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ABSTRACT Railway noise, stemming from various sources such as wheel/rail interactions, locomotives,
and track machinery, affects both human health and the environment. This study explores the application of
machine learning (ML) models to quantify tram noise at sharp curves, considering variables such as weather
conditions, train speed, crowd levels, and running directions. Data collection is carried out on a tram line in
Birmingham, using an iPhone 11 to record acoustic data at a sample rate of 48 kHz. The noise is categorized
into impact noise, rolling noise, flanging noise, and squeal noise based on frequency and power spectrum
characteristics. Random Forests (RF) and Extreme Gradient Boosting (XGBoost) are employed to predict
the root mean square (R.M.S) values of each type of noise. Results indicate that XGBoost outperformed RF
with an R2 up to 0.96 during k-fold cross-validation. This model provides a robust tool for railway operators
to optimize noise control measures and contributes to improved compliance with environmental regulations
and a better quality of life for communities near rail tracks.

INDEX TERMS Railway noise, machine learning, noise quantification, environmental factors, random
forests, XGBoost.

I. INTRODUCTION
Railway noise comes from various sources, including
wheel/rail noise, locomotives, warning signals, bridges,
freight vehicles, flange squeal on tight curves, marshalling
yards, maintenance machines, and track machinery horns [1].
Thompson and Joines detailed the primary sources of railway
noise, focusing on wheel/rail interactions [2]. They catego-
rized this noise into three types: rolling noise, impact noise,
and squeal noise. Rolling noise, common at conventional
and high speeds, results from wheel-rail interface roughness.
Impact noise, a severe form of rolling noise, occurs at surface
discontinuities like rail joints and welds. Squeal noise arises
from frictional instability on sharp curves.

Investigating railway noise is very important due to
its wide-ranging effects on health, and the environment.
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Long-term exposure to railway noise can cause health issues
like sleep problems, heart diseases, and stress, which leads to
a lower quality of life for people living near tracks. While
prior research has focused on wheel-rail interactions and
noise types such as rolling, impact, and squeal noise, there
are still some critical factors that remain underexplored.
Fields and Walk identified noise as a major environmental
nuisance [3], while Mohler highlighted its disruptive effect
on communication [4]. Öhrström and Skånberg noted that
vibration increases noise annoyance [3], and Sorensen et al.
found a link between railway noise above 60 dB and higher
hypertension risk [5]. Grubliauskas et al. confirmed that
excessive railway noise disrupts residential life, particularly
affecting night-time comfort and health [6]. Environmentally,
railway noise affects both people and wildlife by disrupting
natural habitats [7]. Railway operators need to meet strict
noise regulations to avoid legal issues and maintain good
community relations. Therefore, continuous monitoring of

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 183555

https://orcid.org/0000-0003-2153-3538
https://orcid.org/0000-0002-8835-2451


J. Huang et al.: Automated Prognostics and Diagnostics of Railway Tram Noises Using Machine Learning

FIGURE 1. The tramline section for data collection (a) overview of the whole section (b) starting point A (c) starting point B (d) measuring point where is
fixed during every measurement.

the noise is important to ensure sustainable and resilient
transportation systems.

The first theoretical model of rolling noise was found
to be produced by Remington [8], [9], [10], [11] based on
irregularities of the wheel/rail and was later extended by
Tompson [12]. Subsequently, the model was funded by the
European Rail Research Institute resulting in a computer
program Track-Wheel Interaction Noise Software [13] vali-
dated by extensive full-scale experiments [14], and predicted
noise with high precision (within 2 dB) for various wheel and
track designs. Subsequent studies have shown that optimizing
wheel shape can reduce railway noise by up to 5 dB [15]
and factors such as rubber material parameters, the number
of rubber blocks, and the gap-rubber ratio can affect noise
levels [16]. In addition, Andrés et al. [17] focused on
optimizing track design parameters, revealing that an optimal
combination can reduce sound radiation by up to 7.4 dB,
with rail pad stiffness identified as the most influential factor.
Sheng et al. [18] investigated the railway noise of high-
speed trains running on a non-ballasted slab track. Their
findings emphasized that train speed dramatically affects

railway noise, with both rolling noise and aerodynamic
noise varying with speed [18], [19]. Numerous other factors
impacting wheel/rail noise have also been studied, including
locomotives’ propulsion systems and static and dynamic
loads [20].

While a wide range of factors, primarily from track
and rail characteristics, have been extensively evaluated in
terms of railway noise, the effects of other factors, such as
weather conditions, remain unexplored. Climate change has
significant implications for the evaluation of railway noise
due to its effects on weather patterns and extreme weather
events. According to Palin et al. [21] climate change is
expected to increase the frequency and intensity of weather
hazards, posing substantial risks to railway infrastructure
resilience and performance. Key impacts include temperature
fluctuations, greater precipitation, and the occurrence of
extreme weather events, all of which can influence the struc-
tural and acoustic properties of railway materials, thereby
affecting noise levels. This study proposes the use of machine
learning (ML) models to quantify the correlation between
railway noise and variables such as weather conditions
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(temperature, humidity, pressure, wind, wind speed, weather
condition, dew point, precipitation), train speed, crowd levels,
and running directions (which affect the slope of the tracks).
By incorporating these variables, the study aims to provide
in-depth insights into existing models like TWINS, reducing
predictive errors and extending the model’s applicability to a
broader range of wheel and track designs. Furthermore, the
proposed model can predict R.M.S levels for various types of
railway noise based on the available features.

Section II details the data collection procedures. Section III
provides methodologies for four types of noise extraction and
ML models. Section IV elaborates on results and discussions
while Section 5 presents conclusions, limitations and future
directions of the study.

II. METHODOLOGIES
This section includes methodologies for data collection, data
analysis, and machine learning models.

A. DATA COLLECTION
This section outlines the procedure for collecting data to
quantify the correlation between railway noise and various
factors at a sharp curve in Birmingham New Street, as shown
in FIGURE 1(a). The tram line operates on a 1435 mm
standard gauge track and is electrified with a 750 V DC
overhead line. The running vehicle is Urbos 3which can reach
up to 70 km/h [22].

The data collection is conducted using an iPhone
11 equipped with the ‘Motiv Audio’ app, which allows for
audio recording at a sampling rate of 48 kHz. This high
sampling rate ensures the capture of high-quality acoustic
data. Key attributes recorded include weather conditions,
crowd levels, acoustic data, direction, and type of noise. This
setup enables an analysis of the impact of these factors on
railway noise.

FIGURE 1(b) and (c) define two starting points to show
the direction of the train running. Here, if a tram is from
‘starting point A’, the direction is considered to be positive
and the direction is negative for the tram from ‘starting point
B’. The phone is placed at the measuring point and the subject
starts recordingwhen the train enters one of the starting points
and ends recording when the tram passes another starting
point.

The measuring point is for the pedestrian lane which is
accessible, and the space is far enough away from the running
tram to keep the subject safe. The chosen measuring point is
situated next to the railway, which is ideal for capturing the
sound emanating directly from the trains.

The available weather conditions include temperature,
condition, wind, wind speed, humidity, precipitation, and
dew point. The schedule for data collection is made to cover
different weather conditions and various times of the data to
capture different traffic densities. The ‘starting point A’ is
close to a tram stop which allows the data collection to cover
the accelerated period while the tram needs to decelerate to
enter the stop. Meanwhile, Open areas like this are suitable

for studying the impact of weather on noise levels as there
is likely less obstruction for wind, rain, and other weather
conditions to affect the noise. This collected point is close to
a busy station which introduces variability in crowdedness.
It is worth noting that the tram concerning the slope can also
be observed. If the tracks are on an inline or decline at this
location, it can affect both the noise and speed of the trains.

Concurrently, it is important to log relevant metadata for
each recording, including the date, time, weather conditions,
and perceived train crowdedness. Weather conditions are
from the built-in app on the phone. It is worth mentioning that
the rule to categorize the crowd level adheres to the standards
outlined by the United Kingdom Rail Safety and Standards
Boards (UKRSSB) and can be found in FIGURE 2.

FIGURE 2. Visual illustration of crowd level in a public transport.

The crowd level is defined following the level of visibility
of the passenger’s body. The whole-body is visible implying
that a tram is labelled as ‘uncrowded’. Only the head and
shoulders are visible leading to a ‘crowded’ while only the
head can be seen resulting in an ‘overcrowded’.

The tram speed can be an important factor affecting the
curve noise. Higher speeds cause greater dynamic forces and
further lead to elevated noise levels [23], [24]. The ‘speed’
feature in this study is determined by the equation of velocity.

v =
s
t

(1)

where:
• v represents the velocity.
• s defines the distance between two cross section points.
• t shows the duration of the recording.

Besides, any unusual events or disturbances during the
recording that might affect the data quality are logged.

B. DATA PREPROCESSING
FIGURE 3 overviews the data pre-processing life cycle. The
recording is conducted from point ‘b’ to point ‘a’ along the
curve in FIGURE 3. The collected audio data then undergoes
Fast Fourier Transform (FFT) analysis and filtering to isolate
and identify different types of noise. The specific conditions
are the frequency and energy signature for each different type
of noise.

The tram noise is filtered based on Table 1 specifying
the sound level and frequency bands that different types
of noises vary before the label showing the type of noise
is tagged to each component. The integrity of the label is
confirmed by experts listening to the filtered samples. After
the label integrity is ascertained, the sound pressure and label
of each component are extracted. It is worth mentioning
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FIGURE 3. Data flowing.

TABLE 1. Conditions for filtering different types of noise.

that an additional condition is applied to the squeal noise.
As shown in FIGURE 4, the occurrence of peaks among
the fluctuating wave is another prerequisite for the squealing
noise. To separate impact noise and rolling noise, the feature
of the peak is also considered since impact noise is subject
to transient peak due to the track irregularities while rolling
noise is flatter due to the track and rail roughness.

C. MACHINE LEARNING MODELS
Multiple tree-based machine learning models such as Ran-
dom Forests (RF) and ExtremeGradient Boosting (XGBoost)
are available in this study to capture non-linear relationships
and interactions between features. Multiple models are used
for model comparison and robustness evaluation.

The tree-based model is selected as it has been widely
proven that tabular datasets are more compatible with tree-
based models. Friedman [25] showed that tree-based models
like XGBoost and RF outperform deep learning models
on medium-sized tabular datasets (∼10K samples) with
an extensive benchmark over 45 different tabular datasets
conducted.

FIGURE 4. Squeal noise.

One of the main constraints to applying AI models in
industries is interpretability. The tree-based models provide
a visual and interpretable representation of the decision-
making process, which can be valuable for understanding
how the model is making predictions. This benefit can fill the
gap that makes the potential users more confident to use the
model, especially for areas where understanding the decision
process is crucial for validation and trust [26].

1) RANDOM FORESTS
Since its development by Breiman in 2001 [27], RF has
achieved great success. This ensemble model comprises mul-
tiple decision tree estimators (as can be seen in FIGURE 5
and is used for both classification and regression tasks. Each
decision tree is trained on a sub-dataset obtained through
bootstrap sampling [28], introducing variety and reducing
overfitting. For classification problems, the final prediction
is determined by voting on the outcomes of all trees, while
for regression problems, the predictions are averaged.

RF is less prone to overfitting because each tree is trained
on a different subset of data. This issue is further mitigated
by adjusting hyperparameters such as the maximum depth of
trees or the minimum number of samples required for leaf
nodes. The nature of the model also enhances its robustness
to noisy data by smoothing the impact of individual data
points that may not represent the main pattern. Another
advantageous feature of RF is the implicit feature selection.
By randomly selecting subsets of data to train each tree
instead of using all attributes, spurring to identify the most
informative features. Therefore, this reduces the influence of
less important features on the final predictions and minimizes
the need for extensive feature selection.

2) XGBoost
Tree boosting is a highly effective and widely applied tech-
nique in ML. Chen and Guestrin [29] introduced XGBoost,
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FIGURE 5. RF.

an expandable end-to-end tree-boosting system that has
been widely embraced by data scientists for its ability to
deliver state-of-the-art results in many ML challenges. They
developed an innovative algorithm designed for efficiently
handling sparse data and introduced a weighted quantile
sketch technique for approximate tree learning. Additionally,
they explored cache access patterns, data compression
strategies, and sharding, demonstrating that XGBoost is
scalable enough to handle datasets with billions of examples
while using significantly fewer computing resources than
existing systems.

XGBoost shares a common feature with RF as both are
ensemble algorithms that combine the predictions of multiple
individual models, typically decision trees, to produce a
more accurate and robust final prediction. However, the
methods by which XGBoost and RF build and combine
these trees differ. While RF averages the predictions from
each tree, XGBoost builds decision trees sequentially seen in
FIGURE 6, with each new tree aiming to correct the errors
of the previous trees. This sequential construction passes the
residuals, or differences between the actual values and the
predictions of prior trees, to the newly created tree, refining
the model with each iteration.

Robustness in AI refers to the system’s ability to perform
reliably under a wide range of conditions such as unforeseen
scenarios and adversarial attacks, and the implementation
of security measures throughout the AI lifecycle. Certifica-
tion and standardization of AI systems are pivotal. These
processes ensure that AI systems adhere to defined safety
and performance standards, thereby mitigating the risks
associated with AI deployment [30].

By incorporating diverse environmental conditions, such
as temperature fluctuations, wind speed, humidity, and
precipitation, as well as operational factors like tram speed,
crowd levels, and running directions, the models are trained
to handle a wide range of scenarios. This diversity in training
data ensures that the models are less likely to be biased
or overfitted to specific conditions and can generalize well

FIGURE 6. XGBoost.

to new, unseen data. Furthermore, robust and standardized
steps are implemented such as the application of k-fold cross-
validation and the isolation of the test set.

The application of k-fold cross-validation and rigorous
testing procedures also ensures the robustness of the models.
By splitting the dataset into multiple folds and ensuring that
each fold is used for both training and validation, the models’
performance can be evaluated more thoroughly. This method
helps in identifying any potential overfitting and ensures that
the models maintain high predictive accuracy across different
subsets of the data. The test set is completely isolated during
the training process. This means no information leaks into the
test data while tuning the model.

III. RESULT
The dataset (300 journeys) encompasses comprehensive
weather data, including key parameters such as temperature
(ranging from a minimum of 46.0◦F to a maximum of
81.0◦F), dew point (34.0◦F to 57.0◦F), humidity (39.0% to
93.0%), wind speed (6.0 mph to 15.0 mph), and pressure
(29.42 inHg to 29.89 inHg). These variables provide a
broad spectrum of environmental conditions under which the
noise measurements were recorded. Additionally, the dataset
captures categorical weather attributes such aswind direction,
and weather conditions. The wind direction includes various
orientations (e.g., SSW, WSW, WNW), while weather
conditions span descriptions like Fair, Mostly Cloudy, Partly
Cloudy, Showers in the Vicinity, Cloudy, and Haze. The
dataset also accounts for the direction of the operating tram
(a, b). Three levels of crowdedness are provided and the speed
is calculated based on (1). Temporal data is recorded, with
dates ranging in March, June, July, and August in 2024 and
August in 2023 to provide a diverse set of observations across
months and weather conditions. This collection allows for an
in-depth analysis of how various weather factors influence the
RMS values of the different types of noise.
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FIGURE 7. Noise extraction (a) Impact noise (b) Rolling noise (c) Flanging noise (d) Squeal noise.

A. NOISE EXTRACTION
To train a model that can predict the R.M.S value for
each type of noise, the first step is to extract the noise
of interest. FIGURE 7 provides an example of how this
study acquires different noise from the raw data. As can be
seen in FIGURE 7(a), distinct sharp peaks at various time
intervals show the transient nature of railway impact noise,
coming from abrupt interactions such as wheel-rail contact
and track irregularities. High-power regions predominantly
at higher frequencies highlight the significant high-frequency
components which are the results of the rapid force during
impacts. Variations in peak height and intensity over time
might show the amplitude variation due to changes in train
speed, wheel condition, or track conditions. Isolated high-
power peaks indicate localized high-impact events, often
caused by track irregularities. FIGURE 7(b) captures the
characteristics of tram rolling noise across time consistent
nature of rolling noise.

The temporal distribution shows intermittent high-power
events which indicate the tram is navigating curves where the

flanging contact is the largest. The variability in amplitude
with sharp peaks in power suggests changes in the intensity
of the flange-rail interaction.

FIGURE 7(d) shows squeal noise which has prominent
high-frequency components between 5000 Hz and 8000 Hz.
The variability in amplitude, with distinct spikes in power,
shows the nature of squeal noise of fluctuations in the
intensity of the flange-rail interaction.

B. MODEL RESULTS
1) RESULTS
The two selected models are tuned by Optuna [31] to get
optimal hyperparameters. K-fold cross-validation [32] is also
applied to improve the robustness of the result. The dataset
is split into 80% of the training set and 20% of the test
set. The 80% training set is further divided into 80% of
the training set for and 20% of the validation set for the
5-fold cross-validation used in this study. The reason for such
segmentation is to avoid unintentional data leakage which
might inflate the model’s performance significantly [33].
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FIGURE 8. k-fold cross-validation results for XGBoost and RF.

In FIGURE 8, the XGBoost model consistently outper-
forms the RF model across all folds, with R2 scores ranging
from approximately 0.92 to 0.96. For the RF model, R2

scores range from 0.85 to 0.90. The error bars, representing
the standard deviation, are relatively narrow for both models
which means that consistent performance across folds. The
superior performance of the XGBoost model suggests it is
more effective in capturing the underlying patterns in the
data compared to the RF model. This consistent performance
advantage highlights the robustness of XGBoost in modelling
complex datasets, making it a preferable choice for tasks
requiring high predictive accuracy. RF shows an R2 of
0.91 using the test set while XGBoost presents a slightly
larger R2 of 0.94. The detailed performance based on each
sample for XGBoost is shown in FIGURE 9. For impact
noise, the model demonstrates a reasonably good fit as the
predicted values closely follow the actual values. The error
bars indicate that the majority of predictions fall within a
narrow error margin but a few outliers are present. In the
case of rolling noise, the model maintains high predictive
accuracy, as evidenced by the close alignment between the
actual and predicted values.

The error bars are relatively small and consistent, indicat-
ing the model’s robustness in handling the variability inherent
in rolling noise. The errors remain within a manageable
range, although there is a slight increase in variability
compared to the impact noise. The performance for flanging
noise is promising, as the predicted values closely match
the actual sound pressures. This indicates that the model
performs well overall. Finally, the squeal noise predictions
show the model’s capacity to track the actual values with a
high degree of precision. The error bars are minimal which
means that the model’s effectiveness in capturing the patterns
associated with squeal noise. Another possible reason can be
the inherent fluctuating nature of the squeal noise.

2) ROBUSTNESS EVALUATION
Evaluating the robustness of machine learning models is
critical due to the potential vulnerabilities that can arise
throughout their lifecycle. These vulnerabilities can stem
from various sources, such as the contamination of training
data, which can distort the model before training begins,
or from perturbed data that can affect the model even after

FIGURE 9. XGBoost performance using the test set.

deployment. To address these concerns, this study undertakes
a comprehensive evaluation of the model’s robustness by
introducing noise data both before and following the training
process. This dual-phase evaluation aims to ascertain whether
the model can accurately differentiate noise data before
training and to test the model’s resilience against perturbed
data post-training. Such rigorous testing ensures that the
model maintains its integrity and performance in real-world
applications, thereby enhancing its reliability and security
against adversarial attacks [30].

To generate a noisy dataset, the entire original dataset is
duplicated, and 20% noise is added to each feature in the
duplicated dataset. Concurrently, an additional output label
indicating ‘Noise’ or ‘Clean’ is appended to both datasets
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before the noisy dataset is integrated into the clean dataset.
The purpose of this is to assess the model’s performance in
maintaining the accuracy of prediction. By training the model
with the noisy dataset, as illustrated in FIGURE 10(a), the
results demonstrate that the model effectively differentiates
noise-affected data while maintaining high-performance
levels. FIGURE 10(b) illustrates the impact of perturbing
data with varying scale factors on the performance of the
XGBoost, as measured by the R2. The scale factor is applied
to each feature ranging from 0 to 0.5. Initially, the model’s
performance remains stable with minor perturbations (scale
factors between 0.0 and 0.1), maintaining R2 values around
0.92 to 0.93. However, as the scale factor increases beyond
0.1, the R2 value begins to decline gradually.

FIGURE 10. Performances for XGBoost (a) noise data added to train the
model (b) perturbed data added to test the trained model.

This decline becomes faster with scale factors greater
than 0.3, where the R2 value drops sharply which suggests
adverse effects on the model’s accuracy. A notable point is
highlighted at a scale factor of approximately 0.2 to show that
the performance is lower than 0.9 if the scale factor is larger
than 0.2.

Sensitivity analysis is also conducted to evaluate how the
model responds to the variation of features. FIGURE 11
reveals that speed is the most influential factor, significantly
impacting the model’s performance, followed closely by
temperature and direction. These three features are important
in determining the model’s accuracy. Humidity, crowd level,
and pressure also play important roles. Features such as wind,
wind speed, condition, dew point, and precipitation have

FIGURE 11. Sensitivity analysis for XGBoost.

lower importance scores which means that they contribute
less impact to the model’s predictions.

IV. CONCLUSION
This study presents an approach to predicting railway
noise by integrating machine learning models with various
environmental and operational factors. By incorporating
these variables, the proposed model offers a significant
advancement over existing models like TWINS. The pro-
posed model can provide more insights into railway noise
quantification and extend its applicability to a broader range
of wheel and track designs. The ability to predict R.M.S levels
for various types of railway noise based on features such as
weather conditions, train speed, and crowd levels introduces a
new dimension to noise management in the railway industry.

The implications of this research are profound for the
engineering world. It offers a robust tool for railway operators
to optimize noise control measures with features of more
efficient and sustainable. By reducing noise pollution, the
model contributes to better compliance with environmental
regulations and improved quality of life for communities near
rail tracks. Moreover, the interpretability of the tree-based
models used in this study provides valuable insights into the
decision-making process, fostering greater trust and adoption
in industrial applications.

However, the study has certain limitations. The data
collection is conducted in specific environmental conditions
and geographical locations, which may not fully represent
all possible scenarios. Future research should focus on
expanding the dataset to include diverse conditions and
locations to enhance the model’s generalizability.

In conclusion, this research lays a solid foundation for
future work in railway noise prediction and control. Future
directions include integrating real-time data from sensors,
exploring the impact of additional variables such as track
maintenance activities, and refining the models for even
higher accuracy. By addressing these areas, the proposed
model can evolve into a more powerful tool, benefiting the
railway industry and contributing to the development of
quieter, more efficient rail systems.
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