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ABSTRACT A resurgent zoonotic disease called monkeypox presents serious public health issues,
especially in locations with low resources where prompt and correct diagnosis is essential. Due to the
health shortcomings in sensitivity, specificity, and adaptability to different clinical presentations, traditional
diagnostic techniques frequently need to be revised.We introduce a novel hybrid Swin-PSO-SVM to improve
the precision and dependability of monkeypox detection. The Swin-PSO-SVM model incorporates a Swin
Transformer for complex feature extraction, Particle Swarm Optimization (PSO) for extracting the best
features from complex feature extraction, and a Support Vector Machine (SVM) for accurate classification.
The findings show how well the Swin-PSO-SVM model performs, attaining great diagnostic accuracy and
resilience over various datasets and picture characteristics using two datasets: MSLD with two classes
(monkeypox and others) and MSID with four classes(chickenpox, measles, monkeypox, and normal). Swin-
PSO-SVM model has the highest accuracy of 95.556 and an F1 score of 95.569 on the MSLD dataset and
a 96.429 accuracy and a 96.429 F1 score on the MSID dataset, outperforming several existing models.
With an accuracy of 91.111 and an F1-score of 91.138, the experimental findings proved the model’s
exceptional performance and validated its dependability in real-world applications. The Swin-PSO-SVM
provides a workable and understandable solution that can be easily applied in clinical settings and improves
the generalizability of monkeypox detection. This paper contributes to worldwide efforts to limit monkeypox
outbreaks through early and accurate identification.

INDEX TERMS Monkeypox, swin transformer, swin-PSO-SVM, particle swarm optimization, support
vector machine, healthcare, early diagnosis.

I. INTRODUCTION
The monkeypox virus, a member of the same family as
smallpox and belongs to the Orthopoxvirus genus, is the
cause of this viral zoonotic illness. Monkeypox is less severe
than smallpox, but it has nonetheless attracted much interest
because of its increasing prevalence and potential for large-
scale outbreaks, especially in areas with poor access to
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healthcare. Controlling the spread of monkeypox requires
accurate and timely diagnosis, particularly considering how
similar its symptoms are to those of other illnesses that
resemble the pox, such as chickenpox and measles. Even if
they are effective, traditional diagnostic methods frequently
call for specific laboratory equipment and skilled workers,
which may not be easily accessible in environments with
low resources. As a result, there is increasing interest in
creating reliable and automated diagnostic models based on
Deep Learning (DL) andMachine Learning (ML) approaches
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that enable quick and accurate illness detection. Early
classification and detection of monkeys can be crucial in
controlling their spread. The classification of monkey tumors
can aid in the diagnosis of disease severity and aid in
appropriate treatment selection. Traditional classification is
based on visual wound assessment by trained physicians.
However, this method can be time-consuming, subjective,
and error-prone [1].

DL techniques have shown promising results in various
image classification tasks in recent years. Convolutional
Neural Networks (CNNs) are a type of DL paradigm widely
used in image classification tasks. CNNs can automatically
recognize features from raw image data and use these features
to classify images into different groups [2], [3], [4], [5],
[6], [7], [8], [9], [10]. DL models for monkey analysis
have been developed in many studies, using the Monkeypox
Skin Lesion Dataset (MSLD) and Monkeypox Skin Image
Dataset (MSID) for model validation and training [11],
[12]. MSLD evaluated the accuracy of pre-trained DL
models, where ResNet-18 achieved the most impressive
accuracy; GoogLeNet, SqueezeNet, ResNet-18, and similar
Authors developed a model-based concept so that of seizures,
seizures using the Squeeze and Excitation Network (SENet),
performed better InceptionV3 and VGG16 for classifying
monkeys in the three data sets. It was also tested in [13]
that the ensemble system combines VGG-16, ResNet50,
and InceptionV3 to classify monkey diarrhea and other
diseases as ulcerative colitis ResNet50 had the best accuracy.
Although such methods have shown power, models are
needed for more successful interpretation and modification,
primarily to address this when measuring variable image
quality and limited data supply. Extraction of Naive Bayes
(NB) and Supply Vector Machine (SVM) features from
VGG16Net, AlexNet, and other models.

Moreover, using the MSID—which consists of four
classes: chickenpox, measles, monkeypox, and standard—
has made it easier to create multi-class classification models.
While [14] stated that MobileNetV2 surpassed VGG16 and
VGG19, it showed how effective SqueezeNet is. Even with
these developments, a more complete model that combines
the benefits of DL, ML, and optimization methods is still
required. To close this gap, we introduce a novel hybrid
model called Swin-PSO-SVM, which combines PSO, SVM,
and the Swin Transformer for early monkeypox detection.
The Swin Transformer is an excellent tool for collecting
local and global relationships in visual data because of its
hierarchical processing and changing window self-attention
processes [15]. We chose PSO for its simplicity, fast
convergence, and effective global search capabilities, making
it ideal for optimizing complex models like SVM. Compared
to other algorithms such as GWO or AHA, PSO has fewer
control parameters and is easier to implement, providing
a practical balance between efficiency and performance.
By integrating PSO, we can tune the SVM’s hyperparameters,
guaranteeing reliable and effective classification results on
various datasets.

A. MOTIVATIONS AND CONTRIBUTIONS
There is an urgent need for more precise, understandable,
and flexible diagnostic methods for monkeypox—especially
in light of the growing dangers to world health. Although
DL models have demonstrated potential in detecting mon-
keypox from skin lesion photos, DL models frequently have
drawbacks such as a reliance on sizable, labeled datasets,
poor interpretability, and poor performance in settings with
fluctuating picture quality. Even if DL models are reliable,
traditional methods often cannot be used in environments
with limited resources since DL models need specialized
tools and knowledge. Moreover, the healthcare sector has
a notable vacuum due to the lack of a robust model that
successfully combines the advantages of optimization, ML,
and DL. Using the capabilities of hierarchical processing of
the Swin, PSO, and SVM, the Swin-PSO-SVM model aims
to address the above issues by improving diagnostic accuracy
efficiency, and detection performance while ensuring the
solution is interpretable and flexible enough to work with
various datasets. The main contributions of this paper
summaries as follows:

• We introduce a novel hybrid model, i.e., Swin-PSO-
SVM,which effectively synergizes the Swin transformer
for extracting local feature extraction, PSO for best fea-
tures selection with reducing complexity, and SVM for
accurate classification. The proposed Swin-PSO-SVM
is designed for monkeypox detection and diagnosis,
offering a robust solution for Monkeypox identification.

• The proposed Swin-PSO-SVM model provides disease
detection with accuracy for monkeys and robustness in
MSLD and MSID datasets. The swin-PSO-SVM model
has high performance in terms of an F1-score of 95.24%
for the monkeypox class on the MSLD dataset and
98.01% for the normal class on the MSID dataset, out-
performing several existing models. Therefore, the pro-
posed model can maintain high accuracy and balanced
performance across multiple disease classes, ensuring
reliability for real-world applications—especially in
low-resource environments.

• The Swin-PSO-SVM model helps to promote glob-
alization. Public health efforts that promote early
detection and intervention in an epidemic of monkey
interpretability and practicality in clinical environments.

B. PAPER STRUCTURE
The rest of the paper is organized as follows. In Section II,
we provide a review of related studies. In Section III,
we describe the proposed approach in detail (Methodology).
Section IV presents the experimental results and analysis.
Section V presents the discussion of the paper. Finally,
in Section VI, we conclude the paper and highlight its
contributions.

II. RELATED WORK
Relatedworks that use theMSLDwith two classes. For exam-
ple, Nayak et al. [16] applied five pre-trained DL models:
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GoogLeNet, Places365-GoogLeNet, SqueezeNet, AlexNet,
and ResNet-18. The results showed that ResNet18 obtained
the highest accuracy. GradCAM enables visual interpretation
of the prediction, helping health professionals use the model.
Surati et al. [17] proposed the SENet Attention model
to classify three diseases Monkeypox, Chickenpox, and
Measles. Using three datasets, the proposed model recorded
the highest performance compared to InceptionV3, Efficient-
Net, and VGG16. Ali et al. [13] proposed an ensemble
model based on VGG-16, ResNet50, and InceptionV3 and
compared it using three models to classify monkeypox and
other diseases. Data augmentation was applied to increase
the number of images and enhance their quality. ResNet50
achieved the best overall accuracy. Kumar [18], extracted
features from AlexNet, GoogleNet, and VGG16Net and
then applied different ML models to extracted features,
including SVM, NB, KNN, RF, and DT. The results showed
that NB with VGG16Net features recorded the highest
performance.

Haque et al. [19] proposed a hybrid model that com-
bined DL models: VGG19, Xception, DenseNet121, Effi-
cientNetB3, and MobileNetV2 with Convolutional Block
Attention Module (CBAM). The results showed that the
Xception-CBAM-Dense layers record the highest perfor-
mance. Sahin et al. [20], applied DL models: ResNet18,
GoogleNet, EfficientNetb0, NasnetMobile, ShuffleNet, and
MobileNetv2. The results showed thatMobileNetv2 recorded
the highest accuracy. Related works that use MSID with
four classes. For example, Nayak et al. [21] applied
residual networks (ResNet) and SqueezeNet to classify four
classes. The results showed that SqueezeNet recorded the
highest performance. Irmak et al. [22] applied MobileNetV2,
VGG16, and VGG19, and the highest performance scores
were obtained with MobileNetV2.

A deep transfer learning method for identifying mon-
keypox disease using CNN was presented [16]. The study
employed Generalization and Regularization-based Transfer
Learning methods (GRA-TLA) for binary and multiclass
classification. The proposed method was evaluated on 10 dis-
tinct CNN models in three investigations. According to the
preliminary computational results, ResNet-101 performed
best for multiclass classification. Sahin et al. [20] provided
details of a mobile application that classifies skin lesions
using deep learning, which helps identify and isolate human
monkeypox. The program made use of a deep CNN that
has been trained with pictures of skin lesions from both
healthy individuals and those with monkeypox. The network
used the TensorFlow Lite model to adapt to mobile devices
and classify photos as positive or negative for monkeypox
detection. Altun, Murat, et al. [23] used DL techniques to
identify monkeypox disease from skin lesions in the event
of a pandemic. After developing a customized CNN model,
the authors employed it with hyper-parameter optimization
and a customized hybrid function transfer learning model to
obtain impressive results. Several transfer learning models
were compared for performance, such as MobileNetV3-s,

FIGURE 1. The steps of methods.

EfficientNetV2, ResNET50, Vgg19, DenseNet121, and
Exception models.

The application of DL and attention mechanisms for
image-based diagnosis of human monkeypox sickness is
discussed [19]. The Xception-CBAM-Dense architecture
outperformed the other five DL models with attention mech-
anisms, achieving the highest results. Uysal [24] proposed
hybrid DL based on LSTM and pre-trained CNN mod-
els: CSPDarkNet, InceptionV4, MnasNet, MobileNetV3,
RepVGG, SE-ResNet, and Xception. They applied different
data augmentation techniques. Ahsan et al. [25] applied
pre-trained CNN models: VGG16, InceptionResNetV2,
ResNet50, ResNet101, MobileNetV2, VGG19, ViT. They
modified versions of the VGG19 and MobileNetV2 models
to enhance performance. The models were evaluated using
an augmented testing set and a non-augmented testing
set. Table 1 compares different models used in research.
It outlines the methods, advantages, limitations, and datasets
referenced in the studies.

III. METHODOLOGY
The procedure has six primary steps including a collection of
image datasets, data augmentation, model training, andmodel
evaluation as shown in Figure 1.

A. DATABASE DESCRIPTION
In this work, we use two datasets,i.e., MSLD [26] and
MSID [27]. MSLD includes two classes: Monkeypox and
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TABLE 1. Comparison of existing work.

FIGURE 2. The sample image from each class.

Others. It contains a Fold1 folder with three folders: training
with 2142 augmented images, validation with 420 augmented
images, and testing with 45 images. Furthermore, MSID
is used to test and develop DL algorithms to diagnose
Monkeypox. Diponkor Bala and Md. Shamim Hossain of
the School of Computer Science and Technology at the
University of Science and Technology of China (USTC)
assembled the dataset .it includes 770 images divided into
four: 107 of Chickenpox, 91 of Measles, 279 of Monkeypox
and 293 of Normal. Figure 2 shows one image from each class
from the MSID and MSLD datasets.

B. IMAGE AUGMENTATION
Image augmentation is anML and computer vision technique
that uses manipulated images to increase the size of a
training data artificially set [28]. This increases the resilience
and generalization of the model, particularly when data
availability is limited [29]. Many techniques are employed
in Image Augmentation, such as rotation, which rotates

images to a particular degree. Flipping is inverting an
image along a defined axis, typically horizontal or vertical,
to introduce variance into the dataset and make the model
adaptable to varied orientations [30]. Resizing via Adjusting
an image’s dimensions to a specific width and height helps
guarantee that all images in the dataset are of comparable
size, which is frequently required for model input [31].
Normalization aims to conform the values of the pixels to a
standard scale, often by subtracting the mean while dividing
by the standard deviation or scaling to a specific range,
to accelerate convergence during training and ensure that
different characteristics contribute equally to the learning
process [32]. We perform augmentation to increase the
training part of the MSID dataset. We apply the following
methods to our dataset. RandomHorizontalFlip = 0.5, Ran-
domVerticalFlip = 0.5, Resize = 256, and Normalization =

Mean and standardization

C. PROPOSED MODEL
The proposed Swin-PSO-SVM uses a combination of
approaches that use cutting-edge ML techniques to improve
monkeypox identification efficiency and accuracy. Figure 3
shows the proposed Swin-PSO-SVM that combines Swin
transformer, PSO, and replaces softmax with SVM.

1) SWIN TRANSFORMER
Our solution uses the Swin Transformer to extract hierarchi-
cal features at various scales. The Swin transformer extracts
local and global characteristics from input pictures using a
hierarchical structure with shifting windows, in contrast to
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FIGURE 3. Proposed Swin-PSO-SVM model.

conventional CNNs. Because tiny details might be crucial
for a successful diagnosis in medical image analysis. After
processing the input images, the Swin Transformer extracts
a rich set of highly descriptive features appropriate for
classification. Swin Transformer is a deep learning system
that uses an array of transformer encoder units [33]. Every
encoder unit has a shifting window self-attention component,
which stores regional dependencies across patches within a
window, and a feed-forward neural network, enabling the
model to recover local information from a patch [34]. Swin
Transformer achieves process hierarchy by layering multiple
Transformer encoder units. A single block’s outcome serves
as the information source for the next, enabling the model to
record global interconnections throughout patches [35]. Right
after hierarchical processing, an identification head is con-
nected to the Swin Transformer to anticipate labels for classes
during tasks related to image classification. The classification
head typically comprises several fully connected layers that
terminate with a softmax activation [35].

Z l = W −MSA
(
LN

(
Z l−1

))
+ Z l−1 (1)

Z l = MLP
(
LN

(
Z ′l

))
+ Z ′l (2)

Z ′+1
= SW −MSA

(
LN

(
Z l

))
+ Z l (3)

Z ′l+1
= MLP

(
LN

(
Z ′l+1

))
+ Z ′l+1 (4)

LN and MLP refer to the linear layer and multi-layer
perceptron, respectively, with Gaussian error linear unit

activation function. The typical multi-head self-attention
layer found in most transformers is supplemented by a multi-
head self-attention window (W-MSA) along with shifting
window-based MSA layers. The architecture of the Swin
model is shown in Figure 4

2) PSO
In the Swin-PSO-SVM model, our paper employs PSO [36]
to optimize feature extraction from the Swin Transformer,
thereby reducing dimensionality and focusing on the most
relevant features. PSO is a metaheuristic that employs the
population’s optimization approach which can solve a variety
of optimization issues, spanning continuous, discrete, and
combinatorial ones [36]. The core idea underlying PSO is
to create a swarm of particles, each reflecting a potential
solution to the optimization issue. The particles traverse the
search space, guided by the swarm’s best-known positions.
Steps in the basic PSO algorithm include Setting up a popu-
lation of particles with random locations and velocities [37].
Then, evaluate each particle’s fitness. Following that, Update
each particle’s individual best positioning, the swarm’s global
best position, along with its velocity and location. These
phases repeat themselves until a requirement for termination
is fulfilled, as a certain number of iterations or convergence
happens. The basic PSO algorithm can be defined by the
following equations [37]: The velocity update equation:

vt+1
i = w · vti + c1 · r1 ·

(
pti − x ti

)
+ c2 · r2 ·

(
gt − x ti

)
(5)

where: vt+1
i represents the updated velocity of particle i at

time t+1, vti shows the particle i current velocity at time t,
w is the inertia weight, which governs the influence of the
particle’s past velocity, c1 and c2 are the cognitive and social
acceleration coefficients, respectively, r1 and r2 are random
numbers from 0 to 1, pti is the particle i personal best position
at time t, gt is the global best position of the swarm at time t
and x ti is the particle i current position at time t. The position
update equation:

x t+1
i = x ti + vt+1

i (6)

where: x t+1
i is the updated position of particle i at time t+1,

x ti is the particle i current position at time t, and vt+1
i is the

particle i updated velocity at time t+1. The global best update.

gt+1
= argmin

i
f
(
pt+1
i

)
(7)

where: gt+1 is the global best-updated position of the swarm
in time t+1, pt+1

i is the particle i updated personal best
position at time t+1 and f(x) is the objective function has
to be optimized. These equation parameters can be tuned to
regulate the appropriate level of exploration and exploitation
during the search phase, which can have a substantial impact
on the efficacy of the algorithm. PSO offers various advan-
tages [37], including simplicity, ease of implementation, and
the capacity to address non-differentiable, non-convex, and
multi-modal optimization problems.
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FIGURE 4. The architecture of Swin model.

Algorithm 1 Swin-PSO-SVM
1) Input: Set of images X = {x1, x2, . . . , xn} with labels

Y = {y1, y2, . . . , yn}.
2) Output: Predicted labels Ŷtest.
3) Feature extraction:

a) Divide each x_i into patches, embed to sequence
Z_i.

b) Apply f_i = SwinTransformer(x_i)
4) PSO for feature selection:

Input: Feature set F = [f1, f2, . . . , fp]
a) Define a binary particle vector

P = [p1, p2, . . . , pp], where:

pi ∈ {0, 1}, i = 1, 2, . . . , p

Each pi indicates whether feature fi is selected
(pi = 1) or not (pi = 0)

b) Fitness function F(P):

F(P) = Accuracy(SVM(FP))

where FP represents the subset of features
selected P

c) Optimize P using PSO to maximize F(P)
5) SVM Classification:

a) Train SVM with θ∗ on F and Y :

SVM Model = SVM(F,Y ; γ ∗,C∗)

b) Predict labels for Xtest:

Ŷtest = SVM Model(Ftest)

3) SVM
We replace softmax with an SVM for classification in the
final phase. The best-selected features, optimized by PSO, are

derived from the training set, while the testing set is used to
train and evaluate the SVM, respectively. This combination
ensures that the classifier is effectively generalized to handle
unknown data while maintaining high accuracy.

IV. EXPERIMENT RESULTS
The MSLD and MSID results are shown in two subsections
according to confusion matrices, recall, F1-score in each
class, and precision. Moreover, each dataset’s average
precision, recall, accuracy, and F1-score are shown in the
discussion subsection V. Where TP represents the number
of true positive predictions, TN is the whole true negative
forecasts, FP is the total false positive estimates, and FN is
the total false negative predictions.

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(8)

Recall =
TP

TP+ FN
(9)

Precision =
TP

TP+ FP
(10)

F1 − score = 2 ·
precision · recall
precision+ recall

(11)

A. EXPERIMENTAL SETUP
The models were created using the Monai library, PyTorch,
and Python. A laptop equipped with an Intel Core i7 10750H
processor and 16GB of RAM was used for the experiment.
AnNvidia GeForceGTX1650with 4GB ofVRAMwas used
as the single GPU for the networks’ training and validation.
Table 2 includes the number of images in each class that
were used in the dataset during the training, validation and
testing of the model. The networks were trained and validated
only on the augmented data set, with 80% of the combined
images from both labels used for training and 20% used for
validation. A summary of the POS parameters for selecting
the best features can be found in Table 3.
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TABLE 2. The number of images in each class for MSID.

TABLE 3. Parameters of PSO.

B. COMPARISON OF EXISTING MODELS AND
Swin-POS-SVM PERFORMANCE IN MSLD
1) PERFORMANCE OF ADAM OPTIMIZER
Table 4 shows the precision, recall, and F1-score of
DenseNet121, VGG16, ResNet18, AlexNet, Swin trans-
former, and the proposed model (Swin- POS-SVM) based on
each class: monkeypox and others for MSLD dataset. We can
see that Swin-POS-SVM records the highest precision, recall,
and F1-score at 90.91, 100, and 95.24, respectively, for the
monkeypox class compared to other models. DenseNet121
performs well in classifying others, with a recall of 88.00.
AlexNet records the worst performance compared to other
models, with 60 recalls for monkeypox. ResNet18 performs
well for other pre-trained CNN models with 92.00 of recall.
The Swinmodel achieves excellent results across two classes,
with precision being 100 for monkeypox compared to pre-
trained CNN.

Six confusion matrices are shown in Figure 5, each
showing how various models performed when asked to
categorize data into two classes: monkeypox and others. The
number of samples classified into each class is indicated by
the color intensity in each confusion matrix; darker colors
indicate larger counts. Swin-POS-SVM has the highest TP,
correctly identifying 20 cases as Monkeypox and 23 as
Others.

Figure 6 includes several receiver operating characteristics
(ROC) curves and models already applied and evaluated on
theMSLDdataset. The existingmodels can be summarized as
Swin-POS-SVM, Swin, ResNet18, Densenet121, AlexNet,
and VGG. Each graph displays a subgraph of the ROC curve
of one of the mentioned models with the AUC value on the
opposite side. The Y-axis represents the true positive rates,
while the X-axis represents the false positive rates. We can
conclude the following observations and facts from the
graphs: The Swin-POS-SVM model outperformed all other
methods by achieving an area under the curve of 0.96. Swin,

ResNet18, Densenet121, and VGG also showed good results
by achieving an area under the curve of 0.92, 0.86, 0.81,
and 0.73, respectively. The model representing AlexNet’s
performance showed the lowest results in the AUC curve,
at about 0.68. In summary, the Swin-POS-SVM model
achieved the best results among all models during comparison
and evaluation, unlike AlexNet, which showed the lowest
performance on the MSLD dataset.

2) PERFORMANCE OF MODELS WITH SGD OPTIMIZER
Table 5 shows the precision, recall, and F1-score of
DenseNet121, VGG16, ResNet18, AlexNet, Swin trans-
former, and the proposed model (Swin-POS-SVM) based on
each class: monkeypox and Others forMSLD dataset. We can
see that Swin-POS-SVM records the highest results (95 recall
and 90.48 of F1-score) for the monkeypox class compared
to other models. DenseNet121 performs well in classifying
others, with a recall of 88.00. AlexNet records the worst
performance with 60.00 precision for monkeypox. ResNet18
performs well for others with 92.00 of recall. The Swinmodel
achieves excellent results across two classes, with precision
being 90 for monkeypox compared to pre-trained CNN.

Figure 7 shows six confusion matrices used to assess
how well a binary classification task—possibly linked to
differentiating betweenMonkeypox and Others is performed.
ResNet18 has more mistakes in Monkeypox. DenseNet121
is comparable to ResNet18; however, it makes more errors
in its monkeypox predictions. Overall, the models vary in
effectiveness, with Swin-POS-SVM and Siwn showing better
accuracy, particularly in distinguishing Monkeypox cases
from others. The darker cells in the matrices indicate higher
counts, with a scale bar showing the range of values.

Figure 8 shows the comparisons made on the MSLD
dataset based on the SGD optimizer using ROC curves,
which provide a visual representation that largely illustrates
the balance between the true positive rates and the false
positive rates, from which we conclude the following results:
Swin-POS-SVM achieved the best performance with a result
of 0.91. Although the algorithms Swin, RestNet18, and
DenNet121 achieved acceptable results of 0.87, 0.81, and
0.77, respectively. While AlexNet and VGG achieved the
lowest results with the same rate of 0.66.

C. COMPARISON OF EXISTING MODELS AND
Swin-POS-SVM PERFORMANCE IN MSID
1) PERFORMANCE WITH ADAM OPTIMIZER
Table 6 shows the precision, recall, and F1-score of
DenseNet121, VGG16, ResNet18, AlexNet, Swin, and the
proposed model (Swin-POS-SVM) based on each class:
Chickenpox, Measles, Monkeypox, and Normal for MSID
dataset. We can see that Swin-POS-SVM recorded the
highest precision, recall, and F1-score at 96.10, 100, and
98.01, respectively for the normal class. In addition, Swin-
POS-SVM outperforms the pre-trained models across all
categories, achieving the highest F1-scores, indicating a
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TABLE 4. Performance models with Adam optimizer in each class for MSLD datasets.

FIGURE 5. Confusion matrices of models with Adam optimizer for MSLD dataset.

more balanced performance regarding precision and recall.
DenseNet121 performs well in classifying Monkeypox and

Normal, with F1-scores of 93.75, but it records the lowest
recall for Measles with 62.50. ResNet18 performs extremely
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FIGURE 6. ROC curves of models with Adam optimizer for MSLD dataset.

TABLE 5. The results of MSLD datasets with SGD optimizer.

well for Monkeypox and Normal with F1-scores above
90. It also performs the best for Chickenpox and Measles

with more heightened recall results than DenseNet121 and
VGG16. The Swin model achieves excellent results across
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FIGURE 7. Confusion matrices with SGD optimizer for MSLD dataset.

all classes, with the highest F1-score being 97 and the highest
recall being 100 compared to pre-trained CNN.

Figure 9 shows the confusion matrices for multiple models
implementing the Adam optimizer on the MSID dataset
present an in-depth overview of model performance across
four classes: Chickenpox,Measles,Monkeypox, and Normal.
The models vary in their efficacy, with Swin-POS-SVM and
Swin Transformer exceeding the others in discriminating
between classes, particularly Chickenpox and ‘‘Normal.
The ResNet18 and DenseNet121 models function well, yet
they have some flaws in Monkeypox while VGG16 and
AlexNet confront the most severe challenges, particularly
with Measles and Monkeypox, noticing areas for growth for
these models.

Figure 10 shows ROC curves of models with the Adam
MSLD dataset. The performance of the algorithms was
compared in terms of their ability to identify the diseases
chickenpox, measles, monkeypox, and normal. From the
figure, we can deduce the following observations: For
Chickenpox and Measles, Swin-POS-SVM achieved the
best results with a rate of 0.96 for both, while AlexNet
achieved the lowest with a rate not exceeding 0.74 and 0.68,
respectively. As for Monkeypox, Swin-POS-SVM is still on
top with a result of 0.97, and AlexNet is still the lowest,
but this time it reached 0.86. As for the normal diagnosis,
Swin-POS-SVM also had the best results, reaching 0.99,
and the lowest results were for AlexNet, which achieved
only 0.88.
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FIGURE 8. ROC curves with SGD optimizer for MSLD dataset.

2) PERFORMANCE WITH THE SGD OPTIMIZER
Table 7 shows the precision, recall, and F1-score of models
based on each class: Chickenpox, Measles, Monkeypox,
and Normal for MSID dataset. We can see that Swin-POS-
SVM recorded the highest recall, and F1-score at 99, and
97, respectively for the normal class. DenseNet121 has the
lowest recall for measles (58), but it does well in classifying
monkeypox and normal (96 recall for normal). ResNet18
exhibits F1-scores above 90 and performs exceptionally well
for Normal and Monkeypox. In addition, it outperforms
DenseNet121 and VGG16 in terms of heightened recall
results for measles and chickenpox. Comparing the Swin
model to pre-trained CNN, it obtains superior performance

in all classes, with the greatest recall of 97 and the highest
F1-score of 95.

Confusion matrices with models trained by the SDG
optimizer on the MSID dataset, which involve the Swin-
POS-SVM, Swin, ResNet18, VGG16, DenseNet121, and
AlexNet models as shown in Figure 11, compared with the
predicted labels for the four classes: chickenpox, measles,
monkeypox, and normal. The values shown in the matrices
revealed that Swin-POS-SVM and Swin perform well with
high TP rates, especially for the Monkeypox and Normal
classes, with TP= 25 and 22 forMonkeypox and TP= 73 and
72 for Normal classes. Again, both VGG16 and AlexNet got
the lowest results for chickenpox, with TP = 19 and 15,
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TABLE 6. The results of models with Adam optimizer in each class for MSID dataset.

TABLE 7. The results of models with SDG optimizer in each class for MSID dataset.

respectively, while for monkeypox, TP was 58 for VGG16
and 53 for AlexNet.

Figure 12 shows ROC curves of models with the
SDG MSLD dataset. From the figure, we can deduce
the following observations: For Chickenpox, Measles, and
Monkeypox, Swin-POS-SVM achieved the best results with
a rate of 0.93, 0.94, and 0.96, respectively, while AlexNet
achieved the lowest with a rate not exceeding 0.72, 0.65,
and 0.85, respectively. As for the diagnosis of Normal,
Swin-POS-SVM also had the best results, reaching 0.98,

while AlexNet also had the lowest results, achieving
only 0.87.

V. DISCUSSION
We conduct various experiments for two classifications
and four classifications using two image datasets. Two
classification tasks include compression between pre-trained
CNN models, the Swin transformer, and the Swin-POS-
SVM with Adam optimizer and SGD optimizer to clas-
sify Monkeypox and Others using the MSLD dataset.
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FIGURE 9. Confusion matrices of models with Adam optimizer for MSID dataset.

Swin-POS-SVM is built based on extracted features from
Swin, selecting the best features from extracted features by
POS and replacing softmax with SVM.

1) AVERAGE PERFORMANCE FOR MSLD
Figure 13 shows models’ average performance with Adam
optimizer. Swin-POS-SVM records the highest performance
(accuracy of 95.556 and F1-score of 95.569), indicating that
the combination offers the best solution. Swin transformer
has the second-highest performance with 91.111 accu-
racy and 93.783 F1-score. ResNet18 records the highest
performance with 86.667 accuracy and 86.572 F1-score
compared to pre-trained CNN models. AlexNet records the
worst on all measures (accuracy of 68.889). Figure 14

shows models’ average performance with SGD optimizer.
Swin-POS-SVM records the highest performance (accuracy
of 91.111 and F1-score of 91.138), indicating that this
combination offers the best solution. Swin transformer has
the second-highest performance with 86.667 accuracy and
86.706 F1-score. ResNet18 records the highest performance
with 82.222 accuracy and 81.893 F1-score compared to
pre-trained CNN models. AlexNet records the worst on all
measures (accuracy of 66.667).

2) AVERAGE PERFORMANCE FOR MSID
Figure 15 shows the average accuracy, precision, recall, and
F1-score of models forMSID. The proposed model combines
the Swin transformer with POS and SVM outperforms the
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FIGURE 10. ROC curves of models with Adam optimizer for MSID dataset.

best on all measures (accuracy of 96.429 and F1-score of
96.429), indicating that the Swin-POS-SVM model offers
the best solution. For pre-trained CNN models, ResNet18
recorded the highest performance with 87.755 accuracy
and 87.813 F1-score. AlexNet recorded the worst on all
measures (accuracy of 75.51). Swin transformer has the
best performance compared to pre-trained CNN models with
93.878 accuracy and 93.783 of F1-score.

Figure 16 shows the average accuracy, precision, recall,
and F1-score of models for MSID. The proposed model
(Swin-POS-SVM) that combines the Swin transformer
with POS and SVM outperforms all other models and
records the best on all measures (accuracy of 94.388 and
F1-score of 94.41), indicating that this combination offers

the best solution. For pre-trained CNN models, ResNet18
recorded the highest performance with 85.714 accuracy
and 85.814 F1-score. AlexNet recorded the worst of
all measures (accuracy of 73.98). Swin transformer has
the best performance compared to pre-trained CNN
models with 91.837 accuracy and 91.711 of F1-score.
Figures 13, 14 and 15 show the average accuracy, precision,
recall, and F1-score of models for MSLD and MSID,
respectively.We can see that the proposedmodel (Swin-POS-
SVM) that combines the Swin transformer with POS and
SVM outperforms all other models and records the best on
all measures. In addition, models with the Adam optimizer
record the best performance compared to models with the
SDG optimizer.
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FIGURE 11. Confusion matrices of models with SGD optimizer for MSID dataset.

A. STATISTICAL ANALYSIS
The best results of two datasets were recorded by Adam
optimizer; we approve the results by the Nemenyi test as
statistical analysis Specifically, the Nemenyi test allowed
us to identify specific pairs of models that exhibited
statistically significant differences in their performance,
providing valuable insight into their relative strengths and
weaknesses. The Nemenyi test represents the difference in
terms of critical difference. To enhance the interpretability
of the results, we created a critical difference diagram
(CD diagram) as depicted in Figure 17 and 18. The
CD diagram, a widely used visualization tool in multiple
comparison analyses, highlighted the significant differences
between the models and statistical methods often used to
compare the performance of various classifiers or models.

By displaying the average ranks of the models, it provided
a clear and concise representation of their performance
disparities. Figure 17 shows the CD of models for MSLD.
The x-axis shows ranks from 1 to 7. Lower ranks (closer
to 1) indicate better performance, while higher ranks (closer
to 7) indicate worse performance. Figure 18 shows the CD
of models for MSID. We can see that Swin-POS-SVM has
1 indicate better performance, while AlexNet has 6 indicate
worse performance.

B. COMPARISON WITH EXISTING WORK AND THE
PROPOSED MODELS BASED ON MODELS AND
PERFORMANCE
We compared the proposed models based on models with
binary classification and non-augmented testing sets and
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FIGURE 12. ROC curves of models with Adam optimizer for MSID dataset.

TABLE 8. Comparison with existing work and the proposed models based on models and performance.

four classes with non-augmented testing sets. In addition,
we do not compare our work with other studies that applied
models with three classes and an augmented testing set. For
example, The authors in [16] and [23] evaluated models on an

augmented testing set. In [17] were evaluated models using
an augmented testing set. Table 8 compares our Swin-POS-
SVM model with the existing work. Our experiments show
that the proposed Swin-POS-SVM achieves an accuracy
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FIGURE 13. Models performance average with Adam optimizer for MSLD.

FIGURE 14. Models performance average with SGD optimizer for MSLD.

FIGURE 15. Models performance average with Adam optimizer for MSID.

of 95.556 in classifying two classes ,i.e., monkey and others
in MSLD, and four classes, i.e., monkeypox, chickenpox,
measles, and routine. For MSLD, ResNet50 was used by
the authors in In [13], and its accuracy, precision, recall,
and F1-score were 82.96, 87, 84, and 83, respectively.
In [18], authors applied NB with VGG16Net and recorded

FIGURE 16. Models performance average with SDG optimizer for MSID.

FIGURE 17. CD diagram of models for MSID.

FIGURE 18. CD diagram of models for MSID.

91.11 accuracy and 93.15 F1-score. Xception-CBAM-Dense
layers in [19] and recorded with 83.89 precision. The authors
used MobileNetv2 in [20], and its precision, precision, recall,
and F1 score were 91, 90, 90, and 90, respectively. Swin-
POS-SVM recorded the highest accuracy rate with 95.556.
For MSID, In [21], SENet was obtained accuracy = 91.19,
precision=90.43, recall = 90.43, F1-score = 92.55. In [22],
MobileNetV2 recorded at 91.38, 90.5, 86.75, and 88.25,
accuracy, precision, recall, and F1-score, respectively. Swin-
POS-SVM recorded the highest accuracy rate with 95.556.

In summary, The proposed algorithm is the ‘‘hybrid
Swin-PSO-SVM model’’ for diagnosing Monkeypox and
improving classification performance. The Swin Transformer
can extract both basic and complex features. POS reduces the
dimension of Swin’s extracted features. When used for clas-
sification, SVM allows operating on the Swin Transformer
outputs rich in basic features and thus. The proposed Swin-
PSO-SVM is designed for monkeypox detection and diagno-
sis, offering a robust solution for Monkeypox. The proposed
algorithm provides high diagnostic accuracy, flexibility, and
improved performance. Nevertheless, the model requires a lot
of computing power,might be challenging to use, runs the risk
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of overfitting, and requires more extended training periods.
Furthermore, the Swin Transformer increases interpretability,
a critical component in medical applications.

VI. CONCLUSION
We introduced a novel hybrid Swin-PSO-SVM to improve
the performance and dependability of monkeypox detection.
The Swin-PSO-SVMmodel incorporates a Swin Transformer
for complex feature extraction, a PSO for extracting the best
features from complex feature extraction, and a SVM for
accurate classification. Swin-PSO-SVM compared with dif-
ferent models: DenseNet121, VGG19, ResNet18, AlexNet,
and Swin transformer using two datasets, which are MSLD
with two classes (monkeypox and others) and MSID with
four classes (chickenpox, measles, monkeypox, and nor-
mal). The Swin-PSO-SVM model has achieved the highest
performance in terms of 95.556 accuracy, 95.96 precision,
95.556 recall, and 95.569 F1-score on the MSLD dataset
and 96.429 accuracy, 96.526 precision, 96.429 recall, and
96.429 F1-score on the MSID dataset. The experimental
findings proved the model’s exceptional performance and
dependability in real-world applications. The Swin-PSO-
SVM enhanced the generalizability of monkeypox detection
by offering a practical and understandable approach that is
simple to implement in clinical settings. This study supports
global initiatives to prevent monkeypox outbreaks through
accurate and prompt identification. In the future, we plan
to develop the proposed Swin-PSO-SVM for detecting
multi-pox diseases
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