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ABSTRACT Medical imaging is a continuously evolving field with a constant need for advancements in
its capabilities and applications. Magnetic induction tomography (MIT) represents a promising alternative
to the established imaging methods. MIT is a non-invasive and cost-effective tomography method with
considerable potential for biomedical imaging. Nevertheless, the inverse problem associated with MIT
is inherently difficult to resolve using conventional techniques, primarily due to its ill-conditioned and
nonlinear nature. The application of machine learning methods offers an elegant solution to the image
reconstruction process. In contrast with the conventional approach of directly reconstructing images from
measured signals, the inverse algorithm proposed here is divided into two subproblems. This approach was
inspired by the physics of the forward problem. Specifically, the underlying currents are first reconstructed
from the signals and then the conductivity distribution is reconstructed from those in the second step. For each
of those problems, specifically designed neural networks were employed. This approach demonstrated very
good reconstruction quality, as evidenced by excellent metrics on the test dataset, which differed significantly
from the training data. Furthermore, an extensive error analysis was conducted to identify the strengths and
weaknesses of the image reconstruction process.

INDEX TERMS Deep learning, image reconstruction, inverse problems, magnetic induction tomography.

I. INTRODUCTION

Imaging techniques are key diagnostic tools used in modern
medicine. Among these techniques is magnetic induction
tomography (MIT), which was first introduced in the early
1990s [1] and is currently in the basic research stage
for applications in the medical field. Consequently, it is
undergoing constant technical changes.

Its principle is based on electrodynamics: An alternating
current flows through a transmitter coil, thereby generating
a magnetic field. According to Faraday’s law, this magnetic
field induces an electric field, which we refer to as the primary
field. This primary field generates eddy currents in the
object under examination. The density of these eddy currents
depends on the conductivity distribution of the object.
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Again, based on Faraday’s law, a secondary electric field is
generated by the alternating eddy currents, which can then
be measured by receiver coils. The objective of MIT is to
reconstruct the conductivity distribution in the body using
these measured signals.

Therefore, MIT is a noninvasive, contactless tomogra-
phy method that can be used for biomedical imaging.
Potential applications include lung diagnosis [2], detec-
tion of brain hemorrhages [3], and cancer diagnosis and
treatment [4].

Classical MIT setups use a transmitter and receiver
geometry similar to that of computed tomography (CT),
with the transmitter and receiver arranged in a circular
order around the object to be examined. However, these
setups frequently suffer from low central-area sensitivity in
voluminous bodies, which can present a significant challenge
for medical applications. A planar design has demonstrated a
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notable enhancement in sensitivity in the central area of the
body [5].

Similar to other tomography methods, MIT has a forward
and an inverse problem. The forward problem describes the
physical relations based on Maxwell’s equations for receiving
a measured signal from the body under examination. The
inverse problem consists of reconstructing the original con-
ductivity distribution of the body, starting from a measured
signal. Usually, these reconstructions are of low resolution
because of the dispersed nature of the magnetic fields [1].

One of the primary challenges of MIT is finding a solution
to the inverse problem. It suffers from ill-conditioning,
meaning that only small disturbances in the measured signal
can cause large reconstruction errors [1]. In particular,
the conductivity distribution of voluminous bodies in a
biomedical setup is difficult to reconstruct [5]. There are
various mathematical tools to solve the inverse problem,
including regularization techniques such as Tikhonov reg-
ularization [6] and classical approximation methods such
as Gauss-Newton [7]. However, the resulting images often
exhibit artifacts or significant error margins. Moreover, the
mathematical properties of image reconstruction in MIT
remain an active area of investigation and have yet to be fully
resolved.

Recently, another innovative approach for solving inverse
problems in imaging has received increasing attention. The
application of machine learning techniques, particularly
neural networks, has led to remarkable outcomes in image
reconstruction across diverse tomography methods. This
approach has been applied in a number of different contexts,
including direct image reconstruction [8], improvement of
classical image reconstructions through denoising [9], and
super-resolution [10]. In MIT, most applications are for
the direct image reconstruction. In order to achieve this,
a variety of different architectures have been employed,
including residual neural networks (ResNets) [11], autoen-
coders (AEs) [12], and generative adversarial networks
(GANS) [13]. These have demonstrated very good potential
for solving the inverse problem. Each of these approaches
uses a direct image reconstruction from the signal to
the conductivity distribution. Consequently, the physical
properties of the forward problem are not considered.

In this study, the direct image reconstruction process is
divided into two subproblems, which are inspired by the
forward problem calculation. A similar approach using ana-
lytical algorithms and four subdivisions has been investigated
in [14]. Here, the first subproblem involves reconstructing the
eddy currents of the body being examined from the measured
signals. The second subproblem involves determining the
original conductivity distribution from these eddy currents.
Specific neural networks have been trained for each of
these subproblems. This division into subproblems offers
multiple advantages. The individual subproblems can be
directly replaced with analytical algorithms or different
neural network architectures. It also facilitates better control

VOLUME 12, 2024

and insights of the individual neural networks, making it
easier to identify the causes of reconstruction errors and
artifacts.

Furthermore, the use of two measurements instead of one
resulted in significantly improved convergence. To achieve
this, the body was measured, rotated by 180 degrees, and
measured again. The conductivities of these two signals
were then reconstructed and combined to create an overall
reconstruction. The combined reconstructions demonstrated
excellent metrics across the entire test dataset, despite
the test dataset differing significantly from the training
data. This indicates a robust generalization ability of the
reconstruction process with the division into two subprob-
lems. This finding is supported by a comprehensive error
analysis.

Il. METHODS

A. PROBLEM DEFINITION

The MIT configuration used here has a planar design,
as previously investigated in [5]. The transmitter, called the
undulator, is positioned on one side and consists of eleven
vertically aligned parallel wires with an antiparallel current
flow. An alternating, sinusoidal current with a frequency of
1.5 MHz is used. The receivers are positioned on the opposite
side with a butterfly shaped form in a gradiometric position.
With this positioning, the primary field of the undulator is not
measured. The complete receiver array consists of three wide
and three narrow receivers vertically stacked on top of each
other. The object under examination traverses a distance of
256 cm between the undulator and the receiver array, which
results in a signal being measured by each of the six receivers,
as illustrated in Fig. 1.

This specific configuration exhibited a considerable
improvement in sensitivity within the central region of the
examined body. Reconstructions of the original conduc-
tivity distribution of a voluminous body in a biomedical
context improved tremendously with this new setup, as evi-
denced by [5].

B. THE FORWARD PROBLEM

The rather simple connections in the forward problem
are a major advantage of MIT with planar design. The
underlying physics can be readily described using Maxwell’s
equations. Due to the alternating current flow in the
undulator, an alternating magnetic field is induced. The
magnetic flux density B of the undulator can be described
by the rotation of the magnetic vector potential as
follows:

VxA=B8B. ey

In this MIT setup, only straight wires are used as receivers
and transmitters; therefore, the magnetic vector potential
of all relevant magnetic fields can be calculated explicitly
using Biot-Savart’s law [15]. To clarify, if a finite thread is
positioned at point (x, y1, z) and extends to point (x, y2, z)
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FIGURE 1. Geometry of the planar MIT setup. In the forward problem, a voluminous body travels 256 cm between the undulating exciter and receiver,
which results in a signal being measured. In the inverse problem, the measured signal is used to reconstruct the conductivity distribution of the original

body.

with a current /, the vector potential A is then given by the
following formula:

ol (2 =N+ =2+ +2)

og .
4m 01 =)+ V1 — a2 +72)
)

Similarly, for any straight wire connected to arbitrary points,
the vector potential can be equivalently calculated. The vector
potential of the undulator and receivers can be expressed by
appropriate superpositions of the aforementioned formulae.

For additional calculations, the body under examination
must be discretized. Here, it is subdivided into cuboid voxels.
The electric currents within the body are then represented by
the currents in an electrical network connected to the center
of each voxel. The magnetic vector potential then generates
a reactive scalar potential ¢ in the body at each midpoint
of a voxel. This vector potential is calculated by solving
a system of linear equations, which follows from classical
nodal analysis in electrical networks.

By using Ohm’s law, the eddy current I can be calculated
at each of the 256 measuring positions. Because the undulator
creates a sinusoidally periodic excitation field, only two
positions must be effectively calculated. The first position,
namely P, is located directly in front of one of the undulator
coils, whereas the other position W is located in the middle
between two undulator coils. The current at each measuring
point x; = 1,..., x, = 256 can then be calculated via
superposition using the following formula [5], [14]

. 2 xy 27 X
I, = sm( D )Iq) + cos (T)Iqj, k=1,...,256
3

where D is the distance between two undulator conductors in
the same current direction. In this setup, D is set to 48 cm.

Ay(xs y, Z) =
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Finally, the resulting signal is determined using the Lorentz-
reciprocity [16]:

n
S~ Ik (Apk - Al
k=1

“

where Ay, is the vector potential of the receivers at voxel &,
Al is the voxel size of the grid, and # is the number of voxels
in the body. The signal is determined at 256 positions by six
receivers and consists of 1536 = 256 - 6 measured values.
In summary, the discretized forward problem can be
described by the following mapping:
F:[0,1]" — R™,

F:0—S§ (®)]

where o is the conductivity of the given body discretized into
n voxels with 0 < o < 1 and m the length of the signal S.

C. TWO-STEP INVERSE ALGORITHM

The forward problem (5) describes the process from the
conductivity distribution to the measured signal. This can be
described as two subproblems derived from equations (3), (4),
and (5). Initially, based on the given conductivity, the eddy
currents at each measuring position are calculated using the
formula (3). Subsequently, the signal is determined using (4).
This can be defined as two subproblems, which can be
expressed as the following discretized mappings:

Fi:[0,11" > R*" ¢ > (g, 1)
Fy:RO" > R™ (Ip,Iy) > S.

(6)
N

Here, o is the given conductivity distribution of the body
discretized into n voxels; (I ¢, Iy) are the eddy currents at
positions @ and W of the discretized body at each node of
a voxel; and S is the calculated signal over m measuring
positions.
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FIGURE 2. Comparison of the original conductivity distribution (a) and
the original standard scaled current amplitude (b). The perturbation
objects can already be spotted in the scaled current amplitude. It can also
be seen how perturbation objects disturb the current flow in the body.

In the classical approach, the inverse problem determines
the conductivity distribution ¢ from the measured signal S.
Based on the forward chain (6)-(7), the inverse problem
can also be divided into similar subproblems. Starting from
a signal S, the eddy currents I and Iy are determined.
However, these are two vector fields, and thus not practical for
areconstruction with neural networks due to the large number
of neurons required. Based on the alternating current theory,
eddy currents can be summarized using the current amplitude.
The current amplitude is the L2-norm of the currents over a
period of time:

= Jak? + a2, k=1,...,n )

In consequence, the first subproblem is the reconstruction
of the current amplitude from the signal. The second step of
the inversion is to calculate the conductivity distribution from
the current amplitude. Although nonlinear, this subproblem
can be readily determined even with analytical algorithms,
as demonstrated in previous studies (e.g., [14]). If the
current amplitude is appropriately scaled, for instance using
a standard scaler based on the training data, the underlying
conductivity distribution can be observed from the current
amplitude when plotted (see Fig. 2).

In summary, the two-step inverse algorithm can be
described as a composed mapping S +— Iy +— o. The
advantage of this approach is that each problem can be
solved individually, as demonstrated in the following section,
through the use of neural networks.

D. THE NEURAL NETWORKS

Two separate neural networks are used to solve the
two-step inverse algorithm. The reconstruction of the current
amplitude is based on a supervised autoencoder (SAE),
similar to that introduced in [17]. In the second part
of the inverse algorithm, the conductivity distribution is
reconstructed from the current amplitude using a residual
neural network (ResNet).

1) THE SUPERVISED AUTOENCODER (SAE)

A supervised autoencoder integrates the essential ele-
ments of both autoencoder and supervised learning
paradigms. In essence, an autoencoder comprises two

VOLUME 12, 2024

primary components: the encoder, which performs an
unsupervised transformation of the input data into a lower-
dimensional representation, or latent space; and the decoder,
which, from this compressed space, reverses the output of the
hidden layer to yield the reconstructed input. Autoencoders
have a variety of applications, including data denoising,
dimensionality reduction, feature learning, data compression,
and image generation [18]. The integration of supervisory
elements into the training process has been shown to be
beneficial, as evidenced by the findings of [17] and [19].
This approach enables the model to learn and encode not only
the reconstruction (as in a traditional autoencoder), but also
the task-specific supervised output. The loss function to be
minimized includes both reconstruction loss and task-specific
loss (see Fig. 3). In this manner, the reconstruction error
acts as a regularizer for the supervised part of the loss.
Furthermore, this ability allows the relationship between
the input and output to be learned and generalized, thereby
enhancing the model’s predictive capabilities.

In this approach, the current amplitude (the specific
task) was obtained by utilizing the fundamental concept
of the supervised autoencoder, augmented with further
modifications and refinements to the network architecture.
The decoder and encoder components of the network were
constructed using four 2D convolutional layers consisting
of various specific channels and filter sizes. The base
components end or start with two fully connected dense
layers, with the latent space situated between them. The
autoencoding component of the network ensures that the
signal reconstruction process is learned.

Furthermore, the latent space is fed into the supervised
component through a minor branch of fully connected dense
layers, where the current amplitude is learned simultaneously
(Fig. 3). To refine the output, a straightforward four-layer
denoising autoencoder structure was employed, which was
integrated into the training process. The implementation of
this straightforward measure led to a notable enhancement
in the reconstruction quality. The number of layers was
methodically selected; however, the potential range of layers
was constrained due to the inclusion of the denoising
autoencoder in the training process and its dependence on the
input size.

A global criterion is defined that combines the reconstruc-
tion losses. This is composed of the sum of the different losses
and is then used to minimize the error of the complete model.
The weighting factors can also be used as hyperparameters to
adjust the learning of the two different parts of the model.
The optimal training outcomes were achieved through the
utilization of an equally weighted sum of the loss function
(Mean Absolute Error).

2) THE RESNET

The reconstructed current amplitudes can be visualized as
an image, which is subsequently transformed into the under-
lying conductivity distribution. As illustrated in Fig. 2,
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FIGURE 3. Architecture of a supervised autoencoder neural network. This figure presents the design of a supervised autoencoder, which is composed of

an encoder and decoder with a supervised component in between. Furthermore, the network is augmented with a standard autoencoder for output
smoothing and denoising, which is not shown in detail here. The dimensions of each convolutional layer, including the size of the kernel, the stride, and
the padding, as well as the size of each dense layer, are explicitly indicated. Additionally, the figure illustrates the various loss functions employed,
including the reconstruction loss function, denoted as Lrecon, the supervised loss function, denoted as Lgypenised: the supervised AE loss function,
denoted as Lyypervised_a and the overall loss function, denoted as Lsum. These loss functions are used for signal reconstruction, the raw and smoothed
reconstruction of the current amplitude and the weighted overall combination of the loss functions.

the standardized scaled current amplitudes and the con-
ductivity distribution exhibit a high degree of similarity.
Consequently, the utilization of a neural network comprising
convolutional layers was found to be advantageous. To further
reduce the complexity of the network and the number of
parameters used, a residual neural network was employed
to reconstruct the conductivity distribution from the current
amplitudes.

In detail, the current amplitude is reshaped into a two-
dimensional image, as shown in Fig. 2. This is followed
by four bottleneck layers. Each bottleneck layer comprises
three convolutional layers, constructed in accordance with
the methodology outlined in the original ResNet study [20],
with the objective of reducing the input size. Following the
classical average pooling layer, two dense layers with sig-
moid activation were used. In order to prevent overfitting, two
dropout layers were utilized, with 20% of neurons randomly
being dropped. The final layer comprises 6,048 neurons with
a hard sigmoid activation function, which reconstructs the
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conductivity distribution between 0 and 1 for each voxel.
Fig. 4 provides a detailed overview of the complete residual
neural network.

The ResNet was trained with the Huber loss, utilizing a
8 0.5 value over 100 epochs and a batch size of 512.
As optimizer, Adam was utilized with alearning rate of 0.001.

E. DATASETS

1) TRAINING DATA

The training data were generated through the discretized
forward problem of the planar MIT setup. As demonstrated in
references [5] and [11], the discrepancies between the actual
and simulated measurements are minimal, indicating that a
dataset based on simulated data can also be suitable for real
measurements.

The dimensions of the basic body of this dataset are
54 cm x32 cm x 14 cm. The body was divided into voxels of
a uniform size, each measuring 1 cm. Each voxel was initially
assigned a conductivity of 0.5 S/m.

VOLUME 12, 2024
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FIGURE 4. The residual neural network. Multiple bottleneck layers were used to reduce the input size given by the current amplitude reshaped as a
two-dimensional picture. Each neuron of the output represents one voxel of the discretized body.

Cuboid perturbation objects with lengths between 6 and
10 cm were randomly inserted into this body without
overlapping. The conductivities of these perturbation objects
were randomly selected from the set o € {0, 0.25, 0.75, 1.0}.
In total, up to five of those perturbation objects can be placed
into the body, with a 1 cm gap to the boundaries of the body.

In order to accommodate the growing complexity of
the reconstructions as the number of perturbation objects
increases, the number of samples per number of perturbation
objects was increased. In total, 760,000 data samples were
created, and a detailed enumeration of the number of
perturbation objects is presented in Table 1.

After placing the perturbation objects in the body, the asso-
ciated eddy currents (and their respective current amplitudes)
and signals were calculated. A noise level was randomly
selected between 50 and 100 dB and added to each signal.

In order to prevent the inverse crime, the reconstruction
of the current amplitudes and conductivity distribution was
conducted on a coarser grid of 2 cm voxels. Consequently,
the edges of the perturbation objects in the reconstruction
are not clearly delineated from the background conductivity.
The total number of voxels on the 2 cm grid is 6048 voxels.
For the training process of the neural networks, the data was
preprocessed:

1) The input signals of each receiver were filtered using a
standard fifth-order Butterworth filter.

2) The ground truth data for the current amplitudes were
multiplied by a factor of 10 and subsequently scaled
with min-max feature scaling.

3) A separate dataset was designated for testing purposes
(see section II-E2). Consequently, a holdout cross-
validation approach was utilized. The training data was
partitioned into three subsets: 80% for training, 10% for
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TABLE 1. Comparison of training data and test data with the number of
perturbation objects, their respective possible conductivities and possible
shapes.

Training Data Test Data

1 Perturbation 45,000 5,000

2 Perturbations | 75,000 5,000

3 Perturbations | 130,000 5,000

4 Perturbations | 200,000 5,000

5 Perturbations | 310,000 5,000

6 Perturbations | - 5,000

7 Perturbations | - 5,000

Conductivities 0,0.25,0.75,1.0 | 0.0,0.1,0.2,0.3,
0.7,0.8,0.9,1.0

Shapes Cuboid Cuboid, Round, L, T

validation and 10% for testing. Both networks used the
same subsets for training. To mitigate overfitting, early
stopping was employed, with the validation data being
monitored throughout the training process.

2) TEST DATA

To demonstrate the generalization ability of the neural
networks, a separate test dataset was created with more
variations in the shape and number of perturbation objects.
Additionally, the conductivities were selected from a broader
set of conductivities in the range of biological tissue. Each
perturbation object was randomly created and could be either
in a cuboid, star, L, or T shape. The maximum number
of perturbation objects was higher than that of the training
data (with up to seven objects). The calculation of signal,
noise, and the selection and placement of perturbation objects
were conducted in the same manner as in the training data.
An overview of the differences between the training and test
datasets is provided in Table 1.
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FIGURE 5. Overview of the reconstruction algorithm with two measurements. The first signal is obtained by measuring the original conductivity
distribution within the body. First, the current amplitude is reconstructed with a supervised autoencoder from the signals. A residual neural network is
employed to predict the conductivity distribution from the current amplitude. The second measurement is of the body rotated by 180 degrees. The
conductivity distribution is reconstructed in the same manner as for the first signal. The image reconstruction is then rotated back into the original
position. Finally, the mean conductivity value of both reconstructions is calculated for each voxel in order to achieve the final reconstruction of the

conductivity distribution.

A further distinction between the training and test data
is the utilization of two measurements to reconstruct the
conductivity distribution. First, the perturbation objects are
randomly positioned, and then the forward problem is
calculated. Subsequently, the discretized body is rotated by
180 degrees around the y-axis at the center of the body with
a classical rotation matrix. Each voxel is rotated, and the
perturbation objects are then on the opposite side of the body.
Another forward problem is then calculated, and the resulting
signals and current amplitudes of the original and rotated
conductivity distribution are saved.

Ill. RESULTS

Here, the solution of the inverse problem with the proposed
subdivision of the problems is tested. The test dataset is used
to demonstrate the robustness and generalization ability of
the reconstruction process for unknown perturbation shapes
and conductivities. Two measurements were employed for
each image reconstruction: one of the original conductivity
distribution of the body, and the other with the same
conductivity distribution rotated by 180 degrees. The recon-
struction process was conducted as shown in Fig. 5. Starting
from the signals of the original and rotated conductivity
distribution, the current amplitudes were reconstructed using
the supervised autoencoder. Subsequently, the reconstructed
current amplitudes were used to reconstruct the conductivity
distribution of both measurements. Finally, one reconstruc-
tion was rotated by 180 degrees so that both reconstructions
could be combined by calculating the mean value of the
conductivity in each voxel.

This combined approach resulted in a reduction in
reconstruction errors compared to single reconstructions,
as evidenced by Pearson’s correlation coefficient in Table 2.
Other metrics exhibited comparable trends. In particular,
when there are more perturbation objects in the body,
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the combination of two measurements yields significantly
superior results compared with the use of a single mea-
surement. As illustrated in Fig. 6, even when objects are
missing in one of the reconstructions, they can appear in the
combined result.

A. RECONSTRUCTION OF THE TEST DATASET

The test dataset was created to demonstrate the robustness
and generalization capabilities of the proposed inversion
algorithm as visualized in Fig. 5. Multiple metrics were
calculated to determine the quality of reconstructions of the
test samples. Table 3 presents an overview of the metrics used
for the entire test dataset.

Fig. 7 shows the reconstruction of a sample from the
test dataset, which comprises seven perturbation objects.
Although the training data consisted solely of cuboids, each
perturbation object was successfully identified. However,
their shapes were predominantly reconstructed as cuboids.
The conductivities were also within a comparable range to
those of the original sample. The reconstructions may appear
blurry due to the nature of the magnetic fields used, which
does not allow for high-resolution reconstructions.

B. ERROR ANALYSIS AND DISCUSSION

The metrics show the basic trend of the reconstructions;
however, a comprehensive error analysis is required to show
the strengths and weaknesses of the reconstructions. For this
purpose, multiple factors are used, such as the influence of
the number of perturbation objects on the metrics.

1) METRICS PER NUMBER OF PERTURBATIONS

Fig. 7 illustrates that more than five perturbation objects can
be detected and reconstructed, despite the individual neural
networks only being trained on up to five perturbations.
However, it should be noted that the metrics may be subject
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FIGURE 6. Reconstruction comparison of two measurements: In (a), the original conductivity distribution of seven perturbation objects is presented.
(b) depicts the reconstructed conductivity distribution, which was obtained by averaging the conductivities presented in figures (c) and (d). (c) depicts
the reconstruction of the original body, whereas (d) illustrates the reconstruction conducted using the signal of the rotated body. The reconstruction in
(d) is incomplete due to the absence of one of the perturbation objects, indicated by the red border. However, the missing object is visible in (c), and

thus it is also reconstructed in the combined reconstruction in (b).

TABLE 2. Pearson score of the test dataset for the combined, original and
rotated conductivity distribution.

PEARSON Scores on Test Data | Combined | Original | Rotated
Overall 0.87 0.85 0.85
1 Perturbation 0.91 0.90 0.90
2 Perturbations 0.90 0.88 0.89
3 Perturbations 0.89 0.87 0.87
4 Perturbations 0.88 0.85 0.86
5 Perturbations 0.86 0.83 0.84
6 Perturbations 0.84 0.81 0.81
7 Perturbations 0.82 0.78 0.79

to bias, as the reconstruction of fewer perturbation objects
is typically more accurate. Consequently, the metrics were
calculated for each number of perturbation objects, with an
overview presented in Table 4. The data clearly indicate
that an increase in the number of perturbation objects
results in a deterioration of the metrics, despite the training
data being balanced in favor of more perturbation objects.
Nevertheless, despite the use of foreign object shapes and
different conductivities, in addition to the increasing number
of perturbation objects, the metrics remain within a very
good range.

Furthermore, to demonstrate the advantage of using
two measurements instead of one, the metrics for the
original and rotated measurements were calculated for each

VOLUME 12, 2024

TABLE 3. Comparison of all metric values for the test dataset.

Test Data | PEARSON | SSIM | MAE | MSE
Overall 0.87 0.90 0.009 | 0.0012

TABLE 4. Comparison of all metric values for each number of
perturbation objects.

Test Data PEARSON | SSIM | MAE | MSE

Overall 0.87 0.90 0.009 | 0.0012
1 Perturbation 0.91 0.97 0.002 | 0.0002
2 Perturbations | 0.90 0.95 0.004 | 0.0004
3 Perturbations | 0.89 0.93 0.006 | 0.0007
4 Perturbations | 0.88 0.90 0.008 | 0.0010
5 Perturbations | 0.86 0.87 0.011 | 0.0014
6 Perturbations | 0.84 0.84 0.014 | 0.0019
7 Perturbations | 0.82 0.80 0.017 | 0.0025

perturbation object. As illustrated in Fig. 8, the combination
of the two reconstructions resulted in the metrics remaining
within a very good range for more perturbation objects.
The combined reconstructions demonstrated superior perfor-
mance compared to single measurement reconstructions as
the number of perturbation objects in the samples increased.

2) METRICS PER CONDUCTIVITY VALUE
In addition to the number of perturbation objects, the
conductivity values of the perturbation objects can influence
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FIGURE 7. Reconstruction of an example of the test dataset, containing seven perturbations and varying shapes and conductivities. In (a), the
scaled, original current amplitude is shown, whereas (b) visualizes the reconstruction of the current amplitude from the supervised autoencoder.
(c) shows the reconstructed conductivity distribution from the current amplitude in (b). The last figure (d) is the original conductivity distribution.
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FIGURE 8. Comparison of all metric values for each number of
perturbation objects on the test dataset. For each metric, the associated
combined metric value and the metrics of the single measurements are
shown. The visualization of metrics across the number of perturbation
objects demonstrates a clear improvement with the combined
reconstructions. This advantage increases with the number of
perturbation objects present in the samples.

the reconstruction quality. To investigate this, the conduc-
tivity values of each perturbation object were saved during
the creation of the test dataset. The possible conductivity
values were o € {0.0,0.1,0.2,0.3,0.7,0.8, 0.9, 1.0} S/m.
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If a conductivity value was present in the sample of the
test dataset, the associated metric values were saved. Fig. 9
illustrates the histograms for each conductivity value, which
show the number of samples that achieved the associated
SSIM value for each conductivity value. Due to space
limitations, only the SSIM value was chosen to be shown
here; however, other metrics demonstrated similar behavior.

Overall, all conductivity values demonstrated a tendency
towards a slightly skewed normal distribution across all
SSIM values, beginning at approximately 0.7 and extending
to near 1.0. It appears that perturbation objects with a
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Histogram of SSIM values in z-direction of the Test Data
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FIGURE 10. SSIM values for each slide in the z-direction of the body. The body was divided into 14 slides in the depth (z-axis) and for each of
those slides, the SSIM value was determined. This was done for the combined, original, and rotated reconstructions. For each z-slide, histograms
were created, illustrating the distribution of the SSIM values over the test samples.

conductivity of either 0.0 or 1.0 S/m exhibited slightly
superior metrics, which was to be anticipated given that these
have the greatest contrast to the background conductivity
of 0.5 S/m. However, only few reconstructions were overall
below a SSIM value of 0.7. No conductivity value was
significantly better reconstructed, which indicates that the
inverse algorithm demonstrates good generalization capabil-
ities, given that it was only trained on four conductivities.

3) METRICS IN DEPTH

Voluminous magnetic induction tomography often suffers
from low central area resolution [5]. Consequently, the
reconstruction quality in depth is an important factor to
be considered. The body under examination is a volumi-
nous three-dimensional body with the z-direction spanning
between the transmitter and the receivers. In order to
determine whether specific regions were better reconstructed,
the SSIM values for the z-depth were calculated. This
entailed determining the SSIM value of each z-slide, which
is a two-dimensional slice. In addition, the SSIM values
of the reconstructions of the original and rotated single
measurements were determined for each z-slide. The rotated
reconstructions were rotated back for better comparison.
Fig. 10 shows the histograms of the SSIM values across the
entire test dataset for each z-slide.

As anticipated, the SSIM values in the regions close to
the transmitter or the receivers were significantly higher
than those in the central area (6 < z < 9). In these
central regions, the combination of the original and rotated
measurements resulted in more samples with good metrics
than when using single measurements. However, the number
of samples exhibiting a very good SSIM value is relatively
limited compared with those close to the transmitter and
receiver.
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As reconstructions are more accurate in close proximity
to the receiver, the reconstructions of the non-rotated
conductivity distribution have the most samples with very
good reconstructions in the z-regions close to the receiver.
Conversely, the rotated reconstructions had the greatest
number of samples with the most accurate reconstructions
in the z-regions closest to the transmitter (which were
at the point of measurement closest to the receiver).
Therefore, it may be advantageous in the future to combine
the reconstructions per z-slide instead of using the naive
combined approach employed here. This may result in
even more accurate reconstructions. To achieve this, z-slides
situated close to the receiver in both measurements could
be employed for the outer reconstructions, whereas the
combined approach currently in use can be applied to the
central area. However, it is essential to thoroughly investigate
the correct weighing of the single slides, as the weighting
must be independent of the discretization of the body under
examination.

IV. CONCLUSION

The proposed two-step inverse algorithm with neural net-
works demonstrated excellent performance on the test
data, which differed significantly from the training dataset.
The combination of the two measurements resulted in
further improvements in the reconstructions of multiple
perturbation objects. However, the current receiver design
has its limitations, as occasionally perturbation objects
may not be reconstructed, which is barely observed in the
metrics. Future research should focus on the construction
of new receivers, that can further improve the results.
Furthermore, a suitable metric design is required to facili-
tate more effective comparisons between different receiver
settings.
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