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ABSTRACT Oracle bone inscriptions (OBIs) are one of the oldest characters in the world and are the
predecessors of today’s Chinese characters. These oracle characters recorded various human activities of
the time and provide insights into Chinese history. To date, almost 4,500 different oracle characters have
been discovered, with deciphering still being carried out by people with specialist knowledge. This process
is labor-intensive and time-consuming, with around 2,300 characters still to be deciphered. Furthermore,
the inscriptions have become increasingly illegible as a result of the aging process, frequently exhibiting
characteristics such as noise or incompleteness. To address these issues, in this paper, we present a new
convolutional neural network architecture for recognizing OBIs. It is based on the idea of Inception
modules and the use of residual connections. To increase the diversity in the dataset, data augmentation
techniques were applied. Together with these techniques, the presented architecture achieves an accuracy
of 95.93%. For the purpose of comparability, known pre-trained architectures such as InceptionV3,
ResNet50, and Inception-ResNet-V2 were used for comparison. The results demonstrate that the proposed
architecture exhibits superior performance compared to these models across multiple evaluation metrics
while simultaneously establishing a new benchmark on the Oracle-MNIST dataset.

INDEX TERMS Oracle character recognition, oracle bone inscriptions, convolutional neural networks,
image classification, deep learning.

I. INTRODUCTION
Oracle bone inscriptions (OBIs) are one of the world’s
oldest characters [1]. In the early stages of hieroglyphic
development, oracle characters were engraved on cattle
bones or turtle shells approximately 3,000 years ago to
facilitate divination [2]. These oracle characters recorded
various human activities of the era, thereby establishing the
foundation for the study of Chinese etymology and providing
insight into China’s history [3]. OBIs are essentially the
precursor to the modern Chinese characters that are widely
used across Asia to this day [4]. Therefore, research on oracle
characters is essential for understanding Chinese etymologies
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and calligraphy. It also provides valuable insights into the
culture and history of ancient China and the world at large [3].
In 2017, OBIs were chosen for inclusion in the UNESCO
‘‘Memory of theWorld Register’’, this shows that the cultural
and historical value of OBIs is recognized worldwide [5].
To date, almost 4,500 different oracle characters have been
discovered, but only around 2,200 characters have been
successfully deciphered [6]. This means that there are still
characters to be deciphered. Most oracle characters are pre-
served in scanned images, created by reproducing the oracle
bone surface through the technique of placing a piece of paper
over the subject and rubbing it with rolled ink [6], [7]. These
scanned images of oracle bones often suffer from low quality
due to abrasion, varying noise levels, uneven sizes, damaged
characters, and uneven tilt [8]. In addition, images vary in
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contrast and brightness, and characters are often rotated and
distorted, making unsupervised domain alignment methods
insufficiently robust and limiting improvement [1]. There
are relatively few documents describing OBIs, and only a
handful of specialists are able to read them [4]. At present,
the recognition and deciphering of oracle bone characters is
mainly based on the manual method by experts with a high
level of expertise, which is a very time-consuming and labor-
intensive task [9].
With the rapid advancements in deep learning, leveraging

computers to automate the detection and recognition of OBI
characters has emerged as a highly promising solution for
OBI decipherment. Figure 1 shows the disadvantages of the
present manual deciphering method as well as a future, more
efficacious approach that employs modern deep learning
techniques.

Meng et al. [7] used a Single Shot Multi-box Detector
(SSD), which uses the VGG16 architecture as the base
network for the feature map for OBI detection. In [3],
Wang, Deng, and Liu employed a structure-texture separation
network to transport knowledge from labeled hand-printed
oracle data to the unlabeled scanned domain. However,
their approach yielded an accuracy rate of less than 50%
when applied to scanned oracle characters. In a related
study [1], Weng, Deng, and Sung employed an unsuper-
vised discriminative consistency network that enhances aug-
mentation consistency and discrimination between classes
in the target area. Their approach yielded a success
rate exceeding 60% on scanned image data. Qiao and
Xing [10] used a ResNet50 model for feature extraction
with unsupervised domain matching and pseudo-labels for
text recognition and transcription, enhancing robustness
by integrating GANs to generate challenging sample data.
In the work by Liu et al. [11], five classical network models
(AlexNet, VGG19, InceptionV3, SqueezeNet, and ResNet)
were selected to compare their effectiveness in OBI detection
using an OBI dataset containing incomplete characters.
Fu et al. [12] used the three convolutional neural networks
(CNNs), LeNet, AlexNet, and VGGNet, as the basis for
recognizing oracle characters. These standard architectures
were modified in different ways, resulting in ten different
variants. The findings of their study demonstrated that OBIs
can be effectively and practically identified within the context
of deep CNNs.

CNNs have been shown to possess the architectural
properties necessary for achieving strong performance in
oracle character recognition. While some studies focus on
datasets featuring manually crafted (hand-printed) oracle
characters, datasets containing scanned oracle characters are
more representative of real-world conditions and thus offer
greater authenticity. Moreover, it demonstrates, specifically
within the context of supervised learning, that much of the
prior research has primarily relied on pre-built architectures,
which, although effective to some degree, do not adequately
address challenges such as high noise levels or substantial
damage to the oracle characters. Consequently, there remains

a need to improve future architectures for real-world oracle
character recognition, as these are often characterized by
substantial noise caused by age or incompleteness.

FIGURE 1. Schematic representation of the current manual process for
deciphering oracle characters and a possible future improved process to
simplify deciphering through the use of deep learning methods.

Given the great importance of oracle character recognition,
we address this issue and propose a novel architecture
designed to achieve high accuracy in identifying oracle
characters in images, even when they are severely affected
by noise, low resolution, or partial incompleteness. Our
novel architecture is inspired by Inception-ResNet-V2 [13]
and integrates the benefits of ResNet’s residual connections
with the Inception module concept, which combines multiple
convolution layers with varying kernel sizes in parallel.
This architecture has fewer parameters and achieves higher
accuracy. Furthermore, data augmentation techniques are
employed to simulate real-world scenarios, such as varying
scaling or font variations, with the objective of enhancing
the diversity of the dataset. To evaluate the performance of
the new architecture, the Oracle-MNIST dataset presented
by Wang and Deng [6] was selected. In order to create
a reference to reality, only scanned oracle characters are
employed. The dataset includes images of scanned OBIs,
some of which are characterized by high levels of noise and
substantial damage. This is an intentional aspect that the
presented architecture is designed to address, as OBIs can
also be of poor quality in reality. Furthermore, the dataset
comprises an adequate number of images per class, thereby
avoiding the issues of long-tailed distributions and highly
imbalanced classes. Strong imbalances in the dataset cause
the training of deep neural networks (DNNs) to be heavily
biased towards head classes, preventing the learned model
from achieving robust classification for tail classes [14].
To establish a connection with oracle characters in reality,
it is essential to utilize only scanned images. In light of these
limitations and the aforementioned reasons, other established
datasets, such as OBC306 [15], Oracle-20K [14], and Oracle-
AYNU [2], are not included in this study. Consequently, the
primary contributions of this study are as follows:

1) It is shown that the application of data augmenta-
tion techniques as pre-processing steps leads to improved
accuracy.
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2) The proposed model was validated on the benchmark
oracle dataset Oracle-MNIST. Experimental results show that
the model can yield state-of-the-art performance as opposed
to other existing oracle recognition methods.

The paper is structured as follows: Section II provides an
overview of methods for recognizing oracle characters and
discusses relatedwork. Section III contains information about
the deep learning approach used, a brief description of the
deep learning architectures used, and the methods used to
pre-process the images, followed by a detailed explanation
of the training process and the dataset used for evaluation.
In Section IV, the results are presented, followed by the
discussion in Section V. Finally, Section VI wraps up the
paper by summarizing the key findings and highlighting
the study’s contributions.

II. RELATED WORK
A. ORACLE CHARACTER RECOGNITION
One of the most crucial aspects of oracle bone studies is
the identification and deciphering of oracle characters [3].
As technology advances, several studies have started to
focus on recognizing oracle characters through the lens of
computer vision. Early studies are based on classical pattern
recognition methods. Lv et al. [16] proposed a Curvature
Histogram-based Fourier Descriptor to classify oracle charac-
ters. In the work [17], Li et al. proposed amethod to recognize
oracle inscriptions based on graph isomorphism. Liu and
Liu [18] used support vector machine (SVM) and block
histogram-based features to recognize characters. Meng [19]
developed a system for detecting OBIs and proposed a detec-
tion method using the Hough transform. The experimental
results show that almost 80% of inscriptions are recognized.
Another paper by Meng [20] proposed a two-stage detection
system consisting of line points and checkpoint detection
to detect OBIs. At best, 90% of the inscriptions are
recognized with this method. Guo et al. [14] collected the
Oracle-20K dataset, consisting of 20,000 hand-printed oracle
characters across 261 categories, and developed an innovative
hierarchical representation that integrates a Gabor-based low-
level representation with a sparse-encoder-based mid-level
representation. However, most traditional approaches depend
heavily on hand-crafted features, making them suitable only
for small-scale and clean datasets [21].

B. DEEP LEARNING METHODS
The versatility of deep neural networks is extensive. Several
studies in recent years have demonstrated various methods
for the recognition of oracle characters as well as Chinese
script, which is considered the successor of oracle characters.
Zhuo and Zhang [22] employ a deformable convolutional
network with an attention mechanism to process Chinese
characters from different dynasties. The essence of the
attention mechanism is the efficient allocation of information
processing resources, allowing the model to prioritize key

points in an image by assigning them high weights, ignoring
less relevant information with low, and dynamically adjusting
these weights to focus on crucial details across varying
contexts. In another study [23], the authors also employ
a deformable convolutional network, where they address
the issue of offset variation by normalizing the offsets
generated within the network, effectively reducing variance.
Additionally, they introduce a new data augmentation tech-
nique known as Matt data augmentation to further improve
the recognition performance. To facilitate the identification
of ancient Chinese scripts, Zheng et al. [24] proposed an
enhanced Swin-Transformer model comprising four stages,
each incorporating Linear Embedding and Swin-Transformer
blocks. Each stage is further supplemented by a Context-
Transformer Block to improve local feature extraction. The
Context-Transformer Block strengthens the model’s capa-
bility to capture local features effectively. According to the
authors, this model progressively reduces the resolution of the
input feature map while expanding the receptive field layer
by layer. There are datasets containing both hand-printed
and scanned real-world oracle characters. Models trained on
hand-printed images frequently perform poorly when applied
to scanned images. In their work, Wang, Deng, and Liu [3]
investigate transferring knowledge from hand-printed oracle
data to the scanned domain, utilizing a structure-texture sep-
aration network to achieve this. STSN decomposes features
into structural and textural components through the use of
generative models. By aligning handwritten and scanned data
within the structural feature space, the mitigates the negative
impact of significant noise during the matching process.
This transformation is achieved by exchanging learned
textures across the domains. A classifier is then trained for
the final classification. With this approach, an accuracy of
95% is attained on hand-printed oracle characters, though
accuracy drops to below 50% for scanned images. In a
related study by Weng, Deng, and Sung [1], the authors
also focused on the transfer of knowledge from labeled
handwritten oracle characters to unlabeled scanned data.
To achieve this, the researchers employed an Unsupervised
Discriminative Consistency Network (UDCN), which was
designed to enhance the consistency of augmentations and
improve class discrimination within the target domain. Using
this approach, they achieved an accuracy exceeding 60%
on scanned oracle characters. In [25], the authors utilize
an adaptive network, termed UFCNet, to detect oracle
characters. This approach combines the Fourier transform
with a convolutional attention fusion module (CAFM).
The CAFM integrates both deep and shallow features to
obtain more comprehensive information, while the Fourier
transform converts the image from the spatial domain to
the frequenting domain, aiming to capture the edge details
of the Qiao and Xing [10] utilized a ResNet50 model
for feature extraction, incorporating unsupervised domain
matching that employs multiple pseudo-labels to facilitate
efficient text recognition and transcription. To enhance the
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model’s repair capabilities, they combine ResNet50 with
GANs that generate difficult-to-discriminate sample data,
thereby strengthening robustness. Furthermore, a U-Net-
based text repair model is employed to enhance performance
through the integration of dense connectivity and spectral
normalization.

C. DEEP LEARNING METHODS IN SUPERVISED
LEARNING CONTEXT
In recent years, numerous researchers have successfully
implemented deep learning techniques for oracle bone
inscription character recognition, achieving excellent
results [27]. Meng et al. [28] introduced an initiative
to recognize OBIs by using a CNN architecture called
AlexNet. They generated an OBI dataset composed of
real rubbing images. In order to train sufficiently before
recognition, data augmentation methods such as rotation,
adding Gaussian noise, cropping, brightness change, and
inversion were used. This method turned one image into
3,072 new images. They tested various hyperparameters
to improve the recognition capability. They obtained an
accuracy of 92.3%. Liu et al. [29] designed a CNN with
five convolutional layers with a kernel size of 3 × 3 and
two fully connected layers for classifying oracle bone
inscription characters. They demonstrated the superiority of
their method on a dataset containing 44,868 oracle bone
inscription characters, achieving a top-1 accuracy of 91.56%.
Huang et al. [15] trained variants of AlexNet, VGGNet, and
ResNet to perform classification of scanned oracle data.
For this, they used the dataset OBC306 presented in their
study. All models were pre-trained using the ImageNet [30]
dataset and then fine-tuned on the proposed training set. The
ResNet50 architecture reached a top-10 accuracy of 83.00%.
Zhang et al. [2] used a CNN with DenseNet block combined
triplet loss and performed recognition by nearest neighbor
classifier. They reached an accuracy of 83.37% on the
Oracle-AYNU dataset and 92.43% on the Oracle-20K [14]
dataset. In the work by Liu et al. [11], five classical network
models such as AlexNet, VGG19, InceptionV3, SqueezeNet,
and ResNet, were selected to compare their effectiveness
in OBI detection. For the evaluation, they used a dataset
with incomplete characters.With the SqueezeNet model, they
achieved a top-5 accuracy of 94.38%. In another work [31],
a VGG16 model was used, which has been pre-trained in
the ImageNet dataset. The authors investigated the effects of
transfer learning and fine-tuning on the model. In another

TABLE 1. Summary of related work on the classification of OBIs using the
Oracle-MNIST dataset.

work, Guo et al. [27] designed an improved neural network
model based on InceptionV3 for OBI recognition. They
applied the CNN to two datasets while also comparing the
performance of well-known architectures such as AlexNet,
InceptionV3, and VGG19. They achieved a top-5 accuracy
of 99.844% on HWOBC [32] dataset. Fu et al. [12] used the
three CNNs, LeNet, AlexNet, and VGGNet, to recognize
oracle characters. These standard architectures served as
the basis for modifications to the architecture, for example,
three variants of AlexNet were created, which differed in the
number of convolution layers and pooling layers. A total of
ten variants of the models were created. With a modified
VGGNet, they achieved an accuracy of 99.5% on their own
dataset named OBI-100. In [6], Wang and Deng presented
a new benchmarking dataset, the Oracle-MNIST dataset,
which includes 28 × 28 px grayscale images of 30,222
ancient characters from ten categories. TheCNNarchitecture,
comprising two convolutional layers, a max pooling layer,
and two fully connected layers, established the initial
benchmark with an accuracy of 93.8%. This benchmark was
subsequently surpassed by Ganj et al. [26], who achieved an
accuracy of 95.13%. They used their architecture, which was
influenced by residual connections and Inception modules.
The existing literature demonstrates the efficacy of deep
learning methodologies in oracle character recognition,
particularly in the domain of recognizing OBIs. Some studies
have concentrated on the recognition of images produced
by hand [2], [27], [29], while others have focused on
scanned images. However, the recognition of scanned oracle
characters is of particular importance as they are more
realistic. This is because an oracle character can also appear
in a poor state in reality. Previous studies have demonstrated
significant progress in the recognition of oracle characters
from scanned images. However, there remains room for
improvement in recognition performance. Notably, much of
this prior research has relied on pre-built architectures, which,
while effective to some extent, do not explicitly account
for challenges such as high levels of noise or significant
damage to the oracle characters. We address this issue
with the distinctive characteristics of oracle characters by
introducing a novel architecture designed to recognize OBIs
accurately, even in the presence of damage, font variations,
and noise. The Oracle-MNIST [6] dataset serves as an
ideal benchmark for evaluating our model, as it closely
reflects real-world conditions. It encompasses scanned oracle
characters exhibiting diverse levels of noise, instances of
significant damage, and natural variations in font styles.
The application of the novel architectural methodology
established a new benchmark for this dataset. Table 1
provides an overview of the works mentioned that used the
Oracle-MNIST dataset, including the models employed and
the accuracy values achieved.

III. METHODOLOGY
In this section, the proposed architecture of a CNN specifi-
cally designed for the classification of OBIs is presented in
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detail. This architecture is designed to focus on capturing
the local features in oracle bone images that are crucial
for accurate classification. To improve the extraction of
these detailed features, the architecture mainly uses 3 × 3
convolutional kernels. These kernels were selected based on
their effectiveness in detecting fine details in the images
to ensure that the features of the inscriptions are captured.
To evaluate and validate the performance of the proposed
architecture, comparisons are made with state-of-the-art pre-
trained CNN architectures. This section also deals with the
training procedure for the proposed CNN architecture. The
procedures and techniques for optimizing the performance of
the model are also described here.

A. MODEL ARCHITECTURE
In this paper, an improved model for recognizing OBI
characters is proposed. The architecture is inspired by that of
Inception-ResNet-V2 [13]. The Inception module approach,
which combines multiple convolutional layers with different
kernel sizes together with residual connections, is employed.
The proposed architecture is different from others. For
example, instead of additive residual connections, it uses
concatenative ones, which also have a special positioning.
The architecture demonstrates distinct characteristics in the
arrangement of its convolutional layers, which utilize only
two specific kernel sizes. In addition, batch normalization
is consistently applied following each convolutional layer.
In contrast to traditional architectural designs, this con-
figuration utilizes four consecutive fully connected layers
with dropout layers between them, thereby enhancing the
learning capabilities of features. The proposed architecture
is primarily composed of two identical blocks based on the
idea of Inception modules. Figure 2 provides a schematic
illustration of the resulting architecture, including data
augmentation techniques.

Before the images are processed, they undergo various
transformations using data augmentation techniques. These
methods help artificially increase the diversity of the
dataset by applying random modifications such as rotations,
zooming, and translation. After this augmentation, the images
are fed into the first of two main blocks. In this paper,
these blocks are referred to as Conv blocks, owing to their
composition of multiple convolutional layers. Following
these Conv-Blocks are four fully connected (dense) layers.
In each convolutional layer and in each dense layer, except
the last one, the ReLU activation function seen in equation (1)
[33] with x as input value is used to add nonlinearity to the
model.

ReLU (x) = max(0, x) =

{
x, if x > 0
0, otherwise

(1)

The number of neurons in the dense layers is arranged in
descending order, leading to the last layer, which contains
ten neurons. In this last layer, a softmax activation function,
shown in equation (2) [34] with k classes, is used to output

FIGURE 2. An illustration of the structure of the architecture with data
augmentation techniques.

the probabilities of the outputs of the ten classes.

Softmax(xj) =
exj∑k
i=1 e

xi
with j = {1, . . . , k} (2)
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To reduce the risk of overfitting, dropout layers of different
sizes are strategically placed between the dense layers. These
dropout layers randomly deactivate some of the neurons
during training, which improves the generalization of the
model to new, unseen data. The use of 7 × 7 kernel,
as found in Inception-ResNet-V2, was avoided due to the
high computational overhead and ineffectiveness. In previous
tests, 7 × 7 kernel were built into the architecture, but these
compromised accuracy. Therefore, they were excluded to
optimize performance.

In each part of a Conv-Block, the process starts with a
1 × 1 kernel, among other things, to integrate non-linearity
into the process at an early stage. Next, on the left side of
the block, a 5 × 5 kernel is applied to capture more global
information from the input. Following this, a 3 × 3 kernel
is used to extract details from the features obtained from the
previous layer. Parallel to this process, as illustrated in the
center of the structure, another pathway commences with a
1 × 1 kernel, which is directly followed by a 3 × 3 kernel.
This parallel approach enables the simultaneous occurrence
of multiple feature extraction processes, thereby enhancing
the model’s capacity to capture a diverse set of features.
On the right side of the block, a 3×3 kernel is concatenated to
a 5×5 kernel, combining the detailed and global information
extracted from these kernels. The concatenation of the output
of two convolutional layers A ∈ RH×W×CA and B ∈

RH×W×CB where C is the number of channels and H and W
denote the height and width, can be described mathematically
as follows [35]:

Concatenate(A,B) = C ∈ RH×W×(CA+CB) (3)

The spatial dimensions H and W of the feature maps
remain unchanged during concatenation. However, as the
information from both layers is combined, the total number
of channels increases accordingly. This additional step was
specifically included to enhance the benefits of both kernel
sizes. The 3 × 3 kernel is employed to extract more
localized information, while the 5 × 5 kernel is utilized for
the extraction of more expansive, global information. The
concatenation of more than two outputs of convolution layers
is also possible, which will also be implemented in a later
step of the architecture. Subsequently, a further 3×3 kernel is
employed to provide further detail on the extracted features.
All feature sets are then concatenated. Finally, a 1 × 1 and
3 × 3 kernel follows to extract the details before the
max-pooling layer selects the maximum values.

After each convolutional layer, a normalization technique
known as Batch Normalization was applied to optimize the
training parameters. The Batch Normalization (BN) layer
begins by standardizing each feature within a mini-batch and
subsequently learns a shared scaling factor (slope) and offset
(bias) for the entire mini-batch [36]. Formally, given the input
to a BN layer X ∈ Rn×p, where n denotes the batch size,
and p is the feature dimension, BN layer transforms a feature

j ∈ {1 . . . p} into [36]:

x̂j =
xj − E[X.j]√

Var[X.j]
, yj = γĵxj + βj (4)

where xj and yj are the input and output scalars corresponding
to the response of a single neuron for a given data sample;
X.j represents the j-th column of the input data; E[X.j] the
mean of X.j and γj, βj are the parameters to be learned [36].
This normalization step not only speeds up the training
process but also accelerates convergence by smoothing the
loss surface, making it easier to find the global optimum
during training [37]. After the convolutional layers and
their corresponding batch normalization steps, a flatten layer
was introduced. The flattening layer is used to convert the
two-dimensional featuremaps generated by the convolutional
layers into a one-dimensional vector, which can then be
processed by the following four fully connected layers for
classification.

B. OVERVIEW OF PRE-TRAINED ARCHITECTURES FOR
EVALUATION
In order to assess the efficacy of the proposed architecture,
pre-trained architectures were trained with the Oracle-
MNIST dataset for comparative purposes. Furthermore, these
models utilize the weights of the ImageNet dataset. A concise
overview of their architectures is provided below.

The degradation problem is a phenomenon that can occur
when training deep neural networks. There comes a point
where accuracy does not improve or degrades with increasing
depth, even though more layers are added. This phenomenon
is not due to overfitting, as adding more layers paradoxically
increases the training error [38]. To solve this problem,
He et al. [38] introduced an architecture named Residual
Network (ResNet). ResNet has been proposed in different
depths, such as ResNet18, ResNet34, ResNet50, ResNet101,
and ResNet152, where the numbers indicate the number of
layers in each model. A residual block consists of a series of
layers that are connected to each other by so-called shortcut
connections. These connections allow activations to be
passed directly from one layer to the next, improving the flow
of information and the efficiency of modeling [38]. So, if the
current layer is not needed, it can be bypassed thanks to this
identity, which reduces overfitting issues [38]. The ResNet50
structure is as follows: first, there is a Convolutional layer
with a 7×7 kernel, followed by a max-pooling layer of 3×3,
both layers with a step size of 2. Various Residual blocks
are then run through, with a structure of three convolutional
layers with the kernel (1× 1, 3× 3, 1× 1). The blocks differ
according to the selected filters in the layers. Szegedy et al.
[39], [40] introduced InceptionV3 as Google’s third version
of their Inception CNN. The idea of the Inception models is
to use different kernel-sized filters for the convolution on the
same level. Thereby, a variation in the location of information
can be intercepted, and thus, overfitting problems sink, and
classification results increase for images with distributed
information. The Inceptionmodels thus increase accuracy not
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by getting ‘‘deeper’’ but ‘‘wider’’ [39], [40]. The architecture
of InceptionV3 consists of several convolutional layers, some
of which are combined in so-called Inception modules.
Compared to its predecessors V1 and V2, InceptionV3
is more efficient, less computationally intensive, has a
deeper network, uses auxiliary classifiers as regulators, and
factorized convolutions to break up large convolutions, e.g.,
a 7 × 7 convolution is broken down into two 3 × 3
convolutions [40]. In [13], Szegedy et al. introduced another
variant of Inception, named Inception-ResNet-V2. This
architecture uses the concept of Residual Connections
to facilitate the training of deep networks and improve
performance. The architecture comprises a stem module for
pre-processing the input images, followed by three distinct
types of Inception-ResNet modules (5×A, 10×B, 5×C).
These modules are interspersed with two reduction blocks
that serve to diminish the spatial dimensions of the feature
maps [13]. Specifically, the reduction modules are positioned
after the Inception-ResNet modules A and B. The final
classification is performed by a fully connected layer with
a softmax activation function.

C. TRAINING PROCESS
Before the training process, the oracle images were divided
into a training and a test set, as the dataset structure already
suggests. Both sets were then normalized so that the pixel
values were in the interval [0, 1]. Furthermore, the influence
of data augmentation techniques such as zoom, rotation,
and translation should be investigated, as they can increase
the diversity in the dataset and, therefore, help to increase
the accuracy of the model. For this purpose, Bayesian
optimization with KerasTuner [41] is used to identify the best
hyperparameters. These techniques were selected to enable
adaptability to variations in image presentation. Images may
be scaled differently, or the image content may vary in
position. These techniques simulate these scenarios and are
intended to reduce the model’s sensitivity to such variations.
The upper limit of the search interval was established in this
study in order to ensure that the resulting maximum value is
not excessively high. The value was set at 0.2 (20%), which
is not an exaggerated but still realistic value. To prepare for
hyperparameter tuning, 10% of the training data is randomly
selected as a validation dataset while preserving the ratio of
classes to the original training dataset. The provided options
for the Bayesian optimization can be found in Table 2.
For the optimization process, ten trials are conducted to

identify the parameters that yield the lowest validation loss.
Each of these ten trials is permitted to run for a maximum
of 100 epochs. To avoid overfitting and to save computing
time during the optimization process, early stopping was
used, which terminates the training process if the validation
loss has not decreased after 20 epochs. Once the optimal
parameters are identified through this process, they are then
used to train the final model. Once the optimal parameters
have been determined through this process, they are used

TABLE 2. Overview of the hyperparameters for data augmentation with
associated search interval.

to train the final model. The final model is trained over
100 epochs with a batch size of 64 and a learning rate of
1× 10−3, using the Adam optimizer. These parameters were
selected based on their prior utilization in other studies [11],
[26], [42]. Additionally, early stopping is employed during
the training process to mitigate the issue of overfitting. In this
case, the training process is terminated after 20 consecutive
epochs in which the validation loss has not decreased. The
different effects of early stopping can be seen in Figure 6,
where bothmodels 100 epochs should be trained. The training
of both models was terminated at different times, as the
validation loss curve reached its lowest point at different
epochs, indicating that the models had reached the point of
optimal performance. An overview of the training parameters
used, including early stopping, can be found in Table 3.

TABLE 3. Overview of parameters used for the training process.

The training of the pre-trained architectures InceptionV3,
Inception-ResNet-V2, and ResNet50 as comparative models
to the architecture presented is similar. The big difference,
however, is that transfer learning is used in this case. Before
training, the oracle images are scaled to the required image
size and dimension, as the pre-trained architectures cannot
process an image size of 28 × 28 px and also require three
dimensions. The input images have the following format:
32 × 32×3 (ResNet50) and 75 × 75×3 (InceptionV3,
Inception-ResNet-V2). Each pre-trained architecture uses the
original structure, but the final layer is customized to have
ten neurons based on the ten classes. In the next step, the
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training set was expanded using common data augmentation
techniques such as zoom, rotation, and translation. The
hyperparameters are then tuned using Bayesian optimization
with the same settings as described above and the same
parameter search intervals as in Table 2. The model is then
trained with the best parameters at 100 epochs with a batch
size of 64, Adam optimizer, and early stopping. As soon
as the validation loss has not decreased for 20 epochs, the
training is terminated. The model of the epoch with the
best results is automatically restored. During the tuning of
the hyperparameters and the Bayesian optimization, the base
model is frozen. The final step is to apply transfer learning
to the model. In this step, the base model is unfrozen so that
it can be fine-tuned for improved performance. The learning
rate of the optimizer is set to a minimum of 1 × 10−5. The
number of epochs for this phase is determined by adding
20 epochs to the best epoch of the previous training.

D. EVALUATION METRICS
The following performance indicators are used to evaluate
and interpret the performance of the model: Accuracy,
Balanced accuracy, True positive rate (TPR, sensitivity or
recall), True negative rate (TNR or specificity), Positive
predictive value (PPV or precision), Negative predictive value
(NPV), Cohen’s Kappa and at least F1-Score.

The Accuracy determines the overall effectiveness of
a model [43]. To mitigate inflated performance estimates
on imbalanced datasets, balanced accuracy can be utilized,
defined as the arithmetic mean of sensitivity and speci-
ficity [44], [45]. The True positive rate metric indicates the
accuracy of classifying the positive class, and maximizing it
increases the likelihood of correctly identifying true members
of the positive class [46]. The True negative rate, on the other
hand, indicates how effectively a classifier identifies negative
classes [43]. The Positive predictive value metric assesses
prediction accuracy for the positive class by indicating
the proportion of positive predictions that correctly match
true positive instances [46]. The Negative Predictive Value,
equivalent to the precision for the negative class, is the ratio of
correctly classified negative samples to all samples classified
as negative [47]. Cohen’s kappa describes the reliability of a
model by measuring the agreement between two judgments.
It ranges from -1 to 1, where a Cohen’s kappa of -1 indicates
complete disagreement, and a Cohen’s kappa of 1 signifies
perfect agreement [48]. The harmonic mean of precision and
recall, called F1-Score, ranges from 0 to 1, with the minimum
(0) occurringwhen all positive samples aremisclassified (true
positives = 0) and the maximum (1) occurring for perfect
classification (false negatives = false positives = 0) [49].

E. DATASET
In this study, the Oracle-MNIST dataset [6] is used. This
dataset consists of a total of 30,222 ancient characters,
divided into ten classes. The images are in 28 × 28 px
grayscale image format, 27,222 of them for training and

3,000 for testing; furthermore, all images are disjoint. The
same data format as the original MNIST dataset The number
of images in the classes is between 2,332 and 3,399. The
imbalance ratio for the minority class to the majority class
is ≈ 2:3 (0.6861). All images are pre-processed as follows:
grayscaled, negated, resized, and extended to 28×28 px. The
images have a gray or black background and vary in reso-
lution. Additionally, as they were scanned from the original
surfaces of the oracle bone, the images may be damaged to
varying degrees and exhibit a high degree of noise. Figure 3
shows six example images of the character wood from the
test set of Oracle-MNIST. The differences in relation to the
noise, the non-uniformity of the characters, and the variety of
damage are clearly visible. The oracle characters on the right
are examples of increased noise and damage.

FIGURE 3. Six sample images of the wood class from the Oracle-MNIST
test set, three each with varying degrees of noise and damage.

F. SETUP
For training and testing the models, Google Colaboratory
with an NVIDIA Tesla T4 GPU with 16GB memory is used.
Themodels were trainedwith a batch size of 64 over a number
of 100 epochs. To avoid overfitting and to save computation
time, the callback function early stopping was used, which
stops the training after 20 consecutive epochs in which the
validation loss has not decreased. To compare the perfor-
mance of the proposed architecture, the pre-trained archi-
tectures Inception-ResNet-V2, InceptionV3, and ResNet50
were also trained on the dataset. Since these architectures do
not accept grayscale images of size 28 × 28 px as input, the
images were converted to the needed format.

IV. RESULTS
The architecture presented and the use of three pre-trained
architectures as a comparison led to the results shown
in Table 5. The architectures were evaluated in terms
of accuracy, class-averaged sensitivity (true positive rate),
positive predictive value (precision), and Cohen’s Kappa.
Additionally, the F1-score, balanced accuracy, true negative
rate, and negative predictive value (NPV) are reported. It can
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be seen that the proposed architecture performs better than
the three compared architectures. For the accuracy, it achieves
the highest value of 95.93%. This is 0.8% more than the
second-highest accuracy of 95.13%, which was the previous
benchmark of the dataset. Looking at Table 4, it can also
be seen that the architecture presented uses the fewest
parameters.

FIGURE 4. Confusion matrix of the proposed architecture with data
augmentation.

A significance test was also conducted to demonstrate
the robustness and reliability of the model, both with and
without data augmentation. The model was trained and tested
a total of 40 times for each specification (with and without
data augmentation). For each specification, two datasets with
20 accuracy values each were created. Both datasets were
normally distributed. To avoid side effects such as the sharing
of weights from previous runs, each run was performed
individually with a new runtime in Google Colaboratory.
The two-tailed t-test was employed to investigate whether a
significant difference existed between the mean values of the
two datasets. The null hypothesis states that the mean values
µ of the two datasets are equal (H0 : µ1 = µ2).H0 is rejected
if the significance level α is less than 5%. In the case of
the two datasets where data augmentation was applied, the
resulting p-value was 99.00%. This leads to the conclusion
that p > α, indicating thatH0 cannot be rejected, and thus the
datasets do not exhibit a statistically significant difference.
In the second case of the two datasets where no data
augmentation was applied, the resulting p-value was 90.03%.
This result leads to the conclusion that p > α, suggesting
thatH0 cannot be rejected and, consequently, that the datasets
do not show a statistically significant difference. The total
of 40 runs per scenario produced an average accuracy of
95.98% with a standard deviation of ± 0.245% for use with
data augmentation and 95.31% ± 0.281% without the use
of data augmentation, which corresponds to the values in

Table 5. In addition to the Tables 4 and 5, Figure 6 illustrates
four images, with the left-hand side representing the results
obtained without data augmentation and the right-hand side
representing the results obtained with data augmentation.
The top row depicts the training accuracy in comparison
to the validation accuracy over the number of epochs, while
the bottom row shows the loss with validation loss over the
number of epochs. The graphs show that the preferred model
with data augmentation is more robust and does not suffer
from overfitting. Figure 4 shows the confusion matrix of the
proposed architecture using data augmentation. As illustrated
in the data, the class labeled next is the most frequently
misclassified, with 21 misclassifications. The character sun,
on the other hand, is best recognized with just three
misclassifications. To evaluate the architecture’s performance
specifically on noisy and damaged images, 15 images
exhibiting pronounced noise and damage were selected
subjectively for each class. The corresponding confusion
matrices are illustrated in Figure 5. The results indicate that
the architecture demonstrates superior recognition accuracy
for noisy images compared to damaged images. The balanced
accuracy achieved was 92.67% for noisy images and 84.67%
for damaged images.

V. DISCUSSION
The goal of this study was to achieve high accuracy with a
suitable architecture for noisy and partially refracted images,
as found in the Oracle-MNIST dataset. The results with
various metrics, which are shown in Table 5, show that
the presented architecture achieves the highest accuracy. For
comparison, three state-of-the-art pre-trained architectures
were selected and trained accordingly with transfer learning
and data augmentation. The highest accuracy is achieved
by the Inception-ResNet-V2 model, which is 3.93% lower
than the proposed architecture. The results show that the
use of ResNet is not particularly beneficial in the context
of the Oracle-MNIST case, while InceptionV3 is more
powerful. Inception-ResNet-V2, in contrast, employs both
the residual connections of ResNet and the architectural
design of the Inception module, which integrates disparate
convolutional layers with varying kernel sizes in parallel. This
integration results in enhanced accuracy and substantiates its
efficacy. The presented architecture is also founded upon this
architectural concept and attains an accuracy of 95.93% with
supplementary data augmentation techniques. With regard
to the number of parameters and the associated complexity
of the model, the pre-trained architectures also achieve
high values, which leads to a longer training time. The
proposed architecture achieves lower values for the number
of parameters (727,858).

The results of the significance tests conducted in section IV
also demonstrated that the proposed architectural solution
is capable of delivering robust and reliable results. It is
important to note that this study does not examine the impact
of novel, unseen oracle characters on the model’s robustness,
as the model would need to be specifically adapted for such
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FIGURE 5. Two confusion matrices to illustrate the results for two different scenarios. The matrix on the left represents the case of images with
increased noise, the matrix on the right the case of images with damage.

FIGURE 6. Accuracy and loss curves with associated validation for the case with and without use of data augmentation techniques. It can be seen that
the training process was terminated at various epochs due to the application of the early stopping callback function.

TABLE 4. Overview of the number of parameters of four different architectures besides the proposed architecture using the Oracle-MNIST dataset.
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TABLE 5. Overview of the evaluation indicators of the proposed architecture and three different architectures on the Oracle-MNIST dataset.

cases. Knowledge distillation, which has shown promising
results in other fields [50], [51], may present a potential
solution to this challenge, and we aim to investigate this
approach in future research. In the work of Ganj et al. [26],
the authors also employ a convolutional neural network
based on the concept of residual connections and Inception
modules. In contrast, we do not utilize a convolutional layer
with a 7 × 7 kernel in our architecture, as we hypothesize
that more global features play a less significant role than
smaller kernels. In addition to the distinct configuration
and quantity of convolutional layers, we employ batch
normalization following each layer. In conclusion, our
model demonstrates greater accuracy with fewer parameters,
thereby corroborating its efficacy.

To examine the effects of noise and damage on the images,
a test set comprising 15 images per class was selected for
each case, noisy and damaged. These images subjectively and
obviously showed an increased degree of noise or damage and
approximately correspond to those depicted on the right-hand
side of Figure 3. The corresponding confusion matrices are
presented in Figure 5. A comparison of these matrices,
in conjunction with the balanced accuracy referenced in
section IV, indicates that the proposed architecture is more
effective in correctly identifying images with noise than
images with damage. A potential explanation for the lower
accuracy in recognizing damaged images lies in the varying
degrees of damage present. While some images are damaged,
the general shape of the Oracle character can still be
discerned. In other images, the damage is so extensive that a
significant portion of the oracle character is missing, making
it challenging for the architecture to accurately assign it to
the correct character. Additionally, the structural similarity
between certain characters introduces further complications
to the classification process.

In relation to the confusion matrix (Figure 4), which
contains the complete test set and not just a specific subtest
set (Figure 5), the characterwood is most frequently confused
with the character cattle and vice versa, with cattle most
frequently classified as wood . This is probably due to the
fact that the two characters look quite similar. Similar cases
can be observed with arrow and big as well as with time
and cattle. Whereby time and cattle show greater differences
with regard to the head of the character than other oracle
bone characters. Figure 7 shows the five characters cattle,

FIGURE 7. Comparison of three pairs of characters that have similarities
(cattle and wood; big and arrow, time and cattle).

wood , big, arrow, and time; it can be seen that the pairs
per row look similar. Further misclassifications can most
likely be traced back to the condition of the OBIs. Some
are very noisy or very badly damaged, with half or more
of the symbol missing. In addition to the accuracy, the two
metrics, NPV and TNR, stand out due to their significantly
high values. The NPV evaluates the accuracy of the model
with regard to the prediction of negative classes. Negative
classes are classes that do not belong to the target class.
A high value indicates the accuracy of the negative prediction.
TNR, on the other hand, indicates the efficiency of a model
in correctly identifying the negative classes. The opposite
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cases are PPV and TPR. Since both NPV and TNR have
a value of 99.55%, they are 3.62% higher than PPV and
TPR. This indicates that the model is more accurate in
classifying actual negative cases as negative than vice versa.
Furthermore, the negative predictions are highly reliable.
Table 5 also shows the metrics relating to the model without
the application of data augmentation. In comparison, the
effectiveness of this method was shown, which resulted
in an increase in accuracy of 0.56%. Upon examination
of the average accuracy achieved in 40 independent runs,
it was observed that the accuracy increased by 0.67%. This
demonstrates the efficacy of data augmentation in enhancing
model performance. To find the best parameters of the
pre-processing layer, which included rotation, zoom, and
translation, a Bayesian optimization process was employed.
The optimization results indicated that smaller values for
these parameters generally led to better accuracy, with the
exception of the translation in the width direction.

This performance provides further evidence that while
data augmentation is a valuable tool for improving model
performance, the success of the proposed architecture is
not contingent upon it alone. For instance, the proposed
architecture was demonstrated to outperform the previous
benchmark of 95.13% even in the absence of data augmenta-
tion, thereby indicating that the success of the architecture is
not contingent upon these techniques alone. The application
of data augmentation techniques facilitates the improvement
of generalization and robustness by increasing the diversity of
the training data. This is particularly beneficial in reducing
the occurrence of overfitting, the presence of this can be seen
in Figure 6.While the validation loss on the left side increases
again from approximately the 20th epoch onwards, indicating
the presence of overfitting, the validation loss on the right side
does not exhibit a discernible decrease but rather a process
of convergence. For this reason, the use of the callback
function early stopping is of great importance. Furthermore,
an examination of the validation accuracy curve indicates that
it reaches nearly maximum levels after relatively few epochs.
This observation suggests that the test dataset may not present
a significant challenge for the model, in contrast to scenarios
typically observed in studies such as [52]. Alternatively,
it could indicate that the model is highly efficient at rapidly
identifying patterns. The test dataset ensures that its images
are not included in the training dataset; however, certain
similarities to characters from the training data are not
uncommon due to the limited size of the dataset.

VI. CONCLUSION
Deep learning has emerged as a modern and powerful tool for
the recognition of OBIs, an area of increasing importance in
character recognition. In this research, a novel architecture
was introduced specifically for the Oracle-MNIST dataset,
which contains numerous images of oracle characters. These
images pose a significant challenge as they are highly
noisy or damaged, making accurate classification difficult.
Furthermore, data augmentation techniques were applied to

increase the diversity in the dataset; this method proved to be
beneficial. Using these techniques, the proposed architecture
was able to outperform three comparable state-of-the-art
models in terms of accuracy, setting a new benchmark for
this dataset with 95.93%. To further validate the reliability
of the model, 40 independent runs were performed, resulting
in an average accuracy of 95.98% with a standard deviation
of ± 0.245%. This performance underscores the robustness
of the model. Furthermore, it was shown that the success of
the architecture is not solely dependent on data augmentation
techniques. Even without data augmentation, the model
achieved an impressive accuracy of 95.37%, outperforming
the previous benchmark. For further comparison, three pre-
trained architectures, InceptionV3, ResNet50, and Inception-
ResNet-V2, were trained using transfer learning. Currently,
the most commonly used method for OBI recognition and
deciphering relies heavily on human expert knowledge,
which is both time-consuming and labor-intensive. The
method presented in this study enables highly precise
recognition of oracle character and offers considerable
potential for saving personnel time and thus reducing costs.

A. LIMITATIONS
Although the classification model shows a satisfactory
performance in the recognition of oracle bone inscriptions,
it is important to recognize its limitations. For example, the
achieved accuracy is based on ten classes, where the classes
are relatively balanced in terms of the number of images
(ratio between the smallest and the largest class ≈ 2:3).
This relatively balanced distribution is not a standard case
and may lead to suboptimal results when confronted with
more unbalanced datasets. In addition, the performance of the
model may vary when applied to datasets with substantially
more classes, highlighting the need for further validation
and possible adjustments. Future work should take these
limitations into account.

B. FUTURE WORK
Future research will aim to assess the performance, external
validity, and generalization of the classification model
presented here by applying it to additional qualitative
datasets containing scanned characters. In order to facilitate
a comprehensive analysis of the model’s scalability, datasets
from varying historical periods will be incorporated in future
studies. In addition, the architecture of the model will be
further researched and refined to improve its effectiveness
in dealing with noisy and damaged images. This includes
reducing the number of parameters in the model, which not
only decreases the computational requirements but can also
increase the efficiency and speed of the model. Furthermore,
the potential of knowledge distillation for oracle characters
will be explored with a view to enhancing the model’s robust-
ness in the context of new oracle characters. In addition, the
effects of generating synthetic images on the accuracy of the
dataset are to be evaluated. This is achieved by including
synthetic images in the dataset. Moreover, the existing
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architecture is to be developed further in the form of a hybrid
model, as proposed by Hax et al. [53], with the objective of
achieving reliable recognition of oracle characters in videos.
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