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ABSTRACT As the lithography process continues to become more rigorous in advanced technology
nodes, the model-based optical proximity correction (MBOPC), as a core component within computational
lithography, necessitates the development of highly precise techniques. In this paper, we propose an approach
to enhance MBOPC through the integration of machine learning (ML), utilizing convolutional neural
network (CNN)-based variable threshold method. This OPC framework is characterized by retaining the
physical lithography model while integrating the mapping capability of the neural network model to rectify
errors encountered in MBOPC. We validate the CNN-based MBOPC model’s feasibility at implant layers
in advanced nodes. The results demonstrate an improvement in the accuracy of threshold value regression
compared to conventional variable threshold methods, and confirm the positive impact of ML integration
in simulation accuracy across various patterns. The enhanced MBOPC model effectively compensates for
lithography differences in both one-dimension (1D) and two-dimension (2D) regions. This research aims to
enhance the simulation precision of MBOPC, thereby ultimately contributing to the ongoing advancement
of computational lithography technology.

INDEX TERMS Computational lithography, optical proximity correction (OPC), convolutional neural
network, variable threshold.

I. INTRODUCTION
A. PROBLEM DESCRIPTION AND CONTEXT
The miniaturization of semiconductor manufacturing is
limited by the imaging performance of optical lithography
systems [1], [2]. Computational lithography further pushes
the boundaries of achievable resolution and enables
more precise and efficient semiconductor manufacturing
[3], [4], [5]. Optical proximity correction (OPC) is one of the
key resolution enhancement technologies (RET) used within
computational lithography to compensate for aerial image
distortions that occur during the lithography process [6], [7],
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[8], [9], [10]. This technology can facilitate the enhance-
ment of lithographic process window near the diffraction
limit. As the critical dimension (CD) continues to shrink,
the diffraction-dominated proximity effects become more
pronounced, leading to distortions in the patterns transferred
onto the wafer. To address these issues, OPC determines the
aerial images and modifies the original mask patterns by
comparing the predicted images with the design target. Thus,
precise calculation of the aerial image generated by a specific
mask design is necessary to achieve accurate OPC.

In practical applications, there are primarily two meth-
ods for calculating aerial image using OPC: rule-based
OPC (RBOPC) [11], [12], and model-based OPC (MBOPC)
[13], [14]. RBOPC primarily obtains predicted aerial image
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through referencing a lookup table, with the correction
amounts varying based on the geometry of the patterns.
RBOPC achieves high accuracy for one-dimensional (1D)
patterns, but the complexity significantly increases with two-
dimensional (2D) graphics due to their non-periodic nature.
In contrast, MBOPC, which encompasses both edge-based
and pixel-based OPC techniques, meticulously models the
entire lithography process. The optical imaging of spatial
images relies on calculating the matrix of transmission cross-
coefficients (TCC) of the designed patterns in the spatial
domain [15], [16]. Nowadays, MBOPC is the mainstream
technology of OPC in the semiconductor industry, as it can
effectively enhance the image fidelity and process robust-
ness in full chip layouts, replacing RBOPC at advanced
nodes.

For MBOPC, the models often show discrepancies when
implemented in actual lithography processes. Actual lithog-
raphy systems are highly complex, incorporating factors like
nonlinear photoacid diffusion in photoresists [17], [18], [19],
mask corner rounding [20], mask 3D effects [21], [22]. There-
fore, to address the challenges posed by MBOPC modeling,
it is necessary to properly introduce additional mathematical
terms and tools to describe the lithography process more
accurately. If the model’s simulation lacks representativeness
and applicability, it will result in numerous weak points
within the OPCmodel results. Consequently, a series of com-
pensatory patches and subsequent refinements will become
necessary to address these deficiencies and facilitate the
practical implementation of MBOPC. This, in turn, leads to
an increase in cycle time and cost associated with layout
tape-out process.

B. PRIOR STUDIES
In early 0.18 µm technology nodes, a polynomial-based
variable threshold method has been proposed as a mathe-
matical approach to improving the applicability and accuracy
of MBOPC simulations [23], [24], [25], [26], [27]. This
method primarily consists of sampling optical intensity sig-
nals along the cutline direction of polygon edges, commonly
referred to as ‘slices’ in lithography. By extracting key
optical parameters from these slices, including minimum
intensity, maximum intensity, and intensity slope at the
edge, a polynomial fit is employed to determine the imag-
ing threshold for the edge, thereby defining the simulated
aerial image of the pattern. This fitting process based on
partial optical parameters offers a representation of lithog-
raphy characteristics. However, polynomial-based variable
threshold method also has limitations. This approach solely
relies on optical signals from slices, using a selected set
of optical characteristics along straight lines as parameters.
Consequently, for intricate mask patterns and other features
that cannot be easily fitted with polynomials functions using
partial optical parameters, this variable threshold method
may encounter the applicability risks discussed earlier for
MBOPC, restricting its applicability to real lithography
processes.

Recently, machine learning-based OPC (MLOPC) has
gained attention as a novel OPC model, including several
traditional machine learning (ML) models [28], [29] and
deep learning models [30], [31], [32], [33]. It is designed
to further mitigate the runtime challenges of MBOPC for
large-scale layouts by eliminating the reliance on repeated
iterations of lithographic calculations for aerial image during
the mask correction process, while preserving accuracy in
layout correction through the utilization of the robust learning
capabilities inherent in ML technology. Nevertheless, the
current limitation of MLOPC models is that they always
need a training dataset generated from other mask generation
tools based on lithographic simulator for training [34], and
the complete substitution of lithographic models with ML
models poses a risk of loss in interpretability [35], [36].
Thus, the performance of MLOPCmodels can hardly surpass
the physical MBOPC output. Hence, considering MBOPC’s
enduring status in the industry, there exists considerable
potential in integrating MBOPC with ML technology, rather
than replacing the existing MBOPC framework altogether.

C. RESEARCH HYPOTHESIS, OBJECTIVES, AND OVERVIEW
OF RESULTS
In this study,ML technology is utilized to facilitate the rectifi-
cation of deviations within the MBOPC model, leading to an
innovative implementation of an ML-enhanced MBOPC that
exhibits enhanced performance capabilities for calculating
aerial image. We propose a convolutional neural network
(CNN)-based variable threshold method to improve the sim-
ulation performance of the MBOPC model. CNN is a pivotal
model in ML, known for its excellence in feature extraction
and recognition [37].

The selection of CNN models for enhancing MBOPC
can be attributed to their suitability from two perspectives.
From an engineering application perspective, CNNs offer
lightweight structures with fewer parameters, enabling effi-
cient learning and inference speeds, especially valuable in
resource-constrained and time-sensitive industrial applica-
tions. Their ability to extract and reduce the dimensionality
of local features enhances generalization, mitigating the risk
of overfitting with limited data. From a physical essence
perspective, considering the local nature of optical proximity
effects (OPE), CNNs, with their close-range feature extrac-
tion capabilities, exhibit compatibility with the underlying
physical phenomenon.

The main contributions of this paper are summarized as
follows:

• We propose a novel CNN-based variable threshold
method can extract mask features around edge, subse-
quently regressing these optical features from another
input of slices to determine the MBOPC imaging
threshold.

• This threshold regression process, based on CNN for
different patterns and optical conditions, could accu-
rately reflect the characteristics of various lithography
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conditions and rectify errors inherent in the MBOPC
approach.

• We compare the performance of two methods: the tra-
ditional polynomial variable threshold approach based
on least squares fitting, and the CNN-based variable
threshold approach which considers surrounding pattern
features. The results show that the threshold regression
accuracy of the CNN method proposed in this paper
is superior to the traditional polynomial-based method
both in the training set and the test set.

• This work further validates the effectiveness of the
CNN variable threshold method in enhancing the
simulation accuracy of the OPC model. This ML-
enhanced MBOPC, which integrates both data-driven
and knowledge-driven modeling, achieves a more
accurate and versatile OPC framework.

This research endeavor aims to advance the application
of OPC, improve the simulation precision of MBOPC, and
eliminate the need for cumbersome compensation patches,
consequently optimizing the layout tape-out process.

D. PAPER ORGANIZATION
The remainder of this paper is organized as follows: In
Section II, data sets, polynomial-based variable threshold
method, and CNN-based variable threshold method are intro-
duced briefly. In Section III, we present experiments for
evaluating the performance of the proposed methods and
analyze the enhanced effect of the CNNmodel on OPCmodel
simulation. Finally, this paper is summarized in Section IV.

II. PRINCIPLE
A. DATA SETS, OPTICAL PARAMETERS, AND THRESHOLD
VALUE
In this paper, the MBOPCmodel consists of an optical model
based on the principles of partially coherent imaging, as well
as a resist model that incorporates Gaussian convolution and
other higher-order terms. The dataset used in our study is
based on actual measurements of KrF lithography performed
with conventional partial coherence illumination, where par-
tial coherence factor σout and σin are 0.8 and 0, respectively.
This dataset in our research utilizes actual mask data and sil-
icon wafer measurement data. Consequently, the challenges
addressed in our paper are rooted in typical issues encoun-
tered in actual lithography processes. This ensures that our
findings are relevant and applicable to real industrial scenar-
ios. Additionally, as 248 nm KrF lithography with more than
100 nm pitch could neglect the influence of mask 3D effect
and simply analyze the aerial imaging simulation, we evaluate
the performance of CNN-based variable threshold method
based on KrF lithography. In addition, KrF lithography is
still used in advanced nodes for implant layers [38], [39], and
precise OPC is still required in these implant layers.

To extract the optical parameters and establish a threshold
value, we perform sampling of intensity along the direc-
tion perpendicular to the pattern edge, as shown in Fig. 1.
This procedure generates intensity profiles of slice curves,

which are expressed as a function of 1D location. From
these slice curves, we identify the maximum intensity and
minimum intensity values. Additionally, slopes are defined
as the absolute values of the gradient of intensity at the mask
CD positions, and threshold values are determined based on
the intensity at the wafer measured line CD corresponding
to the slices. The threshold is a normalized value that reflects
the critical exposure intensity required for imaging process in
MBOPCmodel. Therefore, each specific pattern corresponds
to the three optical parameters (Imax, Imin, slope) mentioned
above and one practical threshold.

FIGURE 1. Schematic diagram of optical parameters and threshold.

FIGURE 2. Schematic diagram of five types of patterns in dataset.

The mask patterns in dataset include 1D patterns and 2D
tip-to-tip (TtT) patterns as shown in Fig. 2, specifically clas-
sified into five categories: linearity pattern, isolated pattern,
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through pitch pattern, linearity TtT pattern, and isolated TtT
pattern. Herein, the term ‘linearity’ refers to a type of patterns
where the line width is equal to space width, ‘isolated’ rep-
resents a category of patterns with only one isolated line, and
‘through pitch’ reflects a series of patterns with a specified
line width from relatively dense pitch to relatively isolated
pitch. In all patterns, the term ‘drawn CD’ refers to the mask
design, which constitutes the layout feature that OPC models
are required to simulate. In 1D patterns, the pattern line width
is labeled as the drawn CD, while in 2D TtT patterns, the
pattern TtT space width is labeled as the drawn CD. This
means that for 1D patterns, we sample the intensity along the
slice of their opaque line area, shown in Fig. 1. In contrast,
for 2D TtT patterns, we determine the optical parameters and
threshold value by sampling the intensity along the slice of
the TtT region, which represents the non-blocked space area.

The data are allocated to training sets and test sets with
a ratio of approximately 4:1 for each category. Given that
our OPC simulation operates on an edge-based framework,
we complete the simulation of drawn CD through the imple-
mentation of two separate edge threshold regressions. Finally,
the dataset consists of 460 training samples and 120 test
samples, each sample features a pattern centered on a spe-
cific edge. Every individual pattern exhibits a dimension of
200 pixels × 200 pixels, corresponding to spatial coordinates
of 2 µm × 2 µm.

B. VARIABLE THRESHOLD METHOD BASED ON
POLYNOMIAL
For the illustration presented in Fig. 1, three optical features
can be extracted and employed as input parameters for a
dataset. In the variable threshold method that relies on poly-
nomial fitting, these three optical parameters serve as the
basis for determining the threshold. An n-th order polyno-
mial with three variables can be expanded in the following
equation:

y = k00 + k11x1 + k12x2 + k13x3 + k21x21 + k22x1x2
+ . . . + kn,cxn3 (1)

where xi is an optical parameter in this work, and c =

C2
n+2. This symbol c represents the count of distinct ways

to distribute the degree n among the three variables. The
undetermined coefficients k in (1), which are used in the
variable threshold method based on polynomial fitting, can
be determined using the method of least squares [40].
Considering an overdetermined matrix equation Ax = b,

where b ∈ Rm×1, A ∈ Rm×n, and m > n. Using the method
of least squares, we can find an estimate x̂ as:∣∣∣∣b− Ax̂

∣∣∣∣ ≤ ||b− Ax|| (2)

for all x ∈ Rn×1.
To solve the ordinary least squares problem, follow these

steps: Given A and b, we define b̂ as the projection of b onto
the column space of A, expressed mathematically as:

b̂ = ProjcolAb (3)

Since b̂ belongs to the column space ofA, the equationAx = b̂
is compatible, and there exists a vector x̂ ∈ Rn×1 such that:

Ax̂ = b̂ (4)

As b̂ is the point in the column space of A that is closest
to b, the x̂ that satisfies this above equation is therefore a least
squares solution to the equation Ax = b.
Based on the orthogonal decomposition theorem, (b− b̂) is

orthogonal to ColA, which implies that (b−Ax̂) is orthogonal
to each column of A. If aj represents any column of A, then
aj·

(
b− Ax̂

)
= 0 and aTj ·

(
b− Ax̂

)
= 0. Since each aTj

corresponds to a row of AT, we have:

AT
(
b− Ax̂

)
= 0 (5)

Therefore, the solution to (2) is:

x̂ =

(
ATA

)−1
ATb (6)

C. VARIABLE THRESHOLD METHOD BASED ON CNN
Fig. 3 depicts the schematic representation of the CNN-based
variable threshold method. The architecture of this network
comprises two types of inputs: the pattern image and optical
parameters. The pattern image undergoes a series of inter-
leaved convolutional and pooling layers for feature extrac-
tion. Subsequently, these extracted features are concatenated
with the features derived from the optical parameters within
subsequent fully connected layers. This fusion process facil-
itates a joint regression to determine a threshold value.

Specifically, the input mask image possesses a resolution
of 200 × 200 pixels. Employing 3 × 3 convolutional kernels,
we generate an initial set of four (200 × 200) feature maps
within the first convolutional layer. Subsequently, these maps
undergo downsampling through a 4 × 4 max-pooling layer,
resulting in four (50 × 50) feature maps. This sequence
of convolutional (using 3 × 3 kernels) and max-pooling
(using 2 × 2 kernels) operations is repeated four additional
times. The resultant mask features are then flattened and
forwarded to a fully connected layer comprising 100 nodes.
Concurrently, the optical parameters input is directly input
into a fully connected layer with 40 nodes. In subsequent fully
connected layers, the extracted mask features and optical
parameters are concatenated, enabling the network to jointly
regress towards a final threshold value.

In both convolutional and fully connected layers, a com-
monly employed activation function known as the rectified
linear unit (ReLU) is used. For network training, the Adam
Optimizer, which has garnered widespread adoption in the
realm of deep learning, is deployed with an initial learning
rate set at 5 × 104. The network undergoes training utiliz-
ing a batch size of 8, with the training process spanning
200 iterations.When training the CNN, the mean square error
(MSE) between the predicted threshold values and the actual
threshold values serves as the loss function. MSE is a com-
monly used loss function in regression problems, measuring
the average squared error between predicted values and actual
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FIGURE 3. Schematic diagram of the CNN-based variable threshold
method.

values. Its definition is as follows:

MSE =
1
N

N∑
i=1

(ai − pi)2 (7)

where N represents the number of samples, ai and pi are the
actual and predicted threshold value respectively.

The PyTorch framework and Python language are used to
design, train, and test the custom CNN on a computer. The
relevant environment parameters are shown in Table 1.

TABLE 1. Hardware and software environment.

III. RESULTS AND DISCUSSION
A. COMPARISON FOR THRESHOLD PREDICTION
ACCURACY
Fig. 4(a) compares the accuracy of predicted thresholds
between two variable thresholdmethods based on polynomial
and CNN. To verify the accuracy of methods, the indicator of
root mean square error (RMSE) is adopted:

RMSE =

√√√√ 1
N

N∑
i=1

(ai − pi)2 (8)

where N represents the number of samples, ai and pi are
the actual and predicted threshold values, respectively. The
unit of the RMSE value coincides with that of the source
data, facilitating an intuitive assessment of error, thereby
enhancing the comprehensibility of the results.

For the variable threshold method of polynomials, it is
observed that the overall trend of RMSE in the training set
decreases as the degree of fit increases from 1st order to
5th order. This indicates that the ability of polynomial fitting
to the normalized threshold value in training set improves
with higher degrees. However, it is also noteworthy that the
RMSE of the 4th order polynomial method in the training set

is 0.00874, higher than that of the 3rd order method. This
may be due to different fitting characteristics for odd and
even-order polynomial terms. Typically, as the degree of fit
increases, polynomials tend to transition from underfitting to
overfitting. In our test dataset, this behavior reflects in the
initial decrease and subsequent gradual increase of RMSE
with the increases in polynomial degree. Therefore, from
Fig. 4(a), we observe that in this work, the performance of the
variable threshold method based on a 3rd order polynomial
is better than methods of other degrees. The RMSE values
of 3rd order polynomial in the training set and test set are
0.00564 and 0.00829, respectively.

FIGURE 4. (a) The comparison of two variable threshold methods based
on 1st order to 5th order polynomial and CNN in the training set and the
test set. (b) The comparison of two variable threshold methods based on
3rd order polynomial and CNN in five distinct pattern types.

For the variable threshold method based on CNN, it has an
RMSE of 0.00395 on the training set and 0.00659 on the test
set. Compared to the 3rd order polynomial method, this rep-
resents a reduction in RMSE by 29.9% in the training set and
20.5% in the test set. Therefore, with the same input o opti-
cal parameters, the CNN method, which additionally takes
into account nearby pattern features, demonstrates superior
performance compared to the traditional polynomial variable
threshold method, both in the training set and the test set.

Furthermore, we compare the specific performance of the
3rd order polynomial method and the CNN method in var-
ious patterns within the dataset. From Fig. 4(b), the CNN
method consistently exhibits lower RMSE values than the 3rd
method through all graphics categories, including linearity
pattern, isolated pattern, through pitch pattern, linearity TtT
pattern, and isolated TtT pattern. In summary, these results
demonstrate that the CNN variable threshold method
possesses a more accurate regression threshold capability.
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B. CNN FEATURE MAPS ANALYSIS
In the mentioned discussion, we validated the high threshold
regression accuracy of the variable threshold method based
on CNN proposed in this paper. However, further attention
needs to be paid to the interpretability of the model. Introduc-
ing feature map visualization, which enables the visualization
of the output features from specific layers within the network,
is commonly employed in practical neural network research
to aid in enhancing the model’s interpretability [41], [42].
In this part, we leveraged the visualization of convolutional
layer feature maps to demonstrate how the CNN model
processes mask data and extracts mask features.

FIGURE 5. The CNN feature maps results corresponding to raw mask data
and the abstract features extracted from the first convolutional layer for
the typical (a) 1D patterns, and (b) 2D patterns.

Fig. 5(a) and Fig. 5(b) show the feature maps results corre-
sponding to raw mask data and the abstract features extracted
from the first convolutional layer for the typical 1D and
2D patterns, respectively. After undergoing normalization
through the first convolutional layer and the ReLU activa-
tion function, the resulting feature maps are then converted
into grayscale images, with the maximum intensity value
mapped to 0.7 for improved contrast visualization. Within
these feature maps, maps 1-3 primarily capture features
associated with lines, demonstrating varying intensities in
their depiction of line, space, and edge features. Meanwhile,
map 4, which specifically focuses on space features, exhibits

a relatively weaker intensity compared to the other maps.
This observation suggests a tendency of the CNN model
to emphasize line features, namely the spatial relationships
within the patterns of the mask. Furthermore, some feature
maps exhibit enhanced extraction of long edges and line-
ends, which exhibit higher intensities in some maps and
will significantly influence OPE. This visualization analysis,
based on specific mask data, indicates that the CNN model
in this study effectively captures crucial lithographic features
in the mask, which will contribute to its excellent regression
performance potentially.

C. CNN VARIABLE THRESHOLD MODEL ENHANCES OPC
IN 1D PATTERNS
Next, we further examine the enhancement impact of CNN
variable threshold methods on the original constant threshold
MBOPC model across different patterns. Through the inten-
sity simulation of the MBOPC model and the determination
of thresholds by the CNN model, the finer simulation results
of the drawn CD of specific patterns can be obtained. The
verification of CD accuracy and error trends for simulating
images of the different patterns is facilitated by the simulation
of both the original OPCmodel and the enhancedOPC+CNN
model.

In typical OPC simulation results figures, model- predicted
results are shown as lines, while actual measurement data
are represented by data points. However, in this section,
we reverse the typical figures plotting to discuss the CD
accuracy of the results in twomodels, where themeasurement
data are represented by lines, while simulating results of the
two models are represented by data points. This reversal is
intended to highlight the deviations between the simulated
results and the actual measurements, enabling a more direct
comparison of CD accuracy. Moreover, the simulation results
of the OPCmodel are consistent with the actual sampling step
of the measurement data in this work.

Fig. 6 shows the simulation results of drawnCD in linearity
patterns and isolated patterns with original OPC model and
the CNN variable threshold OPC model. This figure encom-
passes three components: schematic diagrams of patterns,
comparative analysis of the simulation results of two models,
and quantitative assessment of the absolute error incurred by
each model in relation to the measurements. By comparing
the CDs of the two models with actual wafer measurement
results, the simulation accuracy of the model can be analyzed.
Fig. 6(a) and Fig. 6(d) are the diagrams of linearity pattern
and isolated pattern respectively. As shown in Fig. 6(b) and
Fig. 6(e), the original OPC model already provides gener-
ally accurate wafer simulation results for mask drawn CD
in both pattern types, matching actual wafer measurement
results. The CNN variable threshold OPC model maintains
the precision relative to the original model for these patterns,
and demonstrates slight improvements in specific graphics,
such as large drawn CD conditions in the isolated pattern
in Fig. 6(f).
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FIGURE 6. The simulation results of (a-c) linearity patterns and
(d-f) isolated patterns with original OPC model and the CNN variable
threshold OPC model.

FIGURE 7. (a) The schematic diagram, (b) simulation results of the
original OPC model and the CNN variable threshold OPC model for drawn
CD in through pitch pattern. (c-f) The quantitative assessment of the
absolute error incurred by each model in relation to the measurements
with mask drawn CD from 170 nm to 240 nm.

Fig. 7 illustrates the simulation results of mask drawn CDs
at 170 nm, 180 nm, 190 nm, and 240 nm with increasing
pitch for both the original OPC model and CNN variable

threshold OPC model. The results of through pitch patterns
often receive significant attention, providing intuitive insight
into optical proximity effects within a lithography system.
Notably, as pitch increases in Fig. 7(b), the measurement of
wafer CD initially decreases rapidly in small pitch range,
but then stabilizes in large pitch range. This behavior in
small pitch range arises from the imaging process near the
diffraction limit, where only a few orders of diffraction light
are collected by the pupil contributing to the image formation.
Increasing the pitch allows additional diffraction orders to
be included, significantly improving imaging quality. Under
large pitch conditions, sufficient diffraction orders are already
included, and higher diffraction orders have less impact on
the current imaging, resulting in stable wafer CD values.
Consequently, as pitch continues to increase, only minor
nanometer scale oscillations are observed.

For the original OPC model, within the small pitch range,
the simulation results for the 170 nm drawn CD pattern
closely align with the measured results. However, for the
180 nm and 190 nm drawn CD patterns, the simulation results
slightly exceed the measured values, while the 240 nm drawn
CD pattern results are underestimated slightly. In contrast,
after enhancing the model with CNN-based variable thresh-
olds, we observe an improvement in reducing this deviation
in Fig. 7(c-f). Thus, the enhanced simulation results exhibit
a closer correspondence with the measured line depicted in
Fig. 7(b). Additionally, under larger pitch conditions, both the
original OPCmodel and the CNN-enhanced OPCmodel tend
to stabilize. This result indicates that these models still effec-
tively capture optical characteristics and avoid overfitting to
measurement errors.

As depicted in Fig. 6 and Fig. 7, the original OPC model
performs well in these 1D patterns, with an average absolute
CD error of less than 4 nm and a maximum absolute CD error
of less than 10 nm. In general, the original model demon-
strates satisfactory accuracy. In contrast, the ML-enhanced
MBOPC model (OPC+CNN) achieves an even higher level
of accuracy, with an average absolute CD error of less than
2 nm and a maximum absolute CD error of less than 6 nm.

D. CNN VARIABLE THRESHOLD MODEL ENHANCES OPC
IN 2D PATTERNS
In the preceding discourse, our primary focus has been on the
simulation outcomes pertaining to two models in the context
of 1D patterns. Subsequently, we will further discuss their
performances on 2D patterns.

Fig. 8 and Fig. 9 show the simulation results of linearity
TtT pattern and isolated TtT pattern with drawn TtT CD
of 200 nm and 250 nm. Both TtT patterns pose signifi-
cant challenges for original OPC models due to 2D line-end
shortening effect. At this endpoint, the simulation conditions
encompass both bright field and 2D regions, where the pho-
toresist diffusion behavior differs significantly from that of
polygons with longer edge. Fig. 8(b) and Fig. 9(b) illustrate
that the simulated TtT CDs at small linewidths are signifi-
cantly smaller than the actual measured results for original
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OPC model. The maximum errors for linearity and isolated
TtT are approximately 20 nm and 50 nm, respectively. For
these weak points, it is usually necessary to patch the OPC
recipe, which leads to the extension of the layout tape-out
cycle and may increase the tape out times. As the 1D line
width increases, simulation conditions of line-end graphics
gradually approach those of long edge of 1D graphics. Thus,
the TtT simulation results of original OPC model tend to be
closer to the actual measurements.

FIGURE 8. The simulation results of the original OPC model and the CNN
variable threshold OPC model for drawn CD in linearity TtT patterns.

FIGURE 9. The simulation results of the original OPC model and the CNN
variable threshold OPC model for drawn CD in linearity isolated TtT
patterns.

On contrast, CNN variable threshold OPC model signif-
icantly improves the simulation accuracy for both types of
TtT patterns through the entire 1D line width. Especially
in the narrow line width region, after enhancing the OPC
model using CNN-based variable threshold method, the max

TtT CD error in the linearity TtT pattern is reduced from
21 nm to 2 nm, and the max TtT CD error in the isolated
TtT pattern is reduced from 52 nm to 7 nm. This means that
the MBOPC model enhanced by CNN significantly reduces
errors on these weak points, enabling the simulation perfor-
mance of 2D patterns to achieve the accuracy of 1D patterns.
Thus, the calculation accuracy of the enhanced CNN-based
variable threshold OPC can meet the demands of industrial
mass production. These results demonstrate optical simu-
lation capability of ML-enhanced MBOPC under different
patterns conditions.

IV. CONCLUSION
This study proposes a novel ML-enhanced MBOPC by
CNN-based variable threshold method. This OPC frame-
work retains the inherent physical property of lithography
simulation model while integrating the robust mapping capa-
bilities of neural network model to rectify errors encountered
in MBOPC. The CNN-based variable threshold MBOPC
model finely regresses the threshold value by inputting pat-
tern information and optical parameters, thereby improving
the simulation precision of the OPC model. This work
demonstrates that CNN variable threshold method outper-
forms the traditional polynomial variable threshold method
in terms of threshold accuracy, achieving a reduction in
RMSE by 29.9% in the training set and 20.5% in the test
set. Notably, it achieves substantial enhancement in the
simulation accuracy of 2D TtT weak points, and modestly
improving accuracy for 1D patterns as well. It reveals that the
variable threshold model based on CNN can well compensate
for the different lithography characteristics for both 1D and
2D regions. Looking ahead, we plan to investigate the perfor-
mance of ML-enhanced OPC framework in more complex
lithography scenarios and consider the applicability of more
complex neural network structures in this context. Using
the data-knowledge dual-driven OPC modeling approach,
we aim to explore its adaptability in various lithography
scenarios and actively contribute to the ongoing advancement
of computational lithography technology.

V. DATA AVAILABILITY
The data that support the findings of this study are avail-
able from the National Integrated Circuit Innovation Center.
Restrictions apply to the availability of these data, whichwere
used under license for this study. Data are available from
the corresponding authors with the permission of National
Integrated Circuit Innovation Center.
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