈ Rh×w×nz , where
h,w, and nz denote the height, width and number of channels,
respectively. Each pixel in z is replaced with the nearest token
zk ∈ Rnz from the codebook Z = {zk}Kk=1:

zq =

(
argmin
zk∈Z

||ẑij − zk ||

)
∈ Rh×w×nz , (2)

where K is the codebook size, and i, j represent the
spatial position. The decoder G then reconstructs the image
x̂ = G(zq). VQGAN [17] further extends this concept by
integrating GAN-based training into VQ-VAE, improving the
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FIGURE 2. (a) The overview of the proposed DC-VIC and (b-f) the detailed architecture of each component. VQ, SQ, AE , and AD in (a) denote
vector-quantization, scalar-quantization, arithmetic encoding, and arithmetic decoding, respectively. RBB in (b) is Residual Bottleneck
Block [4]. Fourier in (c) represents the Fourier-encoding [50].

perceptual quality of reconstructions. Due to its powerful
image reconstruction capability, VQGAN has been exten-
sively employed in various image generation methods, such
as MaskGIT [21], Token-Critic [22], VQ-Diffusion [23], and
Latent Diffusion [58]. VQGAN-based autoencoder has also
been utilized in image restoration studies. CodeFormer [49]
incorporates a pre-trained VQGAN to realize high-fidelity
face image restoration. It has introduced spatial feature
transform (SFT) layers to improve reconstruction fidelity
while fixing pre-trained VQGAN parameters. FeMaSR [59]
introduced semantic regularization for training VQGAN,
enhancing reconstruction quality.

While our decoding process is inspired by Code-
Former [49] and FeMaSR [59], it differs in the following
aspects. Firstly, unlike the image restoration task, where
only the degraded image is accessible, the original image is
available to the encoder in image compression. Therefore,
the encoder can selectively store essential information from
the original image. We discovered that effective allocation of
information on the encoder side is crucial for reconstruction
performance. This phenomenon has never been discussed in
existing studies and is unique to image compression tasks.
Secondly, we propose dual-conditioned training to control
the model behavior within a single model, dealing with the
aforementioned challenge.

III. METHODOLOGY
In this section, we present our image compression model,
termed Dual Conditioned VQGAN-based Image Compres-
sion (DC-VIC). We begin with an overview and detailed
description of our compression model in Section III-A.

Following this, Section III-B discusses preliminary experi-
ments, which uncover the challenges that our dual-conditioned
training strategy aims to overcome. Finally, we detail
the three stages of our Dual-Conditioned Training in
Section III-C, designed to address these challenges.

A. DC-VIC
1) OVERVIEW
Fig. 2(a) illustrates the overview of DC-VIC, which is
comprised of six components: a compression encoder,
entropy model, VQGAN encoder, token estimator, SFT
extractor, and VQGAN decoder. We employ pre-trained
VQGAN encoder and decoder, whose parameters are fixed.
To facilitate our dual-conditioned training approach, we
incorporate two additional conditional inputs, βrate and βvq,
into the model and the loss function. βrate adjusts the overall
bit rate, while βvq controls the accuracy of VQGAN token
estimation. In the sections below, we provide a detailed
explanation of the encoding and decoding processes within
our model, as well as the discriminator and loss function used
during training.

2) ENCODING PART
Our encoding process is designed to encode the information
of the original image and its VQGAN token sequence into
a single bitstream. Given an original image x ∈ RH×W×3,
the pre-trained VQGAN encoder extracts a latent code ẑ.
It is then vector quantized using a pre-trained VQGAN
codebook, obtaining the token sequence zq and the indices
Ivq of the selected token, where I (i)vq ∈ {0, 1, · · · ,K −

1} and K denotes a codebook size. The compression
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FIGURE 3. Intermediate feature modification via spatial feature transform
(SFT) in VQGAN decoder. The parameters of the VQGAN decoder are fixed,
while those of the SFT layers are trained.

encoder takes x, zq, and two conditional inputs βrate, βvq
as inputs. The conditional inputs βvq, βrate are scalar values
and pivotal to our dual-conditioned training, which will be
detailed in Sec. III-C. These inputs are transformed by the
encoder into a latent code y. Fig. 2(b) depicts the encoder’s
architecture, which is inspired by ELIC [4] encoder and has
multiple residual bottleneck blocks (RBB). To accommodate
additional inputs zq, βvq, and βrate, we add twomodifications.
First, the intermediate feature of the encoder is concatenated
with zq, allowing the encoder to integrate the features
of the original image with the VQGAN tokens. Second,
we introduce channel-wise feature transformations (CFT).
In CFT, we first encode βvq, βrate into vectors using Fourier
encoding γ (·) [50]. These vectors are then concatenated and
converted into a single feature vector lβ with a multi-layer
perception (MLP) as shown in Fig. 2(c):

lβ =MLP
(
concat

(
γ (βvq), γ (βrate)

))
(3)

γ (x) =

(
sin (20πx), cos (20πx), · · · ,

sin (2L−1πx), cos (2L−1πx)
)

, (4)

where we set L = 10. Subsequently, an intermediate encoder
feature h is transformed as follows, as illustrated in Fig. 2(d):

hout = MLPscale(lβ ) · h+ MLPshift(lβ ). (5)

These adaptations enable the compression encoder to effec-
tively utilize the additional inputs. The output latent y is
scalar-quantized to ŷ, akin to existing image compression
methods [3], [4]. The quantized latent ŷ is then converted into
a bitstream through entropy coding. We estimate the entropy
of ŷ using a hyperprior [2] and a channel-wise autoregressive
model (Charm) [3]. The probability distribution p(ŷ) is
modeled as a Gaussian distribution, with the hyperprior
and Charm determining its mean and scale parameters.
Please refer to [3] for a more detailed procedure. We also
encode βvq and βrate into the bitstream to use them in
the decoding process, which takes less than one byte for
each.

FIGURE 4. For the discriminator, we consider two options: PatchGAN [60]
and OASIS [61]. While the PatchGAN discriminator predicts if the input
image is real or fake, the OASIS discriminator predicts the VQGAN indices
map, akin to performing semantic segmentation. We use βrate and βvq as
conditional input for the discriminator.

3) DECODING PART
On the decoder side, the bitstream is first decoded back into
ŷ, βrate, and βvq using the same hyperprior and Charm as
in the encoding process. We reconstruct an image through
two main processes: (1) estimating VQGAN tokens zq and
(2) modifying intermediate features of the VQGAN decoder
with spatial feature transform (SFT) layers [48], [59]. The
token estimator, which consists of CNN blocks and Swin-
Transformer-based [36] blocks, processes ŷ, βrate, and βvq
to predict the vector quantization indices Ivq, as shown
in Fig. 2(e). βrate and βvq are injected via CFT layers as
in the compression encoder. Using the predicted indices
Ĩvq and the pre-trained VQGAN codebook, we obtain the
reconstructed tokens z̃q, which are then fed into the VQGAN
decoder. Following this, the SFT extractor takes ŷ, βrate, and
βvq as inputs and extracts multi-scale SFT features l =

{l1, l2, l3}, as shown in Fig. 2(f). These SFT features are
used to modify the VQGAN decoder’s intermediate features
during the image reconstruction. As detailed in Fig. 3, SFT
layers [48] are inserted into the VQGAN decoder. Each SFT
layer modifies a decoder intermediate feature hi with the
corresponding SFT feature l i as follows:

houti = gscale(l i) ⊙ hi + gshift(l i), (6)

where⊙ denotes element-wisemultiplication, and gscale, gshift
represent convolution layers. The resulting modified feature
houti is then input into the subsequent layer of the
VQGAN decoder, continuing the reconstruction process.
By employing SFT layers, we dynamically refine the
VQGAN decoder’s intermediate features, thus improving
reconstruction fidelity without updating the VQGAN’s
parameters. Finally, we obtain the reconstructed image x̂ from
the VQGAN decoder.

4) DISCRIMINATOR
For the discriminator in our GAN-based training, we consider
two options: PatchGAN [60] and OASIS discriminator [61],
as illustrated in Fig 4. PatchGAN discriminator, which
consists of several convolutional layers, is a common choice
in generative LIC studies [9], [10], [13]. On the other
hand, the OASIS discriminator was originally designed for
a semantic image synthesis task, which aims to generate
realistic images from their semantic label maps. Unlike
the PatchGAN discriminator, which classifies images as
real or fake, the OASIS discriminator performs semantic
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FIGURE 5. The results of the preliminary experiments on CLIC2020 test
dataset using nine distinct models trained with fixed (βvq, βrate) pairs.

FIGURE 6. The details of the dual-conditioned training. It includes three
stages: dual-conditioned pre-training, β-selection, and selected-β
fine-tuning.

segmentation across C + 1 classes, where C is the number of
semantic classes, with an additional class for ‘‘fake’’ images.
It is trained to identify the correct semantic label map for
real images while assigning the fake label to all pixels in
generated images. Recently, ILLM [12] incorporated this
OASIS discriminator into generative LIC, leveraging VQ-
VAE [47] codebook indices maps instead of semantic labels.
While ILLM employed VQ-VAE solely to train the OASIS
discriminator, our model already utilizes the indices map Ivq
in the encoding process. It allows for seamless integration
of the OASIS discriminator into our approach without extra
model operations.

Also, as shown in Fig 4, we use βrate and βvq as conditional
inputs for the discriminator. These conditional inputs are
embedded using (3) and expanded to the size of the input
image. Then, we concatenate the expanded lβ and image
and feed it into the discriminator. Unless otherwise specified,
we use the PatchGAN discriminator in our experiments for
simplicity.

5) LOSS FUNCTION
Our compression model is trained with a combination of four
loss functions: rate loss R, image loss Limg, adversarial loss
Ladv, and VQGAN token reconstruction loss Lvq, formulated
as follows:

R = −
1
HW

∑
log2 p(ŷ) (7)

Limg = λ
img
MSEMSE(x, x̂) + LPIPS(x, x̂) (8)

Ladv = − logD(x̂) (9)

Lvq = CE(Ivq, Ĩvq) + λ
vq
MSEMSE(zq, zmid ), (10)

where CE and D denote the cross-entropy loss and the
discriminator, respectively. The rate loss R represents an
approximated bit rate. It is computed using the proba-
bility distribution p(ŷ), estimated by the entropy model,
as described in Sec. III-A2. The image loss is a weighted
sum of the mean squared error (MSE) and the Learned
Perceptual Image Patch Similarity (LPIPS) [62] between
the original and reconstructed images. For the adversarial
loss Ladv, we apply the standard non-saturated adversarial
loss. However, we use the cross-entropy adversarial loss
instead of (9) for the OASIS discriminator [12]. These rate
loss, image loss, and adversarial loss are commonly used
in GAN-based image compression methods [9], [10], [13].
On the other hand, the VQGAN token reconstruction lossLvq
is specifically designed for precise estimation of VQGAN
tokens. Following [59], Lvq includes two terms: (a) cross-
entropy loss between the predicted and actual VQGAN
codebook indices and (b) MSE loss between the projected
intermediate feature zmid in the token estimator and the
vector-quantized VQGAN latent zq. As shown in Fig. 2(e),
we use an additional 1 × 1 convolution layer to transform
the intermediate feature of the token estimator into zmid ,
ensuring it shares the same dimensionality as zq. The first
term encourages accurate token index prediction, while the
second term encourages the model to estimate tokens close
to zq.

The overall loss function L is a weighted sum of these
individual losses:

L = λR exp(βrate)R+ λimgLimg
+ λvq exp(βvq)Lvq + λadvLadv, (11)

where the conditional inputs, βrate and βvq, modulate the
weights of R and Lvq exponentially, respectively. βrate
influences the overall bit rate, while βvq indirectly con-
trols the allocation of information by adjusting the token
estimation accuracy. Specifically, a higher βvq prioritize to
minimize Lvq, resulting in more information stored for token
estimation. Conversely, a lower βvq diminishes the weight
of Lvq, leading to allocating relatively more information for
modifying VQGAN decoder features. As a result, βvq adjusts
the information allocation, controlling the trade-off between
token estimation accuracy and image reconstruction fidelity.

In the next section, through our preliminary experiments,
we will demonstrate the pivotal role of βvq for optimal RDP
performance. Furthermore, we will show that the ideal βvq
varies with bit rates, indicating the need to adjust βvq for each
target bit rate.

B. PRELIMINARY EXPERIMENTS
In this section, we conducted preliminary experiments to
explore the impact of βvq and βrate on model performance.
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We trained multiple models, each with fixed conditional
inputs (βvq, βrate). Specifically, nine distinct models are
trained using (11) with (βvq, βrate) = (1.0, 1.76), (1.0, 0.73),
(1.0, 0.16), (2.0, 1.9), (2.0, 1.12), (2.0, 0.63), (2.5, 2.02),
(2.5, 1.47), and (2.5, 0.84). The βrate values were adjusted to
ensure consistent average bit rates across the models. As a
result, we obtained models for low (approximately 0.04 bits
per pixel (bpp)), medium (0.1 bpp), and high (0.15 bpp) bit
rates for βvq = {1.0, 2.0, 2.5}, respectively. We used the
OpenImage [63] dataset for training and the CLIC2020 [64]
test dataset for evaluation. We evaluated the models using
PSNR, FID [65], and LPIPS [62], which are widely used in
generative LIC research. Given our focus on improving the
RDP trade-off, a model performance that is well-balanced
across these metrics is preferred. Other training details can
be found in Sec. IV-A2.
Fig. 5 illustrates the results. We observed trends based on

the value of βvq. Specifically, a higher βvq tends to yield better
FID due to higher token estimation accuracy. In contrast,
a lower βvq results in improved PSNR and LPIPS, because
more information is stored for decoder feature modification.
Furthermore, the results indicate that different βvq leads
to the best RDP performance at different bit rates. At the
lowest bit rate, the differences in PSNR and LPIPS among
the three models are marginal; however, the model with
βvq = 2.5 achieves superior FID, resulting in the best
overall performance. At the medium bit rate, the model with
βvq = 2.0 exhibits the most balanced performance across all
three metrics. In contrast, at the highest bit rate, the model
with βvq = 1.0 achieves the best PSNR, FID, and LPIPS
simultaneously, showcasing its superiority.

Based on these observations, we draw two main conclu-
sions: (a) the selection of βvq is pivotal for achieving a
balanced RDP performance, and (b) it is essential to adjust
βvq for each specific target bit rate. However, exploring βvq
by training distinct models for each target bit rate leads to
substantial computational costs. To address this challenge,
we propose a dual-conditioned training strategy to adjust βvq
for each target bit rate without training multiple models.

C. DUAL-CONDITIONED TRAINING
In this section, we propose a novel dual-conditioned
training. It is designed to train a single model that adjusts
token reconstruction accuracy and bit rate based on the input
βvq and βrate, respectively. It enables us to achieve optimal
performance at each target bit rate by adjusting βrate and βvq,
hence eliminating the need to train separate models using
different (βrate, βvq) pairs.

As shown in Fig. 6, the training has three stages: (1) Dual
conditioned pre-training stage, (2) β-Selection stage, and
(3) Selected-β fine-tuning stage. During the first stage, the
DC-VIC model is trained to adapt to a broad range of
(βvq, βrate) values, enabling wide exploration in the following
stage. The second stage involves the exploration and selection
of optimal (βrate, βvq) for each target bit rate. Finally,

in the third stage, we fine-tune the model with the selected
(βrate, βvq) pairs from the second stage. We will explain the
details below.

1) FIRST STAGE: DUAL CONDITIONED PRE-TRAINING
During this stage, we pre-train the DC-VIC model to
minimize (11). The conditional inputs βrate and βvq are
independently sampled at each training step from uniform
distributions:

βrate ∼ U (0, βmax
rate )

βvq ∼ U (0, βmax
vq ), (12)

where βmaxrate and βmaxvq are hyperparameters. As described in
Sec. III-A, the conditional inputs are injected into the model
via CFT layer and act as weights for the loss functions R and
Lvq in (11). In this way, the model learns to adjust the bit
rate and token reconstruction accuracy based on the given
conditional inputs, βrate and βvq. Moreover, by sampling
two inputs from independent uniform distributions at each
iteration, the model adapts to various (βvq, βrate) pairs.

2) SECOND STAGE: β-SELECTION
Through the aforementioned Dual-conditioned pre-training,
we can control the bit rate and token reconstruction accuracy
with a singlemodel by adjustingβrate andβvq. As discussed in
Sec. III-B, selecting the appropriate βvq for different bit rates
is crucial for optimal performance. Thus, to attain optimal
performance, we adjust βvq for each target bitrate using a
validation dataset. Specifically, given a set of target bit rates
{r1, r2, · · · , rN }, we determine a pair (β̂rirate, β̂

ri
vq) for each bit

rate ri as follows.
1) We define a set ofβvq candidates {β

(1)
vq , β

(2)
vq , · · · , β

(M )
vq }.

For each candidate β
(j)
vq , we perform a binary search

to find a corresponding β
(j)
rate such that the difference

between the validation dataset’s average bit rate and
the target bit rate ri is smaller than a threshold η.

2) Using the determined pairs {(β(1)
vq , β

(1)
rate), · · · , (β(M )

vq ,

β
(M )
rate )}, we generate M sets of reconstructions for the

validation dataset.
3) We evaluate the distortion and perceptual quality

of each reconstruction set using PSNR and FID. A
weighted score S is then defined as:

S = α · PSNR − FID. (13)

where α is a hyperparameter. For each of the M
reconstruction sets, we calculate the score S, resulting
in the set {S(1), S(2), · · · , S(M )

}.
4) Among the M candidates, the pair (β(j)

vq , β
(j)
rate) that

achieves the highest score is selected as (β̂rivq, β̂
ri
rate):

j = argmax
k∈{1,2,··· ,M}

S(k), (14)

(β̂rivq, β̂
ri
rate) = (β(j)

vq , β
(j)
rate), (15)

Repeating this procedure for each target bit rate ri results in
N optimal pairs of conditional inputs {(β̂r1vq, β̂

r1
rate), · · · , (β̂rNvq ,
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TABLE 1. Bjøntegaard delta (BD) metrics [67] relative to ILLM [12]. Bold
and underline indicate the best and second best results, respectively.

β̂
rN
rate)}. These selected pairs are used in the following

fine-tuning stage and for evaluation. This β-selection allows
us to find an ideal βvq for each target bit rate within a
single model, leading to substantial cost savings compared
to trainingM distinct models using different βvq values. Note
that the weight of the model is fixed during this stage.

3) THIRD STAGE: SELECTED-β FINE-TUNING
In the previous stage, we determined optimal pairs
{(β̂r1vq, β̂

r1
rate), · · · , (β̂rNvq , β̂

rN
rate)} for N target bit rates. How-

ever, the model at this point is not fully optimized for these
specific pairs because it is trained to handle a wide range
of (βvq, βrate) in the first stage. To improve performance
for the selected β pairs, we introduce a selected-β fine-
tuning. During this stage, we fine-tune the model using the
same loss function as in the pre-training stage, as defined in
(11). However, instead of sampling conditional inputs from
uniform distributions, we randomly sample a (β̂

rj
vq, β̂

rj
rate) pair

from the selected N pairs at each training iteration. In this
way, the model ‘‘forgets’’ its adaptability to various β pairs
and enhances its performance on the N chosen conditional
inputs.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUPS
1) DATASETS
We trained DC-VIC using the subset of the OpenImage [63]
dataset. In the β-selection stage, we used 2000 images
sampled from the OpenImage validation dataset. For the
evaluation, we used three popular benchmark datasets:
CLIC2020 [64], DIV2K [69], and Kodak [70].

2) IMPLEMENTATION DETAILS
For the pre-trained VQGAN [17], we used a checkpoint with
a codebook size of K = 256, and a down-scale factor
f = H/h = 8, available in the official implementation.1 The
results on different VQGAN configurations will be discussed
in Sec. V-C.

During training, we employed random cropping and
random flipping to obtain 256×256 patches from the original
image. The batch size was set to six. For the loss function

1https://github.com/CompVis/taming-transformers

in (11), we set λR = 0.5, λimg = 1.0, λimgMSE = 50, λvq =

0.003, λvqMSE = 2.0, and λadv = 0.01.
In the dual-conditioned pre-training stage, The total

number of training steps was set to 1, 500, 000. In this stage,
we followed the two-step training used in [12] and [71].
Specifically, we train the model without the adversarial loss
Ladv in (11) for the first 1, 000, 000 steps. Then, we fixed the
parameters of the compression encoder and the entropymodel
and trained the other modules with Ladv for 500, 000 steps.
The upper bounds of the conditional inputs in (12) were set
to βmax

vq = 3.5, βmax
rate = 3.0.

For the β-selection stage, we searched (βvq, βrate) for N =

5 target bit rates: {0.05, 0.075, 0.1, 0.125, 0.15} bpp (bits per
pixel) using the OpenImage validation dataset. We set the
βvq candidates as {0.0, 0.25, 0.5, 0.75, 1.0, · · · , 3.25, 3.5},
in total of 15 values. We set η = 0.001, α = 2.0.
In the selected-β fine-tuning stage, we fine-tuned the

model for 500, 000 steps. As in the latter part of the dual-
conditioned pre-training stage, we fixed the parameters of the
compression encoder and the entropy model.

In the preliminary experiments, we used the same training
setting as the dual-conditioned pre-training stage, except for
using a fixed (βrate, βvq) pair for each model.
For optimization, we used Adam [72] optimizer, where the

initial learning rate was set to 1.0 × 10−4. The learning rate
was decreased to 1.0 × 10−5 for the last 300, 000 steps of
the first 1, 000, 000 steps in the pre-training stage (i.e., the
part where the model is trained without adversarial loss) and
the last 200, 000 steps of the selected β fine-tuning stage.
We used the same optimizer, learning rate, and scheduling
to train the discriminator.

3) EVALUATION METRICS
For evaluation, we used the standard metrics in generative
LIC research, PSNR, FID [65], and LPIPS [62]. To calculate
FID, we followed the protocol in [13]. We do not calculate
FID in Kodak dataset, because it has only 24 images. We
also report Bjøntegaard delta (BD) metrics [67], including
BD-PSNR, BD-FID, and BD-LPIPS. BD metrics represent
the average difference in metrics (e.g., PSNR and FID)
between two methods over a range of bit rates. We used
the bjontegaard Python library,2 which calculates BDmetrics
using a logarithmic scale of bit rates.

4) BASELINES
We compared our model with state-of-the-art generative LIC
models,Multi-Realism [9],HiFiC [13], ILLM [12],HFD [11],
CRDR [10], DIRAC [68], PQ-MIM [73], and VQGAN-based
LIC method, Mao+ [24]. Among the above methods, only
CRDR and DIRAC are variable-rate methods, where the
single model can compress an image into different bit rates.
Our DC-VIC is also a variable-rate method because it can
handleN target bit rates. For the othermodels, distinctmodels
are required for different bit rates. Additionally, we compared

2https://github.com/FAU-LMS/bjontegaard
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FIGURE 7. Results of the β-selection on three target bit rates, 0.05, 0.075, and 0.125 bpp on OpenImage validation dataset. Contour lines for
score S are also shown. The marker highlighted with a blue dashed square is selected for the corresponding bit rate.

FIGURE 8. Comparison with various fine-tuning strategies on CLIC2020
test dataset. While there are no significant differences on PSNR,
fine-tuning strategies affect FID.

our model with non-learned codecs, VVC [7] and BPG [66].
Note that these codecs target rate-distortion performance,
whereas generative LIC methods, including DC-VIC, are
designed to optimize rate-distortion-perception performance.

B. RESULTS OF β-SELECTION
In this section, we show the results of the β-Selection stage
using the OpenImage validation dataset. Fig. 7 illustrates
the PSNR-FID trade-off for M = 15 different βvq
candidates across three target bit rates, {0.05, 0.075, 0.125}
bpp. As detailed in Sec. III-C2, βrate is adjusted for each βvq
so that the difference between the average bit rate and the
target rate is less than η, allowing fair comparison among
various βvq values. The figure also highlights βvq values
selected using the score S in (13). The variation in PSNR
and FID scores with βvq indicates the significant influence
of βvq on compression performance. Generally, higher βvq
values tend to result in lower (better) FID, while lower
βvq values yield higher PSNR. This trend can be attributed
to the information allocation between token estimation and
decoder feature modification controlled by βvq. Specifically,
with a higher βvq, more information is allocated to token
estimation. It enables the VQGAN decoder to reconstruct
the image from a highly accurate token sequence, thus
enhancing perceptual quality (FID). Conversely, a lower
βvq prioritizes information for decoder feature modification,

which enhances reconstruction fidelity, resulting in higher
PSNR scores.

Next, we look into the results at specific target bit rates.
At 0.05 bpp, a range of βvq values yield similar PSNR
scores; however, higher βvq values lead to lower FID, thereby
achieving a better PSNR-FID trade-off. As a result, βvq =

3.0 is selected based on the weighted score S. On the other
hand, at 0.125 bpp, higher βvq values tend to result in worse
FID scores. Thus, lower βvq values achieve a more favorable
PSNR-FID trade-off, leading to the selection of βvq = 1.5 for
this bit rate. These results indicate that higher βvq values are
preferable at lower bit rates, while lower βvq values are more
beneficial at higher bit rates. Additionally, this demonstrates
the effectiveness of adopting different βvq values for each
target bit rate, thereby validating the core concept of our dual-
conditioned training.

C. EFFECTIVENESS OF SELECTED β FINE-TUNING
In DC-VIC, the selected-β fine-tuning is adopted to optimize
the model for the selected pairs {(β̃r1vq, β̃

r1
rate) · · · (β̃

rN
vq , β̃

rN
rate)}.

In this section, we evaluate the efficacy of our fine-tuning
approach by comparing it with three baseline strategies:

• w/o fine-tuning (FT): This baseline uses the model
as it is after the dual-conditioned pre-training stage,
without any fine-tuning. During the evaluation, we use
(β̃rivq, β̃

ri
rate) pairs determined through β-selection.

• Uniform FT: This approach is equal to extending
the first stage of training. Specifically, the model
is fine-tuned with (βvq, βrate) pairs sampled from
a uniform distribution. Subsequent to this fine-
tuning, we select the optimal (β̃rivq, β̃

ri
rate) pairs through

β-selection and evaluate the model’s performance using
these pairs.

• Single β-pair FT: This strategy involves fine-tuning the
model using only one of the selected (β̃rivq, β̃

ri
rate) pairs,

thereby optimizing the model for a single target bit rate.
To save computational cost, we trained three distinct
models for the Single β-pair FT, using the target bit rates
{0.05, 0.10, 0.15} bpp.

The results on the CLIC2020 test dataset are illus-
trated in Fig. 8. As shown in the figure, fine-tuning
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FIGURE 9. Quantitative comparison with state-of-the-art generative LIC methods on (a) CLIC, (b) DIV2K, and (c) Kodak datasets. The solid lines
indicate variable-rate methods, while the dashed lines represent single-rate methods, which require separate models for each bit rate. Our DC-VIC
achieves the best FID and LPIPS scores across all three datasets. FID is not calculated on the Kodak dataset due to its limited number of images.

FIGURE 10. Quantitative comparison with non-learned codecs (VVC [7]
and BPG [66]) on the CLIC2020 test dataset. While these codecs
outperform DC-VIC in terms of PSNR, they perform significantly worse on
perceptual metrics, FID and LPIPS .

methods have a notable impact on FID scores, while
PSNR scores are unaffected. The comparison between
Uniform-sampling FT and w/o FT shows only a marginal
improvement in FID, suggesting that merely extending the
training duration does not significantly enhance performance.
In contrast, DC-VIC achieves superior FID scores over

Uniform-sampling FT across all target bit rates. This indi-
cates that the generalized training with uniformly sampled
(βvq, βrate) pairs in Uniform-sampling FT led to suboptimal
performance, which demonstrates the effectiveness of our
fine-tuning using only the selected conditional inputs.
Furthermore, the FID scores of DC-VIC are comparable to
those of Single β-pair FT. The Single β-pair FT is a special
case of DC-VIC, where only one target rate is specified
at the β-selection stage. Hence, these small performance
gaps indicate DC-VIC’s robustness across various bit rates
without sacrificing quality. Overall, the results validate
the advantage of our selected-β fine-tuning in optimally
adjusting the model for the selected conditional inputs,
{(β̃r1vq, β̃

r1
rate) · · · (β̃

rN
vq , β̃

rN
rate)}.

D. QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART
METHODS
We benchmarked our DC-VIC against the state-of-the-art
(SOTA) generative LICmethods on three datasets, CLIC [64],
DIV2K [69], and Kodak [70], in Fig. 9. Note that not all
methods have reported results on the DIV2K and Kodak
datasets. We present two variants of our model: DC-VIC
(PatchGAN) and DC-VIC (OASIS), using PatchGAN and
OASIS discriminators, respectively. In the figure, the dashed
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FIGURE 11. Qualitative comparison between our DC-VIC and state-of-the-art generative LIC methods on CLIC2020 dataset [64].

lines represent single-rate methods, and the solid lines in
the figure denote variable-rate methods, including DC-VIC.
While single-rate methods require separate models for each
bit rate, variable-rate methods can handle different bit rates
within a single model.

The results demonstrate that DC-VIC (PatchGAN) out-
performs SOTA methods in perceptual metrics, FID and
LPIPS, across all datasets, while achieving comparable PSNR
to ILLM [12]. Notably, DC-VIC achieves this performance
using a single model across different bit rates, whereas most
other methods require separate models for each bit rate.
AlthoughCRDR [10] andMulti-Realism [9] surpass DC-VIC
in terms of PSNR, ourmodel achieves significantly better FID
scores. Moreover, DC-VIC (OASIS) further enhances LPIPS
and FID at specific bit rates, indicating the effectiveness
of incorporating the OASIS discriminator into our method.

In addition, DC-VIC significantly outperforms another pre-
trained VQGAN-based method, Mao+ [24], in both PSNR
and LPIPS, with a notable difference of over 2.5 dB in
PSNR. This substantial margin suggests that Mao+ suffers
from poor reconstruction fidelity, likely due to directly using
VQGAN reconstructions as the final output. In contrast,
our method mitigates artifacts and distortions introduced by
VQGAN through feature modification, leading to improved
reconstruction fidelity. Note that we can not compare FID due
to different FID calculation protocols and the lack of publicly
available implementation.

We also report the Bjøntegaard delta metrics [67] (BD-
PSNR, BD-FID, and BD-LPIPS) for generative LIC methods
relative to ILLM [12] in Table 1. As shown in the table,
DC-VIC (PatchGAN) and DC-VIC (OASIS) achieved the
best and second-best BD-FID and BD-LPIPS, respectively,
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FIGURE 12. Qualitative comparison between DC-VIC and ILLM [12] on DIV2K dataset [69].

demonstrating superior performance in perceptual metrics.
While the negative BD-PSNR values indicate that both
DC-VIC models have slightly lower PSNR than ILLM on
average, the differences are minimal: 0.0996 dB for DC-VIC
(PatchGAN) and just 0.024 dB for DC-VIC (OASIS). This
indicates competitive PSNR relative to ILLM.

Furthermore, we compare DC-VIC and non-learned
codecs, VVC [7] and BPG [66] in Fig. 10. Since VVC and
BPG focus on rate-distortion performance, they outperform
DC-VIC in PSNR, a distortionmetric. However, they perform
significantly worse in terms of LPIPS and FID, indicating
poorer perceptual quality.

In conclusion, both DC-VIC (PatchGAN) and DC-
VIC (OASIS) consistently achieve superior rate-distortion-
perception (RDP) performance across all three datasets
compared to state-of-the-art generative LIC methods, includ-
ing both single- and variable-rate models. DC-VIC also
significantly outperforms traditional non-learned codecs in
perceptual metrics.

E. QUALITATIVE COMPARISON
Fig. 11 shows a qualitative comparison between our DC-VIC
and other SOTA methods, ILLM [12], Multi-realism [9],
CRDR [10], and VVC [7] on CLIC2020 test dataset [64].
As shown in the figure, the reconstructions ofDC-VIC exhibit
fewer artifacts than other methods and retain the original
image content with higher fidelity. For example, in the top
image, DC-VIC successfully captures the leaf veins, whereas
other methods failed to reconstruct them. Similarly, in the
bottom examples, while other methods introduce artifacts,
as marked with the red rectangles, DC-VIC accurately
preserves the brick patterns without noticeable distortion.
Notably, the decoded images from VVC [7] appear blurry,
even at a higher bit rate than other methods. This results in

TABLE 2. Lossless bit rates of the three different VQGAN configurations
that we tested.

poor perceptual quality, as reflected in the inferior perceptual
metrics shown in Fig. 10.

In Fig. 12, we further compare the reconstructions of
DC-VIC and ILLM [12] on DIV2K dataset [69]. In the
top image, ILLM generates artifacts, as highlighted by the
red rectangle. In contrast, the texture of our reconstruction
appears more natural. In the bottom example, DC-VIC
reconstructs finer structural details of the building, resulting
in more accurate reconstruction than ILLM.

We hypothesize that utilizing the pre-trained VQGAN
codebook contributed to the precise preservation of patterned
textures, while the feature modification resulted in reduced
artifacts. The presented results indicate DC-VIC’s superior
reconstruction quality across various datasets, demonstrating
its effectiveness in reconstructing detailed image content and
minimizing artifacts.

V. DISCUSSION
A. COMPARISON WITH ORIGINAL VQGAN
RECONSTRUCTION
In this analysis, we compare the reconstructions of DC-VIC
with those from the original VQGAN [17]. Specifically,
we use the pre-trained VQGAN decoder to reconstruct
images directly from the original VQGAN tokens zq without
any decoder feature modification. The original image and
their reconstructions are shown in Fig. 13. As can be
seen, the original VQGAN reconstructions exhibit significant
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FIGURE 13. Comparison between standard VQGAN reconstructions (i.e.,
decoded from original VQGAN tokens without decoder feature
modification) and our reconstructions. Noticeable distortions and
artifacts are present in the VQGAN reconstructions, whereas these
artifacts are mitigated in our reconstructions.

distortion and artifacts, despite using the original tokens. This
indicates that although the VQGAN codebook is capable of
capturing a wide range of image content, its reconstruction
fidelity remains constrained. In contrast, ourmethodmodifies
the decoder’s intermediate features, enabling more accurate
reconstructions. This improvement suggests that our decoder
feature modification substantially enhances reconstruction
fidelity, addressing the inherent limitation of the original
VQGAN.

B. ANALYSIS ON TOKEN RECONSTRUCTION ACCURACY
As demonstrated in Sec III-B, the best performance was
achieved with different βvq values at various target bit
rates. It suggests that the ideal information allocations
for VQGAN token estimation vary with bit rates. In this
section, we investigate the accuracy of token estimation
across different βvq values to understand the relationship
between token estimation accuracy and overall compression
performance.

Fig. 14 presents PSNR and token estimation accuracy on
the OpenImage validation dataset. Here, the token estimation
accuracy (Acc) is defined as follows:

si =

{
1, if Ĩ (i)vq = I (i)vq
0, otherwise

(16)

Acc =
1

h× w

h×w∑
i

si, (17)

where h,w denote the height and width of the VQGAN
latent ẑ, respectively. As in the β-selection stage, we used
M = 15 distinct βvq values across N = 5 target bit rates. The
results demonstrate that a higher βvq leads to lower PSNR and
higher Acc, whereas a lower βvq results in higher PSNR and
lower Acc. This observation aligns with the objective of our
dual-conditioned training, demonstrating that βvq effectively
controls the information allocation between token estimation
and decoder feature modification within a single model.

Moreover, red circles in Fig. 14 denote the results obtained
using the selected conditional inputs: {(β̃r1vq, β̃

r1
rate), · · ·

(β̃rNvq , β̃
rN
rate)}. Interestingly, the token estimation accuracy

of these selected conditional inputs converged around 0.3.
This suggests that, even at relatively higher bit rates, high
token estimation accuracy is not necessary for optimal
RDP performance. We hypothesize that token estimation
accuracy exceeding a certain threshold does not significantly
enhance the reconstruction quality of the VQGAN. As a
result, conditional inputs that allocated more information for
decoder feature modification were favored at higher bit rates.

Furthermore, this insight could be useful in designing
a more efficient training strategy. For instance, if higher
token estimation accuracy is unnecessary, we might consider
limiting the range of conditional inputs in the initial training
stage. This adjustment could enable the model to focus on a
narrower set of inputs, potentially enhancing performance.

C. TRAINING WITH DIFFERENT VQGAN CONFIGURATIONS
In our main experiments, we used a pre-trained VQGAN
model with a down-scale factor f = 8 and a codebook
size of K = 256. In this section, we evaluate our DC-VIC
trained with other pre-trained VQGAN models, specifically
(f ,K ) = (8, 16384) and (16, 16384), to evaluate the
robustness. These pre-trained models are also available in the
author’s repository.3,4

First, to understand the characteristics of these configura-
tions, we present the lossless bit rates of the token sequence in
Table 2. The lossless bit rate can be calculated as log2 K/f 2,
where log2 K denotes a bit length required to represent each
token, and f 2 corresponds to the number of pixels covered
by a single token. It shows that (f ,K ) = (8, 16384) and
(f ,K ) = (16, 16384) have the highest and lowest lossless
compression bit rates, respectively.

We report the PSNR and FID scores of DC-VIC across
different VQGAN configurations in Fig. 15. The figure
indicates that different configurations excel at different bit
rates. For example, while the (f ,K ) = (16, 16384) model
outperforms the (f ,K ) = (8, 256) model at the lowest bit
rate, it resulted in poor FID at higher bit rates. Conversely,
while the (f ,K ) = (8, 16384) configuration shows less
optimal FID at lower bit rates, it demonstrates competitive
performance at higher bit rates compared to our default
configuration. We hypothesize that these trends are related to

3https://ommer-lab.com/files/latent-diffusion/vq-f8.zip
4https://heibox.uni-heidelberg.de/f/0e42b04e2e904890a9b6/?dl=1
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FIGURE 14. PSNR and token estimation accuracy on OpenImage Validation dataset [63] using the model before
the Selected-β fine-tuning stage. We used M = 15 βvq values for N = 5 target bit rates, obtaining 75 data points
in total. Red circles indicate the results from selected β pairs: (β̃

ri
vq, β̃

ri
rate).

FIGURE 15. Quantitative results on three different VQGAN configurations
on CLIC2020 test dataset. (f , K ) = (8, 256) is our default setting.

the lossless compression rate. The (f ,K ) = (16, 16384) and
(8, 16384) models represent the lowest and highest lossless
compression rates among the three configurations, possibly
leading to their superior performance at low and high bit
rates, respectively. Furthermore, our default setting (f ,K ) =

(8, 256) consistently achieves favorable performance. One
possible reason for this is its relatively smaller codebook
size, which simplifies our token estimator’s task of predicting
indices for K classes. The larger K = 16384 in the other
configurations may complicate the training of the token
estimator, potentially leading to challenges in optimization.

These findings also imply that while DC-VIC achieves
robust performance across various VQGAN variations, there
may exist even more optimal VQGAN configurations for
specific target bit rates. While the pre-training of VQGAN
extends beyond the scope of this study, investigating more
customized VQGAN configurations could further enhance
RDP performance, presenting a promising direction for our
future research.

Furthermore, our model can be used alongside any other
codebook-based generative models if SFT layers can be
integrated into the decoder, which is feasible for most models.
Since the original VQGAN [17], several improved versions
have been proposed [74], [75], [76], [77]. While these

TABLE 3. Comparison of parameter counts and encoding/decoding times
between our DC-VIC and existing methods. The encoding and decoding
times are measured using images with a spatial resolution of 256 × 256.
The encoding and decoding times for DIRAC [68] are omitted due to the
lack of publicly available implementation.

methods introduce enhancements, such as Transformer-based
autoencoder architectures [75], [76] or improved code-
books [74], [77], their fundamental concept, reconstructing
high-quality images from discrete token sequences, remains
consistent with the original VQGAN [17]. Therefore, as our
method demonstrates robust performance across various
VQGAN configurations, it is expected to perform effectively
with other codebook-based generative models as well.

D. MODEL SIZE AND COMPUTATIONAL COMPLEXITY
Table 3 presents a comparison of model sizes and encod-
ing/decoding times. Note that some methods do not report
their model sizes or publish their implementations. Therefore,
their results are omitted. To measure the average encoding
and decoding times, we used 100 images from the DIV2K
[69] dataset, cropping them to obtain 256 × 256 patches.
The experiments were conducted on amachine equipped with
an NVIDIA GeForce RTX 3080 GPU (CUDA version 11.6),
an AMD Ryzen 7 3700X 8-Core Processor, running Ubuntu
18.04.6 LTS.

In terms of parameter counts, we observe that there are no
significant differences between DC-VIC and other methods.
This indicates that the performance improvements of our
method are not merely due to an increase in parameters.
Additionally, the pre-trained VQGAN [17], with 67.6M
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parameters, remains fixed in our model. Consequently, the
learnable part of our method consists of 84.1M parameters,
which is fewer than the number of parameters in other
methods.

Regarding encoding speed, there are no notable differences
between CRDR [10], ILLM [12], and DC-VIC. However,
DC-VIC exhibits the slowest decoding speed among the
three methods. Concretely, our model is 19.22 ms slower
than CRDR and 53.99 ms slower than ILLM. This slower
performance is attributed to the relatively high computational
cost of the VQGAN decoder. A potential solution to this issue
is incorporating a more efficient variant of VQGAN, such as
Efficient VQGAN [76].
In terms of total training time, our approach is expected

to be shorter than existing single-rate methods. Since our
model is variable-rate, we do not need to train multiple
models for different bit rates. Our single model is optimized
for five different bit rates, whereas single-rate methods such
as ILLM [12] and HiFiC [13] require training five distinct
models, leading to longer overall training times. Additionally,
our total training process has 2 million iterations, which is
comparable to or shorter than other methods (e.g., HiFiC [13]
and Multi-Realism [9] uses 2 million and 3 million iterations
per model, respectively).

VI. CONCLUSION
In this paper, we introduced a Dual-Conditioned VQGAN-
based Image Compression (DC-VIC) model. On the encoder
side, the original image and its VQGAN tokens are integrated
into a single bitstream. On the decoder side, the image
is reconstructed through VQGAN token estimation and
VQGAN decoder feature modification. Preliminary experi-
ments demonstrated that the information allocation between
these two processes significantly influences compression
performance, and the optimal allocations vary with target
bit rates. To dynamically control the information allocation
within a single model, we proposed a Dual-Conditioned
Training approach. We initially train the model to adapt to
a wide range of conditional inputs, which adjust the total
bit rate and information allocation. Subsequently, we employ
a β-Selection protocol to identify the optimal conditional
inputs for each target bit rate. The model is then fine-tuned
with these selected inputs.

We empirically demonstrated the effectiveness of the
β-Selection and fine-tuning strategy. In addition, DC-VIC
outperformed existing state-of-the-art generative LIC meth-
ods in terms of perceptual metrics. Furthermore, we inves-
tigated the token estimation accuracy of the selected
conditional inputs and evaluated the model’s robustness
across different pre-trained VQGAN configurations. These
explorations provide insights for enhancing model perfor-
mance and suggest promising directions for future research.

LIMITATIONS AND FUTURE WORK
Currently, there are two main limitations in our work. Firstly,
our method is focused on low bit rate compression (below
0.20 bpp). However, for practical application, achieving

robust performance across a wide range of bit rates is
essential. One potential solution to address this limitation is
to employ a pre-trained VQGAN with a larger codebook and
a smaller down-scaling factor. Although this would increase
the data size of the token sequence, it is expected to enhance
reconstruction quality, making the method more suitable for
higher bit rate compression.

Secondly, as discussed in Sec. V-D, the decoding process
of DC-VIC is slower compared to other GAN-based methods
[10], [12]. Since image compression is a fundamental
process, minimizing computational cost is essential. To mit-
igate this issue, we could incorporate improved versions
of VQGAN, such as MoVQ [74] and Efficient VQGAN
[76]. Since our method is compatible with any VQGAN
architecture, it can easily incorporate these variants. For
example, Efficient VQGAN [76] replaces the global attention
modules with the Swin Transformer Block [36], achieving
faster reconstruction and enhanced quality. Adopting such
enhanced VQGAN models is a promising direction for
future work to improve both the efficiency and compression
performance of our method.

Additionally, developing distortion-perception controlla-
bility, as in [9] and [10], is another interesting direction for
future work. As shown in Fig. 7, βvq adjusts trade-off between
PSNR (distortion) and FID (perception) to some extent.
Although the current controllable range is narrower than that
of existing methods [9], [10], this phenomenon suggests that
our model has the potential to develop distortion-perception
controllability. Such a feature would be valuable in real-world
scenarios, as it would allow users to select the preferred level
of realism based on specific requirements.
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