
Received 24 October 2024, accepted 29 November 2024, date of publication 4 December 2024, date of current version 12 December 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3511345

Machine Learning for FPGA Electronic
Design Automation
ARMANDO BISCONTINI 1,2, E. POPOVICI1, (Senior Member, IEEE),
AND A. TEMKO1,2, (Senior Member, IEEE)
1Department Electrical and Electronic Engineering, University College Cork, Cork 21, T12 K8AF Ireland
2QT Technologies Ireland Ltd., Qualcomm, Cork 21, T23 YY09 Ireland

Corresponding author: Armando Biscontini (armando.biscontini@umail.ucc.ie)

ABSTRACT In the last decades, field-programmable gate arrays (FPGAs) have become increasingly
important to the electronics industry, offering higher performance and lower power consumption as transistor
technology continues to scale down.Machine learning (ML) algorithms have become pivotal in the electronic
design automation (EDA) of FPGAs, enabling the learning of relationships between input and the desired
output based on representative data properties rather than physical laws. As FPGA capacity expands, the
EDA tools must also scale to handle larger, denser digital systems, and ML offers to fill the gap with
resulting computational efficiency and improved solution quality. This study reviews ML methods utilized
in FPGA EDA, from the perspective of formulated problems, input space representation, learned mapping,
and methods used to achieve that. The work also presents the mainMLmethodologies and future challenges,
serving as a roadmap for FPGA practitioners to navigate in the area of ML for FPGA EDA.

INDEX TERMS Artificial intelligence, electronic design automation, field programmable gate arrays,
machine learning.

I. INTRODUCTION
Over the past decades, field-programmable gate arrays
(FPGAs) have acquired increased importance in the electron-
ics industry [1]. As transistor sizes continue to scale following
the Moore’s Law trend [2], [3] and new technologies pave the
way for post-Moore scaling [4], FPGAs have shown a poten-
tial for higher performance and lower power consumption [5].
When compared to microprocessors and application-specific
integrated circuits (ASICs) [6], they offer lower non-recurrent
engineering costs, reduced development time, easier debug-
ging, and reduced risk. Nowadays, modern FPGAs have
started to replace ASICs in many fields where they can meet
the same power, performance, and area (PPA) requirements.
Since their inception in 1985, FPGAs have been pervasive
in several different applications including signal processing,
multimedia processing, cryptography, chip multiprocessor

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro .

emulation, financial engineering, bioinformatics, automotive,
and artificial intelligence (AI) [7], [8].

This trend indicates that the FPGA electronic design
automation (EDA) tools need to also scale to perform more
operations to complete the implementation of larger (and
denser) digital systems. As FPGA capacity increases, the
entire computer-aided design (CAD) implementation pro-
cess from high-level synthesis (HLS) to routing could take
a considerable amount of time, particularly in the case of
high device utilization [9], [10]. The problem becomes more
challenging given that processors used to run the CAD
tools exhibit sub-linear scaling speed with transistor size,
even when parallel processing is implemented. CAD runtime
becomes a critical issue [11].

Machine learning (ML) algorithms have started to play an
important role in FPGA CAD/EDA design. The ML algo-
rithms allow learning the mapping between a given input
and a desired output based on the properties of the data
rather than based on laws of physics. Due to their intrinsic
computational efficiency, the established mapping provides

182640

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-2505-8965
https://orcid.org/0000-0003-1118-7109


A. Biscontini et al.: Machine Learning for FPGA Electronic Design Automation

more opportunities for exploratory analysis, trading off some
degree of accuracy for quicker turnaround time. This leads
to an improvement in the solution quality compared to the
traditional CAD solution methods.

In this study, we examine data-driven methods within the
context of FPGA design, specifically focusing on the learned
mappings between input and output. Our goal is to present
a detailed classification of ML techniques applied to FPGA
EDA, with an emphasis on various design stages and appli-
cation tasks. The works in [12] and [13] provide a systematic
review of ML techniques used across the FPGA implementa-
tion flow, offering an in-depth discussion of methodologies,
approaches, and key findings. Building on these reviews,
we offer a broad overview of the literature, adding a sys-
tematic analysis of input space representations and their
learned mappings. The survey in [14] presents the integra-
tion of ML techniques in the HLS-based FPGA backend
design flow, focusing on research challenges, limitations, and
opportunities. Extending this scope, we further explore ML
applications at the register transfer level (RTL). Additionally,
[15] provides a concise overview of deep learning methods
for end-to-end FPGA bitstream generation, highlighting the
importance of open-source data for training large models.
Inspired by this, we broaden our analysis to include tradi-
tional ML approaches and build on the survey in [16] by
offering a detailed analysis of existing EDA datasets.

The paper is organized as follows. Section II provides
the background on the EDA process and describes its main
steps. Section III conceptually outlines relevant ML method-
ologies such as leveraging past data and learning from
the current design on the fly. The studies that utilize ML
for the main EDA steps, namely, HLS, RTL development,
logic synthesis and optimization, placement, and routing are
reviewed in Sections IV-VIII. A summary of the bench-
mark datasets employed in these studies is provided in
Section IX. Section X examines commonMLmethodologies.
Sections XI and XII address the discussion and outstanding
challenges related to the application of ML in FPGA design.
This review serves as a comprehensive roadmap for practi-
tioners in the FPGA field.

II. CONVENTIONAL EDA FLOW FOR FPGA
FPGA hardware implementation relies heavily not only on
its architecture but also on its EDA backend flow [17]. Large
tech companies such as Synopsys, Cadence, Intel, AMD,
and Mentor provide part or entire automation suites for
FPGA implementation. There is also an increasing body of
work in the open domain [18], [19], [20], [21], [22], [23].
An overview of the conventional FPGA implementation flow
is presented in Fig. 1. Here, we introduce two flow variants:
(a) RTL-based and (b) HLS-based. The distinction between
them lies in their design generation methodologies. In the
RTL flow, the process is manual, requiring engineers to hand-
craft the high-level description language (HDL) code, which
makes development time variable and heavily reliant on the
designers’ expertise. Conversely, the HLS flow automates

this step by taking an abstract behavioral specification of
the system as input and generating the corresponding HDL
code. Once the HDL is defined, both flows converge on
the same implementation process, encompassing logic syn-
thesis and optimization, placement, and routing, before the
final translation into bitstreams for FPGA deployment. HLS,
which emerged in the early 2000s, aims to elevate the level of
design abstraction, reduce programming effort, and acceler-
ate time to market. Analyzing runtime data from the Vivado
monolithic configuration with 32 processors, as reported in
reference [24], we estimate that in an HLS-enabled flow,
approximately 46% of the total workflow time is dedicated
to HLS, while logic synthesis and optimization account for
36%, and placement and routing each contribute around 9%
to the overall runtime.

Below we briefly describe the five main steps of the FPGA
implementation process.

FIGURE 1. FPGA implementation flow.

A. HLS
During this step, a hardware behavioral description in
C/C++/MATLAB is translated to an HDL such as VHDL
or Verilog [25]. HLS is being adopted by more companies
as part of their industrial EDA flow, even though it has not
fully replaced the use of RTL flows yet. It can target large and
complex chip architectures enabling a smooth transition from
architecture to final RTL design, leading to a higher level of
abstraction and design re-usability. It enables a larger vision
of the overall system architecture, allowing microarchitecture
generation to happen automatically by simply changing the
synthesis directives, called ‘‘pragmas’’. This opens a path
for direct system implementation without the use of HDLs.
The pragmas configuration drives the generation of different
micro-architecture flavors for the same design so that the
generated hardware can be re-tuned to fit into specific PPA
targets without modifying its behavioral description. On top
of allowing rapid design and verification cycles, this enables
faster Design Space Exploration (DSE). Historically, this

VOLUME 12, 2024 182641



A. Biscontini et al.: Machine Learning for FPGA Electronic Design Automation

area has been dominated by traditional algorithms to solve
multi-objective optimization problems. We can distinguish
two categories: (1) integer linear programming [26] and (2)
heuristics [27] algorithms. (1) usually results in optimal solu-
tions. As such, they suffer from scalability issues with run
times that are exponential in the worst-case scenario. On the
other hand, (2) achieve sub-optimal solutions with better
runtime complexity at the cost of higher sensitivity to hyper-
parameters configuration. We can further classify heuristics
into two main categories: design space pruning techniques
and meta-heuristics. Design space pruning techniques aim
to restrict the design space by pruning some solutions.
This could lead to missing entire exploration regions. Meta-
heuristics are based on phenomena frequently found in nature
and aim to perform extensive searches in the design space,
often tolerating worse local optima to find better sub-optimal
solutions. Examples of these algorithms include simulated
annealing [28], genetic algorithms [29], and ant colony [30]
optimizations.

HLS comes with its limitations. HLS tools generally
produce designs with lower performance and less efficient
resource utilization compared to manual RTL implementa-
tions. Despite recent advancements, substantial quality of
results (QoR) gaps persist, particularly in performance and
resource optimization areas [31]. The effectiveness of HLS
is often constrained by the specific tools and frameworks
used, which can limit the designer’s control over the final
hardware implementation. RTL is frequently preferred for its
superior fine-tuning capabilities, especially in cycle-accurate
designs. While HLS can automate certain optimizations like
pipelining and loop unrolling, it often struggles with more
complex tasks. Designers may need to manually refine the
code to achieve optimal performance, particularly when deal-
ing with dynamic data structures and memory hierarchies.
Although HLS facilitates behavioral verification, the result-
ing RTL code can also be difficult to debug and verify at a
detailed level. The opaque relationship between high-level
code and generated RTL complicates issue identification and
the resolution of logic redundancies. In terms of performance
relative to cost, the study in reference [32] evaluated pro-
ductivity by comparing code quality against development
hours. The average productivity of HLS was reported to be
up to 6× greater than that of RTL design, thereby enabling
designers to accomplish their tasks more efficiently. The
research indicated that the design time required for HLS was
approximately one-third of the time needed for RTL design,
while the size of the HLS input code was nearly halved.

B. RTL DEVELOPMENT
RTL development is a methodology for designing digital
circuits, with ‘‘register-transfer’’ referring to the abstraction
level at which the design is conceptualized. At this level, the
design is described in terms of data flow between registers
and the logic operations performed on that data, without
details on the transistor-level hardware implementation. RTL

FIGURE 2. Active learning loop.

development is typically divided into two stages. The first
stage, RTL coding, involves formulating and optimizing the
initial RTL description. This process includes writing RTL
code that accurately represents the system’s data flow and
operations while optimizing the design to meet specific
PPA requirements. Techniques such as pipelining, which
divides the design into stages that can operate in parallel,
and parallelism, executing multiple operations simultane-
ously, are commonly employed to enhance design speed.
Power optimization methods, such as clock gating, which
disables the clock signal to unused parts of the design, and
power gating, which cuts off power to inactive sections,
are used to reduce power consumption. Area optimization
can be achieved through resource sharing, where multiple
components use the same resources, and constant propaga-
tion, which simplifies operations by broadcasting constants
through the design. The second stage is RTL verification,
which ensures the correctness of the RTL design. This stage
involves code simulation, where a series of input vectors is
applied to the RTL design, and the resulting output vectors are
observed to assess whether the design behaves as expected.
Formal verification is also employed to mathematically prove
the correctness of the RTL design. In this approach, the
intended behavior is expressed as a set of formal properties,
which are verified using formal verification tools to ensure
they hold true for all possible input vectors. Additionally,
linting is a valuable technique used for ensuring design cor-
rectness, involving static analysis of the RTL code to identify
common coding errors, ensure adherence to coding standards,
and detect potential synthesis and timing issues.

C. LOGIC SYNTHESIS AND OPTIMIZATION
This step takes as input the high-level description of the
hardware and translates it into a gate-level netlist [33]. The
multi-objective search makes this step very demanding in
terms of resources. It is generally divided into two sub-steps.
First, a technology-independent synthesis is run, where the
objective is to represent the netlist as a directed acyclic graph
using technology-agnostic gates (e.g. AND, OR, NOT gates)
and optimize it. The most common representation is the
And-Inverter graph (AIG) where the nodes perform 2-input
NAND operations [34]. Technology-independent synthesis

182642 VOLUME 12, 2024



A. Biscontini et al.: Machine Learning for FPGA Electronic Design Automation

FIGURE 3. Classification task using active learning: (a) Initial distribution; (b) stage 1,
learning using random sampling; (c) stage 2, learning using random sampling; (d) stage 2,
active learning using uncertainty sampling.

does not present differences between the ASIC and the FPGA
flows. It is followed by technology-dependent optimizations
where the Boolean network is transformed into a network
of gates derived from the technology library. Usually, this
transformation involves the use of mapping and packing algo-
rithms aimed at the concurrent reduction of cell area and
power, where the output netlist is predominantly composed of
lookup tables (LUTs) and flip-flops (FFs). The logic imple-
mentation space is very large and there is a wide margin of
potential optimizations. Typical metrics targeted during the
optimization process are performance and cost. The former
is targeted by improving the hardware’s latency for increased
speed while the latter is achieved by reducing the number of
mapped devices. The large optimization space also requires
solvers with very high accuracy and complexity since the
synthesis and optimization process often must obey many
input constraints.

D. PLACEMENT
The technology-mapped netlist is ready to be placed on the
FPGA. This step aims to place the logic cell instances while
optimizing the routing resources [35]. The connected blocks
are placed within the FPGA core area to minimize wire
density, timing, and routing congestion. Historically many
placement algorithms in the literature can be divided into
three large categories based on their underlying methods:

partitioning-based [36], analytical [37], [38], and simulated
annealing placement techniques [39], [40]. Partition-based
techniques recursively divide the circuit, reducing the prob-
lem dimension to smaller placement areas. This approach
shows better runtime, sometimes impacting negatively on
QoR. Analytical placement reduces the problem to a func-
tion minimization setting, where the solution is represented
by the block locations that minimize a set of goals under
user-provided constraints. Simulated annealing is a stochastic
global search optimization algorithm. It tends to achieve good
quality results at the expense of larger runtime.

E. ROUTING
This step represents a combinatorial optimization problem.
It is especially complex for modern FPGA architectures
where routing resources are limited and discrete. After place-
ment, cell instances need to be connected through physical
routes. To perform the routing task, the underlying archi-
tecture is modeled as a weighted graph. Each logic edge is
associated with a single routing resource on the FPGA [41].
The edge weight represents the congestion present on its
associated physical connection. Routing approaches can be
classified into sequential routing where nets are routed fol-
lowing a pre-defined sequence, and concurrent routing where
nets are routed at the same time. One famous example of
sequential approaches is Dijkstra’s shortest path algorithm,

VOLUME 12, 2024 182643



A. Biscontini et al.: Machine Learning for FPGA Electronic Design Automation

as applied in PathFinder [42], where signal routing follows
an iterative negotiation-based strategy. The negotiation hap-
pens when multiple signals share the same wire in the initial
routing stage. These signals would go through a rip-up and re-
route process, where assignment conflicts would be resolved.
Concurrent routers are often implemented using network
flow [43], linear assignment [44], and Boolean satisfiabil-
ity [45].

FIGURE 4. QoR prediction.

III. ML IN THE FPGA DOMAIN
ML systems aim to create a functional mapping between
input and output based on available labeled samples. These
data can be available beforehand and can be used to create
an ML system to operate under an independent and identi-
cally distributed assumption (IID). In the context of FPGA,
each design may consist of characteristics specific to its
architecture. In these cases, the availability of past data may
provide little usefulness for the design at hand since the IID
assumption for a given representation may hold no more.
In this situation, active learning is performed where an ML
algorithm learns the design-specific mapping from scratch by
guiding the optimizer on what data should be selected and
subjected to labeling.

The active learning strategy facilitates building an ML
solution when labeled data is not available beforehand or
such data is not relevant or when labeling the data is very
expensive. The active learning cycle, as depicted in Fig. 2,
may start with a small, labeled training dataset, on which the
initial model is built. This model is then used to guide the
selection of unlabeled samples that can be subjected to an
annotator to get the labels. The sampling is designed in a way
tomaximize the gain. The sampling algorithm learns from the
acquired labels and leverages them to query the next batch of
samples. The ML algorithm simultaneously proceeds with its
(re-)training process supervised.

Fig. 3 depicts an intuitive illustration of active learning.
Fig. 3(a) shows a data set generated from two Gaussians
centered at (0, −2) and (0, 2) with a standard deviation σ =

1, representing two classes. The full available data set is com-
posed of 2000 samples represented as points in a 2D feature

space. The dashed red line represents the Bayes optimal deci-
sion boundary that separates the two classes. Let us assume
we have a limited querying budget of 30 samples. Fig. 3(b)
presents stage 1 of supervised learning: we randomly select
6 instances for initial labeling from the unlabeled pool. The
line shows the decision boundary of a linear support vec-
tor machine (SVM) classifier trained using these 6 points.
The model achieves a classification accuracy of 87.4% on
the remaining unlabeled population. In Fig. 3(c) and 3(d),
we show stage 2 of the learning process where we query for
training an additional batch of 24 samples using two different
strategies: random sampling and active learning. Notice that
in the random sampling case in Fig. 3(c) most of the labeled
instances selected for incremental training are far from zero
on the vertical axis, which is where the optimal decision
boundary should be (dashed red line). As a result, the SVM
classifier trained on 30 samples altogether achieves the test
accuracy of 87.5%. On the other hand, the active learner in
Fig. 3(d) uses uncertainty sampling to improve the position
of the decision boundary, focusing on samples closest to the
boundary. As a result, it avoids requesting labels for irrelevant
samples. The SVM model trained on ‘‘actively’’ selected
30 samples, achieves a test accuracy of 97.3%.

FIGURE 5. Hyperparameter optimization.

Active and passive ML learning methodologies are quite
common in the FPGA domain to learn different mappings.
The main use cases of the learned mapping are the following:

A. QoR PREDICTION
These models serve the purpose of swiftly evaluating the
QoR of a design in the context of power, area, and delay,
helping engineers efficiently filter out unsatisfactory designs.
This eliminates the need for time-consuming simulations and
traditional EDA runs (Fig. 4), typically run using timing or
congestion estimations engines. As a result, the design cycle
is typically reduced with the possibility of trading runtime for
prediction accuracy.

B. HYPERPARAMETER OPTIMIZATION
The setup of EDA tools, including decisions related to
algorithms and hyperparameters, significantly shapes their
performance and outcomes. ML models aim to replace
exhaustive or experimental approaches during configuration
exploration. It may be used to assist or augment traditional
optimization methods to perform hyperparameter searches

182644 VOLUME 12, 2024



A. Biscontini et al.: Machine Learning for FPGA Electronic Design Automation

to find a better or optimal set of solutions quicker than the
classical approaches (Fig. 5).

C. EXPLORATION GUIDANCE
Numerous tasks within EDA revolve around DSE, aiming
to locate optimal design points within a large design space.
This area is predominantly dominated by active learning
techniques. Usually, surrogate ML models are used to guide
exploration, as opposed to relying on precise analytical mod-
els or traditional hill-climbing methodologies. The model
learns from past design cases, infers potentially better explo-
ration directions, and predicts outcomes for new design points
(Fig. 6). After pruning sub-optimal design options a subset
of optimal design points, the Pareto front [46], is found with
considerable runtime speed-up.

FIGURE 6. Exploration guidance.

D. AUTOMATION
Certain EDA tasks can benefit from the use of AI for
the automation of design tasks that traditionally rely heav-
ily on human involvement. In this context, deep learning
and reinforcement learning (RL) find their best application.
AI algorithms aim to replace human intervention creating no-
human-in-the-loop flows and fully automating the design and
verification cycle for FPGA (Fig. 7).

In the following sections, we analyze ML techniques
typically used in the major steps of the EDA flow for
FPGA. We focus on highlighting input-output ML compo-
nents (features-targets relationship) for each of the papers and
the results obtained compared to state-of-the-art techniques.
In Table 1 we report a classification of reviewed publications
based on their EDA stage and application task.

IV. HLS
A. QoR PREDICTION
The ability to perform early and accurate congestion esti-
mation would greatly benefit the degree of architectural
optimization in HLS. This would allow higher implementa-
tion efficiency and faster design cycles. However, existing
HLS design tools are unable to predict routing congestion.
Routability can be a serious concern in FPGA designs since it
can directly impact the implementation feasibility of a design.

It is difficult to evaluate in HLS without analyzing results
after the full place and route implementation. Supervised ML
models have been exploited to predict routing congestion.

Zhao et al. [47] built a congestion prediction model in
FPGAHLS to help designers detect and eliminate congestion
issues in the HLS code. The authors extracted 302 related
features from the HLS and intermediate representation codes
to capture the characteristics of each low-level HLS operator.
Specifically, the features aimed to characterize interconnec-
tion, local circuit complexity, resource, and timing-related
information of the low-level operators. A feature impor-
tance study demonstrated that congestionmetrics were highly
influenced by a subset of operators features such as resource
utilization and global interconnection to/from multiplexers
and memories. The framework aimed to predict horizon-
tal, vertical, and average routing congestion. The authors
trained and compared various regression models, including
linear regression (LR), artificial neural network (ANN), and
gradient-boosted decision trees (GBDTs). GBDT regression
models outperformed the other models. In addition, they
demonstrated that by discovering the bottlenecks in high-
level source code with ML, routing congestion could be
resolved easier and quicker, compared to the efforts involved
in RTL-level implementation and design feedback.

FIGURE 7. Automation.

Various ML research efforts aim at estimating area vs.
performance tradeoffs. HLS code offers sophisticated tech-
niques to optimize designs for area and performance using
pragmas. However, resource usage and timing estimated by
the HLS tools are often inaccurate and significantly different
from the actual results achieved after the place and route
implementation on FPGAs. These estimation inaccuracies
prevent designers from performing valid DSE without going
through the full implementation process.

Several works [48], [49], [50], [51], and [52] studied the
suitability of learning from past designs and transferring such
knowledge to a new design, for the purpose of DSE.

Wang et al. [48], [49] showed an ML-based methodology
to perform area vs. performance tradeoff estimation. They
extracted features such as synthesis directives of loops and
arrays, target synthesis frequency, delay of functional units,
bit-width of input and output signals, and loop iterations of all
the loops in the HLS code. They used these features to train
several ML models to estimate area and latency targets for
a single design. The models used ranged from LR to more
sophisticated random forest (RF), based on the input data

VOLUME 12, 2024 182645



A. Biscontini et al.: Machine Learning for FPGA Electronic Design Automation

TABLE 1. Classification of the reviewed publications by EDA stage and application task.

complexity. The training was performed on data extracted
exhaustively by exploring the search space of all possible
synthesis attributes. One of the main contributions consisted
of leveraging the compositional aspect of the models at infer-
ence time by identifying previously pre-characterized ones
and mixing them to output predictions on unseen designs.
The identification of the models was enabled by the gener-
ation of hash values for each model after it was translated
to an abstract syntax tree [53] and encoded into a multi-
dimensional vector. The proposed method was shown to be
very effective in identifying the Pareto front in a DSE task
and 3× faster when compared to a meta-heuristics-based
method [54] and a probabilistic multi-knob explorer [55].

Goswami et al. [50] demonstrated the performance of
GBDT models to predict post-synthesis hardware resources
and latency QoR metrics. They extracted a total of 66 fea-
tures from the four different sources: HLS code (for loops,
arrays, function, and datatype-related features), intermediate
representation code (features describing basic block informa-
tion such as number and type of instructions), control and
dataflow graph (features representing the basic blocks inter-
actions like variables propagation and dependencies), and
call graph (features representing the relationship of functions
in the code). Comparing several regression methods GBDT
led to the best accuracy. When coupled with a simulated
annealer setup for DSE, the model achieved similar results
as a full DSE that performed logic synthesis for each newly
generated design, with a reported runtime improvement of
more than 12×.
Similarly to [50], Ferretti et. al [51] used ML to address

the prediction of latency and resource utilization at the HLS
stage, using graph neural networks (GNNs). They extracted
features to capture elements of the HLS process and the data-
processing tools. These features were extracted from the HLS
code into a hybrid control and dataflow graph representa-
tion. The nodes of the graph represented different constructs
of the program, such as loops, functions, and arrays. The
edges encoded the data and control dependencies between the
nodes. The aggregated node features consisted of 27 attributes
describing the node type (loop, read, load, write, and function
blocks), node attributes (the number of instructions in a block,
number of iterations of a loop block, loop stride, and depth,
loop trip count, number of function invocations, etc.), and
associated pragma values (resource type, array partitioning,
loop unrolling and function inlining pragmas). The edge
feature vectors captured information regarding their type
(control, data, or parameter). The prediction was achieved by

training amessage-passing GNN that would encode the graph
structure into a single vector using a final global pooling
operation. Regression heads would then predict the latency
and resource utilization targets. The proposed framework
outperformed the baseline represented by an ANN-based
alternative [56]. The performance levels obtained were com-
parable to an HLS process simulator based on analytical
models [57] for the latency prediction task, and to an esti-
mation framework based on GBDT [58] for the resource
prediction task.

ML was utilized to re-calibrate the results of HLS reports
and provide an accurate prediction of post-implementation
resource utilization and timing performance [52]. A total
of 183 features were extracted from the HLS reports cap-
turing performance information (requested clock period,
estimated clock period, uncertainty), resources (utiliza-
tion and availability of hardware blocks), operations (bit-
width/resource statistics of operations), memory (number
of memory words/banks/bits), and multiplexers (multiplexer
input size/bit-width). Redundant and irrelevant features were
identified and removed using Pearson’s correlation analysis.
The authors aimed to predict 5 targets: LUT, FF, digital signal
processor (DSP), random access memory (RAM) utilization,
and maximum supported frequency of an HLS design. They
employed a stacked regression ensemble technique [59] to
exploit complementary information coming from different
base estimators used such as LR, ANN, SVM, and RF,
to improve the overall model accuracy. Reported results
showed that the average error improved when compared with
the best base model alone.

In the early design stages, power prediction represents a
challenge for designers. It is difficult to predict the correlation
between power consumption and HLS-based applications.
The current practice to obtain power consumption is through
power measurement after hardware implementation or esti-
mation through gate-level simulation, both of which require
designers to spend substantial effort.

Lin et al. [60] implemented a framework for power
modeling using ML. An initial set of 256 features was
extracted from 3 main sources: HLS report, the intermediate
representation code, and the finite state machine with a data-
path model. Collected features could be categorized into
architecture-related and activity-related. While architecture
features provided information on the overall design structure,
as estimated by the HLS tools, activity features represented
the switching activities of different hardware components in
the target design. The framework aimed to predict the power

182646 VOLUME 12, 2024



A. Biscontini et al.: Machine Learning for FPGA Electronic Design Automation

consumption target in mW units of a design. The authors
reported performance using various models based on Lasso,
SVM, GBDT, and convolutional neural network (CNN)
architectures. The CNN model achieved the best overall per-
formance among all the learning models, followed closely by
the GBDTmodel. The experimental results demonstrated that
the framework could achieve accurate power modeling which
is only 4% away from ground-truth power measurements.
The framework also achieved lower prediction error when
compared with the state-of-the-art work [61].

B. HYPERPARAMETER OPTIMIZATION
Hyperparameter tuning is a fundamental step involved in
meta-heuristics approaches used for HLS DSE. Due to the
large exploration space, meta-heuristics are often a preferred
approach compared to exhaustive searches. In this area,
techniques have emerged in supervised learning and have
been used to explore the best combination of meta-heuristics
hyperparameters.

Wang and Schafer [54] presented an ML-based approach
for automated setup of search parameters for HLS explo-
rationmeta-heuristics. The input features were extracted from
the HLS code and represented the number of explorable
operations (arrays, loops, and functions) and the number
of functional units present in the code. Prediction targets
included the meta-heuristic parameters to be set for search
optimization algorithms studies such as simulated anneal-
ing (e.g. temperature descent increment, mutation rate, etc.),
genetic algorithm (e.g. cross-over rate, exit condition, etc.)
and ant colony optimization (number of parallel ants, decre-
ment % of pheromone, etc.). Different predictive approaches
were tried ranging from LR to GBDT regression models.
The GBDT-based solution achieved the best results and was
selected as the final model. When compared to meta-heuristic
methods with default parameters, the proposed method led to
a 2× higher average accuracy in identifying the Pareto front
in a DSE task with a negligible runtime overhead.

Mahapatra and Shafer [62] developed an ML algorithm
for the selection of promising attribute combinations for
simulated annealing-assisted DSE. They used a set of direc-
tives as features, such as loop unrolling, folding, pipelining,
function expansion, and arrays implementation style. Their
framework aimed to obtain attribute combinations having
the most impact on the simulated annealing cost function
(linear composition of area and latency metrics). After sort-
ing the attributes based on their capacity to minimize the
cost function, they used a decision tree-based algorithm [63]
as an ML backbone. Experimental results confirmed that
the approach was 30% faster than the standard simulated
annealing algorithm while achieving comparable results in
the identification of the Pareto front dominant designs.

C. EXPLORATION GUIDANCE
Manual DSE in HLS requires expert knowledge and rep-
resents a time-consuming phase. Various tools emerged to

facilitate the design of hardware accelerators in achieving
high-performance results in HLS. Most of these tools have
leveraged the power of ML and heavily relied on the use of
active learning to achieve the retrieval of better training data
samples and the selection of more accurate models.

Yu et al. [64] presented a tool to predict performance and
resource usage for a design. Each design was characterized
by input features comprising design knobs such as array con-
figurations and loop unrolling/pipelining. The proportions of
hardware resource utilization consumed on the target FPGA,
in terms of RAM, LUT, FF, and DSP blocks, were used
as the targets. RFs were used to establish the non-linear
mapping between the design characteristics and the targets.
The targets were initially obtained from the HLS ground
truth data through a first random sampling stage. Then the
framework used the predictions from the model to refine the
training dataset. Active learning was utilized to determine
the most relevant samples to be evaluated and added to the
training data. The model was constructed by interleaving the
process of evaluating new samples and re-training the models
with the updated dataset. The authors reported computing
savings while achieving better results in terms of resource
usage and latency with respect to hand-tuned designs. With
the developed framework, the authors constructed a Pareto
curve to help select the optimal trade-off between latency and
resource usage.

Gautier et al. [65] designed a multi-objective DSE frame-
work for optimizing FPGA HLS using active learning
techniques. The framework aimed to create surrogate mod-
els of the design space. These models were then used to
predict the performance of a given design without running
it on the FPGA. To achieve that, features based on HLS
loop and array directives were used to represent the design
space. These features proved to be effective design knobs,
due to their fine-grained control over the synthesized hard-
ware. Throughput and latency were defined as prediction
targets. ML algorithms, such as RF, gaussian process (GP),
and radial basis function interpolator were explored to model
the complex relationships between input characteristics and
targets. A multi-armed bandit algorithm was utilized to bal-
ance exploration and exploitation of the design space while
using active learning. The algorithm rewarded the models
that provided the most accurate estimates of the Pareto front.
When compared to the four selected algorithms in the litera-
ture [66], [67], [68], [69], results indicated better or similar
performance levels with significantly reduced computation
costs.

D. AUTOMATION
Scheduling is a crucial step of HLS. It takes care of assign-
ing each operation to a specific cycle or control state. This
process’s output would be a finite-state machine represent-
ing the full implementation of the synthesized application.
However, scheduling often depends heavily on heuristics that
aim to improve the performance and flexibility of the order

VOLUME 12, 2024 182647



A. Biscontini et al.: Machine Learning for FPGA Electronic Design Automation

of operations. At the same time, heuristics are designed by
humans and prone to human bias/expertise level. ML aims to
tackle scheduling automation using RL techniques.

Chen and Shen [70] proposed an RL-based scheduling
agent interacting with the environment, where the observed
scheduling state was extracted using three features: the cur-
rent schedule, current feasible operation movements, and all
possible operation movements. The state was represented
using several 2D figures in a matrix form, where the rows
represent different operations, and the columns represent
different control steps. The agent took an action based on
the policy and received a reward signal from the environ-
ment, which corresponded to a reduction in the total resource
usage. It then used this feedback to update the policy, and
this process was repeated until the policy converged, or the
maximum iteration threshold was reached. The policy net-
work was trained initially using supervised learning and
further updated using RL. When compared to the ‘‘as soon
as possible’’ scheduler [71] and to the optimal integral linear
programming solution [72], comparable results were reported
demonstrating the effectiveness of the proposed method in
solving time-constrained scheduling problems.

V. RTL DEVELOPMENT
A. QoR PREDICTION
Rapid estimation of FPGA on-chip resource utilization for
individual sub-circuit blocks early in the design process is
essential for aiding designers in optimizing circuits at the
RTL level. Similarly, power estimation is critical not only for
validating hardware design concepts during development but
also for optimizing and managing power, energy, and thermal
performance in real time. As a result, significant research
has been conducted on both area and power estimation
methodologies using ML. Both supervised and unsupervised
techniques have seen widespread adoption.

Zennaro et al. [73] developed a supervised learning
approach to predict the area of hardware components based
on abstract specifications. The study utilized both register-
specific features, such as total contained size and bitfield
size, and bitfield-specific features, including the number of
bitfields read/written by peripheral devices and CPU instruc-
tions. Regression models, including RF, GBDT, and ANN
were employed to predict the number of LUTs and slice reg-
isters in the design. The results demonstrated high prediction
accuracy with a runtime improvement of 600× compared to
traditional synthesis methods. However, the study primarily
focused on specific hardware components, such as control
and status register interfaces, and the generalizability of this
approach to more complex designs remained to be evaluated.

Li et al. [74] developed a predictive model to estimate
the on-chip resource utilization of RTL designs, facilitating
their partitioning and integration into multi-FPGA systems.
They identified and extracted numerous features, ultimately
selecting 46 of them. These features encompassed the number
of modules, registers, memories, counts of always, case, and
if statements, bit width statistics, and the number of various

operation types. The authors employed several ML models
such as LR, RF, SVM, ANN, and GBDT, configured in
both single-stage and multi-stage ensemble approaches. The
prediction targets included estimations of LUT, FF, RAM,
DSP, and CARRY block counts. The performance of their
tool was evaluated by comparing its predictions with post-
synthesis ground-truth data generated by Vivado in default
mode. The results demonstrated that the ensemble techniques
and the GBDT model in isolation achieved the lowest predic-
tion error, with a minimum runtime speed improvement of
25×.

Kim et al. [75] proposed a real-time power modeling
approach for RTL designs, which automatically identified
key power-dissipating signals via clustering. An activity-
based power model was constructed, and FPGA simulations
were instrumented for rapid runtime power estimation. Using
signal toggle densities as features, the model employed LR
with polynomial terms to predict power dissipation across
hardware modules. Compared to reference power traces from
a commercial EDA tool, the method achieved less than 10%
error, enabling power simulations to run in minutes rather
than weeks.

Parthasarathy et al. [76] proposed an ML-based method
to optimize regression test selection for RTL functional
verification. The approach employed an ensemble of mod-
els, including logistic regression, RF, GBDT, ANN, and
Naïve Bayes, to predict test failure likelihoods based on
code changes. The primary goal was to reduce the test
suite while maintaining validation accuracy. Features used
included aggregate code abstraction metrics such as lines
of code, complexity, and test coverage, collected less fre-
quently, along with checksums for each code abstraction to
efficiently identify code changes. Experimental results on
multiple designs demonstrated high accuracy in detecting
change-based failures, with up to a 10× reduction in recom-
mended test sets.

B. HYPERPARAMETER OPTIMIZATION
As designs have grown, RTL verification has become signif-
icantly more complex. Researchers have sought to leverage
RL and active learning techniques to replace human intuition
in the hyperparameter tuning of simulations.

Hughes et al. [77] proposed an ML approach to optimize
the design verification process by enhancing constrained-
random testing with supervised and RL techniques. They
aimed to improve the verification process by accelerating the
coverage of hard-to-reach design states. Their method uti-
lized features such as input control parameters, environment
settings, design configurations, and coverage results indi-
cating whether each functional coverage statement was hit
during the simulation. These features were input into an ANN
model to predict the optimal knob settings for subsequent
simulation iterations. The approach was tested on a system
aimed at improving hardware cache occupancy, demonstrat-
ing that their ML-based method consistently achieved higher

182648 VOLUME 12, 2024



A. Biscontini et al.: Machine Learning for FPGA Electronic Design Automation

occupancy rates and superior coverage compared to the tra-
ditional constrained-random approach.

C. EXPLORATION GUIDANCE
DSE in RTL traditionally demands expert knowledge and is
a time-intensive process. To streamline this phase, several
tools used RL and active learning to optimize the design of
processors and memory and maximize their performance.

Paletti et al. [78] introduced an open-source methodology
for DSE that employed online learning to approximate costly
black-box function evaluations during RTL synthesis. The
framework combined a controller and an estimator working
together. The controller, built on a multi-armed bandit archi-
tecture, optimized the trade-off between time and accuracy
by deciding dynamically at each step whether to execute the
exact or the estimated function. The estimator, leveraging
decision trees, predicted design objectives, such as resource
usage and throughput, from a feature vector representing
the RTL context. This dual approach enabled simultaneous
knowledge acquisition and decision refinement, enhancing
overall performance. The proposed method achieved over a
2× speedup while maintaining near Pareto-optimal solutions
across various hardware design scenarios.

Ghaffari et al. [79] introduced a multi-model active learn-
ing framework aimed to assist RTL design. The system
utilized Bayesian models to predict hardware performance
and conduct DSE. It incorporated 12 micro-architecture
design parameters as input features, including control latency,
floating-point and fixed-point latency, number of physical
registers, and sizes of L1 and L2 caches. It selected iteratively
informative samples to develop Bayesian models of objective
functions such as power consumption and latency. Previously
acquired knowledge was leveraged using transfer learning
techniques, enabling the modeling process for novel applica-
tions. Gaussian regression bootstrapping methods were used
to reduce the number of samples needed for prediction. This
approach led to a 65% reduction in sample requirements
during the optimization of micro-architecture designs.

D. AUTOMATION
RTL debugging requires designers to analyze and trou-
bleshoot hardware behavior to verify that the RTL code
accurately represents the intended circuit functionality. The
introduction of large language models (LLMs) has signifi-
cantly improved this process. Their continuous advancements
accelerate progress and drive innovation in the field.

Tsai et al. [80] proposed a framework that leveraged
pre-trained large language models to automate the identi-
fication and correction of syntax errors in Verilog code.
Acting as autonomous agents, LLMs iteratively interacted
with error logs and human guidance through a feedback loop
to debug code. Using prompt engineering techniques [81],
the framework integrated reasoning and action steps in an
interleaved fashion, while external retrieval mechanisms [82]
provided access to relevant knowledge, such as databases

or documents, for more accurate responses. This approach
achieved a 98% error correction rate, notably improving syn-
tax pass rates and reducing manual intervention.

A similar methodology to that described in [80] was
employed by Yao et al. [83]. Their HDL debugging frame-
work was enhanced through the incorporation of three key
components: data generation, a search engine, and retrieval-
augmented LLM fine-tuning. Data generation involved cre-
ating faulty HDL code via reverse engineering, which in
turn produced error messages used for fine-tuning the LLM.
The search engine extracted pertinent information from a
document and code database to improve bug detection and
code repair processes. The fine-tuning step further refined
the LLM capability to produce accurate code solutions. This
improved framework demonstrated at least an 80% perfor-
mance increase in terms of pass rate over state-of-the-art
LLM baselines, including those discussed in [80].

Thakur et al. [84] investigated the use of LLMs for Ver-
ilog code generation to enable hardware design automation.
Unlike most prior research, which focused on models trained
primarily on software code, their work centered on hardware
design. They achieved this by assembling the largest curated
dataset of Verilog code, sourced fromGitHub repositories and
textbooks, and fine-tuning pre-existing open-source LLMs.
In contrast to earlier studies [80], [83], they further performed
in [85] a comprehensive evaluation of the syntactical and
functional correctness of the generated code using verifica-
tion test benches. Their model showed a 40% improvement
over the pre-trained version and outperformed GPT-3.5-
turbo [86] in generating functionally accurate Verilog code.

Lu et al. [87] advanced the research beyond basic HDL
syntax evaluation by presenting an open-source benchmark
for hardware RTL generation with LLMs, which evaluated
both functionality and post-synthesis PPA design metrics.
They also proposed a ‘‘self-planning’’ prompt engineering
technique that divided the prompting process into two steps:
the first involved reasoning, which mirrored human problem-
solving by planning and decomposing tasks into logical steps.
The second stage generated the final RTL code. Experimental
results demonstrated a significant improvement in GPT-3.5’s
RTL generation performance using this approach.

VI. LOGIC SYNTHESIS AND OPTIMIZATION
A. QoR PREDICTION
QoR prediction is important in the early stages of logic
synthesis. Predicting accurate area and delay results is funda-
mental as calls to static timing analyzers are very expensive
to perform at this stage.

Hu et al. [88] proposed an ML-based framework to predict
the depth of the LUT logic after technology mapping and to
estimate the delay of a gate-level circuit. The topology of the
pre-mapped netlist and the behavior of technology mapping
of each design were characterized as a set of 12 input features
that aim to reflect the scale, size, complexity, fanout, and
depth of a circuit, and to capture the nature of LUT mapping.
The features comprised the number of primary inputs, the

VOLUME 12, 2024 182649



A. Biscontini et al.: Machine Learning for FPGA Electronic Design Automation

number of gates with different numbers of primary inputs, the
number of paths, and path length. A GBDT model [89] was
used to learn the non-linear mapping between the input fea-
tures and target logic depth.When compared to the traditional
technology mapping algorithm, results indicated negligible
estimation error with 8× runtime improvement.

B. HYPERPARAMETER OPTIMIZATION
ML finds application in the hyperparameter selection of
logic synthesis meta-heuristics. By learning from past data,
supervised learning techniques enhanced these algorithms by
providing higher-quality parameters.

Kapre et al. [90] applied ML techniques to tune CAD tool
parameters for the designer. The framework built the initial
database of results from a series of preliminary EDA runs,
based on pre-determined configurations. The authors lever-
aged learnings from these past results to iteratively adjust the
tool settings and help the design meet timing. Features were
extracted at the pre-synthesis stage and included information
on the target device family, logic structure, and compiler
settings like synthesis and place-and-route options. The fea-
ture space was mapped to QoR targets such as timing, area,
and power metrics. A Naive Bayesian classifier was used for
predicting good tool strategies. Principal component analysis
was then applied to prune redundant parameters and focus
only on influential ones. Towards the end of the optimiza-
tion process, it applied statistical sampling on the selected
parameters to further refine the results. The authors showed a
significant improvement in timing QoR when compared both
to non-optimized and optimized industrial benchmarks.

Xu et al. [91] devised an efficient parallelization scheme
that enabled ML-based auto-tuners to perform multiple con-
current parameter exploration. The feature space included the
various configuration options available in an FPGACAD tool
from logic synthesis to routing, such as clustering, timing
criticality, max router iterations, etc. The sample labels rep-
resented QoR metrics such as timing slack, resource usage,
or power consumption. The authors proposed to partition the
global solution space at the pre-synthesis stage into promising
subspaces. They iteratively constructed a space partitioning
tree, where the root node of the tree represented the initial
solution space, and each intermediate node represented a sub-
space. The computational resources would then be allocated
to each subspace using the multi-arm bandit-based search
approach [92]. Experimental results demonstrated promising
improvements in terms of timing QoR and runtime over static
partitioning and commercial DSE tools.

Ustun et al. [93] presented anML-driven autotuning frame-
work for design timing closure. In contrast to previous
work [90], [91], [94], [95], where features were collected
at the pre-synthesis level, the authors included features
extracted from the stage of technology mapping and packing.
The features captured information about resources such as the
number of LUTs, registers, I/O pins, DSP, etc., and timing
such as worst and total negative timing slack. They used a

GBDT regressor to model the quality of the design points
using respective post-PnR total negative timing slack as the
target. The framework would run in iterations where a set of
parameters would be sampled for prediction using the multi-
arm bandit-based strategy [92]. Parameter configurations
were then ranked by the regressor. Top-ranking configura-
tions were evaluated through the complete FPGA tool flow to
obtain the actual QoR results, pruning the remaining samples.
If design specifications were not achieved at the current iter-
ation, the model would use online learning to progressively
improve the model accuracy. Results were indicative of faster
timing closure compared to the literature [91].

C. EXPLORATION GUIDANCE
Synthesis flow exploration requires fast and efficient searches
to be performed in large combinatorial spaces. In this area,
active learning can provide valid guidance and suggest logic
optimizations, efficiently navigating between exploration and
exploitation.

Bayesian optimization was used in [96] to optimize the
QoR of circuits during the pre-mapping logic optimization
stage. The authors used surrogate GP to model the QoR data
and exploited calibrated uncertainty estimation to suggest
new synthesis operation sequences to evaluate. They used
local trust-region acquisition function maximization to effec-
tively handle high-dimensional data. Each data point in the
feature space was represented as a sequence of operations
(rewrite, resub, refactor, etc.) and encoded into a string where
each character represented an operation. To measure the sim-
ilarity between strings, the authors employed a sub-sequence
string kernel technique [97], [98], detecting the number of
common sub-strings. The QoR targets used were the relative
area and delay improvements (%) compared to the resyn2
heuristics [99]. Results showed that the proposed Bayesian
optimization approach outperformed other search strategies
in sample efficiency and QoR.

In [100], Chowdhury et al. used active learning techniques
to improve QoR prediction in pre-technology mapping opti-
mization. The authors proposed an approach to fine-tune a
model trained on past synthesis data to accurately predict
the quality of a synthesis recipe for an unseen netlist. They
reduced the cost of labeling samples for fine-tuning using
a clustering-assisted active learning technique [101]. AIG
graph and recipe features were used to represent the netlist.
AIG features were extracted using a graph convolutional
network (GCN) where each node in the AIG graph was char-
acterized by type (primary input, primary output, or internal
node) and the number of inverters in fan-in. Recipe features
were extracted using a separate CNN and used to create a
synthesis recipe embedding. The prediction target was esti-
mated using an ANN-based regression head and represented
the improvement in the number of nodes and logic depth in
the post-synthesis logic graph. Results reportedmore than 2×
improvement in run-time and comparable QoR for the fine-
tuned predictor when contrasted to conventional techniques
using actual synthesis runs.

182650 VOLUME 12, 2024



A. Biscontini et al.: Machine Learning for FPGA Electronic Design Automation

D. AUTOMATION
ML improved automation at logic optimization and technol-
ogymapping stages. The increasing complexity of these steps
often requires strong expertise from engineers and heavy
reliance on EDA tools. The application of deep RL and super-
vised learning techniques in this area enabled production
cycles with no human in the loop.

In [102], the authors proposed an RL algorithm to explore
the solution space for an effective sequence of logic synthesis
optimizations that can minimize the number of nodes and
depth of the logic graphs. The algorithm included a GCN
to extract features from an AIG logic network, which was
then used as an input to the RL. The extracted features
captured the structural properties of the logic network, such
as the connectivity between nodes and the types of logic
gates used. The RL algorithm learned a policy that mapped
states to actions, where the goal was to maximize a reward
signal that reflected the quality of the resulting circuit. The
reward signal was defined as a function of the number of
nodes and the depth of the logic graphs. Two reward set-
tings were investigated with one focusing on optimizing the
number of nodes in the AIG graph, and the other on opti-
mizing the logic depth. Experimental results demonstrated
that the proposed RL algorithm outperformed the state-of-
the-art heuristics [99] and achieved a significant improvement
over the baseline in both reward settings, demonstrating the
effectiveness of the proposed approach for optimizing the
process of logic synthesis.

Hosny et al. [103] proposed an RLmethodology to explore
the logic synthesis optimization space. The authors repre-
sented the state space using features extracted from an AIG
graph such as the number of nodes, the number of primary
inputs and outputs, the number of latches, and the number of
gates. Their RL agent was able to explore the search space
selecting actions from a set of 7 primitive logic transforma-
tions, (e.g. resub, rewrite, refactor, etc.). A multi-objective
reward function was used to represent changes in design area
and delay. The agent would receive the largest reward for
reducing the design area while keeping the delay under a pre-
specified constraint value. The authors used an Advantage
Actor-Critic framework [104] where a hybrid policy-based
network (actor) and a value-based network (critic) would
iteratively interact to navigate the environment. In a delay-
constrained setting, the framework achieved an improved
design area when compared to greedy exploration and expert-
crafted results.

Zhou et al. [105] applied RL to determine a recipe of
circuit optimizations for logic synthesis, intending to mini-
mize the number of LUTs in the technology-mapped circuit.
A set of 21 features was used to describe the characteris-
tics of the circuit under optimization. These features were
then fed as inputs to the RL agent, which learned to choose
logic synthesis optimizations. To improve the stability and
sample efficiency of the RL algorithm, Advantage Actor-
Critic and Proximal Policy Optimization [106] techniques

were utilized. The authors used feature-importance analysis
to prune the set of features visible to the RL agent to improve
its efficiency. When the model was evaluated on unseen
circuits, improvements in the area reduction were reported
when compared to conventional and previously published
approaches [99], [103].

Qian et al. [107] proposed an RL framework for logic
synthesis automation. The framework modeled two RL
environments to tackle logic optimization and technology
mapping problems separately. The logic optimization state
space was represented by statistical features extracted from
the current AIG graph and its previous experience, such as the
number of logic nodes and levels of the logic graph. The agent
performed synthesis transformations, altering the status of the
AIG graph, and received a reward reflecting the performance
improvement as a function of the number of nodes and levels
in the logic graph. For technology mapping the authors used
the multi-armed bandits as a baseline [108]. They improved it
by making the RL agent directly learn the logic optimization
and mapping sequence, without splitting it into a series of
iterative stages. The state space was the same as the one used
for logic optimization while the available actions contained
the commands for both AIG and LUT mapping optimization.
The adopted learning framework was based on the Proximal
policy optimization model, which aimed to improve sample
utilization. Experimental results were compared to state-of-
the-art RL works in logic optimization [102], [109], and
technology mapping [108]. Better QoR was reported in terms
of logic depth and the number of nodes with a runtime reduc-
tion.

Neto et al. [110] proposed an ML-driven framework to
choose the logic optimizer to deliver the best QoR for differ-
ent portions of the logic netlist. A k-way netlist partitioning
method was used to derive partitions and encode them into
two-dimensional image-like representations. This approach
extracted and projected the low-level Boolean logic features
into a Karnaugh map representation [111]. The partition
images were then fed to a deep-ANN classifier to predict
which optimizer would achieve the best results in terms of
the number of nodes and circuit area. Post-synthesis results
showed QoR improvements compared to single optimizers
used in isolation.

VII. PLACEMENT
A. QoR PREDICTION
Obtaining accurate post-routing timing delay and rout-
ing congestion estimations during placement is becoming
increasingly challenging, as both the design size and target
device complexity increase. Various research studies show
how supervised learning can address these issues.

Martin et al. [112] used ML to predict net delays and
reduce themismatch between placement and detailed routing.
A total of 20 engineered features were used to represent the
characteristics of nets, available routing, and logic resources.
These included net fanout, HPWL, width, height, average

VOLUME 12, 2024 182651



A. Biscontini et al.: Machine Learning for FPGA Electronic Design Automation

congestion, maximum congestion, path length, I/O crossing,
DSP crossing, etc. The prediction target was the post-routing
delay of a net. Various ML models were utilized to learn the
mapping, including RF, ANN, and GBDT. RF showed the
best performance when compared to the static delay model
in [113], reporting an improvement in critical path delay.

The framework in [114] presented a set of ML probes that
could provide early QoR feedback to an open-source place-
ment tool [39], guiding the placement to achieve improved
designs at the post-routing stage. A set of 53 features was
extracted during placement and represented both direct and
indirect measures of congestion, such as wire length, channel
width, and the number of moves attempted by the placer.
A recursive elimination procedure was performed to discard
redundant features. This step highlighted the importance of
some features such as local wiring congestion, global wiring
demand, and the number of moves as a measure of the effort
expended by the placer. The prediction targets were repre-
sented by routed wire length, critical path delay, minimum
channel width, routability, and short/long wire utilization
in horizontal/vertical directions. The authors used a mix of
LR and GBDT models for the mentioned regression tasks.
Results showed that the learned mapping was helpful in the
estimation of wire length, critical path delay, and segmented
wire utilization, reducing the routing time of the tool.

Pui et al. [115] used ML to predict routing congestion on
UltraScale FPGAplacements. A set of 27 features was used to
characterize the global routing cells of the designs, capturing
information about the number of pins, the overlapping nets
bounding box, and their combined effects. To augment the
contextual representation, the neighboring routing cells infor-
mation was also utilized. The congestion prediction target
was represented by the percentage of used routing resources
in each of the cells. A combination of LR and SVM models
was used to learn the mapping in a local, hybrid, and global
context. The model led to an improved average routed wire
length during placement [116].

Maarouf et al. [117] proposed an ML-based method to
estimate congestion using 4 high-quality features composed
of net wire length, bounding box, pin count, and net cut
on 5 × 5 and 9 × 9 neighboring regions. The prediction
target was the congestion of each global routing cell in the
design. The authors compared several regression models: LR,
K-nearest neighbor (KNN), ANN, and RF. Feature engineer-
ing improved the accuracy reported in [37], [115], [118],
and [119].

A deep learning framework for routability classification at
the placement stage was presented by Al-Hyari et al. [120].
The model aimed to provide feedback to avoid costly place-
and-route iterations and improve the placer efficiency when
dealing with hard-to-route circuits. The same set of high-
quality features from [117] was utilized. A CNN model was
implemented to estimate the placement routability as a binary
target. The authors integrated the model into a placer [37] and
used it to optimize both global and detailed placement steps.

Results reported high prediction accuracy with a considerable
reduction in runtime.

Szentimrey et al. [121] studied the integration of 3 deep-
learning models into an open-source analytic placement
tool [37]. These models tackled 3 sequential placement steps.
Initially, the same set of design features from [117] and [120]
was extracted and provided to the first model [117]. This
model predicted congestion at the global routing cells level.
The congestion maps produced at this stage were fed to a
secondmodel that aimed tomitigate congestion by estimating
the switch cell area inflation. A convolutional encoder-
decoder architecture was used for this model, mapping input
congestion maps to output LUT inflation maps. Lastly, the
third model presented in [120] was used to assess the design
routability. Results indicated a 2× improvement in the place-
ment runtime.

Martin et al. [122] explored the adoption of simple ML
models for predicting placement routability and showed
performance gains when compared to deep-learning tech-
niques. Simple methods were initially investigated such as
LR, KNN, GBDT, Naive Bayes, and SVM. They were
further combined using bagging, boosting, and stacking tech-
niques. A total of 46 features was collected to represent
information regarding placement (HPWL and utilization),
congestion (max, mean, histogram values, etc.), nets (wire
length, routing network utilization, etc.), hotspots (their area,
max intensity, etc.), and logic (cell counts, pin counts, etc.).
Binary routability classification was set as the target for all
models. The authors used a feature selection algorithm to
identify the most important features and improve the effi-
ciency of each model. SVM was the best-performing model
when compared to the more complex deep-learning model
in [120]. Ensembling the developed models further improved
accuracy.

B. HYPERPARAMETER OPTIMIZATION
Placement parameters have dramatically increased as FPGA
technology and tools progress. Researchers tried to leverage
RL and active learning techniques to replace human intuition
during the hyperparameter tuning step.

Kapre et al. [123] proposed a cloud-based ML engine to
evaluate parallel placement runs and recommend multiple
CAD parameter combinations to achieve timing closure. The
learning started from an initial database of tool parameters
with associated timing slack variation labels. Input parame-
ters included information on the target device family, logic
structure, and various CAD settings. The authors used a
Bayesian learning and classification framework [90] to select
promising parameters and principal component analysis to
prune irrelevant ones. The exploration was organized in iter-
ations where batches of parallel CAD validation runs were
sequentially performed and used for learning. By balancing
learning with parallelism, the framework achieved better total
negative slack convergence compared to random placement
seed exploration.

182652 VOLUME 12, 2024



A. Biscontini et al.: Machine Learning for FPGA Electronic Design Automation

C. AUTOMATION
RL techniques have been used to improve several steps of
simulated annealing placement and find better solutions.

Al-hyari et al. [124] proposed an ML framework to rec-
ommend the best placement flow. Since the placement tool
performance depends on the characteristics of input designs,
the authors approached the selection of the most effective
placer as a classification problem. Their framework aimed to
recommend between two open-source analytical placers, [37]
and [125]. They extracted 28 circuit features such as the total
number of LUTs, FFs, IOs, pin count, net statistics, etc. A fea-
ture selection study highlighted the importance of routability
and congestion in the placement selection process. They com-
pared different supervised learning methods: ANN, SVM,
KNN, RF, and various GBDT techniques. Results showed
good accuracy when the framework was used to select the
best placer in terms of total post-routing wire length.

Murray et al. [126] proposed an RL model to select block
types to move during a simulated annealing placement. The
authors framed themove type selection problem in a K-armed
bandit context, using a single state as input. This simplifying
assumption limited the solution approach since the agent was
not able to recognize different placement features such as
the optimization progress, past moves history, logic structure,
etc. The RL agent move decision was based on the selection
of different types of blocks (LUT, RAM, DSP, etc.) to be
randomly swapped. After selecting a move type, the swap
action was performed and evaluated using the wire length
and timing rewards extracted from the simulated annealing-
based placer. The framework achieved 2× faster runtime
when compared to the baseline placer in [40] while achieving
the same QoR in terms of wire length and critical path delay.

Elgammal et al. [127], [128] devised an RL framework
to achieve efficient placement exploration by enhancing the
K-armed bandit problem setup in [126]. The authors used
knowledge about the circuit structure, current placement,
and timing information to intelligently suggest block moves
during a simulated annealing-based placement. The entire
placement process was divided into two stages, represented
as input state features. The early stage focused on performing
large cell movements and achieving a good global placement.
The later stage was meant to further optimize timing, having
more visibility on the critical paths. Based on the stage the
agent was in, it decided whether to use actions more focused
on wire length or timing optimization. The reward signal was
based on the change in QoR placement, which included both
timing, wire length, and runtime components. Experimental
results showed superior performance in terms of QoR and
runtime when compared to the baseline placer [40].

A wide variety of AI techniques remain currently unex-
plored due to the difficulty of directly integrating them
into the FPGA CAD flow usually based on C++. Every
improvement to the agent learning code would require a
deep knowledge of the flow and trigger a recompilation to
integrate the changes. Chen et al. [129] tackled the issue by
presenting a framework based on [130] that simplified the

implementation process of RL optimization algorithms into
an open-source placer [39]. The RL system was formulated
as an agent taking actions and receiving rewards from the
placer environment. The user could easily direct the explo-
ration by defining the optimization objective through Python
code interfaces. At each placement step, the environment
returned a state and a reward derived from an incremental
simulated annealing iteration. This solution opened the pos-
sibility for researchers to quickly define the agent’s behavior
and allowed quick development and testing of new RL
methodologies. The authors also demonstrated the superior
performance of evolution strategy techniques over multi-
armed bandit formulations [126], [127], [128], in terms of
critical path delay and wire length QoR.

VIII. ROUTING
A. QoR PREDICTION
Congestion, routing iterations, and delay degradation pre-
dictions are rising research topics. While heuristics and tool
simulations can help to estimate solutions for these problems,
they often lead to long and impractical runtimes. Researchers
applied ML techniques to find viable solutions.

Siddiqi et al. [131] proposed a supervised learning
approach to predict congestion costs for routing resources.
The feature space comprised the number of input/output
logic pins connected to each channel route and the hori-
zontal/vertical wiring used by each net. The authors trained
various regression models such as LR, SVM, GBDT, RF, and
KNN. The best-performing model was found to be RF. The
models predicted six targets: input pins in horizontal/vertical
channels, and wires in north, east, south, and west directions.
The model was then used to guide an open-source router [40]
and avoid highly congested regions. Results showed a large
reduction in the number of routing and rip-up-and-reroute
iterations, leading to large runtime gains.

Gunter and Wilton [132], [133] presented an ML frame-
work to save time through the early exit of difficult routing
problems. The authors considered the 79 features from [122],
representing information about the current routing iteration,
grid dimensions, net wire lengths, fanouts, resource, and
switch-box utilization. They performed a feature importance
analysis to highlight features generalizing well across differ-
ent architectures, device sizes, and channel widths. AMixture
of Experts technique was used and included various clas-
sifiers to predict the success of the routing process and
regressors to estimate the number of remaining iterations to
completion. Compared to the baseline LR-based predictor
in the open-source router [40], the framework had a higher
success rate in identifying routable circuits and reducing time
wasted on unrouteable circuits.

Ghavami et al. [134] leveraged deep learning techniques
to predict the impact of aging-induced delay degradation,
raising the modeling abstraction from the transistor level to
the logic block level. The input features used for the predic-
tion task included input signal probability, load capacitance,
and transistor widths of each FPGA basic block. An ANN

VOLUME 12, 2024 182653



A. Biscontini et al.: Machine Learning for FPGA Electronic Design Automation

TABLE 2. Benchmark dataset summary.

architecture was trained for each block type (LUT, FF, RAM,
multiplexer, switch, and connections) to learn the mapping
between its input aging parameters and output delay degra-
dation. SPICE simulations were used to extract ground truth
data for soft blocks (LUTs, RAMs, etc.) while hard blocks
(e.g. DSPs), typically requiring larger simulation times due
to their size, were modeled using hierarchical static timing
analysis.When integrated into an open-source router [40], the
framework showed a low prediction error rate and a greatly
improved runtime compared to transistor-level simulation.

B. EXPLORATION GUIDANCE
Zheng et al. [135] used Bayesian optimization to guide the
DSE of FPGA routing architectures. The authors designed
the feature space to capture characteristics of the routing seg-
ments (lengths, positions, and directions) and signal-driving
information (routing channels, logic, input, and output pins).
At each optimization iteration, a test point was sampled
by maximizing the expected improvement. After evaluat-
ing its objective value, it was used to train a GP. Pruning
rules were used to further reduce the number of architec-
ture evaluations required. The output was represented by the
Pareto set of architecture parameters minimizing the area and
delay objectives. Compared to a simulated annealing-based
approach [136], the framework found better area-delay design
points.

C. AUTOMATION
RL and unsupervised learning are some of the major
approaches used to automate the routing and power-gating
optimization processes.

Farooq et al. [137] reframed the routing problem into an
RL setting. The authors used Q-learning to model a policy

that maps the current routing state to an action that selects
the next logic net to route. To deal with the non-stationarity
of the problem, the authors used a tabular approach to main-
tain the action values for each routing node. An ε-greedy
behavior policy was used to balance exploration and exploita-
tion during the agent sampling process. The reward was
defined as the change in the number of routing conflicts after
each action. As a result, the agent tried to minimize the num-
ber of conflicts throughout the whole routing process. When
compared to negotiation-based routing methods [138], the
proposed technique delivered comparable QoR with reduced
runtime. It also proved to be effective in handling heteroge-
neous FPGA architectures.

Seifoori et al. [139] presented an ML-driven approach
to power gating in FPGA routing networks. The authors
collected the utilization data of each multiplexer across the
dataset to represent the features used to learn a partitioning
strategy. K-means clustering was used to group available
routing multiplexers into contiguous power-gating regions
to reduce the total static power consumption of the design.
The authors tested different variants of K-means clustering
aiming to maximize a custom similarity metric based on
common cluster patterns, instead of Euclidean distance. The
output was a set of power-gating regions used to guide the
power routing assignment. Results showed superior static
power consumption results compared to the state-of-the-art
heuristics [140], [141], [142].

IX. BENCHMARK DATASETS
Table 2 summarizes the most frequently used public bench-
mark DBs which are used in the reviewed papers. RTL
datasets [143], [144] typically consist of multiple design
examples coded in Verilog or VHDL, accompanied by cor-

182654 VOLUME 12, 2024



A. Biscontini et al.: Machine Learning for FPGA Electronic Design Automation

TABLE 3. ML techniques analysis.

responding verification test benches, hardware specifications,
and supplementary metadata designed to train LLMs for code
debugging tasks. Recent initiatives to collect HDL code from
literature and online sources have enriched these datasets,
ensuring they remain comprehensive and up-to-date. Typi-
cal HLS datasets [145], [146], [147], [148], [149], [150],
[151] provide just behavioral descriptions in C++ sampled
across heterogeneous applications (cryptography engines,
signal processing cores, etc.). The resulting circuits post-
synthesis tend to be of reasonable dimension (usually less
than 100000 LUTs), making them fast to synthesize and ideal
for DSE exploration and Pareto front identification. Synthesis
benchmarks [40], [152], [153], [154], [155], [156], [157],
[158], [159], [160], [161], [162], [163] are larger and provide
both Verilog/VHDL and BLIF synthesis files, that act as
ground truth. Place and route DBs [40], [159], [160], [161],
[162], [163], [164], [165], [166] are suitable for large-scale
FPGA CAD research where it is not required the synthesis of
new netlist primitives.

X. ML METHODOLOGY
After reviewing the above studies, it is possible to outline a
common methodology followed by the authors. This can be
useful for new practitioners entering the area and can act as a
guideline.

A. PROBLEM FORMULATION
ML involves designing a system that learns a desiredmapping
from the provided data. This mapping can be in the form of a
classification, regression model, or policy to guide an action.
To formulate the problem, a researcher needs to visualize
an ideal ML solution and how it impacts the area of study.
We see this kind of approach being used in all the publica-
tions reviewed so far: authors define a problem (congestion
estimation at the placement stage), establish a ground truth
(congestion map produced by a global router), and identify
the way to quantify the benefit of a successful approach (X%
QoR and Y% runtime expected improvement).

B. DATA COLLECTION
The next step in the design is to gather the data from which
the mapping can be established. The quality of this data
determines the accuracy and reliability of the model. In the
FPGA field, it is important to ensure coherency in the input
samples (e.g. placement DB) and associated metadata (e.g.
placer parameters, targeted FPGA architectures, etc.) to keep
relevancy and correctness in the predictions. We see a trend
from the research community to keep benchmark datasets

extended and updated over time to match newer and larger
FPGA devices. Strong efforts have been directed to increase
data generalization towards different applications such as
multimedia processing, cyber-security, signal processing, and
cryptography.

C. DATA CONDITIONING
FPGA input data needs to go through a ‘‘cleaning’’ process
where eventual discrepancies must be addressed (e.g. missing
and duplicate values handling, unwanted data removal, data
type conversion, etc.). This step usually leads to a fundamen-
tal restructuring of datasets where researchers try to ensure
an even label distribution. Class imbalance could be a serious
issue in EDA since there is a general tendency to discard neg-
ative samples (e.g. failed routed DBs) and keep positive ones
(e.g. successful routed DBs). Data visualization is important
at this stage since it can help to understand the dataset struc-
tures and identify the features-labels relationship.

D. DATA REPRESENTATION
Once the problem is formulated and relevant data is collected,
a practitioner must figure out a way to represent the complete-
ness of the data to ensure that the modeling efforts will be
successful. Domain expertise plays a fundamental role in this
process, guiding feature engineering and model architecture
design to achieve better representation. One of the main steps
in this process is the feasibility study that determines the
learnability of the desired mapping from the given data and
representation, the choice of the modeling methodology, and
the architecture.

E. MODEL SELECTION AND TRAINING
After securing the learnability of the problem, a practitioner
needs to ensure the generalization aspects to make the learned
model useful in a real scenario. At this stage, the data is split
into two sets, a training set, and a test set. This is to keep the
data seen by the model during training separated from the one
it is evaluated on. A specific model architecture is selected
for training based on the nature of the data and the problem
to solve. Every ML system can be completely described by
the set of its parameters. Some of these parameters are auto-
matically tuned during the learning process, like the weights
of an ANN. Other parameters (hyperparameters) should be
selected manually. This involves separating a specific part
of the training dataset to be used for the internal validation
process for guiding the hyperparameter tuning and model
selection. We see the successful use of tree-based methods

VOLUME 12, 2024 182655



A. Biscontini et al.: Machine Learning for FPGA Electronic Design Automation

TABLE 4. ML algorithms time complexity comparison.

and neural networks in applications such as QoR prediction
and hyperparameter tuning. Active learning and unsuper-
vised learning approaches are mostly used for exploration
guidance. Automation is instead fully dominated by rein-
forcement learning techniques. At this stage, it is fundamental
to avoid overfitting/underfitting issues, that would give per-
formance mismatches between training and test datasets.

F. MODEL EVALUATION
Once the model parameters and hyperparameters are tuned,
the performance is evaluated on the test set, previously unseen
for all purposes. It is important to keep model selection and
performance assessment routines independent and isolated.
This effort aims to avoid compromising model performance
evaluation that would otherwise lead to reports of over-
optimistic results, not holding in a real scenario.

XI. DISCUSSION
A. ML TECHNIQUES ANALYSIS
In Table 3, we present a comprehensive classification of ML
techniques across the various EDA application fields. Super-
vised learning methods encompass most of the techniques
used in QoR prediction and hyperparameter optimization.
Commonly employed techniques include LR, GBDT, SVM,
GP, and KNN. Various neural network architectures, such as
ANN and CNN, are also applied. Notably, GNN approaches,
like GCN, are prevalent when netlist representations are
required. Supervised methods typically approximate func-
tions that map inputs to outputs based on input-output pairs,
aiming to predict continuous or discrete supervisory signals.
Examples of continuous targets include switching activity
for dynamic power prediction, timing slack for performance
estimation, and the number of logic elements (e.g., LUTs,
RAMs) for area prediction. In classification problems, such
as logic synthesis or placement hyperparameter prediction,
supervised methods are used to predict likelihoods or class
memberships. In contrast, unsupervised techniques are used
to simplify problems by building concise representations
of data. These methods often involve clustering, where the
number of classes is unknown and is determined as part
of the prediction process. Unsupervised learning is useful
in tasks such as identifying key signals for dynamic power
prediction. Active learning is particularly prominent in explo-
ration guidance, where interactive querying and data labeling
are necessary due to the high cost of ground truth data

extraction. This approach is commonly applied in areas such
as DSE and model selection for HLS and logic synthesis.
Techniques such as Bayesian optimization are more adapt-
able and achieve better performance by selecting only the
most informative samples. The automation domain is pre-
dominantly driven by RL, which is widely applied in tasks
such as logic optimization and placement, where the goal
is to develop no-human-in-the-loop methodologies. In this
context, an autonomous agent seeks to identify the optimal
approach for achieving a specific objective (e.g., finding the
best logic optimization for area reduction). The agent makes
decisions by leveraging both past feedback and exploring
new strategies that could yield greater rewards. This process
involves formulating a long-term strategy aimed at maximiz-
ing cumulative reward (e.g. logic area improvement).

B. TIME COMPLEXITY
Time complexity measures the number of operations an
algorithm performs from start to finish, typically expressed
as a function of input size. It reflects the time required for an
algorithm to complete its task. This concept applies to both
conventional and ML algorithms. However, ML algorithms
differ in that they operate in two distinct phases: training
and testing. The time complexity of these phases is analyzed
based on dataset size and the number of features. Table 4
provides a comparison of typical time complexities for ML
algorithms, as reported in [167], where the number of features
is denoted as d , samples as s, classes as c, and trees as k .
Algorithms like LR and Naive Bayes are relatively fast in
both training and testing, making them suitable when com-
putational efficiency is a priority. On the other hand, more
complex models such as SVMs often achieve higher accuracy
but require longer training times. A key advantage of ML
algorithms is their ability to offload most of the computa-
tional complexity to the training phase, where all learning
takes place. This one-time computational effort allows for
significantly faster performance during testing, with infer-
ence times showing gains of 10× to 1000× over traditional
algorithms, as demonstrated in various EDA applications
discussed earlier.

C. INTEGRATION
The integration of ML into EDA software applications
enhances capabilities such as predictions, data preprocess-

182656 VOLUME 12, 2024



A. Biscontini et al.: Machine Learning for FPGA Electronic Design Automation

ing, and data generation. This requires multiple ML models
to process data in real time, which introduces engineering
challenges that differ significantly from those encountered in
traditional software development. Unlike deterministic soft-
ware, mostMLmodels are stochastic, leading to uncertainties
throughout the project lifecycle. Key challenges include man-
aging and ensuring data quality, integrating ML with conven-
tional code, and navigating the complex dependencies among
source code, ML models, and external datasets. Effective
integration of ML models needs proper encapsulation, often
resulting in excessive glue code and intricate data-processing
pipelines. Additionally, current version-control systems, such
as Git, fall short in managing diverse ML assets, includ-
ing datasets and model parameters. Popular ML frameworks
like PyTorch, TensorFlow, and Scikit-Learn offer modular
approaches for implementing models, allowing developers to
treat models as reusable components. Models reuse is a vital
strategy that minimizes development effort and improves
performance, employing techniques such as transfer learning
and the utilization of pre-trained models. The architectural
design of ML-enabled systems is crucial for maintaining
functionality and optimizing performance and maintain-
ability, with modular architectures facilitating smoother
integration.

XII. OUTSTANDING CHALLENGES
Upon reviewing the ML methodologies in the applica-
tion areas of QoR prediction, hyperparameter optimization,
exploration guidance, and automation, a few outstanding
challenges can be highlighted:

A. ADAPTABILITY
Adaptability defines the ability of an ML system to adapt to
reasonable changes and represents an important challenge in
ML model design in the context of EDA for FPGA. Distribu-
tion shifts in the training data can degrade the performance
of ML models when the input dataset is represented only by
limited data gathered from various benchmark sources, as in
most of the reviewed publications. These distribution shifts
can often go undetected and hinder the final quality of the
system, making the applicability of the final models limited
to the data the model has been exposed to. This issue is not
only present in the data collection and preparation stages but
equally affects the training and evaluation steps. Data splits
and feature engineering efforts need to be performed to avoid
the introduction of any bias in the data and incorporate the
required invariances (equivariances).

B. SCALABILITY CONSIDERATIONS
Balancing efficiency and effectiveness in ML workflows
could be a major challenge, especially during the final
deployment stage and adoption. In the reviewed litera-
ture, ML pipeline design efforts were limited to research
purposes. Making the pipelines more manageable for real-
life applications remains challenging. That would be quite

useful not only at the model selection and training stage
where frequent retraining of the ML models would be
needed for multiple experiments, but also at evaluation time
where low latency and high throughput constraints are more
stringent.

C. EXPLAINABILITY
Explainability for AI has lately gained more importance.
ML learns the mapping between input and output data and
builds its decision process around this idea. With the evolv-
ing complexity models have acquired, these decisions may
become unknown to researchers and engineers working on
ML algorithm design. We see that explainability analysis of
the results is not always a priority in the reviewed material.
More effort should be put into the explainability study by
understanding model drifts, biases, and feature impact on the
prediction outcomes.

D. NEED FOR UPDATED OPEN-SOURCE DATASETS
Recent FPGA technology trends increase the need for up-to-
date datasets. Benchmarks need to match new devices with
netlists of increasing size. There is also a need to explore
multiple application fields (cryptography engines, signal pro-
cessing cores, etc.) to improve ML model generalization
capabilities. We see an opportunity for generative AI and
large language models to tackle this issue. These models can
learn structural patterns in the training samples and generate
new data that has similar features. Generative adversarial
networks [168] and large language models [169] demon-
strated their efficacy in other disciplines and could tackle this
challenge.

E. FUTURE PERSPECTIVES ON HLS AND RTL FLOWS
With the recent advancements in LLMs and their capability
to autonomously generate, analyze, and debug code, engi-
neers are expected to receive enhanced support in designing
increasingly novel and complex hardware architectures. The
growing efficiency of LLMs, coupled with their ability to
produce highly interpretable outputs, may address several
limitations inherent to HLS, such as lack of output explain-
ability and challenges in debugging and verification. Without
significant innovation in these areas, RTLflowsmay continue
to dominate, potentially at the expense of HLS adoption.

F. TOWARDS FULL END-TO-END ML FLOWS
The publications reviewed in this study solve a limited task
(estimate post-routing congestion, tune the placer hyperpa-
rameters, etc.) in the larger context of EDA for FPGA. All
the advantages gathered so far by the single tools could be
compounded in a complete end-to-end flow that would lead
to much greater performance and runtime benefits. We see
the potential of building an all-around ML-driven EDA suite
that would greatly benefit both the open-source academic and
industrial worlds.

VOLUME 12, 2024 182657



A. Biscontini et al.: Machine Learning for FPGA Electronic Design Automation

ABBREVIATIONS

REFERENCES
[1] S. M. Trimberger, ‘‘Three ages of FPGAs: A retrospective on the

first thirty years of FPGA technology,’’ Proc. IEEE, vol. 103,
no. 3, pp. 318–331, Mar. 2015, doi: 10.1109/JPROC.2015.
2392104.

[2] G. E. Moore, ‘‘Cramming more components onto integrated circuits,’’
Proc. IEEE, vol. 86, no. 1, pp. 82–85, Jan. 1998.

[3] R. R. Schaller, ‘‘Moore’s law: Past, present and future,’’ IEEE Spectr.,
vol. 34, no. 6, pp. 52–59, Jun. 1997, doi: 10.1109/6.591665.

[4] S. Wang, X. Liu, and P. Zhou, ‘‘The road for 2D semiconductors in the
silicon age,’’ Adv. Mater., vol. 34, no. 48, Dec. 2022, Art. no. 2106886,
doi: 10.1002/adma.202106886.

[5] K. Underwood, ‘‘FPGAs vs. CPUs: Trends in peak floating-point per-
formance,’’ in Proc. ACM/SIGDA 12th Int. Symp. Field Program. Gate
Arrays. Monterey, CA, USA: ACM, Feb. 2004, pp. 171–180, doi:
10.1145/968280.968305.

[6] M. J. S. Smith, Application-Specific Integrated Circuits. Boston, MA,
USA: Addison-Wesley, 2003.

[7] P. H. W. Leong, ‘‘Recent trends in FPGA architectures and applica-
tions,’’ in Proc. 4th IEEE Int. Symp. Electron. Design, Test Appl. (delta),
Jan. 2008, pp. 137–141, doi: 10.1109/DELTA.2008.14.

[8] S. Gandhare and B. Karthikeyan, ‘‘Survey on FPGA architecture and
recent applications,’’ in Proc. Int. Conf. Vis. Towards Emerg. Trends
Commun. Netw. (ViTECoN), Mar. 2019, pp. 1–4, doi: 10.1109/ViTE-
CoN.2019.8899550.

[9] C. Mulpuri and S. Hauck, ‘‘Runtime and quality tradeoffs in FPGA place-
ment and routing,’’ in Proc. ACM/SIGDA 9th Int. Symp. Field Program.
Gate Arrays. New York, NY, USA: ACM, Feb. 2001, pp. 29–36, doi:
10.1145/360276.360294.

[10] H. Bian, A. C. Ling, A. Choong, and J. Zhu, ‘‘Towards scalable placement
for FPGAs,’’ in Proc. 18th Annu. ACM/SIGDA Int. Symp. Field Program.
Gate Arrays. New York, NY, USA: ACM, Feb. 2010, pp. 147–156, doi:
10.1145/1723112.1723140.

[11] S. Y. L. Chin and S. J. E. Wilton, ‘‘Towards scalable FPGA CAD through
architecture,’’ in Proc. 19th ACM/SIGDA Int. Symp. Field Program.
Gate Arrays. Monterey, CA, USA: ACM, Feb. 2011, pp. 143–152, doi:
10.1145/1950413.1950443.

[12] P. Goswami and D. Bhatia, ‘‘Application of machine learning
in FPGA EDA tool development,’’ IEEE Access, vol. 11,
pp. 109564–109580, 2023, doi: 10.1109/ACCESS.2023.3322358.

[13] V. Hamolia and V. Melnyk, ‘‘A survey of machine learning methods and
applications in electronic design automation,’’ in Proc. 11th Int. Conf.
Adv. Comput. Inf. Technol. (ACIT), Deggendorf, Germany, Sep. 2021,
pp. 757–760, doi: 10.1109/ACIT52158.2021.9548117.

[14] I. Taj and U. Farooq, ‘‘Towards machine learning-based FPGA backend
flow: Challenges and opportunities,’’ Electronics, vol. 12, no. 4, p. 935,
Feb. 2023, doi: 10.3390/electronics12040935.

[15] B. Ghavami and L. Shannon, ‘‘Unraveling the integration of deep
machine learning in FPGA CAD flow: A concise survey and future
insights,’’ 2023, arXiv:2303.10508.

[16] D. Pal, C. Deng, E. Ustun, C. Yu, and Z. Zhang, ‘‘Machine learning for
agile FPGA design,’’ in Machine Learning Applications in Electronic
Design Automation, H. Ren and J. Hu, Eds., Cham, Switzerland: Springer,
2022, pp. 471–504, doi: 10.1007/978-3-031-13074-8_16.

[17] D. Chen, J. Cong, and P. Pan, ‘‘FPGA design automation: A survey,’’
Found. Trends Electron. Design Autom., vol. 1, no. 3, pp. 195–330, 2006,
doi: 10.1561/1000000003.

[18] X. Tang, E. Giacomin, B. Chauviere, A. Alacchi, and P.-E. Gaillardon,
‘‘OpenFPGA:An open-source framework for agile prototyping customiz-
able FPGAs,’’ IEEE Micro, vol. 40, no. 4, pp. 41–48, Jul. 2020, doi:
10.1109/MM.2020.2995854.

[19] I. Kuon, A. Egier, and J. Rose, ‘‘Design, layout and verification of
an FPGA using automated tools,’’ in Proc. ACM/SIGDA 13th Int.
Symp. Field-Program. Gate Arrays. New York, NY, USA: ACM,
Feb. 2005, pp. 215–226, doi: 10.1145/1046192.1046220.

[20] V. A. Ova and R. Saleh, ‘‘A ‘Soft++’ eFPGA physical design approach
with case studies in 180 nm and 90nm,’’ in Proc. IEEE Comput. Soc.
Annu. Symp. Emerg. VLSI Technol. Archit. (ISVLSI06), Mar. 2006,
pp. 103–108, doi: 10.1109/ISVLSI.2006.1.

[21] J. H. Kim and J. H. Anderson, ‘‘Synthesizable standard cell FPGA
fabrics targetable by the verilog-to-routing CAD flow,’’ ACM Trans.
Reconfigurable Technol. Syst., vol. 10, no. 2, pp. 1–23, Apr. 2017, doi:
10.1145/3024063.

[22] B. Grady and J. H. Anderson, ‘‘Synthesizable heterogeneous FPGA
fabrics,’’ in Proc. Int. Conf. Field-Program. Technol. (FPT), Dec. 2018,
pp. 222–229, doi: 10.1109/FPT.2018.00040.

[23] A. Li andD.Wentzlaff, ‘‘PRGA:An open-source FPGA research and pro-
totyping framework,’’ in Proc. ACM/SIGDA Int. Symp. Field-Program.
Gate Arrays. New York, NY, USA: ACM, Feb. 2021, pp. 127–137, doi:
10.1145/3431920.3439294.

[24] Y. Xiao, D. Park, A. Butt, H. Giesen, Z. Han, R. Ding, N. Magnezi,
R. Rubin, and A. DeHon, ‘‘Reducing FPGA compile time with
separate compilation for FPGA building blocks,’’ in Proc. Int.
Conf. Field-Program. Technol. (ICFPT), Dec. 2019, pp. 153–161, doi:
10.1109/ICFPT47387.2019.00026.

[25] W. Meeus, K. Van Beeck, T. Goedemé, J. Meel, and D. Stroobandt, ‘‘An
overview of today’s high-level synthesis tools,’’ Design Autom. Embed-
ded Syst., vol. 16, no. 3, pp. 31–51, Sep. 2012, doi: 10.1007/s10617-012-
9096-8.

[26] A. Schrijver, Theory of Linear and Integer Programming. Chichester,
U.K.,: Wiley, 2011.

[27] S. Desale, A. Rasool, S. Andhale, and P. Rane, ‘‘Heuristic and meta-
heuristic algorithms and their relevance to the real world: A survey,’’
Int. J. Comput. Eng. Res. Trends, vol. 351, no. 5, pp. 2349–7084,
2015.

[28] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, ‘‘Optimization by simu-
lated annealing,’’ Science, vol. 220, no. 4598, pp. 671–680, May 1983,
doi: 10.1126/science.220.4598.671.

[29] M. Srinivas and L. M. Patnaik, ‘‘Genetic algorithms: A survey,’’ Com-
puter, vol. 27, no. 6, pp. 17–26, Jun. 1994, doi: 10.1109/2.294849.

[30] M. Dorigo, M. Birattari, and T. Stutzle, ‘‘Ant colony optimization,’’
IEEE Comput. Intell. Mag., vol. 1, no. 4, pp. 28–39, Nov. 2006, doi:
10.1109/MCI.2006.329691.

[31] Z. Sun, K. Campbell, W. Zuo, K. Rupnow, S. Gurumani, F. Doucet,
and D. Chen, ‘‘Designing high-quality hardware on a development effort
budget: A study of the current state of high-level synthesis,’’ in Proc.
21st Asia South Pacific Design Autom. Conf. (ASP-DAC), Jan. 2016,
pp. 218–225, doi: 10.1109/ASPDAC.2016.7428014.

[32] S. Lahti, P. Sjövall, J. Vanne, and T. D. Hämäläinen, ‘‘Are we there yet? A
study on the state of high-level synthesis,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 38, no. 5, pp. 898–911, May 2019, doi:
10.1109/TCAD.2018.2834439.

182658 VOLUME 12, 2024

http://dx.doi.org/10.1109/JPROC.2015.2392104
http://dx.doi.org/10.1109/JPROC.2015.2392104
http://dx.doi.org/10.1109/6.591665
http://dx.doi.org/10.1002/adma.202106886
http://dx.doi.org/10.1145/968280.968305
http://dx.doi.org/10.1109/DELTA.2008.14
http://dx.doi.org/10.1109/ViTECoN.2019.8899550
http://dx.doi.org/10.1109/ViTECoN.2019.8899550
http://dx.doi.org/10.1145/360276.360294
http://dx.doi.org/10.1145/1723112.1723140
http://dx.doi.org/10.1145/1950413.1950443
http://dx.doi.org/10.1109/ACCESS.2023.3322358
http://dx.doi.org/10.1109/ACIT52158.2021.9548117
http://dx.doi.org/10.3390/electronics12040935
http://dx.doi.org/10.1007/978-3-031-13074-8_16
http://dx.doi.org/10.1561/1000000003
http://dx.doi.org/10.1109/MM.2020.2995854
http://dx.doi.org/10.1145/1046192.1046220
http://dx.doi.org/10.1109/ISVLSI.2006.1
http://dx.doi.org/10.1145/3024063
http://dx.doi.org/10.1109/FPT.2018.00040
http://dx.doi.org/10.1145/3431920.3439294
http://dx.doi.org/10.1109/ICFPT47387.2019.00026
http://dx.doi.org/10.1007/s10617-012-9096-8
http://dx.doi.org/10.1007/s10617-012-9096-8
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1109/2.294849
http://dx.doi.org/10.1109/MCI.2006.329691
http://dx.doi.org/10.1109/ASPDAC.2016.7428014
http://dx.doi.org/10.1109/TCAD.2018.2834439


A. Biscontini et al.: Machine Learning for FPGA Electronic Design Automation

[33] G. DeMicheli, Synthesis and Optimization of Digital Circuits. NewYork,
NY, USA: McGraw-Hill, 1994.

[34] A. Turing, ‘‘Intelligent machinery (1948),’’ in The Essential Tur-
ing, B. J. Copeland, Ed., London, U.K.: Oxford Univ. Press, 2004,
pp. 395–432, doi: 10.1093/oso/9780198250791.003.0016.

[35] W. Wang, Q. Meng, and Z. Zhang, ‘‘A survey of FPGA place-
ment algorithm research,’’ in Proc. 7th IEEE Int. Conf. Electron.
Inf. Emergency Commun. (ICEIEC), Jul. 2017, pp. 498–502, doi:
10.1109/ICEIEC.2017.8076614.

[36] A. Khatkhate, C. Li, A. R. Agnihotri, M. C. Yildiz, S. Ono, C.-K. Koh,
and P. H. Madden, ‘‘Recursive bisection based mixed block placement,’’
in Proc. Int. Symp. Phys. Design. New York, NY, USA: ACM, Apr. 2004,
pp. 84–89, doi: 10.1145/981066.981084.

[37] Z. Abuowaimer, D. Maarouf, T. Martin, J. Foxcroft, G. Gréwal, S. Areibi,
and A. Vannelli, ‘‘GPlace3.0: Routability-driven analytic placer for ultra-
scale FPGA architectures,’’ ACM Trans. Design Autom. Electron. Syst.,
vol. 23, no. 5, pp. 1–33, Oct. 2018, doi: 10.1145/3233244.

[38] W. Li, Y. Lin, and D. Z. Pan, ‘‘ElfPlace: Electrostatics-based place-
ment for large-scale heterogeneous FPGAs,’’ in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2019, pp. 1–8, doi:
10.1109/ICCAD45719.2019.8942075.

[39] V. Betz and J. Rose, ‘‘VPR: A new packing, placement and routing
tool for FPGA research,’’ in Field-Programmable Logic and Applica-
tions, vol. 1304, W. Luk, P. Y. K. Cheung, and M. Glesner, Eds.,
Berlin, Germany: Springer, 1997, pp. 213–222, doi: 10.1007/3-540-
63465-7_226.

[40] K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. Eldafrawy,
J.-P. Legault, E. Sha, A. G. Graham, J. Wu, M. J. P. Walker, H. Zeng,
P. Patros, J. Luu, K. B. Kent, and V. Betz, ‘‘VTR 8: High-performance
CAD and customizable FPGA architecture modelling,’’ ACM Trans.
Reconfigurable Technol. Syst., vol. 13, no. 2, pp. 1–55, Jun. 2020, doi:
10.1145/3388617.

[41] S. Trimberger, ‘‘Effects of FPGA architecture on FPGA routing,’’ inProc.
32nd ACM/IEEE Conf. Design Autom. Conf. (DAC). San Francisco, CA,
USA: ACM, Jul. 1995, pp. 574–578, doi: 10.1145/217474.217592.

[42] L. Mcmurchie and C. Ebeling, ‘‘PathFinder: A negotiation-based
performance-driven router for FPGAs,’’ in Proc. ACM 3rd Int.
Symp. Field-Program. Gate Arrays. Monterey, CA, USA: ACM,
Feb. 1995, pp. 111–117, doi: 10.1145/201310.201328.

[43] S. Lee, H. Xiang, D. F. Wong, and R. Y. Sun, ‘‘Wire type assignment for
FPGA routing,’’ in Proc. ACM/SIGDA 11th Int. Symp. Field Program.
gate arrays. New York, NY, USA: ACM, Feb. 2003, pp. 61–67, doi:
10.1145/611817.611828.

[44] Y.-W. Chang, K. Zhu, and D. F. Wong, ‘‘Timing-driven routing for
symmetrical array-based FPGAs,’’ ACM Trans. Design Autom. Electron.
Syst., vol. 5, no. 3, pp. 433–450, Jul. 2000, doi: 10.1145/348019.348101.

[45] H. Fraisse, A. Joshi, D. Gaitonde, andA. Kaviani, ‘‘Boolean satisfiability-
based routing and its application to Xilinx ultrascale clock network,’’ in
Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays. New York,
NY, USA: ACM, Feb. 2016, pp. 74–79, doi: 10.1145/2847263.2847342.

[46] J. Teich, ‘‘Pareto-front exploration with uncertain objectives,’’ in Evo-
lutionary Multi-Criterion Optimization, E. Zitzler, L. Thiele, K. Deb,
C. A. C. Coello, and D. Corne, Eds., Berlin, Germany: Springer, 2001,
pp. 314–328, doi: 10.1007/3-540-44719-9_22.

[47] J. Zhao, T. Liang, S. Sinha, and W. Zhang, ‘‘Machine learning based
routing congestion prediction in FPGA high-level synthesis,’’ in Proc.
Design, Autom. Test Eur. Conf. Exhib. (DATE), Florence, Italy, Mar. 2019,
pp. 1130–1135, doi: 10.23919/DATE.2019.8714724.

[48] Z. Wang, J. Chen, and B. C. Schafer, ‘‘Efficient and robust
high-level synthesis design space exploration through offline
micro-kernels pre-characterization,’’ in Proc. Design, Autom.
Test Eur. Conf. Exhibit. (DATE), Mar. 2020, pp. 145–150, doi:
10.23919/DATE48585.2020.9116309.

[49] Z. Wang and B. C. Schafer, ‘‘Learning from the past: Efficient high-
level synthesis design space exploration for FPGAs,’’ ACM Trans.
Design Autom. Electron. Syst., vol. 27, no. 4, pp. 1–23, Feb. 2022, doi:
10.1145/3495531.

[50] P. Goswami, B. C. Schaefer, and D. Bhatia, ‘‘Machine learning based
fast and accurate high level synthesis design space exploration: From
graph to synthesis,’’ Integration, vol. 88, pp. 116–124, Jan. 2023, doi:
10.1016/j.vlsi.2022.09.006.

[51] L. Ferretti, A. Cini, G. Zacharopoulos, C. Alippi, and L. Pozzi, ‘‘Graph
neural networks for high-level synthesis design space exploration,’’ ACM
Trans. Design Autom. Electron. Syst., vol. 28, no. 2, pp. 1–20, Mar. 2023,
doi: 10.1145/3570925.

[52] H. M. Makrani, F. Farahmand, H. Sayadi, S. Bondi, S. M. P. Dinakar-
rao, H. Homayoun, and S. Rafatirad, ‘‘Pyramid: Machine learning
framework to estimate the optimal timing and resource usage of a
high-level synthesis design,’’ in Proc. 29th Int. Conf. Field Program.
Log. Appl. (FPL), Barcelona, Spain, Sep. 2019, pp. 397–403, doi:
10.1109/FPL.2019.00069.

[53] G. Fischer, J. Lusiardi, and J. W. von Gudenberg, ‘‘Abstract syntax trees-
and their role in model driven software development,’’ in Proc. Int.
Conf. Softw. Eng. Adv. (ICSEA), Aug. 2007, p. 38, doi: 10.1109/icsea.
2007.12.

[54] Z. Wang and B. C. Schafer, ‘‘Machine leaming to set meta-heuristic
specific parameters for high-level synthesis design space exploration,’’
in Proc. 57th ACM/IEEE Design Autom. Conf. (DAC), Jul. 2020, pp. 1–6,
doi: 10.1109/DAC18072.2020.9218674.

[55] B. C. Schafer, ‘‘Probabilistic multiknob high-level synthesis design
space exploration acceleration,’’ IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 35, no. 3, pp. 394–406, Mar. 2016, doi:
10.1109/TCAD.2015.2472007.

[56] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov, and
A. Smola, ‘‘Deep Sets,’’ 2018, arXiv:1703.061143.

[57] Y.-K. Choi, P. Zhang, P. Li, and J. Cong, ‘‘HLScope+: Fast and accu-
rate performance estimation for FPGA HLS,’’ in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Design (ICCAD), Irvine, CA, USA, Nov. 2017,
pp. 691–698.

[58] G. Zhong, A. Prakash, S. Wang, Y. Liang, T. Mitra, and S. Niar,
‘‘Design space exploration of FPGA-based accelerators with multi-level
parallelism,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),,
Mar. 2017, pp. 1141–1146, doi: 10.23919/DATE.2017.7927161.

[59] L. Breiman, ‘‘Stacked regressions,’’ Mach. Learn., vol. 24, no. 1,
pp. 49–64, Jul. 1996, doi: 10.1007/bf00117832.

[60] Z. Lin, J. Zhao, S. Sinha, and W. Zhang, ‘‘HL-pow: A learning-based
power modeling framework for high-level synthesis,’’ in Proc. 25th Asia
South PacificDesign Autom. Conf. (ASP-DAC), Beijing, China, Jan. 2020,
pp. 574–580, doi: 10.1109/ASP-DAC47756.2020.9045442.

[61] W. Zuo, W. Kemmerer, J. B. Lim, L.-N. Pouchet, A. Ayupov, T. Kim,
K. Han, and D. Chen, ‘‘A polyhedral-based SystemC modeling and gen-
eration framework for effective low-power design space exploration,’’ in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2015,
pp. 357–364, doi: 10.1109/ICCAD.2015.7372592.

[62] A. Mahapatra and B. C. Schafer, ‘‘Machine-learning based simu-
lated annealer method for high level synthesis design space explo-
ration,’’ in Proc. Electron. Syst. Level Synth. Conf. (ESLsyn), San
Francisco, CA, USA, May 2014, pp. 1–6, doi: 10.1109/ESLSYN.2014.
6850383.

[63] J. R. Quinlan, ‘‘Induction of decision trees,’’ Mach. Learn., vol. 1, no. 1,
pp. 81–106, Mar. 1986, doi: 10.1007/bf00116251.

[64] M. Yu, S. Huang, and D. Chen, ‘‘Chimera: A hybrid machine learning-
driven multi-objective design space exploration tool for FPGA high-level
synthesis,’’ in Intelligent Data Engineering and Automated Learning—
IDEAL (Lecture Notes in Computer Science), H. Yin, D. Camacho,
P. Tino, R. Allmendinger, A. J. Tallón-Ballesteros, K. Tang, S.-B. Cho,
P. Novais, and S. Nascimento, Eds., Cham, Switzerland: Springer, 2021,
pp. 524–536, doi: 10.1007/978-3-030-91608-4_52.

[65] Q. Gautier, A. Althoff, C. L. Crutchfield, and R. Kastner, ‘‘Sherlock:
A multi-objective design space exploration framework,’’ ACM Trans.
Design Autom. Electron. Syst., vol. 27, no. 4, pp. 1–20, Jul. 2022, doi:
10.1145/3511472.

[66] P. Meng, A. Althoff, Q. Gautier, and R. Kastner, ‘‘Adaptive thresh-
old non-Pareto elimination: Re-thinking machine learning for sys-
tem level design space exploration on FPGAs,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2016, pp. 918–923, doi:
10.3850/9783981537079_0350.

[67] M. Zuluaga, A. Krause, and M. Püschel, ‘‘ϵ-PAL: An active learning
approach to the multi-objective optimization problem,’’ J. Mach. Learn.
Res., vol. 17, no. 1, pp. 3619–3650, Jan. 2016.

[68] K. Yu, J. Bi, and V. Tresp, ‘‘Active learning via transductive experimental
design,’’ in Proc. 23rd Int. Conf. Mach. Learn. (ICML), Pittsburgh, PA,
USA, 2006, pp. 1081–1088, doi: 10.1145/1143844.1143980.

[69] V. Nair, Z. Yu, T. Menzies, N. Siegmund, and S. Apel, ‘‘Finding faster
configurations using FLASH,’’ IEEE Trans. Softw. Eng., vol. 46, no. 7,
pp. 794–811, Jul. 2020, doi: 10.1109/TSE.2018.2870895.

[70] H. Chen and M. Shen, ‘‘A deep-reinforcement-learning-based
scheduler for FPGA HLS,’’ in Proc. IEEE/ACM Int. Conf.
Computer-Aided Design (ICCAD), Nov. 2019, pp. 1–8, doi:
10.1109/ICCAD45719.2019.8942126.

VOLUME 12, 2024 182659

http://dx.doi.org/10.1093/oso/9780198250791.003.0016
http://dx.doi.org/10.1109/ICEIEC.2017.8076614
http://dx.doi.org/10.1145/981066.981084
http://dx.doi.org/10.1145/3233244
http://dx.doi.org/10.1109/ICCAD45719.2019.8942075
http://dx.doi.org/10.1007/3-540-63465-7_226
http://dx.doi.org/10.1007/3-540-63465-7_226
http://dx.doi.org/10.1145/3388617
http://dx.doi.org/10.1145/217474.217592
http://dx.doi.org/10.1145/201310.201328
http://dx.doi.org/10.1145/611817.611828
http://dx.doi.org/10.1145/348019.348101
http://dx.doi.org/10.1145/2847263.2847342
http://dx.doi.org/10.1007/3-540-44719-9_22
http://dx.doi.org/10.23919/DATE.2019.8714724
http://dx.doi.org/10.23919/DATE48585.2020.9116309
http://dx.doi.org/10.1145/3495531
http://dx.doi.org/10.1016/j.vlsi.2022.09.006
http://dx.doi.org/10.1145/3570925
http://dx.doi.org/10.1109/FPL.2019.00069
http://dx.doi.org/10.1109/icsea.2007.12
http://dx.doi.org/10.1109/icsea.2007.12
http://dx.doi.org/10.1109/DAC18072.2020.9218674
http://dx.doi.org/10.1109/TCAD.2015.2472007
http://dx.doi.org/10.23919/DATE.2017.7927161
http://dx.doi.org/10.1007/bf00117832
http://dx.doi.org/10.1109/ASP-DAC47756.2020.9045442
http://dx.doi.org/10.1109/ICCAD.2015.7372592
http://dx.doi.org/10.1109/ESLSYN.2014.6850383
http://dx.doi.org/10.1109/ESLSYN.2014.6850383
http://dx.doi.org/10.1007/bf00116251
http://dx.doi.org/10.1007/978-3-030-91608-4_52
http://dx.doi.org/10.1145/3511472
http://dx.doi.org/10.3850/9783981537079_0350
http://dx.doi.org/10.1145/1143844.1143980
http://dx.doi.org/10.1109/TSE.2018.2870895
http://dx.doi.org/10.1109/ICCAD45719.2019.8942126


A. Biscontini et al.: Machine Learning for FPGA Electronic Design Automation

[71] R. A. Walker and S. Chaudhuri, ‘‘Introduction to the scheduling prob-
lem,’’ IEEE Design Test Comput., vol. 12, no. 2, pp. 60–69, Feb. 1995,
doi: 10.1109/54.386007.

[72] J. Forrest and R. Lougee-Heimer, ‘‘CBC user guide,’’ INFORMS TutO-
Rials in Operations Research, vol. 2005, pp. 257–277, Sep. 2005, doi:
10.1287/educ.1053.0020.

[73] E. Zennaro, L. Servadei, K. Devarajegowda, and W. Ecker, ‘‘A machine
learning approach for area prediction of hardware designs from abstract
specifications,’’ in Proc. 21st Euromicro Conf. Digit. Syst. Design (DSD),
Aug. 2018, pp. 413–420, doi: 10.1109/DSD.2018.00076.

[74] B. Li, X. Zhang, H. You, Z. Qi, and Y. Zhang, ‘‘Machine learning based
framework for fast resource estimation of RTL designs targeting FPGAs,’’
ACM Trans. Design Autom. Electron. Syst., vol. 28, no. 2, pp. 1–16,
Dec. 2022, doi: 10.1145/3555047.

[75] D. Kim, J. Zhao, J. Bachrach, and K. Asanović, ‘‘Simmani: Run-
time power modeling for arbitrary RTL with automatic signal selec-
tion,’’ in Proc. 52nd Annu. IEEE/ACM Int. Symp. Microarchitec-
ture. New York, NY, USA: ACM, Oct. 2019, pp. 1050–1062, doi:
10.1145/3352460.3358322.

[76] G. Parthasarathy, A. Rushdi, P. Choudhary, S. Nanda, M. Evans,
H. Gunasekara, and S. Rajakumar, ‘‘RTL regression test selection
using machine learning,’’ in Proc. 27th Asia South Pacific Design
Autom. Conf. (ASP-DAC), Jan. 2022, pp. 281–287, doi: 10.1109/ASP-
DAC52403.2022.9712550.

[77] W. Hughes, S. Srinivasan, R. Suvarna, and M. Kulkarni, ‘‘Optimizing
design verification using machine learning: Doing better than random,’’
2019, arXiv:1909.13168.

[78] D. Paletti, F. Peverelli, and D. Conficconi, ‘‘Online learning RTL synthe-
sis for automated design space exploration,’’ in Proc. IEEE Int. Parallel
Distrib. Process. Symp.Workshops (IPDPSW), May 2022, pp. 69–76, doi:
10.1109/IPDPSW55747.2022.00021.

[79] A. Ghaffari, M. Asgharian, and Y. Savaria, ‘‘Statistical hardware design
with multimodel active learning,’’ IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 43, no. 2, pp. 562–572, Feb. 2024, doi:
10.1109/TCAD.2023.3320984.

[80] Y.-D. Tsai, M. Liu, and H. Ren, ‘‘RTLFixer: Automatically fixing RTL
syntax errors with large language models,’’ 2023, arXiv:2311.16543.

[81] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao,
‘‘ReAct: Synergizing reasoning and acting in language models,’’ 2022,
arXiv:2210.03629.

[82] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-T. Yih, T. Rocktäschel, S. Riedel, and D. Kiela,
‘‘Retrieval-augmented generation for knowledge-intensive NLP tasks,’’
2020, arXiv:2005.11401.

[83] X. Yao, H. Li, T. Ho Chan, W. Xiao, M. Yuan, Y. Huang, L. Chen,
and B. Yu, ‘‘HDLdebugger: Streamlining HDL debugging with large
language models,’’ 2024, arXiv:2403.11671.

[84] S. Thakur, B. Ahmad, Z. Fan, H. Pearce, B. Tan, R. Karri,
B. Dolan-Gavitt, and S. Garg, ‘‘Benchmarking large language mod-
els for automated verilog RTL code generation,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhibit. (DATE), Apr. 2023, pp. 1–6, doi:
10.23919/date56975.2023.10137086.

[85] S. Thakur, B. Ahmad, H. Pearce, B. Tan, B. Dolan-Gavitt, R. Karri, and
S. Garg, ‘‘VeriGen: A large language model for verilog code generation,’’
ACM Trans. Design Autom. Electron. Syst., vol. 29, no. 3, pp. 1–31,
Apr. 2024, doi: 10.1145/3643681.

[86] J. Ye, X. Chen, N. Xu, C. Zu, Z. Shao, S. Liu, Y. Cui, Z. Zhou, C. Gong,
Y. Shen, J. Zhou, S. Chen, T. Gui, Q. Zhang, and X. Huang, ‘‘A compre-
hensive capability analysis of GPT-3 and GPT-3.5 series models,’’ 2023,
arXiv:2303.10420.

[87] Y. Lu, S. Liu, Q. Zhang, and Z. Xie, ‘‘RTLLM: An open-source bench-
mark for design RTL generation with large language model,’’ in Proc.
29th Asia South Pacific Design Autom. Conf. (ASP-DAC), Jan. 2024,
pp. 722–727, doi: 10.1109/asp-dac58780.2024.10473904.

[88] H. Hu, J. Hu, F. Zhang, B. Tian, and I. Bustany, ‘‘Machine-learning
based delay prediction for FPGA technology mapping,’’ in Proc. 24th
ACM/IEEE Workshop Syst. Level Interconnect Pathfinding. San Diego,
CA, USA: ACM, Nov. 2022, pp. 1–6, doi: 10.1145/3557988.3569713.

[89] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T.-Y. Liu, ‘‘LightGBM: A highly efficient gradient boosting decision
tree,’’ in Proc. 31st Int. Conf. Neural Inf. Process. Syst. Red Hook, NY,
USA: Curran Associates, 2017, pp. 3149–3157.

[90] N. Kapre, H. Ng, K. Teo, and J. Naude, ‘‘InTime: A machine learning
approach for efficient selection of FPGA CAD tool parameters,’’ in Proc.
ACM/SIGDA Int. Symp. Field-Program. Gate Arrays. New York, NY,
USA: ACM, Feb. 2015, pp. 23–26, doi: 10.1145/2684746.2689081.

[91] C. Xu, G. Liu, R. Zhao, S. Yang, G. Luo, and Z. Zhang, ‘‘A parallel bandit-
based approach for autotuning FPGA compilation,’’ inProc. ACM/SIGDA
Int. Symp. Field-Program. Gate Arrays. Monterey, CA, USA: ACM,
Feb. 2017, pp. 157–166, doi: 10.1145/3020078.3021747.

[92] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O’Reilly, and S. Amarasinghe, ‘‘OpenTuner: An extensible
framework for program autotuning,’’ in Proc. 23rd Int. Conf. Paral-
lel Archit. Compilation Techn. (PACT), Aug. 2014, pp. 303–315, doi:
10.1145/2628071.2628092.

[93] E. Ustun, S. Xiang, J. Gui, C. Yu, and Z. Zhang, ‘‘LAMDA: Learning-
assisted multi-stage autotuning for FPGA design closure,’’ in Proc. IEEE
27th Annu. Int. Symp. Field-Program. Custom Comput. Mach. (FCCM),
Apr. 2019, pp. 74–77, doi: 10.1109/FCCM.2019.00020.

[94] Q. Yanghua, H. Ng, and N. Kapre, ‘‘Boosting convergence of timing
closure using feature selection in a learning-driven approach,’’ in Proc.
26th Int. Conf. Field Program. Log. Appl. (FPL), Aug. 2016, pp. 1–9,
doi: 10.1109/FPL.2016.7577302.

[95] Q. Yanghua, C. Adaikkala Raj, H. Ng, K. Teo, and N. Kapre, ‘‘Case for
design-specific machine learning in timing closure of FPGA designs,’’
in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays. New
York, NY, USA: ACM, Feb. 2016, pp. 169–172, doi: 10.1145/2847263.
2847336.

[96] A. Grosnit, C. Malherbe, R. Tutunov, X.Wan, J. Wang, and H. B. Ammar,
‘‘BOiLS: Bayesian optimisation for logic synthesis,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2022, pp. 1193–1196, doi:
10.23919/DATE54114.2022.9774632.

[97] H. B. Moss, D. Beck, J. Gonzalez, D. S. Leslie, and P. Rayson, ‘‘BOSS:
Bayesian optimization over string spaces,’’ in Proc. 34th Int. Conf. Neu-
ral Inf. Process. Syst. Red Hook, NY, USA: Curran Associates, 2020,
pp. 15476–15486.

[98] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins,
‘‘Text classification using string kernels,’’ J. Mach. Learn. Res., vol. 2,
pp. 419–444, Feb. 2002.

[99] ABC: A Simple System for Sequential Synthesis and Verification.
Accessed: Oct. 7, 2024. [Online]. Available: https://people.eecs.
berkeley.edu/

[100] A. B. Chowdhury, B. Tan, R. Carey, T. Jain, R. Karri, and S. Garg, ‘‘Bulls-
eye: Active few-shot learning guided logic synthesis,’’ IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 42, no. 8, pp. 2580–2590,
Aug. 2023, doi: 10.1109/TCAD.2022.3226668.

[101] Z. Bodó, Z. Minier, and L. Csató, ‘‘Active learning with clustering,’’
in Proc. Act. Learn. Exp. Design Workshop Conjunct. AISTATS, JMLR
Workshop Conf., 2011, pp. 127–139. Accessed: Oct. 7, 2024. [Online].
Available: https://proceedings.mlr.press/v16/bodo11a.html

[102] K. Zhu, M. Liu, H. Chen, Z. Zhao, and D. Z. Pan, ‘‘Exploring logic
optimizations with reinforcement learning and graph convolutional net-
work,’’ in Proc. ACM/IEEE 2ndWorkshop Mach. Learn. CAD (MLCAD).
Iceland: ACM, Nov. 2020, pp. 145–150, doi: 10.1145/3380446.3430622.

[103] A. Hosny, S. Hashemi, M. Shalan, and S. Reda, ‘‘DRiLLS: Deep
reinforcement learning for logic synthesis,’’ in Proc. 25th Asia South
Pacific Design Autom. Conf. (ASP-DAC), Jan. 2020, pp. 581–586, doi:
10.1109/ASP-DAC47756.2020.9045559.

[104] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, ‘‘Asynchronous methods for deep
reinforcement learning,’’ in Proc. The 33rd Int. Conf. Mach. Learn.,
2016, pp. 1928–1937. Accessed: Oct. 7, 2024. [Online]. Available:
https://proceedings.mlr.press/v48/mniha16.html

[105] G. Zhou and J. H. Anderson, ‘‘Area-driven FPGA logic synthesis using
reinforcement learning,’’ in Proc. 28th Asia South Pacific Design Autom.
Conf. (ASP-DAC). Tokyo, Japan: ACM, Jan. 2023, pp. 159–165, doi:
10.1145/3566097.3567894.

[106] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘‘Prox-
imal policy optimization algorithms,’’ 2017, arXiv:1707.06347.

[107] Y. Qian, X. Zhou, H. Zhou, and L. Wang, ‘‘Efficient reinforcement
learning framework for automated logic synthesis exploration,’’ in Proc.
Int. Conf. Field-Program. Technol. (ICFPT), Dec. 2022, pp. 1–6, doi:
10.1109/ICFPT56656.2022.9974330.

[108] C. Yu, ‘‘FlowTune: Practical multi-armed bandits in Boolean opti-
mization,’’ in Proc. IEEE/ACM Int. Conf. Comput. Aided Design
(ICCAD). New York, NY, USA: ACM, Nov. 2020, pp. 1–9, doi:
10.1145/3400302.3415615.

[109] Y. V. Peruvemba, S. Rai, K. Ahuja, and A. Kumar, ‘‘RL-guided runtime-
constrained heuristic exploration for logic synthesis,’’ inProc. IEEE/ACM
Int. Conf. Comput. Aided Design (ICCAD), Nov. 2021, pp. 1–9, doi:
10.1109/ICCAD51958.2021.9643530.

182660 VOLUME 12, 2024

http://dx.doi.org/10.1109/54.386007
http://dx.doi.org/10.1287/educ.1053.0020
http://dx.doi.org/10.1109/DSD.2018.00076
http://dx.doi.org/10.1145/3555047
http://dx.doi.org/10.1145/3352460.3358322
http://dx.doi.org/10.1109/ASP-DAC52403.2022.9712550
http://dx.doi.org/10.1109/ASP-DAC52403.2022.9712550
http://dx.doi.org/10.1109/IPDPSW55747.2022.00021
http://dx.doi.org/10.1109/TCAD.2023.3320984
http://dx.doi.org/10.23919/date56975.2023.10137086
http://dx.doi.org/10.1145/3643681
http://dx.doi.org/10.1109/asp-dac58780.2024.10473904
http://dx.doi.org/10.1145/3557988.3569713
http://dx.doi.org/10.1145/2684746.2689081
http://dx.doi.org/10.1145/3020078.3021747
http://dx.doi.org/10.1145/2628071.2628092
http://dx.doi.org/10.1109/FCCM.2019.00020
http://dx.doi.org/10.1109/FPL.2016.7577302
http://dx.doi.org/10.1145/2847263.2847336
http://dx.doi.org/10.1145/2847263.2847336
http://dx.doi.org/10.23919/DATE54114.2022.9774632
http://dx.doi.org/10.1109/TCAD.2022.3226668
http://dx.doi.org/10.1145/3380446.3430622
http://dx.doi.org/10.1109/ASP-DAC47756.2020.9045559
http://dx.doi.org/10.1145/3566097.3567894
http://dx.doi.org/10.1109/ICFPT56656.2022.9974330
http://dx.doi.org/10.1145/3400302.3415615
http://dx.doi.org/10.1109/ICCAD51958.2021.9643530


A. Biscontini et al.: Machine Learning for FPGA Electronic Design Automation

[110] W. L. Neto, M. Austin, S. Temple, L. Amaru, X. Tang, and
P.-E. Gaillardon, ‘‘LSOracle: A logic synthesis framework driven
by artificial intelligence: Invited paper,’’ in Proc. IEEE/ACM Int.
Conf. Computer-Aided Design (ICCAD), Nov. 2019, pp. 1–6, doi:
10.1109/ICCAD45719.2019.8942145.

[111] M. Karnaugh, ‘‘The map method for synthesis of combinational logic
circuits,’’ Trans. Amer. Inst. Electr. Engineers, I, Commun. Elec-
tron., vol. 72, no. 5, pp. 593–599, Nov. 1953, doi: 10.1109/TCE.1953.
6371932.

[112] T. Martin, G. Grewal, and S. Areibi, ‘‘A machine learning approach
to predict timing delays during FPGA placement,’’ in Proc. IEEE Int.
Parallel Distrib. Process. Symp. Workshops (IPDPSW). OR, USA: IEEE,
Jun. 2021, pp. 124–127, doi: 10.1109/IPDPSW52791.2021.00026.

[113] T. Martin, D. Maarouf, Z. Abuowaimer, A. Alhyari, G. Grewal, and
S. Areibi, ‘‘A flat timing-driven placement flow for modern FPGAs,’’ in
Proc. 56th ACM/IEEEDesign Autom. Conf. (DAC). NewYork, NY, USA:
ACM, Jun. 2019, pp. 1–6, doi: 10.1145/3316781.3317743.

[114] T. Martin, C. Barnes, G. Grewal, and S. Areibi, ‘‘Integrating
machine-learning probes into the VTR FPGA design flow,’’ in
Proc. 35th SBC/SBMicro/IEEE/ACM Symp. Integr. Circuits Syst.
Design (SBCCI), Porto Alegre, Brazil, Aug. 2022, pp. 1–6, doi:
10.1109/SBCCI55532.2022.9893251.

[115] C.-W. Pui, G. Chen, Y. Ma, E. F. Y. Young, and B. Yu, ‘‘Clock-
aware ultrascale FPGA placement with machine learning routability
prediction: (Invited paper),’’ in Proc. IEEE/ACM Int. Conf. Comput.-
Aided Design (ICCAD), Irvine, CA, USA, Nov. 2017, pp. 929–936, doi:
10.1109/ICCAD.2017.8203880.

[116] C.-W. Pui, G. Chen, W.-K. Chow, K.-C. Lam, J. Kuang, P. Tu, H. Zhang,
E. F. Y. Young, and B. Yu, ‘‘RippleFPGA: A routability-driven place-
ment for large-scale heterogeneous FPGAs,’’ in Proc. IEEE/ACM Int.
Conf. Computer-Aided Design (ICCAD), Nov. 2016, pp. 1–8, doi:
10.1145/2966986.2980084.

[117] D. Maarouf, A. Alhyari, Z. Abuowaimer, T. Martin, A. Gunter,
G. Grewal, S. Areibi, and A. Vannelli, ‘‘Machine-learning based con-
gestion estimation for modern FPGAs,’’ in Proc. 28th Int. Conf. Field
Program. Log. Appl. (FPL), Dublin, Ireland, Aug. 2018, pp. 427–4277,
doi: 10.1109/FPL.2018.00079.

[118] P. Kannan, S. Balachandran, and D. Bhatia, ‘‘On metrics for comparing
interconnect estimation methods for FPGAs,’’ IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 12, no. 4, pp. 381–385, Apr. 2004, doi:
10.1109/TVLSI.2004.825865.

[119] D. Yeager, D. Chiu, and G. Lemieux, ‘‘Congestion estimation and local-
ization in fpgas: A visual tool for interconnect prediction,’’ in Proc. Int.
Workshop Syst. Level Interconnect Predict. New York, NY, USA: ACM,
Mar. 2007, pp. 33–40, doi: 10.1145/1231956.1231963.

[120] A. Al-Hyari, H. Szentimrey, A. Shamli, T. Martin, G. Gréwal, and
S. Areibi, ‘‘A deep learning framework to predict routability for FPGA
circuit placement,’’ ACM Trans. Reconfigurable Technol. Syst., vol. 14,
no. 3, pp. 1–28, Aug. 2021, doi: 10.1145/3465373.

[121] H. Szentimrey, A. Al-Hyari, J. Foxcroft, T. Martin, D. Noel, G. Grewal,
and S. Areibi, ‘‘Machine learning for congestion management and
routability prediction within FPGA placement,’’ ACM Trans. Design
Autom. Electron. Syst., vol. 25, no. 5, pp. 1–25, Sep. 2020, doi: 10.1145/
3373269.

[122] T. Martin, S. Areibi, and G. Grewal, ‘‘Effective machine-learning
models for predicting routability during FPGA placement,’’ in Proc.
ACM/IEEE 3rd Workshop Mach. Learn.CAD (MLCAD), Raleigh,
NC, USA, Aug. 2021, pp. 1–6, doi: 10.1109/MLCAD52597.2021.
9531243.

[123] N. Kapre, B. Chandrashekaran, H. Ng, and K. Teo, ‘‘Driving timing
convergence of FPGA designs through machine learning and cloud com-
puting,’’ in Proc. IEEE 23rd Annu. Int. Symp. Field-Program. Custom
Comput. Mach., May 2015, pp. 119–126, doi: 10.1109/FCCM.2015.36.

[124] A. Al-hyari, Z. Abuowaimer, D. Maarouf, S. Areibi, and G. Grewal,
‘‘An effective FPGA placement flow selection framework using machine
learning,’’ in Proc. 30th Int. Conf. Microelectron. (ICM), Sousse, Tunisia,
Dec. 2018, pp. 164–167, doi: 10.1109/ICM.2018.8704066.

[125] W. Li, S. Dhar, and D. Z. Pan, ‘‘UTPlaceF: A routability-driven FPGA
placer with physical and congestion aware packing,’’ IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 4, pp. 869–882,
Apr. 2018, doi: 10.1109/TCAD.2017.2729349.

[126] K. E. Murray and V. Betz, ‘‘Adaptive FPGA placement
optimization via reinforcement learning,’’ in Proc. ACM/IEEE 1st
Workshop Mach. Learn. CAD (MLCAD), Sep. 2019, pp. 1–6, doi:
10.1109/MLCAD48534.2019.9142079.

[127] M. A. Elgamma, K. E. Murray, and V. Betz, ‘‘Learn to place: FPGA
placement using reinforcement learning and directed moves,’’ in Proc.
Int. Conf. Field-Program. Technol. (ICFPT), Dec. 2020, pp. 85–93, doi:
10.1109/ICFPT51103.2020.00021.

[128] M. A. Elgammal, K. E. Murray, and V. Betz, ‘‘RLPlace: Using reinforce-
ment learning and smart perturbations to optimize FPGA placement,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 41, no. 8,
pp. 2532–2545, Aug. 2022, doi: 10.1109/TCAD.2021.3109863.

[129] R. Chen, S. Lu, M. A. Elgammal, P. Chun, V. Betz, and D. Niu,
‘‘VPR-gym: A platform for exploring AI techniques in FPGA placement
optimization,’’ in Proc. 33rd Int. Conf. Field-Program. Log. Appl. (FPL),
Sep. 2023, pp. 72–78, doi: 10.1109/fpl60245.2023.00018.

[130] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, ‘‘OpenAI gym,’’ 2016, arXiv:1606.01540.

[131] U. Siddiqi, T. Martin, S. Van Den Eijnden, A. Shamli, G. Grewal,
S. Sait, and S. Areibi, ‘‘Faster FPGA routing by forecasting and
pre-loading congestion information,’’ in Proc. ACM/IEEE 4th Work-
shop Mach. Learn. CAD (MLCAD), Sep. 2022, pp. 15–20, doi:
10.1109/MLCAD55463.2022.9900091.

[132] A. D. Gunter and S. Wilton, ‘‘Reformulating the FPGA routability
prediction problem with machine learning,’’ in Proc. IEEE 31st Annu.
Int. Symp. Field-Program. Custom Comput. Mach. (FCCM), May 2023,
pp. 230–232, doi: 10.1109/FCCM57271.2023.00057.

[133] A. D. Gunter and S. J. E. Wilton, ‘‘A machine learning approach for
predicting the difficulty of FPGA routing problems,’’ in Proc. IEEE
31st Annu. Int. Symp. Field-Program. Custom Comput. Mach. (FCCM),
May 2023, pp. 63–74, doi: 10.1109/FCCM57271.2023.00016.

[134] B. Ghavami, M. Ibrahimipour, Z. Fang, and L. Shannon, ‘‘MAPLE:
A machine learning based aging-aware FPGA architecture exploration
framework,’’ in Proc. 31st Int. Conf. Field-Program. Log. Appl. (FPL),
Aug. 2021, pp. 369–373, doi: 10.1109/FPL53798.2021.00070.

[135] S. Zheng, J. Qian, H. Zhou, and L. Wang, ‘‘GRAEBO: FPGA gen-
eral routing architecture exploration via Bayesian optimization,’’ in
Proc. 32nd Int. Conf. Field-Program. Log. Appl. (FPL), Aug. 2022,
pp. 282–286, doi: 10.1109/FPL57034.2022.00050.

[136] J. Qian, Y. Shen, K. Shi, H. Zhou, and L. Wang, ‘‘General routing
architecture modelling and exploration for modern FPGAs,’’ in Proc.
Int. Conf. Field-Program. Technol. (ICFPT), Dec. 2021, pp. 1–9, doi:
10.1109/ICFPT52863.2021.9609935.

[137] U. Farooq, N. U. Hasan, I. Baig, and M. Zghaibeh, ‘‘Efficient FPGA
routing using reinforcement learning,’’ Valencia, Spain, May 2021,
pp. 106–111, doi: 10.1109/ICICS52457.2021.9464626.

[138] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye,W.M. Fang, K.Kent, and
J. Rose, ‘‘VPR 5.0: FPGA CAD and architecture exploration tools with
single-driver routing, heterogeneity and process scaling,’’ ACM Trans.
Reconfigurable Technol. Syst., vol. 4, no. 4, pp. 1–23, Dec. 2011, doi:
10.1145/2068716.2068718.

[139] Z. Seifoori, H. Asadi, and M. Stojilovic, ‘‘A machine learning
approach for power gating the FPGA routing network,’’ in Proc. Int.
Conf. Field-Program. Technol. (ICFPT), Dec. 2019, pp. 10–18, doi:
10.1109/ICFPT47387.2019.00010.

[140] A. A. M. Bsoul and S. J. E. Wilton, ‘‘An FPGA with power-gated
switch blocks,’’ in Proc. Int. Conf. Field-Program. Technol., Dec. 2012,
pp. 87–94, doi: 10.1109/FPT.2012.6412117.

[141] C. H. Hoo, Y. Ha, and A. Kumar, ‘‘A directional coarse-grained power
gated FPGA switch box and power gating aware routing algorithm,’’ in
Proc. 23rd Int. Conf. Field Program. Log. Appl., Sep. 2013, pp. 1–4, doi:
10.1109/FPL.2013.6645548.

[142] Z. Seifoori, B. Khaleghi, and H. Asadi, ‘‘A power gating switch box
architecture in routing network of SRAM-based FPGAs in dark silicon
era,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),, Mar. 2017,
pp. 1342–1347, doi: 10.23919/DATE.2017.7927201.

[143] HDLBits. Accessed: Oct. 7, 2024. [Online]. Available:
https://hdlbits.01xz.net/wiki/Main_Page

[144] N. Pinckney, C. Batten, M. Liu, H. Ren, and B. Khailany, ‘‘Revisiting
VerilogEval: Newer LLMs, in-context learning, and specification-to-RTL
tasks,’’ 2024, arXiv:2408.11053.

[145] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii, ‘‘CHStone: A
benchmark program suite for practical C-based high-level synthesis,’’ in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2008, pp. 1192–1195,
doi: 10.1109/ISCAS.2008.4541637.

[146] B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks, ‘‘MachSuite:
Benchmarks for accelerator design and customized architectures,’’ in
Proc. IEEE Int. Symp. Workload Characterization (IISWC), Oct. 2014,
pp. 110–119, doi: 10.1109/IISWC.2014.6983050.

VOLUME 12, 2024 182661

http://dx.doi.org/10.1109/ICCAD45719.2019.8942145
http://dx.doi.org/10.1109/TCE.1953.6371932
http://dx.doi.org/10.1109/TCE.1953.6371932
http://dx.doi.org/10.1109/IPDPSW52791.2021.00026
http://dx.doi.org/10.1145/3316781.3317743
http://dx.doi.org/10.1109/SBCCI55532.2022.9893251
http://dx.doi.org/10.1109/ICCAD.2017.8203880
http://dx.doi.org/10.1145/2966986.2980084
http://dx.doi.org/10.1109/FPL.2018.00079
http://dx.doi.org/10.1109/TVLSI.2004.825865
http://dx.doi.org/10.1145/1231956.1231963
http://dx.doi.org/10.1145/3465373
http://dx.doi.org/10.1145/3373269
http://dx.doi.org/10.1145/3373269
http://dx.doi.org/10.1109/MLCAD52597.2021.9531243
http://dx.doi.org/10.1109/MLCAD52597.2021.9531243
http://dx.doi.org/10.1109/FCCM.2015.36
http://dx.doi.org/10.1109/ICM.2018.8704066
http://dx.doi.org/10.1109/TCAD.2017.2729349
http://dx.doi.org/10.1109/MLCAD48534.2019.9142079
http://dx.doi.org/10.1109/ICFPT51103.2020.00021
http://dx.doi.org/10.1109/TCAD.2021.3109863
http://dx.doi.org/10.1109/fpl60245.2023.00018
http://dx.doi.org/10.1109/MLCAD55463.2022.9900091
http://dx.doi.org/10.1109/FCCM57271.2023.00057
http://dx.doi.org/10.1109/FCCM57271.2023.00016
http://dx.doi.org/10.1109/FPL53798.2021.00070
http://dx.doi.org/10.1109/FPL57034.2022.00050
http://dx.doi.org/10.1109/ICFPT52863.2021.9609935
http://dx.doi.org/10.1109/ICICS52457.2021.9464626
http://dx.doi.org/10.1145/2068716.2068718
http://dx.doi.org/10.1109/ICFPT47387.2019.00010
http://dx.doi.org/10.1109/FPT.2012.6412117
http://dx.doi.org/10.1109/FPL.2013.6645548
http://dx.doi.org/10.23919/DATE.2017.7927201
http://dx.doi.org/10.1109/ISCAS.2008.4541637
http://dx.doi.org/10.1109/IISWC.2014.6983050


A. Biscontini et al.: Machine Learning for FPGA Electronic Design Automation

[147] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, ‘‘MediaBench: A
tool for evaluating and synthesizing multimedia and communications
systems,’’ in Proc. 30th Annu. Int. Symp. Microarchitecture, Dec. 1997,
pp. 330–335, doi: 10.1109/micro.1997.645830.

[148] PolyBench/C—Homepage of Louis-Noël Pouchet. Accessed: Oct. 7, 2024.
[Online]. Available: https://web.cs.ucla.edu/

[149] Y. Zhou, U. Gupta, S. Dai, R. Zhao, N. Srivastava, H. Jin, J. Feath-
erston, Y.-H. Lai, G. Liu, G. A. Velasquez, W. Wang, and Z. Zhang,
‘‘Rosetta: A realistic high-level synthesis benchmark suite for software
programmable FPGAs,’’ in Proc. ACM/SIGDA Int. Symp. Field-Program.
Gate Arrays. New York, NY, USA: ACM, Feb. 2018, pp. 269–278, doi:
10.1145/3174243.3174255.

[150] B. C. Schafer and A. Mahapatra, ‘‘S2CBench: Synthesizable Sys-
temC benchmark suite for high-level synthesis,’’ IEEE Embedded Syst.
Lett., vol. 6, no. 3, pp. 53–56, Sep. 2014, doi: 10.1109/LES.2014.
2320556.

[151] Q. Gautier, A. Althoff, P. Meng, and R. Kastner, ‘‘Spector: An
OpenCL FPGA benchmark suite,’’ in Proc. Int. Conf. Field-Program.
Technol. (FPT), Dec. 2016, pp. 141–148, doi: 10.1109/FPT.2016.
7929519.

[152] S. Yang, Logic Synthesis and Optimization Benchmarks User Guide:
Version 3.0. Princeton, NJ, USA: Citeseer, 1991.

[153] D. Bryan. The ISCAS ’85 Benchmark Circuits and Netlist Format.
Accessed: Oct. 7, 2024. [Online]. Available: https://s2.smu.edu/

[154] M. C. Hansen, H. Yalcin, and J. P. Hayes, ‘‘Unveiling the ISCAS-
85 benchmarks: A case study in reverse engineering,’’ IEEE Design
Test Comput., vol. 16, no. 3, pp. 72–80, Jul. 1999, doi: 10.1109/54.
785838.

[155] F. Brglez, D. Bryan, and K. Kozminski, ‘‘Combinational profiles of
sequential benchmark circuits,’’ in Proc. IEEE Int. Symp. Circuits Syst.,
May 1989, pp. 1929–1934, doi: 10.1109/ISCAS.1989.100747.

[156] IWLS 2005 Benchmarks. Accessed: Oct. 7, 2024. [Online]. Available:
https://iwls.org/iwls2005/benchmarks.html

[157] L. Amarú, P.-E. Gaillardon, and G. D. Micheli, ‘‘The EPFL combina-
tional benchmark suite,’’ in Proc. 24th Int. Workshop Log. Synthesis
(IWLS), 2015, pp. 1–5. Accessed: Oct. 7, 2024. [Online]. Available:
http://infoscience.epfl.ch/record/207551

[158] G. Tziantzioulis, T.-J. Chang, J. Balkind, J. Tu, F. Gao, and
D. Wentzlaff, ‘‘OPDB: A scalable and modular design benchmark,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 41, no. 6,
pp. 1878–1887, Jun. 2022, doi: 10.1109/TCAD.2021.3096794.

[159] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,
M. Nasr, S. Wang, T. Liu, N. Ahmed, K. B. Kent, J. Anderson, J. Rose,
and V. Betz, ‘‘VTR 7.0: Next generation architecture and CAD system
for FPGAs,’’ ACM Trans. Reconfigurable Technol. Syst., vol. 7, no. 2,
pp. 1–30, Jul. 2014, doi: 10.1145/2617593.

[160] K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz, ‘‘Titan:
Enabling large and complex benchmarks in academic CAD,’’ in Proc.
23rd Int. Conf. Field Program. Log. Appl., Sep. 2013, pp. 1–8, doi:
10.1109/FPL.2013.6645503.

[161] A. Arora, A. Boutros, D. Rauch, A. Rajen, A. Borda, S. A. Damghani,
S. Mehta, S. Kate, P. Patel, K. B. Kent, V. Betz, and L. K. John,
‘‘Koios: A deep learning benchmark suite for FPGA architecture and
CAD research,’’ in Proc. 31st Int. Conf. Field-Program. Log. Appl. (FPL),
Aug. 2021, pp. 355–362, doi: 10.1109/FPL53798.2021.00068.

[162] A. Arora, A. Boutros, S. A. Damghani, K. Mathur, V. Mohanty,
T. Anand, M. A. Elgammal, K. B. Kent, V. Betz, and L. K. John,
‘‘Koios 2.0: Open-source deep learning benchmarks for FPGA archi-
tecture and CAD research,’’ IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 42, no. 11, pp. 3895–3909, Nov. 2023, doi:
10.1109/TCAD.2023.3272582.

[163] Benchmarks-Verilog-to-Routing 8.1.0-dev Documentation. Accessed:
Oct. 7, 2024. [Online]. Available: https://docs.verilogtorouting.
org/en/latest/vtr/benchmarks/#symbiflow-benchmarks

[164] Guelph FPGA CAD Group—Benchmarks. Accessed: Oct. 7, 2024.
[Online]. Available: https://fpga.socs.uoguelph.ca/benchmarks

[165] ISPD 2016 Contest: FPGA Placement. Accessed: Oct. 7, 2024. [Online].
Available: https://www.ispd.cc/contests/16/ispd2016_contest.html

[166] ISPD 2017 Contest: Clock-Aware FPGA Placement. Accessed:
Oct. 7, 2024. [Online]. Available: https://www.ispd.cc/contests/17/

[167] J. Singh, ‘‘Computational complexity and analysis of supervised machine
learning algorithms,’’ inNext Generation of Internet of Things, R. Kumar,
P. K. Pattnaik, and J. M. R. S. Tavares, Eds., Singapore: Springer, 2023,
pp. 195–206, doi: 10.1007/978-981-19-1412-6_16.

[168] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta,
and A. A. Bharath, ‘‘Generative adversarial networks: An overview,’’
IEEE Signal Process. Mag., vol. 35, no. 1, pp. 53–65, Jan. 2018, doi:
10.1109/MSP.2017.2765202.

[169] W. Xin Zhao et al., ‘‘A survey of large language models,’’ 2023,
arXiv:2303.18223.

ARMANDO BISCONTINI received the B.Sc. and
M.Sc. degrees in electrical engineering from the
Politecnico di Milano, Milan, Italy. He is currently
pursuing the Ph.D. degree with the Department
of Electrical and Electronic Engineering, Univer-
sity College Cork, Cork, Ireland. He is also a
Staff Engineer with QT Technologies Ireland Ltd.,
Cork. Previously, he was a Research Scholar with
The University of Utah, Salt Lake City, USA, and
the École Polytechnique Fédérale de Lausanne,

Switzerland. His research interests include machine learning applications to
electronic design automation and optimization of silicon design methodol-
ogy, the physical design implementation of high-speed telecommunication
modules for system-on-chip, and the study of emerging resistive memories.

E. POPOVICI (Senior Member, IEEE) received
the Dipl. (Ing.) degree in computer engineer-
ing from the Politehnica University of Timisoara,
Romania, in 1997, and the Ph.D. degree in
microelectronic engineering from the National
University of Ireland, Cork, Ireland, in 2002.
He is currently a Senior Lecturer with the
Department of Electrical and Electronic Engineer-
ing, National University of Ireland. His research
interests include electronic design automation,

embedded system design for low power, reliable, secure computing, and
communications. His teams received more than 50 awards and distinctions
at national and international level for co-authored articles or international
competitions in these fields.

A. TEMKO (Senior Member, IEEE) received the
B.E. degree in computer science from Oles Hon-
char Dnipro National University, Dnipro, Ukraine,
in 2002, and the Ph.D. degree in telecommunica-
tion from the Universitat Politècnica de Catalunya,
Barcelona, Spain, in 2008. From 2008 to 2018,
he was with the Irish Centre for Fetal and Neona-
tal Translational Research, University College
Cork, Ireland. He developed and patented a novel
cutting-edge neonatal seizure detection system,

which has completed a European multi-centre clinical trial toward its reg-
ulatory approval and clinical adoption. In 2017, he was named a Winner of
the Kaggle challenge, for his work in predicting seizures in the human brain
through long-term EEG recordings, organized by the National Institute of
Health, American Epilepsy Society, and Melbourne University. Since 2018,
he has been with QT Technologies Ireland Ltd., Cork, Ireland. His research
interests include machine learning for signal processing, decision support
tools, and ML-based electronic design automation.

182662 VOLUME 12, 2024

http://dx.doi.org/10.1109/micro.1997.645830
http://dx.doi.org/10.1145/3174243.3174255
http://dx.doi.org/10.1109/LES.2014.2320556
http://dx.doi.org/10.1109/LES.2014.2320556
http://dx.doi.org/10.1109/FPT.2016.7929519
http://dx.doi.org/10.1109/FPT.2016.7929519
http://dx.doi.org/10.1109/54.785838
http://dx.doi.org/10.1109/54.785838
http://dx.doi.org/10.1109/ISCAS.1989.100747
http://dx.doi.org/10.1109/TCAD.2021.3096794
http://dx.doi.org/10.1145/2617593
http://dx.doi.org/10.1109/FPL.2013.6645503
http://dx.doi.org/10.1109/FPL53798.2021.00068
http://dx.doi.org/10.1109/TCAD.2023.3272582
http://dx.doi.org/10.1007/978-981-19-1412-6_16
http://dx.doi.org/10.1109/MSP.2017.2765202

