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ABSTRACT The rapid advancement of the Internet of Underwater Things (IoUT) necessitates robust, high-
capacity communication systems that can operate efficiently in the challenging conditions of underwater
environments. Optical Wireless Communication (OWC) systems, leveraging the advantages of high data
rates and low latency, offer a compelling solution for IoUT. However, accurate modulation recognition
in these systems remains a significant challenge due to the variable nature of underwater channels. This
paper explores the application of Convolutional Neural Networks (CNNs) for modulation recognition in the
OWC systems, focusing specifically on 64-QAM (Quadrature Amplitude Modulation) and 32-PSK (Phase
Shift Keying). A CNN model-based approach is proposed to automatically extract and classify modulation
features from received signals, demonstrating superior performance compared to traditional recognition
methods. The model is applied to a dataset of 626 simulated images, categorized into two modulation types:
64QAMand 32PSK.Keras and TensoFlow frameworks are used to implement themodel, the CNNundergoes
hyperparameter tuning and data augmentation to optimize accuracy. The model’s performance is assessed
using a confusion matrix, along with precision-recall (PR) and receiver operating characteristic (ROC)
curves. The experimental results show that the CNN achieves high accuracy in recognizing modulation
types, with a testing accuracy of 100% and a testing loss rate of 1.82 × 10−6. Additionally, the model
records a Precision, Recall, F1-score, and area under the ROC of 100%. The experiments reveal that the CNN
model achieves high accuracy in differentiating between 64-QAM and 32-PSK under varying underwater
conditions, highlighting its potential for enhancing IoUT communication reliability.

INDEX TERMS Deep learning, convolutional neural networks (CNN), modulation recognition, 64-QAM,
32-PSK, optical wireless communications (OWC), Internet of Underwater Things (IoUT).

I. INTRODUCTION
The rapid development of the Internet of Underwater
Things (IoUT) has ushered in a new era of underwater com-
munication networks, enabling a wide range of applications
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such as environmental monitoring, underwater exploration,
and resource management [1], [2], [3]. OWC systems have
emerged as a promising technology to support high-speed
data transmission in underwater environments, offering
advantages over traditional acoustic and radio frequency (RF)
communication systems, including higher bandwidth and
lower latency [4], [5]. However, the complex and dynamic
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nature of underwater environments poses significant chal-
lenges to the reliable transmission of optical signals. Factors
such as water absorption, scattering, and turbulence make it
difficult to maintain high data rates and low error probabil-
ities. In this context, modulation recognition plays a critical
role in ensuring the integrity and efficiency of communication
systems. Automatic Modulation Recognition (AMR) is a
key technique that allows the receiver to recognize the
modulation scheme of the received signal without prior
knowledge, thereby facilitating adaptive demodulation and
improving overall system performance [6], [7], [8], [9].
Despite the progress inOWC systems, the inherent challenges
of underwater environments, combined with the increasing
complexity of modulation schemes, demand more advanced
recognition techniques. Traditional methods for modulation
recognition, such as likelihood-based approaches and feature-
based classifiers, often fall short in underwater scenarios
due to their sensitivity to noise and channel impairments.
These limitations have motivated the exploration of deep
learning-based methods, which have shown remarkable
success in various domains, including image and speech
recognition [10].
Convolutional Neural Networks (CNNs), in particular,

have demonstrated strong capabilities in feature extrac-
tion and pattern recognition, making them a promising
solution for AMR in optical wireless communication sys-
tems [11], [12], [13]. The problem statement addressed
in this paper is the need for a robust and efficient
modulation recognition technique capable of accurately
identifying complex modulation schemes in challenging
underwater environments. Specifically, the focus is on two
widely used modulation formats: 64-QAM and 32-PSK.
These modulation schemes offer high spectral efficiency,
making them suitable for IoUT applications where bandwidth
is limited. However, their complexity also makes them
more susceptible to errors in the presence of noise and
distortion, underscoring the need for advanced recognition
techniques.

The objective of this study to address the critical challenge
of modulation recognition in underwater optical wireless
communication systems (UOWCs) by introducing a deep
learning-based solution. The findings are expected to con-
tribute to the advancement of IoUT technologies, enabling
more reliable and efficient underwater communication net-
works. Thus, the paper aims to develop a deep learning-based
approach formodulation identification in OWC systems, with
a particular emphasis on 64-QAM and 32-PSK modulation
schemes. By leveraging the powerful feature extraction
capabilities of CNNs, the proposed method aims to enhance
the accuracy and robustness of modulation recognition in
underwater environments.

The main contributions of this paper are fivefold:
• A comprehensive analysis of the challenges associated
with modulation recognition in underwater optical
communication systems, highlighting the limitations of
traditional methods.

• The design and implementation of a CNN-based model
tailored to the specific characteristics of 64-QAM and
32-PSK modulation schemes, incorporating techniques
to enhance robustness against underwater channel
impairments.

• A detailed evaluation of the proposed model’s perfor-
mance was conducted through simulations using various
measures based on a dataset of 626 simulated images of
the modulation.

• A discussion on the potential applications of the
proposed approach in IoUT, including its integration
into adaptive communication systems for real-time
modulation recognition and decision-making.

• Comparing the results achieved by the proposed CNN
with several state-of-the-art methods and demonstrating
its effectiveness in reducing bit error rates and enhancing
signal-to-noise ratios.

The remainder of this paper is organized as follows: Section II
provides a comprehensive literature review of existing
works related to a CNN deep learning-based modulation
identification. Section III presents the applications in optical
wireless communications, specifically in IoUT environments.
Section IV presents the proposed methodology, including
the system model used in this study, detailing the key
components of the OWC system, the modulation schemes
under consideration, and describing the deep learning frame-
work and the CNN architecture employed for modulation
recognition. Section V presents the results, while the dis-
cussion is introduced in Section VI, where the performance
of the proposed method is evaluated and compared against
traditional approaches. Finally, Section VII concludes the
paper, summarizing the key results and discussing potential
directions for future research.

II. RELATED WORK
In the literature, different modulation techniques are used to
optimize communication. For instance, 64-QAM (Quadrature
Amplitude Modulation) is a method that allows the transmis-
sion of multiple bits per symbol by varying both amplitude
and phase, offering high spectral efficiency but at the cost
of increased sensitivity to noise and channel impairments.
Conversely, 32-PSK (Phase Shift Keying) modulates the
phase of the carrier signal to represent data, striking a
balance between spectral efficiency and robustness to noise,
which is particularly beneficial in challenging underwater
environments.

Traditional methods for modulation recognition typically
rely on statistical features and machine learning (ML)
classifiers, requiring manual feature extraction that may
struggle to capture the complex patterns found in underwater
channels [10], [14], [15]. To overcome these limitations,
Convolutional Neural Networks (CNNs) have been increas-
ingly utilized due to their ability to learn hierarchical feature
representations directly from raw data [11], [12], [13].

This automatic feature extractionmakes CNNs particularly
effective for modulation recognition in OWC systems,
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enabling more accurate and robust identification of modu-
lation schemes like 64-QAM and 32-PSK in the presence
of underwater challenges. Optical Wireless Communication
(OWC) systems provide high data rates and secure trans-
mission, making them ideal for IoUT applications. However,
the performance of OWC systems is often challenged by
the underwater environment, where factors such as signal
attenuation due to absorption and scattering, as well as
fluctuations caused by turbulence, can significantly impact
signal quality [16], [17], [18]. Our research paper presents
an extensive review of the literature in this field, detailed as
follows:

The study in [19] focused on enhancing modulation
classification in underwater optical wireless communication
(UOWC) systems, a critical aspect of the emerging IoUT.
Given the challenges of constrained data transfer and
frequent transmission failures in underwater environments,
the study proposed the use of a Convolutional Neural
Network (CNN) for classifying modulation schemes by
transforming modulated signals into constellation images.
Specifically, SqueezeNet, a compact and low-resource deep
learning model, is employed to address the unique demands
of UOWC systems. The simulation results demonstrated
that SqueezeNet offers accurate and efficient modulation
classification, improving the reliability and data rates of
UOWC systems, making it suitable for IoUT applications
such as underwater exploration and data transmission.

In [20], the authors focused on developing an algorithm to
extract a novel one-dimensional (1D) phase-related feature
from received signals for automatic modulation classification
(AMC). By using a CNN to learn and classify these features,
they demonstrated that the 1D feature contains more intrinsic
information about the modulation patterns compared to
conventional features.

The algorithm’s effectiveness is further validated through
simulations, showing that the proposed system achieved a
classification accuracy beyond 99% at 0 dB, outperforming
traditional methods. Additionally, a comparison with two-
dimensional (2D) constellation graph-based classification
confirms the superiority of the proposed 1D feature extraction
method.

The authors of [21] introduced a novel modulation
classification method that leverages higher-order cumulants
(HOCs) in combination with a decision tree (DT) classifier
to enhance the recognition of modulation schemes, such as
PSK and QAM, even at low signal-to-noise ratios (SNR).
The method applied a threshold algorithm to sub-classifiers,
each utilizing a single feature, to individually distinguish
modulation types.

The study examined 1,000 signals across SNR values
from −5 dB to 30 dB, achieving classification accuracies
between 88% and 100% for various PSK and QAM
schemes. The proposed classifier demonstrated superior
accuracy and computational efficiency compared to exist-
ing methods, particularly due to the use of optimized

logarithmic features, making it a highly effective solution for
AMC.

In 2023, the authors of [22] explored the use of a
voting-based deep CNN for automatic modulation classifi-
cation (AMC) of M-QAM and M-PSK signals in wireless
communication systems. The VB-DCNN extracted features
from input signals passed through fading channels with
additive white Gaussian noise (AWGN) and performed
classification by combining predictions from several network
instances trained on various data subsets. The proposed
model demonstrated 99.2% accuracy at lower SNRs, outper-
forming existing state-of-the-art techniques. The study also
suggested that increasing the network’s layers can further
enhance classification accuracy, and future improvements
could focus on developing CNN-based classifiers optimized
for resource-constrained environments.

Ref. [23] introduced SCGNet, a CNN designed for
efficient and robust modulation identification in intelligent
communication receivers. SCGNet featured a combination of
sparse convolutional layers, including depthwise and grouped
convolutions, to balance high recognition accuracy with low
computational complexity.

The architecture incorporated threemainmodules: Generic
Feature Extraction (GFE), Speed-Accuracy Tradeoff (SAT),
and Deep Feature Extraction and Processing (DFEP). Exper-
imental results using the RadioML2018.01A dataset showed
that SCGNet achieved approximately 95.5% recognition
accuracy at +30 dB SNR, outperforming existing methods
while maintaining a compact model with fewer learnable
parameters. The design of SCGNet made it well-suited for
edge-based communication systems where both accuracy and
efficiency are critical.

According to [24], the study introduced FiF-Net, a novel
CNN designed for accurate modulation classification using
constellation diagrams. FiF-Net employed multiple process-
ing blocks with grouped and asymmetric convolutional layers
organized in a flow-in-flow structure to effectively learn key
radio characteristics from grayscale constellation images.

The network architecture incorporated skip connections
to mitigate the vanishing gradient problem and preserve
information. Extensive simulations on a dataset of eight digi-
tal modulation formats demonstrated that FiF-Net achieves
approximately 87% classification accuracy at 0 dB SNR
under multipath Rayleigh fading, surpassing several state-of-
the-art models in constellation-based modulation classifica-
tion.

In [25], This study introduced a generative adversarial
network (GAN)-based signal inpainting method to address
the challenge of missing samples in time-domain signals for
automatic modulation classification (AMC). By restoring up
to 50% of missing samples while preserving the global struc-
ture of each modulation type, the proposed method enhanced
the accuracy of modulation classification. Experiments using
the RadioML dataset showed that the GAN-based inpainting
significantly improved classification accuracy compared
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to state-of-the-art models without inpainting. The method
effectively restored the characteristics of real signals, thereby
enabling more accurate feature extraction for AMC. Future
work will focus on validating the method with real-world
data and optimizing its computational efficiency for practical
deployment.

According to [26], the authors explored the use of CNNs
to address performance issues in underwater optical wireless
communication (UOWC) systems, particularly those caused
by substantial attenuation and varying channel conditions.
They introduced a modified CNN model designed to recover
data from non-return to zero on–off keying (OOK-NRZ)
modulated signals transmitted through Gulf seawater.

The CNN decoder significantly outperformed conven-
tional fixed-threshold decoders (FTDs), achieving a bit error
ratio (BER) reduction by about seven orders of magnitude,
increasing the effective channel length by four times, and
reducing the required SNR by approximately 20 dB. The
CNN’s robustness and performance improvements made it
a promising alternative to traditional decoders, providing
enhanced data recovery without needing prior channel
knowledge.

The study in [27] explored the application of deep learning,
specifically CNNs, to automatic modulation recognition in
underwater acoustic communication. Unlike traditional ML
methods that depend on manual feature extraction, CNNs
automatically learn features directly from data, offering
significant advantages. The study demonstrated that CNNs
effectively recognize common underwater modulation meth-
ods, revealing their potential beyond image and language
processing.

While the CNN approach showed promise in signal
recognition and is expected to enhance applications in
military and civilian underwater communication, the recog-
nition performance under low SNR conditions still requires
improvement. Future research should focus on optimizing
deep learning techniques to better handle low-SNR scenarios.

In [28], This study reviewed the integration of deep
learning (DL) with Automatic Modulation Recognition
(AMR) in the context of 5Gwireless communication systems.
It began by outlining traditional AMR methods and their
limitations, then highlights the advantages of applying deep
learning algorithms to improve modulation recognition.

The paper provided a detailed examination of various
deep learning techniques and their performance in AMR,
especially in small sample environments. It also addressed
the current challenges in this field and suggests future
research directions. By summarizing recent advancements
and comparing different approaches, the paper aims to
offer valuable insights and references for further devel-
opment in deep learning-based modulation recognition
technologies.

As noted in [29], the study reviewed the advancements
in AMR using deep learning techniques, highlighting their
superior performance over traditional techniques in terms

of recognition accuracy and false alarm rates. It covered
the strengths of DL models in feature extraction and
classification, and provided a detailed comparison of current
state-of-the-art models for single-input-single-output (SISO)
systems regarding accuracy and complexity. The paper
also explored the application of DL-AMR in multiple-
input-multiple-output (MIMO) scenarios with precoding,
and discusses challenges and future research directions.
The review emphasized the potential of DL-AMR in next-
generation B5G/6G networks and the need to address
issues related to complexity and explainability for practical
deployment.

In 2024, the authors of [30] introduced VLCMnet, a novel
deep learning model designed for modulation format recog-
nition in indoor visible light communication (VLC) systems.
VLCMnet integrated a temporal convolutional network with
a long short-term memory (TCN-LSTM) module toward
the equalization of direct channel, improving constellation
diagram quality.

It also incorporated a multi-mixed attention network
(MMAnet) within a CNN framework to capture detailed
spatial and channel features, improving recognition accuracy.
Experimental results demonstrated that VLCMnet achieves
a 19.2% increase in accuracy compared to traditional CNN
models, showing robustness under severe channel distortion
and improving performance for high-order modulation sig-
nals. The model effectively reduced misclassification and is
efficient in complex indoor environments.

The authors of [31] presented a signal modulation recog-
nition method using deep learning, specifically SCFNet,
designed for non-cooperative communication systems where
transmitter parameters are unknown. SCFNet utilized a
double-branch deep learning network to extract features
from IQ signals and multi-channel constellations, enhancing
recognition by leveraging complementary signal characteris-
tics.

This approach improved robustness against noise and
frequency offsets. Experimental results showed SCFNet
achieved a recognition rate of 90% to 95%, with only a 6%
accuracy decrease when frequency offsets increased from
25 kHz to 100 kHz, compared to a 15% decrease in traditional
models. This demonstrated SCFNet’s superior performance
and robustness in challenging environments.

The study in [32] explored the use of DL, specifically
CNNs, for modulation classification in communication sys-
tems, an area not extensively studied before. By converting
raw modulated signals into grid-like images and employing
the AlexNet model, the study presented a novel approach for
classification.

The CNN-based method is compared with traditional
cumulant and support vector machine (SVM) algorithms,
showing comparable classification accuracy while eliminat-
ing the need for manual feature selection. Although current
results are promising, the paper notes potential improve-
ments, such as enhancing data conversion methods and
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exploring advanced neural network architectures, to further
boost performance.

As noted in [15], the study reviewed recent advancements
in Automatic Modulation Recognition (AMR) within the
context of increasingly crowded radio spectra and evolving
electromagnetic environments. Emphasizing the integration
of ML and DL techniques. It detailed various DL model
architectures, compared their performance, and highlighted
key benefits. The paper also discussed open challenges
and potential future research directions, underscoring the
growing significance of ML and DL in enhancing spectrum
efficiency and service quality in modern communication
systems.

The study in [33] presented a novel CNN-based framework
for AMR of radio signals, leveraging spectrogram images
derived from the short-time discrete Fourier transform.
This approach, called SCNN2, improved signal recog-
nition accuracy by transforming 1-D radio signals into
time-frequency representations and applying a Gaussian
filter for noise reduction. Compared to existing methods,
SCNN2 outperforms other deep learning-based techniques
in recognition accuracy and showed competitive results in
terms of computational complexity, requiring more memory
but fewer learned parameters. Overall, the SCNN2 frame-
work demonstrated superior performance in distinguishing
between modulation types while maintaining efficient train-
ing and processing capabilities.

In [34], The authors investigated the optimal DL archi-
tecture for automatic modulation identification in wireless
signal recognition. By analyzing various convolutional neural
network (CNN) structures, the study found that deeper
networks are less suitable due to their characteristics, sug-
gesting a preference for shallower architectures. The use of
transfer learning enhanced training stability and performance.
Additionally, incorporating a denoising autoencoder for data
preprocessing improved recognition accuracy by mitigating
noise interference. The findings highlighted the importance
of adapting deep learning methods to signal recognition
tasks and proposed future research directions for optimizing
network design and leveraging autoencoders.

The authors of [35] developed a CNN-based modulation
classification algorithm that addressed the challenge of noisy
channels distorting constellation diagrams. By applying the
Radon Transform (RT) to these diagrams, the study enhanced
pattern representation, leading to improved classification
accuracy, especially at low SNRs. The algorithm used
pretrained networks such as VGG-16, AlexNet, and VGG-
19 for recognition and demonstrated superior performance
compared to othermethods under varying channel conditions.
The paper suggested exploring additional transforms like
Gabor and Speeded-Up Robust Features (SURF) to further
improve accuracy.

The authors of [36] paper focused on developing and evalu-
ating two CNN models for AMR in wireless communication
systems. The models were applied to two distinct datasets:
RadioML2016.10a, containing 11 modulation classes, and an

image-based dataset with 8 digital modulation classes. The
models were fine-tuned to achieve high accuracy, with the
first CNN attaining 53.65% accuracy and the second 94.39%.

III. IoUT APPLICATIONS
The Internet of Underwater Things (IoUT) is a ground-
breaking technology that significantly enhances the ability
to monitor, explore, and manage underwater environments.
One of its primary applications is environmental monitoring,
where IoUT enables the continuous tracking of water quality,
temperature, pH levels, and the health of marine ecosystems.
This real-time data is crucial for studying climate change,
detecting pollution, and preserving biodiversity, offering
invaluable insights for researchers and conservationists [37],
[38], [39], [40], [41]. In underwater exploration, IoUT is
revolutionizing the way we study the deep sea. Equipped with
networks of sensors and autonomous underwater vehicles
(AUVs), IoUT systems can map the ocean floor, discover
new marine species, and investigate underwater geological
formations.

These capabilities are essential for advancing our under-
standing of the ocean’s vast and largely unexplored
depths [42], [43], [44]. Disaster prevention is another critical
application of IoUT. By deploying sensors that monitor seis-
mic activity, tsunamis, and underwater volcanic eruptions,
IoUT systems can provide early warnings, helping to mitigate
the impact of natural disasters on coastal communities
and marine infrastructure [45], [46], [47]. In the military
domain, IoUT plays a pivotal role in enhancing underwater
surveillance, mine detection, and secure communication
among submarines and other naval assets.

It supports operations in anti-submarine warfare, port secu-
rity, and the protection of underwater assets such as pipelines
and communication cables [48], [49], [50]. Beyond these
core applications, IoUT is also finding innovative uses in
sports analysis, where it can track underwater movements in
swimming or diving, providing detailed data for performance
optimization [51]. In navigation assistance, IoUT helps guide
submarines and other underwater vehicles through complex
environments, improving safety and efficiency [52].

Location applications are another emerging area, where
IoUT enables precise tracking of underwater assets, such as
remotely operated vehicles (ROVs) or underwater drones,
and aids in the management of marine operations [53].
Overall, IoUT applications are transforming how we interact
with the underwater world, making significant contributions
to environmental protection, scientific research, disaster
resilience, military strategy, and industrial efficiency.

In conclusion, the IoUT offers transformative benefits
across multiple domains, from environmental monitoring
and underwater exploration to disaster prevention and
military operations. Its ability to provide real-time data and
enhanced connectivity in underwater environments not only
advances scientific research and conservation efforts, but
also improves disaster resilience and operational efficiency
in industries such as defense and navigation. As IoUT
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FIGURE 1. IoUT applications.

applications continue to evolve, they will play a critical
role in safeguarding marine ecosystems, enhancing security,
and driving innovation in underwater technology. Figure 1
illustrates the various applications of IoUT.

IV. THE PROPOSED METHODOLOGY
The proposed methodology including an underwater optical
wireless communication (UOWC) system for IoUT applica-
tions. Additionally, the proposed work uses deep learning,
specifically CNNs, to improve modulation recognition in
underwater optical wireless systems. It involves preprocess-
ing data, training the CNN to classify 64-QAM and 32-PSK
modulations, and evaluating performance metrics to ensure
accurate recognition under different underwater conditions.

A. THE PROPOSED UOWC SYSTEM
The system for this study focuses on the application of
DL techniques to enhance modulation recognition in optical
wireless communication systems, specifically for IoUT
applications. The model incorporates a deep CNN designed
to recognize modulation schemes such as 64-QAM and 32-
PSK, which are crucial for high-speed data transmission
in underwater environments. The optical communication
channel is characterized by significant attenuation and
scattering, necessitating robust signal processing methods.
The CNN model processes received signal data, represented
as constellation diagrams, to automatically learn and extract

features pertinent to modulation recognition. The proposed
system is designed to operate under varying underwater
conditions, including different levels of SNR and channel
impairments, ensuring accurate classification despite the
challenging underwater environment. The integration of deep
learning into this system model represents a significant
advancement in IoUT applications, offering improved relia-
bility and efficiency in underwater communication. A typical
UOWC system comprises a sink node placed at the water’s
surface, which could be a buoy, surface ship, or surface
autonomous vehicle (SAV), and another node located on the
ocean floor. This underwater node could be a submari’e,
sea diver, sensor, autonomous underwater vehicle (AUV),
or unmanned underwater vehicle (UUV) responsible for
gathering information and transmitting data to the sink node.
The sink node, in turn, relays the data to a remote monitoring
center on the shore, where the information is collected,
analyzed, and processed.

Figure 2 illustrates the architecture of UOWC system
model. The proposed UOWC system presents several advan-
tages over traditional acoustic and RF systems in underwater
environments. The UOWC provides high-speed data trans-
mission with low latency, making it optimum for real-time
applications. This system also experiences less signal attenu-
ation compared to RF signals, which are heavily absorbed by
water, especially at greater depths. Unlike acoustic systems,
which suffer from low data rates and significant signal
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FIGURE 2. The UOWC system architecture.

delay. Furthermore, the UOWC enables higher bandwidth
and supports faster, more reliable communication, making
it convienent for high-data-rate fields for instance complex
sensor networks and video streaming. These benefits make
the UOWC a promising solution for enhancing underwater
communication efficiency and performance.

B. THE BLOCK DIAGRAM OF THE UOWC SYSTEM
The overall flow of the system can be summarized as: Optical
Transmitter → Optical Channel → Optical Receiver →

Feature Extraction → Deep Learning Model → Output. This
block diagram outlines the conceptual structure of the system,
detailing how the optical signal is transmitted, processed, and
analyzed to achieve deep learning (DL)-based modulation
recognition in an UOWC system. Figure 3 illustrates the
conceptual structure of the block diagram of the proposed
UOWC system.

The system can be structured into several key components.
The Optical Transmitter is the first component, where a signal
source generates the baseband signal, modulated using either
64-QAM or 32-PSK. This modulated signal is then converted
into an optical signal by the optical source, typically a laser
diode or LED, driven by a driver circuit. The signal then
passes through the Optical Channel, which represents the
underwater environment. This channel includes factors like
water medium that affects signal propagation, attenuation,

and scattering due to water absorption. The channel also
models various noise sources, such as thermal noise, shot
noise, and interference from ambient light, which can degrade
the signal quality. Upon reaching the Optical Receiver, the
optical signal is converted back into an electrical signal
by a photodetector. This weak signal is then amplified and
digitized using an analog-to-digital converter (ADC) for
further processing. Next, in the Feature Extraction stage,
a signal processing block extracts essential features from
the received signal. These features may include phase,
amplitude, frequency, and constellation points, which are
critical for identifying the modulation scheme. The extracted
features are then fed into a DL Model, where pre-processing
normalizes the data and prepares it for input into the neural
network. This network, typically a CNN or another DL
architecture, is trained to recognize the modulation type,
whether it is 64-QAM or 32-PSK, based on the extracted
features. The model then classifies and outputs the predicted
modulation type. Finally, the Output block represents the
system’s conclusion, determining the modulation scheme
used—either 64-QAM or 32-PSK. Optionally, performance
metrics such as recognition accuracy and bit error rate
(BER) can be evaluated to assess the effectiveness of the
system.

In summary, the system processes underwater optical
signals modulated using 64-QAM or 32-PSK, transmitting
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FIGURE 3. The block diagram of the proposed UOWC system.

them through an optical channel impacted by noise and water
absorption. After feature extraction, a CNN deep learning
model classifies the modulation type based on the received
signal, with performance metrics like accuracy and BER
assessing the system’s effectiveness.

1) MODULATION TECHNIQUES
Quadrature Amplitude Modulation (QAM) transmits data by
varying both the amplitude and phase of the carrier signal.
For 64-QAM, the modulated signal can be expressed as:

S64QAM (t) = Re
{
(Ik + jQk) ei2π fct

}
(1)

where Ik and Qk represent the in-phase and quadrature
components, respectively, chosen from a constellation of
64 points, fc is the carrier frequency, and t represents
time. The constellation points are defined as: Ik ,Qk ∈

{±
2m−1
√
42

,m = 1, 2, 3, 4} with a normalized average power
to ensure that the transmitted power remains constant. Phase
Shift Keying (PSK) modulates the phase of the carrier signal.
For 32-PSK, the modulated signal can be written as:

S32PSK (t) = cos (2π fct + θk ) (2)

where (θk =
2πk
32 , k = 0, 1,. . . . . . , 31) represents the phase of

the signal, fc is the carrier frequency. The constellation points
for 32-PSK are uniformly spaced on a circle in the complex
plane.

2) CHANNEL MODEL
The optical wireless communication channel in underwater
environments can be modeled by considering the effects of
absorption, scattering, and turbulence. The received optical
power Pr at a distance d can be defined as:

Pr (d) = Pt .ηt .ηr .
Ar
d2

.e−γ d .T (3)

where Pt is the transmitted power, ηt and ηr are the
efficiencies of the transmitter and receiver, Ar is the receiver
aperture area, γ is the total attenuation coefficient, which
accounts for absorption and scattering, and T (Θ) is the beam
spread function, accounting for the angle of incidence Θ.

γ (3) = α (λ) + β (λ) (4)

where α(λ) and β(λ) are the absorption and scattering
coefficients of the light as a function of wavelength.

Blue and green wavelengths are favored in underwater
optical wireless communication (UOWC) due to their lower
attenuation values compared to other wavelengths. In clear
ocean waters, blue light (around 450 nm) undergoes minimal
absorption and scattering, making it ideal for long-distance
communication. Green light (around 520 nm) is more effec-
tive in coastal and turbid waters, where it penetrates better
than other wavelengths. These wavelengths significantly
reduce signal loss, providing a substantial advantage over red
or infrared wavelengths, which are rapidly absorbed in water,
limiting their effectiveness for underwater communication.
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Figure 4 presents the light absorption coefficient as a function
of wavelength in pure seawater.

FIGURE 4. The absorption coefficient of the light as a function of
wavelength in pure seawater [54].

Tables 1 and 2 present the absorption and scattering
coefficients for different types of water at wavelengths
of 450 nm and 520 nm, respectively. These coefficients
are critical in UWOC systems because they directly affect
the attenuation of light as it propagates through water.
The absorption coefficient αλ) measures how much light
is absorbed by the water molecules and particles. Higher
absorption values indicate that more light is absorbed,
reducing the amount of optical power that can be transmitted
over longer distances. For example, in turbid harbor waters,
where αλ) is significantly higher than in pure sea water, the
light signal is absorbed more quickly, limiting the effective
communication range. Based on the equations of absorption
and scattering of the light in [55], The absorption, scattering,
and extinction coefficients are determined for various types
of water for two sources, LED-PS and LD-PS at operational
wavelengths 450 nm (blue) and 520 nm (green). These
calculations are presented in Tables 1 and 2.

TABLE 1. Absorption, Scattering, and extinction coefficients for different
types of at wavelenght = 450 nm [54].

The scattering coefficient β (λ) refers to the deflection of
light caused by particles and turbulence in the water. The
scattering coefficient affects the beam’s directionality and
can cause loss of signal strength, especially in environments
with high particulate matter, like coastal or turbid waters.
Scattering also leads to multipath interference, which impacts

TABLE 2. Absorption, Scattering, and extinction coefficients for different
types of at wavelenght = 520 nm [54].

the quality of the received signal. The extinction Coefficient
γ λ) is the sum of the absorption and scattering coefficients
(γ λ) = αλ) + βλ)), representing the total attenuation of
the light beam in the water. The higher the extinction
coefficient, the greater the attenuation, and therefore, the
more challenging it becomes to establish reliable optical
communication.

These coefficients vary significantly across different water
types, with turbid harbor waters exhibiting the highest levels
of absorption and scattering. This variation highlights the
need to carefully select wavelengths and system parameters
based on the specific water environment. For instance, shorter
wavelengths like 450 nm may be more suitable for clearer
water types due to lower absorption, while in more turbid
environments, the choice of wavelength and beam divergence
must be optimized to minimize attenuation and maintain
signal integrity so 520 nm is suitable to use in coastal and
turbid waters. By analyzing these coefficients, we can model
the underwater optical channel more accurately and tailor
the system for optimal performance under various water
conditions [56], [57].

From the results calculated from Tables 1 and 2, we can
conclude that the blue color wavelength (λ = 450 nm) is
appropriate for pure seawater and clear ocean water because
of the minimum extinction coefficient values in those two
types of water compared with the green color. On the other
hand, the green color wavelength (λ = 520 nm) is convenient
for water whether form a coastal ocean or turbid harbor [56],
[57].

3) TURBULENCE MODEL
The Log-Normal fading distribution model is widely used
to describe the statistical behavior of the signal amplitude
in UWOCs, particularly under weak turbulence conditions.
In such environments, turbulence is caused by small-scale
fluctuations in the refractive index of water, which can
be influenced by salinity, temperature, and pressure. These
factors affect the propagation of optical signals in water,
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leading to variations in signal strength over time, often
modeled as Log-Normal fading.

Regarding the Log-Normal fading model, it assumes that
the logarithm of the received signal intensity follows a normal
(Gaussian) distribution. The probability density function
(PDF) for the received signal intensity I under Log-Normal
fading is given by:

fI (I ) =
1

Iσ
√
2π

exp

(
−

(ln (I ) − µ)2

2σ 2

)
(5)

where I is the received signal intensity, µ is the mean of the
logarithm of the received intensity ln(I), σ is the standard
deviation of ln(I), representing the severity of fading, and
ln(I) follows a normal distribution with mean µ and variance
σ 2. In UWOCs, fluctuations in the refractive index, caused
by environmental factors such as salinity, temperature, and
pressure, lead to variations in the received signal intensity.
These variations are captured by the standard deviation σ ,
which increases with the strength of the turbulence.

Regarding effects of environmental factors on Log-Normal
fading in UWOCs, in underwater environments, salinity,
temperature, and pressure affect the refractive index of water,
which in turn influences the optical signal’s propagation
characteristics, leading to turbulence and fading. Let’s discuss
how each factor relates to the Log-Normal fading distribution
in UWOCs. Salinity refers to the concentration of dissolved
salts in water. As salinity increases, the refractive index of
water changes, affecting how light propagates through the
medium. The relationship between salinity and refractive
index can be expressed as:

n = no + ksS (6)

where n is the refractive index of water, no is the refractive
index of pure water, Ks is a proportionality constant that
depends on the wavelength of the light, and S is the salinity
of the water. Increased salinity can cause scattering and
absorption of light, leading to more severe fading. The
parameter σ 2 in the Log-Normal fading model increases as
salinity-induced turbulence grows stronger, thereby causing
larger signal fluctuations and a higher probability of deep
fades. Temperature variations also cause changes in the
refractive index, due to thermal expansion and contraction of
water. The relationship between temperature and refractive
index is given by:

n (T ) = no − kT (T − To) (7)

where T is the water temperature, no is the refractive index
at a reference temperature T0, and kT is a temperature-
dependent constant. As the temperature fluctuates, the
refractive index varies, creating turbulence in the water
that affects signal propagation. Higher temperature gradients
lead to greater variations in signal intensity, increasing the
standard deviation σ in the Log-Normal model. This causes
more pronounced fading, resulting in signal attenuation and
fluctuations in SNR. Pressure increases with water depth,

and changes in pressure can affect water density, which in
turn influences the refractive index. The relationship between
pressure and the refractive index can be expressed as:

n (P) = no + kPP (8)

where P is the water pressure, no is the refractive index
at a reference pressure, and kP is a pressure-dependent
constant. As pressure increases with depth, variations in
the refractive index can cause scattering and refraction of
light, leading to signal fading. In deep-water environments,
the pressure-induced turbulence results in higher values of
σ , increasing the severity of fading and thus degrading the
communication performance. The Log-Normal fading distri-
bution model is crucial for understanding signal propagation
in UWOCs, especially under the influence of environmental
factors such as salinity, temperature, and pressure. These
factors affect the refractive index of water, leading to turbu-
lence and signal fading. As salinity, temperature, and pressure
increase, the severity of fading increases (represented by a
higher standard deviation σ , leading to degradation in SNR,
BER, and channel capacity. Addressing these challenges
requires the implementation of adaptive techniques and
robust communication strategies.

4) SIGNAL-TO-NOISE RATIO (SNR)
The SNR at the receiver is calculated in Eq. (9). Where Pr
is the received signal power, N0 is the noise power spectral
density, B is the bandwidth of the system. For optical wireless
communication systems, noise sources include background
shot noise, thermal noise, and signal shot noise, leading to
the total noise power N0.

SNR =
Pr
NoB

(9)

The dataset was generated using a range of SNR values from
0 dB to 30 dB in steps of 5 dB, covering both challenging
and favorable underwater conditions. The model was trained
and tested under these different SNR conditions to evaluate its
performance in realistic underwater optical communication
scenarios.

The dataset incorporates several noise types typically
encountered in UWOCs, including:

(i) Background shot noise from ambient light interference.
(ii) Thermal noise due to the receiver’s electronics. (iii) Signal
shot noise, which arises from the randomness in the optical
signal.

Eq. (10) shows the total noise power spectral density No.

No = Nshot + Nthermal + Nsignal−shot (10)

where Nshot is the background shot noise power spectral
density (W/Hz), Nthermal is the thermal noise power spectral
density (W/Hz), and Nsignal−shot is the signal shot noise
power spectral density (W/Hz). Eq. (11) describes the Shot
Noise (Background) Nshot .

Nbg−shot = 2qIbgB (11)
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where Pbg−shot is the back ground shot noise power, q is
the electron charge 1.602 × 10−19 C), Ibg is the background
current (A), and B is the bandwidth (Hz). Eq. (12) describes
Thermal Noise Nthermal .

Nthermal =
4KTB
RL

(12)

whereNthermal is the thermal noise power, K is the Boltzmann
constan (1.38×10−23 J/K), T is the absolute temperature (K ),
and RL is the load resistance (�). Eq. (13) describes Signal
Shot Noise Nsignal−shot.

Nsignal−shot = 2qIsignalB (13)

where is the signal shot noise power Nsignal−shot , I is the
average signal current (A).

These noisemodels were included to ensure that the dataset
reflects real-world underwater conditions, allowing the CNN
model to learn and classify modulation schemes accurately
in the presence of noise. Despite the presence of various
noise types and varying SNR levels, the CNNmodel achieved
100% accuracy in certain scenarios, particularly under higher
SNR conditions (≥20 dB). This high accuracy is attributed
to the model’s ability to effectively capture the features
of different modulation schemes, even in the presence of
moderate noise. The 100% accuracy reflects the robustness
of the model under ideal or less challenging conditions, while
performance at lower SNR values still remained competitive,
demonstrating its applicability across different underwater
environments.

5) BIT ERROR RATE (BER)
The BER for 64-QAM and 32-PSK can be calculated using
their respective probability of error expressions. The general
law for M -QAM and M -PSK can be expressed in Eqs.
(14) and (15). M represents the number of distinct symbols
in the modulation scheme, while Q(x) is the Q-function,
representing the tail probability of a Gaussian distribution.

BERM−QAM =
4

Log2(M )
.

(
1 −

1
√
M

)
.Q

(√
3Log2 (M)

M − 1
.SNR

)
(14)

BERM−PSK =
1

Log2(M )
.Q
(√

2.SNR.Sin
( π

M

))
(15)

In case of 64-QAM and 32-PSK Eqs. (14) and (15) can be
expressed as:

BER64−QAM =
7
12

.Q

(√
2
7
.SNR

)
(16)

BER32−PSK =
1
5
.Q
(√

2.SNR.Sin
( π

32

))
(17)

6) DEEP LEARNING-BASED MODULATION RECOGNITION
The modulation recognition is implemented using a CNN,
which takes as input the received signal samples and outputs

the predicted modulation type. The signal samples are
represented as complex baseband equivalents in Eq. (18).
Where s(t) is the transmitted signal and n(t) is the noise.

r (t) = s (t) + n (t) (18)

The CNN is trained to minimize the cross-entropy loss
function:

L= −

∑N

i=1
yilogŷi (19)

where yi is the actual label, ŷi is the predicted output
probability for class I , and N is the number of classes (e.g.,
64-QAM and 32-PSK).

7) DATASET GENERATION AND SIMULATION
We generated a dataset of 64-QAM and 32-PSK modulated
signals using a simulated underwater optical communication
system. The simulation included varying levels of absorption,
scattering, and turbulence to replicate different underwater
conditions. Absorption and scattering are modeled based on
empirical data for various water types, including coastal,
clear, and turbid water. Turbulence is simulated using a
stochastic model to account for random variations in the
refractive index of water. Figure 5 shows the constellation
diagrams as two samples dataset: 64 QAM and 32 PSK.

FIGURE 5. Two samples of the dataset: (a) 64 QAM, (b) 32 PSK.

To prepare the data for CNN training, we applied three
preprocessing steps: noise Reduction, normalization, and
segmentation. Noise reduction using a low pass filter (LPF) to
reject a high-frequency noise from the signal. Normalization
of signal amplitude is used to ensure consistency across
samples, while segmentation is applied to divide signals
into smaller segments, enabling the CNN to process and
learn from localized features. The utilized datasets are
public available in the Kaggle repository [58] https://www.
kaggle.com/datasets/drsaeedmohsen/radio-modulation-types-
dataset. The datasets are seperated into learning (80%) and
evaluation (20%) sets. Training involved adjusting the model
parameters to minimize the classification error. Three data
augmentation approaches are applied for the used dataset,
such as rotation, width and height shifts. Randomly, each
image is rotated by 20◦, with width and height shifted by up
to 0.2 in both dimensions.
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In the study on deep learning-based modulation recogni-
tion for OWCs in IoUT applications, several key parameters
are defined. The modulation schemes under investigation
include 64-QAM and 32-PSK, which represent the types of
signal modulation utilized. The optical wavelength for the
transmitted signals is set to 450 nm (blue) and 520 nm (green),
addressing different underwater environments.

The optical sources used in the simulation are either laser
diodes (LD) or light-emitting diodes (LED), with transmis-
sion power ranging from 10 mW to 100 mW. Receiver
sensitivity, which determines the minimum detectable power
level at the receiver, is specified between −50 dBm and
−70 dBm. The water types considered in the simulation
include clear ocean, coastal, and turbid waters, each affecting
signal propagation differently.

For photodetection, avalanche photodiodes (APD) and
PIN diodes are employed. The data transmission rate varies
from 1Mbps to 10Gbps, and the sampling rate of the received
signal is between 10 GHz and 100 GHz. The channel model
used to simulate the underwater optical channel includes
Log-Normal and Generalized Gamma distributions. Finally,
performance metrics for evaluating the system include
accuracy, bit error rate (BER), and SNR.

8) THE PROPOSED FRAMEWORK FOR THE DEVELOPED
CNN MODEL
Figure 6 shows the proposed framework for the CNNModel.
It includes 626 modulation images as a dataset that is initially
preprocessed. Moreover, the data is divided into x_train with
its label y_train and x_test with its label y_test. The training
data is reshaped to match the dimensions of the convolutional
layers, then the CNN layers are architected, then the model is
compiled based on the optimizer, cost function, and accuracy
metric. So, it is very essential to set optimum settings to
minimize the error of the CNN.

FIGURE 6. The proposed framework for the steps of CNN implementation.

After that, the model is learned/trained from the features of
training images dataset. Then, the CNN model is evaluated

using x_test and y_test, hence the validation of fitting for
the CNN based on testing and training datasets. Finally, the
classification is implemented via a predict command using
the x_test as new unseen dataset with respect to the trained
model. The prediction phase provides a probability of classes
whether 64 QAM or 32 PSK. Furthermore, the predictive
CNN model can compare a true label to a predicted class via
an evaluation metric e.g. confusion matrix.

9) THE PROPOSED CNN MODEL ARCHITECTURE
In this research, a CNN is utilized to identify the modulation
types. The CNN architecture is particularly effective to
capture spatial features from data. Figure 7 depicts the CNN
architecture consists of twelve layers: three convolutional
layers, three max-pooling layers, two dropout layers, one
flattening layer, two dense layers, and an output layer. Adam
optimizer is used to minimize the error of CNN and a
cross-entropy loss function is applied.

FIGURE 7. The proposed CNN model architecture.

The modulation images input has a resolution of 224 ×

224 pixels. Initially, a 2D convolutional layer (conv2D)
is applied to each input image separately using a ReLU
activation function to learn spatial features. This layer
extracts local features from the signal, such as amplitude
variations and phase shifts. This layer contains 32 filters with
a 3 × 3 kernel. To mitigate the risk of overfitting, a dropout
layer is introduced next.

Following this, a max-pooling layer (MPL) is employed
to reduce the complexity of the conv2D by downsampling it
(to reduce the dimensionality of the data. The MPL uses a
2 × 2 matrix as its pool size. Subsequently, another conv2D
layer is introduced, this time with 64 filters and a 3×3 kernel,
paired with a ReLU function to identify higher-level features
that the initial conv2D layer may have missed.

Next, another MPL with a 2×2 pool size is used, followed
by a conv2D layer with 128 filters and a 3 × 3 kernel. This
is succeeded by another MPL and a flattening layer, which
transforms the data into a one-dimensional format. Then,
a dense layer with 64 neurons and a ReLU is added. This is
followed by a dropout layer with a 50% drop rate and another
dense layer.

Finally, the output layer is connected to a sigmoid function
to activate the outcome to two classes, which make the final
classification decision. The sigmoid provides a probability
distribution over the possible modulation schemes (64-QAM
and 32-PSK). The entropy loss is applied to calculate the
error among predicted and actual values, with the Adam
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optimization function employed for training. The CNNmodel
is trained for 50 epochs with a batch size of 32, and the total
parameters that is trained in the CNN is 11,177,346. The
hyperparameters of the CNN model are optimized via the
GridSearchCV method, which automatically determines
the best hyperparameter values to enhance the model’s
performance. Table 3 provides a sequence of the CNN layers.

TABLE 3. The layers of the CNN.

10) PERFORMANCE METRICS
We evaluated the model using the following metrics.
Accuracy is the percentage of correctly classified samples.
Precision and Recall are measures of the model’s perfor-
mance for each modulation scheme, while F1-score is a
combined metric that balances precision and recall. The
efficiency of the modulation recognition system is measured
utilizing the four metrics: accuracy, precision, recall, and
F1-score, defined as:

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(20)

Precision =
TP

TP+ FP
(21)

Recall =
TP

TP+ FN
(22)

F1 − score = 2 ×
Precision× Recall
Precision+ Recall

(23)

where the statistics ‘‘TP, TN, FP, and FN’’ are true and false
whether positives or negatives.

V. EXPERIMENTAL RESULTS
The CNN model was experimentally developed using the
Python programming language within a Spyder program. The
implementation was performed on a laptop equipped with an
Intel Core i7 processor, operating at 3.1 GHz, with six CPUs,
16 GB of RAM, and Microsoft Windows 10 as the operating
system.

Figure 8 presents the accuracy curves for both testing
and training of the CNN. The orange curve represents the
training accuracy, which began 61.6% and improved steadily
with an increase in the training epochs, reaching 100% after
50 epochs. The green curve illustrates the testing accuracy,
which started at 79.37% and also reached 100% at 50 epochs.

FIGURE 8. Accuracy curves for CNN.

Figure 9 depicts the loss rate curves for the CNN model
using both training and testing datasets. The loss gradually
decreased during training, with the test loss starting at
0.4222 and eventually reducing to 1.82 × 10−6. For the
training dataset, the loss rate started at 7.8032 and dropped
to 9.8 × 10−6 after 50 epochs.

FIGURE 9. Loss curves for CNN.

Figure 10 displays the confusion matrix generated by
the CNN, which illustrates the model’s ability to differen-
tiate between 2 classes utilizing the data of testing. The
matrix compares the actual label output with the predicted
outcome, with the dark purple squares representing correct
classifications. The confusion matrix correctly identifies
62 true positives for 64QAM and 64 true positives for
32PSK, while the values outside these blocks indicate any
misclassifications.

Figure 11 illustrates the normalized confusion matrix
(NCM) for the CNN model, showing a perfect recognition
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FIGURE 10. The confusion matrix for CNN.

accuracy of 1.0 (100%) for both the 64QAM and 32PSK
classes, with no errors in distinguishing between them.
This matrix highlights the model’s ability to minimize
classification errors.

FIGURE 11. The NCM for CNN.

Table 4 details the classification report for the CNN,
outlining key performance metrics such as Precision, Recall,
and F1 score based on the dataset used. For the 64QAM class,
all metrics—Precision, Recall, and F1 score—are at 100%.
Similarly, the 32PSK class also achieved 100% for these
metrics. The CNN’s weighted average for Precision, Recall,
and F1-score is 100%. The macro-average is calculated
by independently assessing each class’s metrics and then
averaging the results.

TABLE 4. Classification report for CNN.

Figure 12 presents histograms for the 64QAM and 32PSK
images. Figures 13 and 14 depict the Precision-Recall (PR)
and ROC curves, respectively, with PR curves showing
precision as a function of recall.

FIGURE 12. Histograms of 64 QAM and 32 PSK images.

FIGURE 13. PR curves for CNN.

FIGURE 14. ROC curves for CNN.

Figure 13 presents the PR curves for each class, with both
class 0 ‘‘64QAM’’ and class 1 ‘‘32PSK’’ achieving a perfect
area of 1.000 under their respective PR curves, resulting in
a micro-average PR curve area of 1.000. Figure 14 displays
the ROC curves for the CNN, where the area under the curve
(AUC) for both classes is 1.00, or 100%. The micro-average
ROC curve also has an AUC of 1.00, indicating the model’s
strong performance.
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TABLE 5. Comparison between the proposed work and other works.
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TABLE 5. (Continued.) Comparison between the proposed work and other works.

VI. DISCUSSION
The CNN model demonstrated robustness to variations in
underwater conditions. It performed well across different
levels of absorption, scattering, and turbulence, showcas-
ing its ability to adapt to dynamic channel conditions.
Traditional methods exhibited lower accuracy, particularly
under challenging conditions. The CNN model’s automated
feature extraction and learning capabilities provided a clear
advantage in handling complex modulation patterns. Table 5
shows a comparison between the proposed work and other
traditional methods in the previous published works. The
proposed work shows robust ability to recognize modulation
with high accuracy, presents an efficient feature extraction
using a CNN model, thus the work presents real-time
classification capabilities for 64-QAM and 32-PSK, and the
UOWC system has robust performance despite noise sources
and underwater channel attenuation. So, the performance
metrics like recognition accuracy highlights the system’s
reliability. Additionally, the system is chosen for underwater
applications due to its ultra-high data transmission rates,
reaching up to Gbps, minimal latency, and the use of
low-cost, compact transceivers. These advantages make it
ideal for high-speed data transfer over moderate distances.
However, the drawbacks of this model is limited to two

modulation schemes (64-QAM and 32-PSK), potentially
lacking versatility for more complex modulations. Also,
the performance might degrade under extreme underwater
conditions, such as high scattering and severe noise. Further,
there is a difficulty crossing the water/air boundary, high
absorption, scattering, and limited range, can be addressed
by optimizing the system design. This includes using wave-
length selection tailored to specific water types, employing
advanced beam-forming techniques.

The proposed UOWC system can be utilized for applica-
tions, for instance marine research, environmental monitor-
ing, military operations, and IoUT applications where robust
and efficient optical communication is needed. Also, the sys-
tem used for high-speed data transmission and reliable mod-
ulation recognition in challenging underwater environments.

For the CNN, setting the batch size (BS) and training
epochs to 32 and 50, respectively, using a softmax activation
function for the output layer with pool size and kernel of the
max-pooling and convolutional layers configured to 2 × 2
and 3 × 3 filters, respectively. The CNN reached a testing
accuracy (TA) of 100%. However, when the BS was changed
to 128, the epochs adjusted to 30, with a softmax, the TA
of CNN reached 98.99%. Therefore, the hyperparameter
settings can improve the findings.
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Table 6 presents the results of the proposed CNN model’s
performance utilizing the k-fold cross-validation method.
In this approach, the dataset is split into five equal parts,
where four are used for training and one for validation.
The value of k, representing the number of partitions, is set
to 5 in this case. The CNN model undergoes training five
times, each with a different partition of the dataset. Based on
this method, the CNN achieved a mean accuracy of 99.98%
with a standard deviation of ±0.02%. The mean precision
was 99.97% with a ±0.03% standard deviation, the average
recall was 99.99%with a±0.01% standard deviation, and the
average F1-score reached 99.98% with a standard deviation
of ±0.02%. These results demonstrate that the CNN model
exhibits strong performance with minimal variability, and
the use of k -fold cross-validation has further enhanced the
model’s effectiveness.

TABLE 6. The performance of the CNN model using 5-Fold
cross-validation.

TABLE 7. The accuracy of the proposed CNN compared to other models
in previous studies.

The results demonstrate that the CNN model exhibits high
accuracy and minimal loss rates during both testing and
training phases. The PR curves, NCM, and ROC curves
further validate that the CNN model accurately classifies
modulation types. Figure 8 highlights the model’s accuracy
based on a dataset of 626 simulated images, while Figure 9
illustrates the model’s performance in terms of a loss rate of
1.82 × 10−6.
Figures 10 and 11 show the loss rate distributions for the

two classes, highlighting the model’s strong performance.
Table 4 provides a classification report for the proposed
model, where the F1 score, Recall, and Precision are
all 100%. Additionally, the micro-average area under the PR

curve is 100%, and the ROC curve for both classes also
achieved 100% area, reflecting the model’s exceptionally
high performance.

Table 7 provides a comparison of the accuracy achieved in
this study with previously published studies. It is clear that
the 100% accuracy attained by the CNN surpasses that of the
other models [20], [21], [22], [23], [24], [26], [31].

VII. CONCLUSION
This study highlights the effectiveness of CNNs for modula-
tion recognition in underwater OWC systems. The proposed
CNN model significantly outperforms traditional methods
in recognizing 64-QAM and 32-PSK modulation schemes.
By leveraging deep learning, we can enhance the reliability
and accuracy of OWC systems for IoUT applications. The
CNN was tested on a dataset consisting of 313 images each
of 64QAM and 32PSK modulation schemes. The experiment
demonstrated a perfect accuracy of 100% with a minimal
test loss rate of 1.82 × 10−6. Various assessing metrics were
utilized to measure the model’s performance, revealing a
precision metric of 100%, a recall of 100%, and an F1-score
of 100%.

The PR curves for the CNN showed a 100% area under the
curve for both 64QAM and 32PSK classes. Similarly, the
ROC curve also achieved an AUC of 100% for both classes.
The hyperparameters settings of the CNN, including the
loss and activation functions, significantly influenced the
precision of the results. Optimal performance is contingent
upon fine-tuning these parameters to achieve the best settings.

The performance of the CNN is also assessed based on
precision, accuracy, F1-score, and recall utilizing the k-fold
cross-validation method.

Therefore, referring to the proposed UOWC system,
it presents distinct benefits compared to traditional acoustic
and RF technologies in underwater settings. Additionally,
it supports higher bandwidth and more reliable, high-speed
communication, making it well-suited for data-intensive
tasks like video streaming and advanced sensor networks.
These advantages position UOWC as an efficient and
high-performance solution for underwater communication.

The used dataset and developed code are available online
at: https://www.kaggle.com/datasets/drsaeedmohsen/code-
and-dataset.

VIII. FUTURE WORK
Future research will focus on extending the CNN model
to handle additional modulation schemes and real-world
underwater conditions. Exploring advanced deep learning
techniques and integrating the model into practical com-
munication systems will further enhance its applicability
and performance. Also, one could apply the CNN model
on different types of modulations. Additionally, one could
develop a hybrid communication system that combine optical
with RF or acoustic methods to extend the communication
range and overcome absorption and scattering challenges.
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The following points outline the practical implementation
of the proposed CNNmodel in real-world IoUT applications,
providing a clearer pathway for implementation in future
systems. Several key challenges and requirements could be
considered in the future work:

• Hardware Requirements: The implementation of the
CNN model in real-world IoUT systems would require
efficient hardware capable of handling the computa-
tional complexity of deep learning algorithms. Specif-
ically, devices such as edge processors, GPUs, or spe-
cialized hardware accelerators (e.g., FPGAs or ASICs)
would be necessary to perform real-time modulation
classification without significantly increasing system
latency. The selection of hardware would depend on
the specific IoUT application, with trade-offs between
power consumption, processing speed, and size being
critical factors.
• Real-Time Performance: Ensuring real-time per-
formance is essential for IoUT systems, particularly
in time-sensitive applications such as underwater
navigation or disaster monitoring. The proposed CNN
model has been designed with an emphasis on fast
inference times, making it suitable for real-time clas-
sification. In practice, the integration of low-latency
data pipelines and optimized deep learning libraries
(such as TensorRT orOpenVINO)would be essential to
minimize the delay from data acquisition to modulation
recognition.
• Environmental Considerations: IoUT systems often
operate in challenging underwater environments with
variable noise levels, signal attenuation, and limited
bandwidth. Our model has been tested under a variety
of simulated conditions to account for these factors,
and we anticipate that adaptive real-time optimization,
such as dynamically adjusting processing power based
on environmental conditions, could be implemented
to further improve system performance in practical
deployments.
• Power Efficiency: Given that IoUT devices are often
deployed in remote underwater locations with limited
access to power sources, energy efficiency is a signifi-
cant concern. The proposed CNN model’s complexity
can be adjusted by tuning the number of layers and
neurons, allowing for a balance between accuracy
and power consumption. We have also explored the
potential for model compression techniques, such as
pruning and quantization, to reduce power usage with-
out sacrificing significant classification performance.
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