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ABSTRACT Synthetic leather is a commonly used material, especially in the clothing industry. It is
employed in the production of footwear, such as shoes and boots, as well as handbags and other accessories.
Prior to exportation, the leather is subjected to a series of processing stages, which may result in the
formation of surface defects. Quality assurance, which serves to identify defective leather in a timely
manner, is still partially conducted by humans. This step is time-consuming and is associated with a higher
error rate. To address these challenges, the deployment of image processing systems for the automated
inspection of leather defects is becoming increasingly crucial. The objective of this study is to develop
an effective deep learning model for the classification of defective synthetic leather, with the aim of
implementing it in the quality control of synthetic leather production. To this end, a variety of architectural
approaches are employed, including Xception, InceptionV3, ResNet50V2, VGG19, and VGG16. In addition
to hyperparameter tuning, all architectures utilize transfer learning. Moreover, the impact of the Gaussian
filter as a pre-processing step for images is examined. The results show that by using an innovative Gaussian
filtering approach, an accuracy of 100%was achieved with the VGG16model. Furthermore, the results show
that the filtering approach has a positive influence on the accuracy of all other models. The high accuracies
of the deep learning models show that the use of machine vision systems for the automatic inspection of
defects in the synthetic leather industry is an effective economic step for companies, as it leads to cost and
time savings in production due to the high classification performance. This study provides an overview of
the results achieved and other key performance indicators for all the models used.

INDEX TERMS Deep learning, Gaussian filter, synthetic leather, defect detection, transfer learning, pre-
trained architectures, data augmentation, hyperparameter tuning.

I. INTRODUCTION
Leather is one of the most traded commodities, with great
economic importance [1]. It can be divided into genuine
leather and synthetic leather. Genuine leather is derived
from the rawhide and skin of animals such as cows,
crocodiles, or goats. It is a natural material that is water-
repellent, elastic, and durable. Due to its high quality and
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durability, it is a popular textile material that is utilized
in the production of clothing, car accessories, and shoes,
among other products [2]. Synthetic leather, also known
as artificial leather or faux leather, is a widely used
material due to its variety, mass production, and widespread
manufacture [3]; it is also an alternative to leather of
animal origin. It is made from a textile base coated with an
application of polymer in the form of lacquer or emulsion,
typically using polyurethane (PU), polyvinyl chloride (PVC),
or polypropylene [4], that simulates the mesh and grain layers
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of genuine leather [5]. The advancement and manufacturing
of textile synthetic leather have significantly addressed the
rising consumer demand for leather products [5]. Synthetic
leather is manufactured to imitate the appearance and,
if desired, the texture of genuine leather [6], sometimes
with better physical properties such as higher durability
or better stitch tear [7]. Further advantages are that the
production of synthetic leather does not necessitate the use
of animal skins, thereby eliminating the need to kill animals
for their use. Synthetic leather also has no typical defects
that are common in genuine leather, such as scars, wire
scratches, fire marks for identification of the animal, spots,
burns, and marks caused by insects [8]. Another significant
advantage is that the cost of synthetic leather is generally
lower than that of genuine leather, which is due to the
economies of scale associated with mass production [9].
Furthermore, it offers advantages in the context of production,
as it provides standardized sizes and thicknesses and is
available in roll form, resulting in a reduction of waste during
cutting and facilitating more effective planning [8]. Synthetic
leather can be used in many different ways, including
making shoes, boots, clothing, and bags [10], furniture
fabrics, clothing fabrics, automobile interior decoration, and
medical equipment [11]. Additionally, modified graphene
can enhance synthetic leather with mold protection efficient
antibacterial and self-cleaning properties, and it can be used
to apply functional polyurethane coatings in automotive and
aircraft interiors [11]. Synthetic leather and genuine leather
are produced using different processes. The production of
genuine leather requires a higher degree of manual labor.
The production of synthetic leather, on the other hand, is a
highly automated process [12]. For both types, automatic
quality control is a crucial aspect of leather production, as it
enables the early detection and rejection of defective material
that may result from the various processing steps. In certain
instances, the quality control of synthetic leather is also
conducted by human workers [12]. However, this manual
approach is both time-consuming and costly. Despite its
significant importance, however, automatic quality control in
leather production remains largely limited to genuine leather.
Nevertheless, it is of great importance in the highly automated
production of synthetic leather.

In recent years, deep learning methods have achieved
remarkable success in image recognition and classification.
Among the various deep learning models, the convolutional
neural network (CNN) is the most widely used one, which
is most suitable for the binary classification of defective or
non-defective leather material for quality inspection. Prior
research has demonstrated the efficacy of deep learning
techniques in object recognition, particularly in the context
of defect detection in synthetic leather [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24]. Various
approaches have been explored in this domain. One is the
reconstruction-based method, which involves reconstructing
all input images into a defect-free state that was previously
trained. The presence of defects can then be identified

FIGURE 1. Comparison of the present manual quality inspection process
in synthetic leather production and its potential future evolution, which
could offer significant advantages through the integration of modern
deep learning methods.

by comparing the original image with the reconstructed
image [17], [18]. In the work of Srilakshmi et al. [22],
they developed an automated pipeline for visual inspection
with the objective of detecting defects. In this process, they
employed a customized VGG16 model, which had been
pre-trained on the ImageNet [25] dataset.
Despite the aforementioned methodologies, there is a

continued necessity for an efficacious model that is able to
accurately differentiate between defective and non-defective
leather so that it can be employed in automated quality control
within the synthetic leather industry. We address this problem
by using different state-of-the-art pre-trained models and set
a new benchmark in the detection of defects in synthetic
leather. Figure 1 illustrates the existing manual inspection
approach for synthetic leather and a prospective alternative
based on deep learning, which offers several benefits. For
the development and evaluation of our model, we employ
the MVTec dataset [26], comprehensively detailed in Sub-
section III-D, comprising labeled images of synthetic leather.
In the context of the classification task, the utilization of
pre-trained architectures is advantageous, as it allows for
the application of transfer learning, which is particularly
beneficial in the case of the dataset under consideration.
To the best of our knowledge, only a limited number of studies
have employed supervised learning models for the detection
of synthetic leather defects, such as [20] and [22].

In light of the dearth of literature examining defects in
synthetic leather through the lens of supervised learning and
pre-trained architectures, we also compare our results with
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those of researchers who have used semi-supervised and
unsupervised learning [13], [15], [16], [17], [18]. In addition
to the models, we are investigating the influence of the Gaus-
sian filter on synthetic leather. In areas where no pre-trained
architectures are used, the Gaussian filter is used in the
following works: [27], [28]. In these papers, the authors used
the filter to emphasize the defect in the leather and suppress
the meaningless information. However, a comparison of the
effects of this filter on the overall result was not performed.
Based on these two references, we hypothesize a positive
impact of applying the Gaussian filter to synthetic leather.
Given that synthetic leather emulates the surface structure of
genuine leather, it seems reasonable to posit that the observed
effects on genuine leather, such as the enhancement of
defect visibility, are likely transferable to the synthetic leather
context. As far as we know, there is no work investigating the
influence of the Gaussian filter on synthetic leather in relation
to pre-trained architectures in the context of supervised
learning. The results of this study can be used to improve
quality control in the synthetic leather industry. The aim is
to detect defects in synthetic leather goods as effectively as
possible and thus maintain the competitiveness of the sector.
In this study, the following pre-trained CNNmodels are used:
VGG16, VGG19, ResNet50V2, InceptionV3, and Xception.
Hyperparameter tuning is performed for all models to
determine the optimal parameters. Furthermore, the Gaussian
filter is used to pre-process the images. The main results of
this study are as follows:

1) Applying innovative Gaussian filtering, we were able to
develop a VGG16-based model that achieved 100% accuracy
in distinguishing between defect-free and defective synthetic
leather images.

2) We show that applying the Gaussian filter as a
pre-processing step led to improved accuracy for all
pre-trained architectures used.

Our paper is structured as follows: Section II provides
an overview of related work in the field of leather defect
detection by supervised, semi-supervised, and unsupervised
learning methods, the basics of transfer learning are also
explained. Section III contains information about the deep
learning approach used, a brief description of the deep
learning architectures used, the Gaussian filter utilized as a
pre-processing step, followed by a detailed explanation of
the training and test process and the dataset used for the
evaluation. In Section IV, we present the results, followed
by the discussion in Section V. Finally, Section VI presents
a summary of the key findings and highlights the study’s
contributions.

II. RELATED WORK
Deep learning methods for defect detection approaches can
be divided into three categories, supervised, semi-supervised,
and unsupervised learning, with the main difference being
the extent of labeled image requirements: supervisedmethods
need labels for all classes, semi-supervised only for defect-
free instances, and unsupervised require no labels, it tends to

be possible to say here that semi-supervised methods perform
worse than those of supervised learning [29]. However,
supervised learning methods tend to perform exceptionally
well when the dataset includes a sufficient number of
examples for each class, thereby enabling the model to learn
more effectively from the comprehensive labeled data [29].

This section provides a concise overview of the evolution
of contemporary convolutional neural networks and transfer
learning. Subsequently, relevant studies on defect detection
from recent years are presented, with the focus of this work
being on the use of supervised learning with pre-trained
architectures for classification.

A. EVOLUTION OF MODERN CONVOLUTIONAL NEURAL
NETWORKS
CNNs are a deep learning architecture that is good at classi-
fying images. They are able to do the feature extraction and
final classification in a combined step [30]. The development
of backpropagation in 1990 marked a significant milestone
toward the CNNs we use today, initially demonstrated by
a network capable of recognizing handwritten digits [31].
Today, CNNs are still state-of-the-art regarding image
recognition and classification [32], but they have nothing
in common with the CNNs of the past and are much more
capable of more complex recognition tasks [33]. With their
novel architecture, AlexNet, Krizhevsky et al. [34] achieved
the first major breakthrough in solving more complex tasks
and have created the first model ever to win the ImageNet
competition. ImageNet represents one of the most used
research image datasets. Over the next few years until today,
VGGNet [35], GoogleNet (Inception Models) [36], and
ResNet [37] were the architectures that were able to build on
the success and achieve even better accuracies.

B. TRANSFER LEARNING BASICS
Transfer learning is classified in the field ofmachine learning.
Due to its versatile applicability, transfer learning has become
a popular and promising area in machine learning [38].
Using transfer learning strategies can significantly reduce the
required amount of training data [39]. The goal of transfer
learning is to improve the performance of learning models
in specific target domains by transferring knowledge from
different but related source domains. In this method, networks
are trained in advance with a large dataset. Databases
such as ImageNet can be employed for this purpose. The
pre-trained network and convolutional layer weights are then
copied and applied to the new classification task. This can
drastically reduce the reliance on a large amount of data in
the target domains for building learningmodels [40]. Transfer
learning is a very efficient method to perform related tasks.
An alternative approach is pre-training. The only difference
to transfer learning is that this method has greater flexibility
in designing the network architecture since this can be
defined in advance [41]. The advantage of transfer learning,
which enables the transfer of knowledge from large datasets,
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is particularly advantageous in this work, which uses a small
dataset that can also occur in a practical scenario.

C. DEEP LEARNING METHODS USING SYNTHETIC
LEATHER AND SEMI- OR UNSUPERVISED LEARNING
Semi-supervised or unsupervised learning methods are often
used for defect detection because they require few to no
labeled images to detect defects. Li et al. [13] designed
a novel multi-classification AD (MCAD) framework to
achieve high accuracy in anomaly detection. They used a
teacher-student model with ResNet18 as the teacher and
ResNet10 as the student and trained the multi-classification
model via transfer learning. In [14], Jiang et al. intro-
duced an extension of the PatchCore method called
Feature-Level Registration PatchCore (FR-PatchCore) to test
anomaly detection. FR-PatchCore constructs a featurematrix,
which is stored in the memory bank and continuously
updated using the optimal negative cosine similarity loss.
In another work [15], the authors present their method
named DRÆM (discriminative joint reconstruction anomaly
embedding method), which belongs to the reconstructive
approach. The method simultaneously learns a combined
representation of an anomalous image and its anomaly-free
reconstruction while developing a decision boundary to
discriminate between normal and anomalous examples.
To detect defects, Rudolph et al. [23] utilized DifferNet,
which applies normalizing-flow-based density estimation of
image features at multiple scales to identify defects. This
approach utilizes the likelihoods of several transformations
of a single image to compute a robust anomaly score.
The authors Yang et al. [16], used a memory-based end-
to-end segmentation network (MemSeg) to detect surface
defects. It introduces artificially simulated abnormal samples
and memory samples. It introduces artificially simulated
abnormal samples and a memory pool. During training,
it explicitly learns the differences between normal and
abnormal images while storing general patterns of normal
samples. By comparing input data with memory samples,
it identifies abnormal regions effectively. Luo et al. [17]
used a reconstruction-based method called Adaptive Mask
Inpainting Network (AMI-Net). AMI-Net restores defective
images to their normal state and then detects defects by
analyzing the differences between the restored images and the
originals. In another work [18], the authors Napoletano, Pic-
coli, and Schettini also used a reconstruction-based method.
They used a pre-trained CNN autoencoder with a statistical
transformation to remove anomalies from input images, then
compared the cleaned images to the originals for anomaly
detection and localization. In [24], the authors present a
framework for Patch Distribution Modeling (PaDiM) to
simultaneously detect and localize anomalies in images
within a one-class learning setting. PaDiM uses a pre-trained
CNN for patch embedding, models the normal class with
multivariate Gaussian distributions, and enhances anomaly
localization by leveraging semantic correlations within the
CNN.

TABLE 1. Summary of related work for the classification task of synthetic
leather using pre-trained architectures.

D. DEEP LEARNING METHODS USING SYNTHETIC
LEATHER, PRE-TRAINED ARCHITECTURES, AND
SUPERVISED LEARNING
In order to benefit from the advantages of transfer learning,
we focus on the use of pre-trained architectures in this paper.
According to our research, only a few authors deal with
the defect detection of synthetic leather using pre-trained
architectures. Fuqin et al. [20] developed a defect generation
method with multiple loss functions, named DG2GAN,
to address issues such as insufficient variety and poor quality
of the augmented data. This method utilizes cycle consistency
loss to generate defect images from a vast number of
defect-free synthetic leather images. The authors tested their
method with a ResNet34 model and achieved accuracies
of 92.6% (defective) and 92.8% (no defect). In their study,
Adao et al. [19] employed a Xception model on distinct
variants of their dataset. They utilized a grid to mark defects
in synthetic leather. Two annotation styles were utilized to
address a binary classification task aimed at differentiating
between defective and non-defective images, achieving an
accuracy of 96%. Zuluaga et al. [21] addressed the challenge
of insufficient sample images by implementing federated
learning. In their study, the DarkNet19 and SqueezeNet
architectures were employed, achieving an accuracy of
100% with both models. Srilakshmi et al. [22] developed
an automated visual inspection (AVI) pipeline for defect
detection. A custom VGG16 architecture, pre-trained on
ImageNet, was employed for the classification of leather as
either non-defective or defective. The approach yielded an
accuracy of 94.66%.

Table 1 provides a summary of the aforementioned works.
A review of the literature reveals a paucity of research on
the defect detection of synthetic leather using supervised
learning and pre-trained architectures. It is worth noting that
the known pre-trained architectures, such as InceptionV3
or VGG19, have yet to be subjected to examination.
Furthermore, it is evident that no pre-processing filters were
employed in the aforementioned prior work. Nevertheless,
the application of pre-processing filters has the potential
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to enhance the efficacy of the model. For instance, the
Gaussian filter has been demonstrated to be effective in the
context of genuine leather [27], [28]. Specifically related
to the two references [27] and [28], it is assumed that the
application of the Gaussian filter to synthetic leather could
lead to positive results. In the aforementioned references,
the filter is employed to emphasize defective areas and
attenuate meaningless regions. Given that synthetic leather
emulates the surface structure of genuine leather, it seems
reasonable to posit that the observed effects on genuine
leather, such as the enhancement of defect visibility, are likely
transferable to the synthetic leather context. To the best of
our knowledge, no prior research has examined the impact
of the Gaussian filter on synthetic leather in conjunction
with pre-trained architectures in the context of supervised
learning. With these considerations in mind, this work
explores the utilization of diverse pre-trained architectures
for the binary classification of synthetic leather, utilizing the
Gaussian filter as a pre-processing filter for the images and
examining its effects on model accuracy. The findings are
presented in this study.

III. METHODOLOGY
The objective of this study is to develop an effective deep
learning model for the classification of defective synthetic
leather. In preparation for training, the images of the test
set for each category of defective images are combined
into one category from the original leather dataset. This
results in two categories being available for the binary
classification problem: one class where only defective images
are included and one where defect-free images are included.
The entire dataset is first converted to a NumPy array, then
resized to 150 × 150 px and pre-processed with a Gaussian
filter for the sequential data manipulation. The architectures
VGG16, VGG19, ResNet50V2, Xception, and InceptionV3
were used for defect detection. A stratified 5-fold cross-
validation is then applied to all five models during the
training process. For each split of the cross-validation, the
best hyperparameters for the model are first searched. Before
training the full model, the additional dense layer is trained
using the transfer learning approach. For each training, the
original class weights of the specific object are used. Finally,

the performance is evaluated using images from a previously
unused portion of the data.

A. MODEL ARCHITECTURE
In this study, we use several pre-trained architectures that
have the advantage of being able to use the weights of
larger datasets, such as those from ImageNet. The selection
of models in the context of supervised learning is a crucial
decision.

In this study, the choice was informed by prior research,
as summarized in Table 1, as well as by studies conducted
beyond the specific application of synthetic leather. Table 1
further highlights that numerous models have not yet been
applied to synthetic leather. Taking this fact into account,
alongside insights from the literature review, we selected
the models to be utilized in this study. Furthermore, it was
decided to include only a single variant of each architecture
in the study. An exception was made for VGG16 and
VGG19, as these architectures are frequently employed
in the literature. It was therefore considered beneficial to
incorporate both VGG architectures in the analysis. The
ResNet variant ResNet50V2 was selected due to its structural
similarity to ResNet50 while being less deep and achieving
higher accuracy on the ImageNet dataset. A schematic
representation of the adapted VGG16 architecture, which
achieved the highest values for balanced accuracy in this
study, can be seen in Figure 2. VGG16 and VGG19 were
both introduced in 2015 by Simonyan and Zisserman [35]
and represent a deep CNN. VGG16 consists of 16 layers,
including 13 convolutional and three fully connected layers.
Specifically, the model consists of five convolutional blocks:
the first and second blocks each have two layers, while the
remaining blocks each contain three convolutional layers.
These layers extract features from the input image, while
the 2 × 2 max-pooling layers, one after each of the five
blocks, downsample the feature maps and reduce their spatial
dimensions. With 3 × 3 kernel-sized filters, two of them
in the first two blocks and three in the last three blocks,
they show an architecture with very small convolution filters.
The model has a total of 138.4 million parameters. VGG19
has a similar design, and it consists of 19 layers, including
16 convolutional and three fully connected layers. Like
VGG16, VGG19 also consists of five convolutional: the

FIGURE 2. Schematic representation of the adapted VGG16 architecture, which achieved the highest balanced accuracy in this study.
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first and second blocks each have two layers, and the three
remaining blocks each contain four convolutional layers.
Because of this, VGG19 has approximately 143.7 million
parameters, 5.3 million more than VGG16.

When training deep neural nets, there comes a point where
the accuracy does not improve or deteriorate with increasing
depth despite adding more layers. This phenomenon is not
due to overfitting, as adding more layers paradoxically
increases the training error [37]. This is known as the
degradation problem. To solve this problem, He et al.
[37] introduced an architecture named Residual Network
(ResNet). ResNet has been proposed in different depths,
such as ResNet18, ResNet34, ResNet50, ResNet101, and
ResNet152, where the numbers indicate the number of
layers in each model. A residual block consists of a series
of layers that are connected to each other by so-called
shortcut connections. These connections allow activations to
be passed directly from one layer to the next, improving the
flow of information and the efficiency of modeling [37]. So if
the current layer is not needed, it can be bypassed thanks to
this identity, which reduces overfitting issues [37].

Szegedy et al. [36], [42] introduced InceptionV3 as
Google’s third version of their inception CNN. The idea of
the inception models is to use different kernel-sized filters
for the convolution on the same level. Thereby, a variation
in the location of information can be intercepted, and thus
overfitting problems sink, and classification results increase
for images with distributed information. The Inception
models thus increase accuracy not by getting ‘‘deeper’’
but ‘‘wider’’ [36], [42]. The architecture of InceptionV3
consists of several convolutional layers, some of which are
combined in so-called Inception modules. Compared to its
predecessors V1 and V2, InceptionV3 is more efficient,
less computationally intensive, has a deeper network, uses
auxiliary classifiers as regulators, and factorized convolutions
to break up large convolutions, e.g., a 7 × 7 convolution is
broken down into two 3 × 3 convolutions [42].
In 2017, Chollet [43] introduced the Xception archi-

tecture, which is based on an extension of the Inception
architecture principle, where Inception modules have been
replaced with depthwise separable convolutions with residual
connections [43]. The in total, 36 convolutional layers are
organized into 14modules, each featuring linear residual con-
nections, except for the first and last modules. Xception has
almost as many parameters as InceptionV3, but outperforms
InceptionV3 on the ImageNet dataset [43].

All these pre-trained models were used for transfer
learning. Before the images of the selected dataset can be
fed into the CNN models, they were pre-processed using the
built-in ImageDataGenerator function of Keras. Because of
the usage of transfer learning, the base model is switched
to inference mode so that it does not update the weights
it has already learned. All pre-trained models were pre-
trained with the ImageNet dataset. The top layer of each
of the base models is excluded, as it is specific to the
dataset used to train the respective model. For deep learning

models, larger datasets lead to better accuracies. However,
the problem with large datasets is that they require a lot of
effort to acquire and label the data. For this reason, data
augmentation is used to generate good deep learning models
even with smaller datasets [44]. After the base model, three
pre-processing layers for random rotation, random zoom,
and random translation (horizontal and vertical) are added.
The parameter values of these layers are determined by the
hyperparameter tuning; the intervals can be seen in table 2.
Following the pre-processing layers, a global average pooling
layer was implemented. After this pooling layer, the model
consists of a dense layer, which is followed by a dropout layer
designed to randomly disable some neurons during training to
prevent overfitting. The model concludes with a final dense
layer. The number of neurons in the first dense layer is
not fixed; instead, it is determined within the range of [32,
128] based on hyperparameter tuning to identify the optimal
configuration. The activation function for the first dense
layer is set to ReLU, which introduces non-linearity into the
model. The final dense layer, responsible for producing the
output, contains a single neuron with a sigmoid activation
function, which is appropriate for binary classification
tasks.

B. GAUSSIAN FILTER
In image processing, a Gaussian low-pass filter, also called
Gaussian blur, is commonly used to smooth images by
removing noise, effectively eliminating the high-frequency
components of the image [45]. The Gaussian filter uses a
Gaussian function to calculate the transformation applied to
each pixel in the image [46]. This function in two dimensions
is defined as follows [45]:

G(x, y) =
1

2πσ 2 exp
(
−
x2 + y2

2σ 2

)
(1)

where x is the distance from the origin in the horizontal axis,
y is the distance from the origin in the vertical axis and σ

represents the standard deviation of the Gaussian distribution.
To apply the Gaussian filter to the image, a kernel is created
by sampling the Gaussian function at various distances from
the center point. This processing technique blurs the edges
of an image by smoothing out the pixel values, as the
differing edge pixels, having lower weights, are replaced by
the surrounding pixel values [47]. When smoothing through
the filter, the edges are better preserved than with a median
filter [48]. The size of the kernel and the variance of the
Gaussian function determine the amount of blurring applied
to the image.

Gaussian filter is applied to the input image using
the cv2.GaussianBlur() function from the OpenCV library.
In this paper, the kernel size is defined as 5×5, and the Kernel
standard deviation in x and y direction is set to 0. This means
σ is calculated by the kernel and has no fixed value [49]. The
result of using the Gaussian filter with the above settings for
σ and kernel size can be seen in Figure 3. A clear blurring to
the original image is recognizable.
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FIGURE 3. Effect of the Gaussian filter on a defect leather image from
MVTec dataset [26].

C. PROCESS OF TRAINING
A schematic representation of the training process is provided
in Figure 5, while the basic structure of all the models utilized
can be seen in Figure 4. Before training the model, a stratified
5-fold cross-validation from the scikit-learn [50] library was
used to split the entire dataset into training and test sets to
ensure that each fold of the dataset had the same proportion
of classes. In addition, the parameter random_state was used
to make all models comparable. For each fold, 10% of the
training data is selected for validation for hyperparameter
tuning.

TABLE 2. Overview of the hyperparameters to be optimized with their
search interval.

To train the model, the batch size is set to 16 and the
total number of epochs to 100. The input images for the
pre-trained models are scaled to a resolution of 150× 150 px
with three RGB color channels. The training process of the
model created from scratch and the transfer learning model

FIGURE 4. Basic structure of the applied models.

FIGURE 5. An illustration about the training and test procedure using a
Gaussian filter.

differ only slightly. While three steps are used for the transfer
learning model, only the first two steps are used for the model
created from scratch. First, the training, test and validation
data are pre-processed with a Gaussian filter with a 5 ×
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5 kernel and a standard deviation σ = 0 for the horizontal
and vertical directions, where σ = 0 means that the standard
deviation is calculated from the kernel size [49]. Second,
a Bayesian optimization with KerasTuner [51] is deployed
to identify the best hyperparameters. The provided options
for the Bayesian optimization can be found in Table 2. For
the Bayesian optimization process, 30 trials are conducted to
identify the parameters that yield the lowest validation loss.
Each of these 30 trials is permitted to run for a maximum
of 40 epochs. Additionally, the earlys topping callback
function is employed, whereby the process is terminated if
the validation loss does not decrease over ten consecutive
epochs. Once the optimal parameters are identified through
this process, they are then used to train the final model. For
the individual pre-trained models, the input files must be
available in a certain way, for example, the images must be
converted from RGB to BGR for VGG19. For ResNet50V2,
on the other hand, the pixel values of the input data must
be scaled in the range between [−1, 1]. This pre-processing
step is carried out before hyperparameter tuning. To enhance
classification performance and minimize overfitting, the
training set was expanded using common data augmentation
techniques such as zoom, rotation, and translation. In the
third step of the training, the custom layers are trained using
patience of ten at 100 epochs. Once the validation loss has not
increased for ten epochs, the training is terminated through
callbacks. The model of the epoch with the best results is
automatically restored. During the hyperparameter tuning
and Bayesian optimization steps, the base model is frozen.
The fourth and final step involves applying transfer learning
to the model. During this step, the base model is unfrozen,
allowing it to be fine-tuned for enhanced performance. The
learning rate is set to a minimum of 1 × 10−6. The number
of epochs for this phase is determined by adding 30 to the
best epoch from the previous training. Additionally, the same
conditions and parameters that were employed in the initial
training step are utilized for this fine-tuning process. After
completing the final step, the model undergoes an evaluation.
The performance indicators and metrics are calculated using
the associated test subset. This evaluation employs common
functions such as accuracy_score() and f 1_score() from the
scikit-learn library. These functions are used to assess various
aspects of the model’s performance. All relevant metrics are
computed and stored for each fold in the cross-validation
process. At the conclusion of this process, the average values
of all five folds are calculated and reported, providing a
comprehensive summary of the model’s overall performance.

D. DATASET
This study utilizes the MVTec Anomaly Detection
dataset [26], which comprises 15 classes and a total of
5,354 unannotated color images of 15 distinct objects, with
resolutions ranging from 700 × 700 px to 1024 × 1024 px.
The dataset is divided into 3,629 images designated for
training and 1,725 images for testing. The training set
exclusively contains anomaly-free images, whereas the test

set includes both normal and anomalous images, along
with anomaly ground truth mask labels for segmentation
evaluation. On average, each class in the training set includes
242 images.

In the synthetic leather study, the dataset comprises a
total of 369 images, with 245 allocated for training and
124 for testing. Among the 124 test images, 32 are defect-free
and classified under the good category, while the remaining
92 images contain defects. The test set is further categorized
into six groups: Color (19 images), Cut (19 images), Fold
(17 images), Glue (19 images), Good (32 images), and Stitch
(18 images). The folder names in the test dataset indicate the
type of defect, with the numbers in parentheses specifying the
quantity of images available for each category. All images
in this dataset have a resolution of 1024 × 1024 px. The
categories of the synthetic leather dataset are shown in
Figure 6.

FIGURE 6. Sample images from each class found in the leather test set
from MVTec [26].

E. EVALUATION METRICS
To evaluate and interpret the model’s performance,
we employ the following performance indicators: Accuracy,
Balanced accuracy, True positive rate (sensitivity or recall),
True negative rate (Specificity), Positive predictive value
(precision), Negative predictive value, Cohen’s Kappa, F1-
Score and at least Area Under the Curve (AUC).

The Accuracy determines the overall effectiveness of
a model [52]. To mitigate inflated performance estimates
on imbalanced datasets, balanced accuracy can be utilized,
defined as the arithmetic mean of sensitivity and speci-
ficity [53], [54]. The True positive rate metric indicates the
accuracy of classifying the positive class, and maximizing it
increases the likelihood of correctly identifying true members
of the positive class [55]. The True negative rate, on the other
hand, indicates how effectively a classifier identifies negative
classes [52]. The Positive predictive value metric assesses
prediction accuracy for the positive class by indicating
the proportion of positive predictions that correctly match
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TABLE 3. Results of the performance indicators for the proposed approach in the notation: no Gaussian filter | with Gaussian filter.

true positive instances [55]. The Negative Predictive Value,
equivalent to the precision for the negative class, is the ratio of
correctly classified negative samples to all samples classified
as negative [56]. Cohen’s kappa describes the reliability of a
model by measuring the agreement between two judgments.
It ranges from−1 to 1, where a Cohen’s kappa of−1 indicates
complete disagreement, and a Cohen’s kappa of 1 signifies
perfect agreement [57]. The harmonic mean of precision and
recall, called F1-Score, ranges from 0 to 1, with the minimum
(0) occurringwhen all positive samples aremisclassified (true
positives = 0), and the maximum (1) occurring for perfect
classification (false negatives = false positives = 0) [58].
AUC means Area Under the (ROC)-Curve. The ROC curve,
obtained by plotting sensitivity against the false positive rate
at all possible threshold values, is a monotonically increasing
function within the unit square from (0, 0) to (1, 1), where
closer proximity to (0, 1) indicates better predictions [59].
AUC, a scalar number between 0 and 1 representing the
expected performance of the ROC curve (with 1 being the
best), has the important statistical property of equating to the
probability that the classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative
instance [60].

IV. RESULTS
Our approach has yielded the results presented in Table 3.
As previously described, the models were evaluated using
stratified 5-fold cross-validation, and the average values
of the metrics can be found in this table. The pre-trained
architectures were evaluated in terms of accuracy, the
class-averaged sensitivity (true positive rate), Positive pre-
dictive value (precision), and Cohen’s Kappa. Additionally,
the F1-score, balanced accuracy, true negative rate, negative
predictive value, and area under the receiver operating
characteristic curve (AUC) are reported.

This shows that for the architectures of Xception,
ResNet50V2, VGG19 and VGG16, the use of the Gaussian
filter with the settings σ = 0 and a 5 × 5 kernel
does not lead to a deterioration of the metrics but rather
causes them to be positively influenced. Only InceptionV3
shows a deterioration in the values for the true negative
rate (−2.22%) and positive predicted value (−0.65%) when

using the Gaussian filter compared to no use. Due to the
imbalance of the dataset (ratio defective to non-defective
≈ 1:3), the balanced accuracy is of great importance. Very
good results are also achieved here. As illustrated in Table 3,
the application of the Gaussian filter resulted in a notable
enhancement in the balanced accuracy of the Xception
architecture, reaching 98.92%. This represents a 3.09%
improvement over themodel that did not employ theGaussian
filter. However, the kappa value of Xception exhibited the
most significant enhancement through the application of the
filter, attaining a value of 0.9853, which signifies an increase
of 0.0663. It is particularly noteworthy that the VGG16model
achieves a perfect score of 100% in all metrics when using the
Gaussian filter.

V. DISCUSSION
The objective of this study was to develop a model with high
accuracy that can be used in the automatic quality control
of synthetic leather production. To this end, the influence of
the Gaussian filter on the classification performance of the
architectures used was also investigated. The results, which
are shown in Table 3, show that this filter has a positive effect
on the accuracy of all architectures. In InceptionV3, however,
the true negative rate (TNR) and positive predicted value
(PPV) showed a negative effect. This may be due to the low
number of images, especially in the defective classes in the
dataset. The positive developments of most metrics could be
due to the fact that the Gaussian filter blurs the images. As can
be seen in Figure 3, thereby leather structure is generally
shown in less detail. Furthermore, possible influences from
shading or light are also softened, while the edges of defects
are largely preserved. This fact could emphasize the defects
of the leather in the models, leading to a better classification.
Upon examination of the architectureswithout the application
of the Gaussian filter, it becomes evident that the VGG
models attained accuracies exceeding 99%. When the VGG
models are hidden, the ResNet50V2 model demonstrates the
highest accuracy value (without filter), which may serve
to illustrate the efficacy of the residual skip connections.
In comparison to Xception, Inception, and ResNet50V2,
VGG16 and VGG19 employ a comparatively straightforward
architectural approach, utilizing only convolutional filters of
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TABLE 4. Overview of supervised, semi-supervised and unsupervised learning methods for defect detection on synthetic leather.

size 3×3. Unlike other architectures, they do not incorporate
depthwise separable convolutions, parallel convolutional
layers, or residual skip connections. Only Xception is also
based on the exclusive use of 3 × 3 convolution filters,
but also uses depth-separable convolutions. In this particular
case, it can be assumed that simple architectures for surfaces
without a background are better suited for detecting defects
than those with a more complicated structure.

In addition to (balanced) accuracy, the two metrics NPV
and TNR are of great importance for defect detection. NPV
evaluates the accuracy of a model in relation to the prediction
of negative (defective) instances. A high value indicates the
accuracy of the negative prediction. Due to the influence
of the filter, this prediction accuracy could be increased to
100% (+5.36%) for Xception and also to 100% (+7.48%)
for InceptionV3.

TNR indicates the efficacy of a model in correctly
identifying defective leather. Low values encourage misclas-
sification, resulting in defective leather being recognized
as non-defective. This not-recognized defective leather is
exported and subsequently leads to customer complaints,
causing financial loss to the company. With the Gaussian
filter, the TNR of models up to InceptionV3 could be
enhanced as follows: Xception (+4.39%), ResNet50V2
(+2.17%), VGG19 (+1.05%) and VGG16 (+1.11%). The
VGG16 model achieved a TNR of 100%, indicating that
defective leather is consistently and accurately identified.
While the results are impressive, it’s worth mentioning
that VGG16 might not yield the same results when used
with different datasets or in real-world industry settings.
A potential reason for this could be differences in image
quality, the number of images, or the type and number of
defects.

Table 4 presents the current work of using supervised
learning architectures from section II. Additionally, the
table includes methods of semi- and unsupervised learning
methods, which are employed for comparison with the
VGG16 model, among other models. It should be noted that
all authors utilize the MVTec dataset.

First of all, it is noteworthy that in addition to our
VGG16 model, the authors Zuluaga et al. [21] also achieved
an accuracy of 100% with SqueezeNet and DarkNet19.
They employed data augmentation techniques to expand the
number of datasets, although the exact number of augmented
datasets is not specified. However, the authors do not provide
any information regarding the evaluation process of their
models. In contrast, we maintained the original number of
images in our dataset and utilized data augmentation solely
to enhance the variation within the dataset rather than to
increase its size. Furthermore, we evaluated all our models
using stratified 5-fold cross-validation, which highlights the
robustness and reliability of our models. This comprehensive
evaluation approach ensures that our results are consistent
and reliable, offering a more thorough validation of our
models’ performance.

Examining the performance of the remaining models from
the supervised learning approach, it is evident that all the
models we used in this study demonstrate superior accuracy
compared to them. This superiority holds true also for models
that do not incorporate the Gaussian filter. For instance,
the Xception model without the Gaussian filter achieves an
accuracy of 97.02%.When compared directly with the results
of Adão et al. [19], who employed the same architecture,
our model is 1.02% more accurate, and with the use of
the Gaussian filter, the accuracy improvement extends to
3.46%. A similar pattern is observed with the VGG16
model as utilized by Srilakshmi et al. [22]. Our VGG16
model achieves a 5.07% higher accuracy than theirs, and
when the Gaussian filter is applied, the accuracy increases
by 5.34%, representing a substantial improvement. These
findings underscore the effectiveness of our approach. The
enhanced accuracy of our models, both with and without the
Gaussian filter, highlights the robustness and efficacy of our
methods.

Given the prevalent use of semi- and unsupervised learning
methods in defect detection, we have also compared our
model with these approaches. The most commonly used
evaluation metric in this context is the Area Under the
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Receiver Operating Characteristic Curve (AUC). A total of
six studies from the field of semi-supervised and unsuper-
vised methods were included in the table for comparison.
Three of these methods achieved an AUC of 100%. Our
models, ResNet50V2, VGG19, and VGG16, also achieve
100%AUCwhen the Gaussian filter is applied. Xception and
InceptionV3 come very close, with AUC values only 0.02%
and 0.04% lower, respectively. However, using AUC as the
sole evaluationmetric poses challenges when comparing with
our model. It is important to note that an AUC value of 100%
does not necessarily correspond to an accuracy of 100%,
as demonstrated in Table 3 for InceptionV3 and VGG19.
Despite achieving a perfect AUC, these models do not attain
100% accuracy. Our VGG16 model, on the other hand, not
only achieves an AUC of 100% but also attains an accuracy
of 100% and a balanced accuracy of 100%. This indicates
that our model excels in perfectly classifying defective and
non-defective leathers, making it comparable to unsupervised
approaches. The comprehensive performance of our model
across multiple metrics underscores its robustness and effi-
cacy in defect detection, providing a more reliable measure
of its capabilities compared to solely relying on AUC.

Furthermore, the VGG16 architecture offers additional
advantages over semi- or unsupervised methods, though the
extent of these benefits varies depending on the specific appli-
cation. Supervised learning approaches, such as VGG16, can
achieve high accuracy when a sufficient amount of labeled
image data is available. Companies with access to extensive
image datasets are therefore advised to utilize pre-trained
architectures like VGG16 due to their superior accuracy.
In cases where an adequate quantity of labeled image data is
unavailable, this limitation can be mitigated through various
techniques. Through the application of transfer learning, pre-
trained weights derived from extensive and diverse datasets
can be utilized, thereby significantly reducing the amount
of training data required [39]. Moreover, the generation of
artificial image data through advanced techniques such as
Generative Adversarial Networks (GANs) further addresses
the challenge of limited data availability. By creating
realistic and diverse synthetic images, GANs can effectively
supplement existing datasets. When combined with data
augmentation strategies, which involve transformations such
as rotation, zoom, and translation, this approach significantly
enhances both the variety and the quantity of training
data. In the context of real-time detection, VGG16 may
be the more suitable choice due to its typically faster
inference times. In contrast, semi- or unsupervised methods,
which often rely on memory pools [14], [16] or involve
additional computational processes, generally require longer
classification times. These approaches also tend to demand
greater memory and computational resources, necessitating
advanced hardware capabilities.

In summary, it can be stated that our approach, which
involved the application of transfer learning with fine-tuning,
hyperparameter optimization through Bayesian optimization,
and data augmentation, has already yielded positive results.

The additional application of the innovative approach of using
the Gaussian filter further enhanced the values for the major-
ity of performance indicators. The robustness of the approach
was evaluated through the use of 5-fold cross-validation.
Overall, our approach demonstrates the advantages of the
above techniques. In particular, the effectiveness of using the
Gaussian filter in combination with pre-trained architectures
is emphasized by this study. Moreover, no additional artificial
images were generated in this study, thereby demonstrating
the effectiveness of our approach on the original dataset.
These achieved results represent a significant improvement in
comparison to the manual quality control that is currently still
in place. The transition to an image processing-based system
for companies that still have a manual process seems to be
a logical next step, as this would enable accelerated quality
control. The high values of TNR indicate that defective
leather is correctly recognized as defective. Consequently,
companies export high-quality leather, which significantly
reduces customer complaints and leads to cost savings. It is
hoped that the results of our study will encourage other
authors to test this filter on their datasets.

VI. CONCLUSION
Deep learning is a powerful tool in the field of defect
detection on the surface of synthetic leather, which is rapidly
gaining momentum for the quality detection of industrial
products. In this work, we used the five different pre-trained
models, Xception, InceptionV3, ResNet50V2, VGG19, and
VGG16 to develop a powerful model that can be used for
automatic quality control in synthetic leather production.
All models were pre-trained on the ImageNet dataset. For
reasons of robustness and reliability, each architecture was
cross-validated five times. Each of these five models per
architecture underwent hyperparameter tuning with data
augmentation and subsequent fine tuning.We used traditional
data augmentation methods such as rotation, zoom, and
translation. In addition to the aforementioned methods,
we also investigated the influence of the Gaussian filter on the
classification performance. To this end, the aforementioned
process was performed for two cases, each comprising a
dataset without andwith aGaussian filter as pre-processing of
the images. The results demonstrated that the application of
a Gaussian filter to each of the pre-trained models resulted in
enhanced performance, particularly in terms of accuracy. The
integration of a Gaussian filter with a pre-trained architecture
indicates its potential as a valuable tool for the synthetic
leather industry, facilitating the identification of defective
material. This approach can also contribute to cost savings
as substandard material is better identified and rejected,
resulting in fewer customer complaints. Furthermore, this
reduces reputational damage.

A. LIMITATIONS
Although this work provides good results in the detection
of defective and non-defective leather images, it also has its
limitations, which should be taken into account. The analysis
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of the results presented is limited to the evaluation metrics
used. Consequently, the interpretation of why the Gaussian
filter works is also based on these metrics. Grad-CAM could
be a potential solution for visualizing the influence of this
filter in future work, allowing a deeper understanding of the
effect of the Gaussian filter.

B. FUTURE WORK
In the future, it is planned to check the results of the
classification models presented here with further and larger
datasets in order to increase external validity. In addition,
the influence of the Gaussian filter is to be investigated
in more detail, so that different standard deviations σ and
kernel sizes are to be examined. Additionally, Grad-CAM
will be employed to visualize the influence, with the aim of
gaining a deeper understanding of the filter. Furthermore, the
models will be tested for a range of defect types, extending
beyond the current scope of binary classification. Moreover,
the existing architecture will undergo further development
into a hybrid model, as proposed by Hax et al. [61], with
the objective of reliably detecting defects in synthetic leather
within videos.
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