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ABSTRACT Bad weather, such as rain, snow, and fog, will reduce the quality of the image acquired, and it
will affect the performance of many related visual fields. The existing researches on image restoration under
severe weather either focus on the restoration under a certain kind of weather, which cannot be generalized
under different weather, or need to introduce additional model structures, which increases the burden of
practical applications. Therefore, we explores an integrated image restoration framework, which can restore
images under different adverse weather effects. Specifically, the model is trained in two stages. In the pre-
training stage, a basic general network that can deal with multiple weather is trained by supervised learning.
In the fine-tuning stage, soft prompts are introduced to stimulate the model’s ability to cope with different
weather, so as to enhance the generalization ability. Specifically, the hidden information of the prompts
is explored by low-rank decomposition, and the contras loss is added to prompt the prompts to converge
on similar tasks. Furthermore, we address the distribution shift problem by aligning out-of-distribution
(OOD) test sample statistics with those of the source data using test-time prompt tuning. Finally, we use the
evaluation metrics, PSNR and SSIM, to evaluate the proposed method under four tasks: rain removal, snow
removal, fog removal, and raindrop removal. The results demonstrate that the proposed method achieves
superior performance compared to the existing state-of-the-art.

INDEX TERMS Transformer architecture, pretrain-finetuning, soft prompts, contrast learning, distribution
alignment strategy.

I. INTRODUCTION
With the continuous development of society, image acquisi-
tion has become integral to various fields, such as satellite
remote sensing and autonomous driving. One of the key
challenges in advancing these fields lies in ensuring the
quality of collected images. Severe weather conditions,
including rain, snow, and fog, often adversely affect the
image acquisition process, resulting in degraded image
quality and impairing the performance of many vision-based
applications. The degradation effects caused by different
weather conditions are distinct. For example, raindrops create
visible streaks and spots on images, obscuring the line of sight
and interfering with image recognition tasks. Snow typically
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appears as bright spots or occlusions, reducing image clarity
and contrast. Fog, on the other hand, scatters light, decreasing
visibility and causing the loss of fine details.To address
these issues, researchers have conducted extensive studies
to mitigate the impact of adverse weather conditions on
degraded images. These include rain removal methods [1],
fog removal methods [2], snow removal methods [3], and
raindrop removal methods [4], [5].
Although these methods have demonstrated promising

results, they are typically designed to target specific weather
conditions and lack the generalizability needed to handle
multiple types of weather degradation. In practical appli-
cations, it is often necessary to address diverse weather
conditions simultaneously. To meet this demand, researchers
have proposed unified approaches that utilize a single set of
network parameters to manage different types of degradation
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[6], [7], [8].However, existing unified methods face notable
limitations. For instance, [6], [9] fail to account for the
unique characteristics of each weather condition, resulting
in suboptimal performance when addressing certain types
of degradation. Additionally, methods such as [10] require
customized model components, such as encoders, for each
weather condition, which imposes a significant burden in
practical implementations. Furthermore, approaches like [6],
[8] involve optimizing task-specific model parameters by
tuning task-general parameters during training. However,
training from scratch in this manner may lead to conflicts
between parameters, ultimately degrading performance.

Real-world image degradation often changes dynamically,
with additional factors such as device variations contributing
to substantial differences between training and test data
distributions. Such unseen distribution changes during infer-
ence render the model sensitive to these shifts, leading to
performance degradation [11], [12].

To effectively address the aforementioned challenges,
we propose a two-stage image restoration training strategy
combined with distribution alignment at test time to mitigate
distribution shift issues. Specifically, in the pre-training stage,
we leverage a diverse dataset of weather-degraded images
for multi-task supervised learning, thereby training a general-
purpose image restoration model. However, multi-task
training can suffer from task interference, where conflicting
objectives across tasks hinder the overall learning capacity
of the model [13]. To overcome this limitation, we enhance
the model’s capability to handle specific weather degradation
by introducing task-specific soft prompts during the second
stage of training. These soft prompts encode discriminative
information unique to each degradation type, enabling the
model to adjust its attention weights based on the target
task.While the visual manifestations of different weather
conditions vary, there exist shared patterns and characteristics
underlying the degradation processes, alongside task-specific
features [7]. For instance, [14] achievedmulti-task processing
by exploring intrinsic connections among different image
types, optimizing the network’s feature extraction and asso-
ciation allocation to enhance task differentiation. Similarly,
[15] proposed a Lifelong CycleGAN model for continual
multi-task image restoration, enabling continuous learning
of new tasks without compromising previously acquired
knowledge. Building upon these approaches, we explore both
the implicit and explicit interactions between soft prompts
during fine-tuning, thereby enhancing task-specific model
performance.To capture the implicit interactions among
various weather conditions, the prompts undergo low-rank
decomposition, yielding two distinct components: generic
task prompts and task-specific prompts. Generic task prompts
are shared across all tasks and represent common features,
while task-specific prompts capture unique features tailored
to each type of weather degradation. To further explore
explicit interactions, we employ t-SNE analysis [16] to
visualize relationships among different weather-degraded

images. This insight guides the integration of contrastive
learning to improve the efficiency of soft prompts.Finally,
we address distribution alignment explicitly during test
time. For each test input, we generate randomly augmented
views that are passed through the model to compute token
embedding statistics. These embeddings’ mean and variance
are then aligned between the source dataset and the test
sample by updating learnable prompts. This alignment
ensures robust performance in the presence of distribution
shifts.

In summary, the main contributions of this paper are as
follows:

• We propose a two-stage image restoration framework
capable of effectively removing different types of
adverse weather (i.e., rain, snow, fog, raindrops) from
degraded images.

• Weexplore the implicit and explicit interactions between
soft prompts during the fine-tuning stage to better train
models on specific tasks.

• We align the test data with the source data distribution
by adjusting the learnable prompts at test time, solving
the problem of effectively adapting the model when the
distribution shift occurs.

• We verified the effectiveness of the proposed method.
At the same time, our method has achieved relatively
advanced results in a variety of image restoration tasks.

II. RELATED WORK
A. SINGLE-WEATHER DEGRADED IMAGE RESTORATION
The restoration of images degraded by specific weather
conditions has been extensively studied. For instance,
in rain removal research, the GAN-based model proposed
in [17] effectively removes rain streaks from images while
preserving image details and quality by learning the mapping
relationship between rain-degraded and rain-free images.
Similarly, in snow removal studies, Deep Convolutional
Neural Networks (DCNNs) have demonstrated the ability
to accurately distinguish snowflakes from background infor-
mation, enabling precise snowflake removal. In dehazing
research, the dark channel prior method introduced in [18]
effectively eliminates haze by removing low-intensity infor-
mation elements and mitigating block artifacts.For raindrop
removal, the study in [19] proposed a network that learns
optimized filters to minimize the impact of raindrops on
image details, achieving the restoration of clear images.
Additionally, other approaches have achieved remarkable
results, including the rain removal method in [1], the snow
removal method in [3], the fog removal method in [2], and
the raindrop removal method in [4].Although these methods
exhibit excellent performance, they are not universal solu-
tions capable of addressing all weather-induced degradations.
This limitation arises because these approaches are task-
specific, with separate models trained for each weather
condition. Furthermore, for unknown weather degradation
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FIGURE 1. The overall of our approach. Our approach is divided into three parts: two-stage training with pre-training and fine-tuning and distribution
alignment performed at test time. We pre-train the model in a supervised manner and then fine-tune the model using interactive augmentation prompts
while the model parameters are frozen. Finally, the distribution of test data is aligned according to the distribution of training data at test time.

types, these methods often require additional fine-tuning or
multiple sets of weather-specific model parameters, which
can limit their practical applicability.

B. MULTI-WEATHER DEGRADED IMAGE RESTORATION
Unlike single-weather degraded image restoration tasks,
multi-weather degraded image restoration aims to recover
clear images under various weather conditions using a unified
set of network parameters. Current research methods for
all-in-one weather image restoration have shown promising
results. These approaches typically involve either designing
distinct networks for each weather removal task or employing
frameworks where each task has a dedicated encoder while
sharing a common decoder across all tasks. For example,
in [10], an all-in-one network with multiple encoders was
proposed to address severe weather degradations through
network architecture search. TransWeather [6] employs
a transformer-based end-to-end model that incorporates
learnable weather-type embeddings to decode weather
degradations. Additionally, [9] introduced a two-stage
knowledge learning mechanism to handle multiple severe
weather removal tasks. PromptIR [8] proposed an integrated
prompt-based learning framework for image restoration,
utilizing prompts to encode weather-specific degradation
information.

However, the above methods exhibit notable limitations.
Approaches such as [10] and [7] rely on task-specific

model structures for specific weather scenarios, which can
increase computational and practical burdens. On the other
hand, [9] and [8] train a general image restoration model
while incorporating additional learnable embeddings for
task-specific learning. Nevertheless, these methods jointly
optimize weather-general and weather-specific parameters
from scratch, which often results in parameter conflicts
that degrade overall performance.To address these issues,
we build upon themethodologies of [20] and [2] by adopting a
two-stage training strategy. In the first stage, a general image
restoration model is learned to capture shared features across
weather conditions. In the second stage, weather-specific
prompts are trained while freezing the parameters of the
general model. This approach effectively alleviates parameter
conflicts, enhancing the model’s ability to handle specific
weather degradations.

C. PROMPT LEARNING
Prompt learning has emerged as a prominent technique in
the field of natural language processing (NLP). Accord-
ing to [21], instead of relying solely on task-specific
parameters, prompt learning enhances model performance
by utilizing prompts to provide contextual information,
thereby fine-tuning the model for a given target task.
Rather than retraining the model with traditional parameters
for each task, predefined prompts guide the model’s
behavior, enabling efficient task adaptation. Prompts have
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FIGURE 2. The main architecture of the image inpainting model. We applied a 5-stage U-Net, replacing its convolutional block with a Transformerblock.

FIGURE 3. Interaction Enchanced prompts. Prompts can be decomposed
into a prompt tail shared by all tasks and a prompt head specific to each
task, labeled as implicit interaction enhancement. In addition,
we constrain prompt heads by contrastive learning based on inter-task
relations, which is labeled as explicit interaction enhancement.

been successfully applied to fine-tuning vision tasks [22],
natural language generation [23], and speech synthesis [24],
demonstrating their ability to facilitate efficient parameter
adaptation.

To address the limitations of manually crafted prompts
in early prompt learning, researchers introduced soft
prompts [25], which are optimized in a continuous space.
Compared to hard prompts, soft prompts offer greater
flexibility and adaptability, allowing models to better align
with the requirements of specific tasks. In the domain of
computer vision, high-level tasks such as object recognition
and scene parsing have begun leveraging prompt learning to
enhance model interpretability and accuracy. More recently,

researchers have proposed utilizing prompts for low-level
vision tasks. For instance, PromptIR [8] employs prompts
to encode degradation-specific information for unseen image
restoration.Building upon these advancements, this paper
explores the use of soft prompts for task-specific learning.
To prevent parameter conflicts, the base model parameters
are frozen during the training process, and only the soft
prompts are optimized. This avoids the need to train prompts
and model parameters from scratch, ensuring efficient and
conflict-free adaptation for specific tasks.

D. ALIGNMENT DISTRIBUTION
Deep learning has achieved significant success across
numerous fields, largely predicated on the assumption that a
large amount of labeled data is available and that the training
and test sets are independent and identically distributed (IID)
[26]. However, in practice, models are often trained on
synthetic data while being tested on real-world data. This
discrepancy between the training and testing domains leads to
a violation of the IID assumption, a phenomenon commonly
referred to as domain shift. Domain Adaptation (DA) has
been proposed as a strategy to alleviate the challenges
posed by domain shift.Despite its effectiveness, existing DA
methods have notable limitations. Some approaches require
access to both the source and target domain data during
training, while others necessitate training across multiple
domains simultaneously. The former assumes that source
data remains accessible throughout adaptation, which is not
always feasible, while the latter increases computational
complexity and resource overhead.

In the field of computer vision, researchers have explored
Test Time Adaptation (TTA) [16], [27] as a method to
mitigate domain shift by updating pre-trained models online
using test data. However, most TTA techniques have been
applied to image classification tasks. For instance, [26]
introduced a novel approach that constructs secondary
degraded images and applies TTA to super-resolution image
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inpainting tasks. Additionally, [28] proposed a test time
prompt tuning (TPT) approach to extend TTA by introducing
distributional alignment within the CLIP framework.Building
on this concept, we propose leveraging token distribution
statistics from the training data to explicitly align training
and test sample distributions. By integrating test time prompt
tuning, our method effectively mitigates domain shift and
enhances model performance in real-world scenarios.

III. METHOD
In this section, we introduce the overall flow of our proposed
method, as shown in Figure 1.

A. UNIFIED FORMULA
The all-in-one severe weather image restoration task aims
to restore a clean image from a weather-degraded image.
However, since the physical models under different weather
phenomena are not unified, we try to construct a unified
restoration formula. Let the weather-damaged image I and
the original clean image B be used.
According to [29], the degradation of rain can be expressed

as:

I = T ⊙

(
B+

n∑
i

Si

)
+ (1 − T ) ⊙ A (1)

where ⊙ represents element-wise multiplication, T is the
transmission map generated by scattering effects, A is the
atmospheric light in the scene, Si is the rain layer, and n is
the total number of raindrop layers.

According to [30], the degradation of snow can be
expressed as:

I = a⊙ z+ B⊙ (1 − z) (2)

where a is the color aberration map and z is the independent
snow mask.

According to [2], the degradation of fog can be expressed
as:

I = T ⊙ B+ (1 − T ) ⊙ A (3)

According to [4], the degradation of raindrop can be
expressed as:

I = (1 −M ) ⊙ B+ R (4)

whereM is the mask and R is the raindrop residue.
In order to achieve a unified image restoration method, the

above image degradation formulation can be integrated:

B = K ⊙ I + R+ I (5)

where K =
1
T − 1, R =

(
1 −

1
T

)
A+ r , where r denotes the

residual term.
Because the actual degradation process may be more

complex than the theoretical model or contain some unknown
factors, the model usually only captures the core or most
dominant part of the degradation phenomenon. Therefore,
the unified formula acts as an abstract model and provides

a framework to integrate the effects of different weather con-
ditions. Although it may not perfectly fit the actual situation
of every weather, it can capture the main characteristics of
multiple degradation types, and adopting prior knowledge
without strong constraints can help the trained model better
understand and reverse the degradation process, so as to
achieve better restoration results.

B. MODEL ARCHITECTURE
Our network architecture is based on SwinTransformer
in [20] and Dehazeformer in [2]. SwinTransformer has
demonstrated its effects on high-level computer vision tasks.
Given an input feature mapX ∈ Rb×h×w×c, we applyMHSA,
a multi-head self-attention mechanism with occlusion, using
a linear layer to project X to queries, keys, and values,
and use Windows to group into tokens. Dehazeformer adds
an additional convolution operation on V to supplement
the possible limitations of MHSA in spatial information
aggregation and enhance the ability of the model to process
spatial information. Specifically, self-attention is computed
in the following way:

Aggregation(Q,K ,V ) = Softmax
(
QKT
√
d

+ B
)
V

+ Conv
(
V̂
)

(6)

where Q,K ,V ∈ Rb′
×l×d represents the query, key, and

value, l is the number of tokens in the window, d is the
dimension, b′

= b ×
(
h×

w
l

)
, and B ∈ Rl×l is the

relative position bias term. V̂ ∈ Rb×h×w×c denotes V when
no window partition is performed. Therefore, the attention
mechanism is used to aggregate the information within the
window, and the convolution is also used to aggregate the
information in the domain, so as to improve the spatial
understanding ability of the model. Besides that, not all
transformerblocks adopt MHSA, such as in the shallow layer
of the encoder and the decoder stage.

Inspired by the above,as shown in Figure 2,We applied a
5-stage U-Net, replacing its convolutional block with a Trans-
formerblock. In addition, SK fusion and soft reconstruction
layers are used to replace the original cascade fusion and
global residual.Our network takes an degraded image I ∈

RH×W×3 as input and outputs a features map O ∈ RH̄×W×4.
We then split O into K ∈ RH×W×1 and R ∈ RH×W×3

in Eq(5).Finally, they are put into the formula to obtain the
restored image.

In the fine-tuning stage, we freeze the baseline model
backbone parameters and train a set of task-specific prompts
to enhance the model’s ability to handle specific tasks. The
attention level prompt is introduced at the input of the MSHA
layer, assuming that the prompt length is m, then Eq(6) can
be improved as:

Aggregation(Q,K ,V )

= Softmax
(
Q[Pk,K ]T

√
d

+ B
)
[Pv,V ] + Conv

(
V̂
)

(7)
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FIGURE 4. Overview of the methodology for distribution alignment. At test time, a single
test sample and its augmented view are passed through the encoder and learnable prompts
are updated using a distribution alignment loss to align the distribution statistics (mean and
variance) of the test sample with the training set statistics.

where Pk,Pv ∈ Rm×d denotes the prompt vectors
inserted into K and V . Task-specific soft prompts are used
to encode task-specific semantic knowledge, which is not
shared between tasks. In this paper, we use this method to
alleviate the problem of task interference that may occur in
multi-task learning. At the same time, the baseline model
backbone parameters are frozen to avoid conflicts between
parameters.

C. INTERACTION ENCHANCED PROMPTS
Considering that although the effects of different weather
conditions are visually different, there are some common
patterns and characteristics in the process of image degra-
dation, as well as task-specific characteristics [7]. Therefore,
as shown in Figure 3, we further explores the implicit and
explicit interactions between prompts in the fine-tuning stage.
For implicit interaction, based on the above theory, we uses
low-rank decomposition to divide the prompt into two parts,
which can be expressed as follows:

Pi = Psi · Pg (8)

where · denotes matrix multiplication, Psi ∈ Rm×lr denotes
the task-specific prompt for the ith weather removal task,
Pg ∈ Rlr×d is the task-general prompt, and lr is the rank
of the parameter matrix. Task-specific prompts are tailored
to individual tasks, while generic prompts are shared across
all tasks. This design ensures that task-specific features
are captured within task-specific prompts, while shared
knowledge across tasks is embedded in generic prompts.
By incorporating these distinctions, the hidden structure
within the prompts can be better exploited. Moreover,
applying low-rank decomposition to the prompt vectors,
splitting them into generic and task-specific components,
enhances the efficiency of parameter usage.Generic prompts,

being shared across all tasks, reduce the overall parameter
count for the model. In contrast, task-specific prompts
facilitate specialized processing for individual tasks, enabling
the model to internally distinguish between tasks and
thereby reducing interference. Furthermore, this decomposi-
tion allows the adjustment of only the task-specific portions
of the prompts when new tasks are introduced, avoiding the
need for extensive modifications to the entire model and
significantly enhancing its scalability.

In terms of explicit interactions, certain weather degrada-
tions exhibit similarities. For instance, snow and raindrop
degradations are closely related, while rain and haze also
share similarities—both featuring droplet-like occlusions,
with rain additionally introducing streaking artifacts and
opacity changes akin to haze. By leveraging these explicit
relationships, we apply contrastive learning to task-specific
prompts. This approach encourages prompts corresponding
to similar degradation tasks to align more closely, enhancing
their similarity through explicit interactions. Conversely,
for unrelated degradation tasks with less clear interaction
relationships, the model aims to achieve lower similarity
between their corresponding prompts. To this end, we follow
themethod of [31] and construct the contras loss. Specifically,
suppose that there areN weather tasks, T is the set of all tasks,
and i ∈ I ≡ {1 · · ·N } is the index of any task. The contras
loss can be expressed as follows:

Lcontrastive =

∑
i∈I

Licontrastive

=

∑
i∈I

−
1

|T (i)|

∑
p∈T (i)

log
exp sin(Pi,Pp)

τ∑
k∈I 1i̸=k exp sin(Pi,Pk )

τ

(9)
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where T (i) is the index set of all tasks that have similar
relationship with the ith task, |T (i)| is its cardinality, τ is the
temperature coefficient, 1i̸=k is an indicator function, which
takes the value 1 if i ̸= k and 0 otherwise, sim(x, y) represents
the similarity between two vectors x and y. We enable the
prompts to more accurately encode task-specific features by
introducing a contrastive loss.

D. TWO-STAGE TRAINING STRATEGY
In order to avoid the conflict between task-generic parameters
and task-specific parameters caused by training from scratch,
we adopts a two-stage training strategy. In the pre-training
stage, we employ a shared backbone network to learn weather
general features in a supervised manner using a mixture of
datasets from various weather conditions. The loss function
in the pre-training stage can be formulated as follows:

Lpretrain =

∑
ρ

(
∥ X̂ρ,Xρ ∥1

)
(10)

where X̂ρ,Xρ denote the input degraded image and the target
clean image for weather ρ, respectively.

TABLE 1. Details of the data sets corresponding to different weather
degradation types.

In the second fine-tuning stage, we freeze the parameters of
the backbone and introduce a contras loss to train the prompts.
The loss function in the fine-tuning stage can be expressed as
follows:

Lfinetune =

∑
ρ

(
∥ X̂ρ,Xρ ∥1

)
+ λcontLcontrastive (11)

where Lcontrastive is the contrastive loss and λcont is the
hyperparameter for the contrastive loss regularization. The
value of λcont is set to 0.1 in the experiments in this paper.

E. ALIGNMENT DISTRIBUTION
Given a test sample Xtest , we take multiple augmented views
on it and pass them to the encoder with deep learnable
prompts, as shown in Figure 4. At each layer of the encoder,
we compute the alignment loss between the mean and
variance of the test sample and the mean and variance of the
training dataset. Our ultimate goal is to align the distribution
of the test data with the training data by updating the prompts
based on the alignment loss.

We use a random set of augmentations Aug(·) on the test
data, resulting in a set of augmented views Nk . The mean and
variance statistics of the tokens embedding for the test sample
are computed at the output of each transformer layer of the
model encoder. For the mean and variance of the distribution

of the test samples:

µl(T ; p) =
1
Nk

∑
x∈Aug(X )

X̃p
l,x,

σ 2
l(T ; p) =

1
Nk

∑
x∈Aug(X )

(
X̃p

l,x − µl(T ; p)
)2
(12)

where µl(T ; p) and σ 2
l(T ; p) is the mean and variance of the

test sample in the Lth layer in the encoder. Similarly, for each
layer of the encoder, we calculate the statistics of the training
data:

µ̂l = µl(S, θv) and σ̂ 2
l = σ 2

l (S, θv) (13)

θv represents the encoder parameters from the pre-trained
model. We compute the alignment distribution loss between
the mean and variance of the test sample and the training
dataset statistics as follows:

Lalign =
1
L

L∑
l=1

(
∥µl(T ; p) − µ̂l∥1 + ∥σ2

l(T ; p) − σ̂2
l∥1

)
(14)

With the alignment loss Lalign, we align the test data with the
training data distribution.

IV. EXPERIMENTS
A. IMPLEMENT DETAILS
1) DATASETS
For four different severe weather degraded images and
restoration tasks, we prepare four data sets respectively. For
the rain removal task, the OutdoorRain data set is selected in
this paper. In the OutdoorRain data set, there are 4500 pairs
of images for training samples and 750 pairs of images for
testing samples, and each pair of images includes degraded
images and clean images. For the snow removal task, we use
the Snow100K dataset, which has 50000 pairs of images
for training samples and 50000 pairs of images for testing
samples. Each pair of images includes degraded images
and clean images. For the dehazing task, we choose the
RESIDE dataset, which has two parts: indoor images and
outdoor images. Considering the actual needs, we choose
outdoor images. In the RESIDE_outdoor dataset, there are
13099 pairs of images for training samples and 500 pairs
of images for testing samples. Each pair of images includes
both degraded and clean images. For the RainDrop removal
task, we choose the RainDrop dataset. There are 861 pairs of
images in the training sample and 58 pairs of images in the
test sample in the Raindrop dataset, and each pair of images
includes degraded images and clean images. The specific
information of the four datasets is summarized in Table 1.

At the same time, a key point to consider is that the gap
in the number of samples between the four datasets is too
large, which may lead to suboptimal performance of our
model on specific tasks, resulting in poor multi-task learning
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TABLE 2. Quantitative comparison on the outdoor rain dataset.

TABLE 3. Quantitative comparison on the Snow100K dataset.

effect, so that the model may show a tendency to prioritize
degradation types with a larger number of samples and ignore
degradation types with a smaller number of samples. So we
need to sample the training data of different datasets and
roughly align the number of samples of different datasets.
Specifically, we take all samples (4500 pairs) from the
OutdoorRain training set, 7500 pairs of images randomly
sampled from the Snow100K training set, 5000 pairs of
images randomly sampled from the RESIDE dataset, and
1500 pairs of images cyclically sampled from the RainDrop
training set. For fair comparison, we keep the original number
of test image pairs constant for all datasets during evaluation

2) TRAINING DETAILS
We tune the parameters and learning rate of the neural net-
work using Adam optimizer combined with cosine annealing
scheme. In the first pre-training stage, the model is trained
for 200 epochs with a batch size of 4, using an initial learning
rate of 0.0002. In the second fine-tuning stage, the model is
trained for 250 cycles with a batch size of 8 and an initial
learning rate of 0.00002 used. In this experiment, random
flipping was applied to enhance the image and the image
was randomly cropped into blocks of 256 × 256 size.For
distribution alignment, we train for 1 cycle based on the
alignment loss with a batch size of 64 and an initial learning
rate of 0.04 used.We generate 63 augmentation attempts, plus
a single test image, for a total of 64 in a batch.

3) EVALUATION METRICS
We used the most commonly used evaluation metrics, PSNR
and SSIM, which can be respectively formulated as follows:

PSNR = 10 log10(
MAX2

I

MSE
) (15)

TABLE 4. Quantitative comparison on the RESIZE_outdoor dataset.

TABLE 5. Quantitative comparison on the RainDrop dataset.

whereMAXI denotes is the maximum possible pixel value of
the image, MSE is the mean squared error.

SSIM (x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ 2
x + σ 2

y + c2)
(16)

where x, y are the two images being compared, µ denotes the
mean value of pixels, σ 2 denotes the variances, σxy denotes
the covariance between x and y and c1, c2 are constants used
to stabilize the division with weak denominators.

B. COMPARISON WITH STATE-OF-THE-ART METHODS
1) COMPARISON OF RAIN REMOVAL METHODS
As in Table 2, we show the single rain removal method and
themulti-weather recoverymethod. Among them, for a single
rain removalmethod, we show quantitative results for Pix2pix
in [32], HRGAN in [29], and MPRNet in [33]. For multi-
weather recovery methods, we show quantitative results for
All-in-one in [10], TransWeather in [6], and Chen et al. in [9]
and WGWS-Net in [7].

2) COMPARISON OF SNOW REMOVAL METHODS
As in Table 3, we show the single snow removal method and
the multi-weather recovery method. Among them, for single
snow removal methods, we show quantitative results for
DetailsNet in [19], DesnowNet in [30], JSTASR in [34], and
DDMSNET in [35]. For multi-weather recovery methods,
we show quantitative results for All-in-one, TransWeather,
Chen et al. and WGWS-Net.

3) COMPARISON OF DEHAZING METHODS
As in Table 4, we shows the single dehazing method and
the multi-weather recovery method. Among them, for single
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FIGURE 5. Visual analysis of the results. It can be seen that our method achieves good visual results in four kinds of weather.

dehazing methods, we show quantitative results for EPDN
in [36], PFDN in [37], KDDN in [38] and MPRNet in [33].
For multi-weather recovery methods, we show quantitative
results for All-in-one, TransWeather, Chen et al. and
WGWS-Net.

4) COMPARISON OF RAINDROP REMOVAL METHODS
As in Table 5, we show the single raindrop removal method
and the multi-weather recovery method. Among them, for
single raindrop removal methods, we show quantitative
results for Pix2pix in [32], Attn.GAN in [4], Quan et
al. in [39] and CCN Quan et al. in [40]. For multi-
weather recovery methods, we show quantitative results for
All-in-one, TransWeather, Chen et al. and WGWS-Net.

Analyzing the results, our method performs well in
rain removal, snow removal, and fog removal, Rain-
drop removal tasks; although its performance in raindrop
removal task is not among the top, the results are still
competitive, which may be due to the limited number
of raindrop samples. In addition, we analyzed the com-
plexity of different methods by comparing the number
of model parameters for various multi-weather recovery
methods. As shown in Table 6, our model is simpler
in complexity compared to other multi-weather recovery
methods.

After that, four images are randomly selected as input,
as shown in Figure 5, and the four degraded images are
processed by the model and all perform well visually.

TABLE 6. Complexity comparison of different multi-weather recovery
methods.

TABLE 7. Ablation study on different prompt settings.

V. ABLATION STUDY
A. IMPLICIT INTERACTION ENHANCED PROMPTS
To explore the implicit interaction between prompts, we study
the effect of different values of the rank of the prompt
parameter matrix on the model performance. The quantitative
results, shown in Table 7, show that the model performs best
when the rank is 4 and the prompt length is 8. It is worth
mentioning that a rank of 0means that all tasks share the same
prompt parameters, while a rank equal to the prompt length
means that prompt parameters are not shared at all between
tasks. According to the results, using the same prompt or
completely different prompts for all tasks did not produce the
best results, which is due to the fact that different weather
conditions have both general and specific characteristics. The
ablation experiments under different prompting Settings in
this experiment verify the effectiveness of using low-rank
decomposition prompting.

B. AUGMENTED VIEWS AT TEST TIME
From the Table 8, it can be known that the performance of the
model improves as the number of augmented views increases
at test time. This is because quantity enhancement makes
the effect of distribution alignment increase. As you can see,
going from 64 to 128 doesn’t make a huge difference, and
the cost of doing more computation is much more noticeable.
Therefore, we choose 64 augmented views.

C. MODEL COMPONENTS
As shown in Table 9, we start with a Base image restoration
model pre-trained in a supervised manner, denoted as ‘‘base’’
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TABLE 8. Ablation Study on different number of augmented views.

TABLE 9. Ablation study on different model settings.

in Table 9. The performance is then evaluated by fine-tuning
the pre-trained model with soft Prompts, denoted as ‘‘+
Prompts’’ in Table 9. The added prompts are then augmented
by Contrastive Learning, denoted as ‘‘+ Contrastive Learn-
ing’’ in Table 9. Finally, distribution alignment is performed,
denoted as ‘‘+ Align’’ in Table 9, and concreteness is
shown by PSNR. As you can see, each part of our approach
contributes to the performance improvement. From the
analysis of ‘‘The average inference time per sample,’’ the
computational overhead introduced by each component of the
model does not have a significant impact compared to the
improvement in model performance.In the raindrop removal
task, adding align didn’t improve much. The analysis should
be because the training pictures of raindrops themselves are
not as different from the real pictures as the other three types
of weather. For augmented views, not all test images yield
good results. For images with distinct local features under
certain weather conditions, the results may not be satisfactory
even after adjustments using augmented views.

VI. CONCLUSION
In this study, we propose a novel framework for multi-
weather image restoration that leverages interactively aug-
mented prompts and distribution alignment strategies. The
framework adopts a two-stage training strategy: a pre-training
stage to learn task-generic features and a fine-tuning stage
to learn task-specific prompts. During the fine-tuning stage,
certain parameters are frozen to prevent conflicts between
task-generic and task-specific parameters, which can arise
when training from scratch.Furthermore, we investigate both
the explicit and implicit interactions among the prompts
to enhance the model’s ability to recover images degraded
by various weather conditions. To address the domain shift
problem, we implement distribution alignment at test time,
bridging the significant gap between the training data and
real-world test data. This approach effectively mitigates
domain shift, improving model performance in practical
scenarios.We validate the effectiveness of the proposed

framework through extensive experiments, demonstrating its
superior performance compared to state-of-the-art methods.
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