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ABSTRACT As air pollution, greenhouse gases, and global warming worsen, finding clean energy sources
is critical. Renewable energy is a promising solution, especially in the transportation sector, which consumes
significant energy. Hybrid electric vehicles (HEVs), combining an internal combustion engine and an
electric battery, are key to reducing fossil fuel use and mitigating environmental harm. Effectively managing
power distribution between these sources to enhance efficiency and minimize fuel consumption is crucial,
known as an Energy Management Strategy (EMS). This article provides an overview of various EMS
approaches for HEVs, analyzing their advantages and disadvantages. Rule-based strategies offer simplicity,
optimization-based strategies provide superior performance, and advanced techniques like machine learning
promise significant improvements. Current trends include integrating sophisticated sensors, data analytics,
and artificial intelligence for real-time decision-making. Future directions aim at robust EMS frameworks
integrating smart grid technologies and vehicle-to-everything (V2X) communication. The article reviews
EMS methodologies, comparing their strengths and weaknesses, and discusses the main challenges and
future trends in energy management for hybrid electric vehicles.

INDEX TERMS Energy management strategies, hybrid electric vehicles, plug-in hybrid, offline and online
control strategies, rule-based, optimization-based, deep learning, reinforcement learning.

I. INTRODUCTION
Several factors contribute to the alteration from standard vehi-
cles to hybrid electric vehicles (HEVs). This segment delves
into a comprehensive analysis of some of these factors, which
have played a pivotal role in the advancement and growth of
HEVs. Optimum utilization of energy in automobiles leads
to the focus on the long-run availability of fossil fuels and
environmental pollution. The average CO2 emissions per
capita in different countries from 2000 to 2025. The data can
be summarized as,

1. The United States, Canada, and China have the highest
CO2 emissions per capita, while India, Japan, and the
European Union have lower emissions.
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2. All the countries shown have seen their CO2 emissions
per capita increase since 2000, except for the European
Union, which has seen a slight decrease.

3. The United States has the highest overall CO2 emis-
sions per capita, followed by Canada and China.

It’s important to note that these are just average CO2 emis-
sions per capita, and there is a lot of variation within each
country. For example, in the United States, people who live in
rural areas tend to have higher CO2 emissions per capita than
people who live in urban areas. There are several factors that
contribute to CO2 emissions, including the use of fossil fuels,
deforestation, and industrial activity. There are a few things
that can be done to reduce CO2 emissions, such as using
renewable energy sources, improving energy efficiency, and
protecting forests. To reduce the loss of energy with increased
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efficiency within powertrain and internal combustion, pro-
moting new technologies is required to meet the standard
set out. Recently, the scientific community has done signifi-
cant research to develop a few solutions, like increasing fuel
efficiency with turbocharger removal of harmful gases using
catalytic converters. With the rising traffic and ever-rising
emission levels, a new technology was introduced which is
likely to have:

1. Flexible performancewith optimizing internal combus-
tion engine.

2. Energy demand for performance of vehicle power
source (42V-Electric, low lightening) energy systems.

3. Limit the loss due to rolling resistance, dynamic drag,
and vehicle inertia’s braking loss.

A. BASELINE VEHICLES AND THEIR LIMITATIONS
Standard vehicles equipped with internal combustion angles
have a vast ground transport influence because of their
extensive driving range and economical compared to other
technologies [1]. The thermal efficiency of internal combus-
tion engines surpasses that of spark ignition engines by 25%
and compression ignition engines by 30%. Internal combus-
tion engines primarily operate at their optimal efficiency due
to the following factors:

1. Losses within the engine: The engine experiences two
main types of losses, namely heat loss through the
cylinder walls and limited compression ratios for fuel
compression due to knock.

2. Very high random utilization of torque and speed of
vehicle vary drastically on a continuous scale.

3. Effect of inertia.
These results in the adverse effects of fuel consumption
and high emissions [2]. New technologies like HEVs can
compensate for these negative effects and meet performance
requirements. Leveraging hydroelectric power, modern trains
now boast highly accessible propulsion systems. This feat is
achieved through a hybrid powertrain comprising an electric
battery, motor, and a combined electric-thermal drive coupler.
By delivering on-demand power directly to the wheels, this
system unlocks greater engine versatility, optimizing perfor-
mance and adaptability.

The first hybrid electric vehicle was developed in 1899 by
Dr. Ferdinand Porsche, where water-cooled combustion
engines with 5 HP capacity were used to assist gasoline-
powered engines. Due to the high cost associated with the
development, this concept was short-lived. In 1995, this tech-
nology experienced a new attraction from manufacturers,
which can result in emission reduction and optimum fuel
utilization.

There are several key variations of HEVs depending on the
type of electric motor, battery size, and powertrain configu-
ration.

B. BY DEGREE OF HYBRIDIZATION
• Mild Hybrid (MHEV): These have small electric
motors and batteries that assist the internal combustion

engine (ICE) with tasks like starting the engine and
providing additional power during acceleration. They
cannot drive solely on electric power for significant
distances [3].

• Full Hybrid (FHEV): These have larger electric motors
and batteries that can propel the vehicle solely on electric
power for short distances (typically 1-2 miles). They can
also combine power from the electric motor and ICE for
more efficient operation.

• Plug-in Hybrid (PHEV): These have larger batteries that
can be charged from an external power source, allowing
them to travel longer distances (typically 20-50 miles)
solely on electric power. They function similarly to
FHEVs when the battery is depleted.

C. BY POWERTRAIN CONFIGURATION
• Parallel Hybrid: Both the electric motor and ICE are
connected to the wheels through the transmission, allow-
ing for independent or combined operation. FHEVs and
some PHEVs use this configuration.

• Serial Hybrid: The electric motor drives the wheels,
while the ICE acts as a generator to power the electric
motor or charge the battery. This is less common but
used in some PHEVs, like the BMW i3.

• Split-Parallel Hybrid: Combines aspects of both parallel
and serial configurations, offering flexibility in different
driving scenarios. This is used in some models like the
Toyota Prius Prime.

In terms of their pros and cons, the series hybrid configuration
is primarily utilized in heavy vehicles, military vehicles, and
buses. Conversely, parallel and series-parallel configurations
are mainly employed in smaller vehicles, such as passenger
cars [4], [5].

D. OTHER VARIATIONS
• Micro Hybrid (µHEV): Like MHEVs but with even
smaller electric motors and batteries, offering minimal
fuel efficiency benefits [4].

• Range Extender Hybrid (REEV): Like PHEVs but with
smaller batteries and an ICE primarily used to extend the
electric range when needed. This is seen in models like
the Chevrolet Volt.

E. BEYOND THESE, THERE ARE ONGOING
DEVELOPMENTS IN HYBRID TECHNOLOGY, INCLUDING

• High-Voltage Hybrids: Utilize higher voltage systems
for improved performance and efficiency [5].

• Full Electric Vehicles (EVs) with Range Extender: Like
REEVs but with larger batteries and primarily operating
as EVs with the ICE as a backup.

Choosing the right HEV variation depends on individual
needs and driving habits. Consider factors like desired electric
range, fuel efficiency, budget, and car. While fuel efficiency
is a major draw, HEVs offer a wider range of benefits, from
energy recovery and quieter operation to a more efficient and
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potentially more reliable power train. These hidden advan-
tages make HEVs a compelling choice for those seeking
a more sustainable and environmentally conscious driving
experience. This survey dives deeper into how existing energy
management strategies (EMS) are being used in HEVs.
It goes beyond just summarizing these techniques by explor-
ing how they’re adapted for new technologies and different
driving conditions. By examining current research, the survey
also identifies areas where these strategies can be improved.
This paves the way for developing entirely new EMS that take
advantage of emerging technologies, ultimately pushing the
boundaries of HEV energy management.

II. CONTROL STRATEGIES
Significant advancements in fuel economy and emission
reduction have been the improvements in the HEVs by
maintaining the power demand and vehicle performance [6].
Achieving optimal fuel economy and emissions reduction
in hybrid vehicles relies on effectively managing the power
distribution between the fuel cell and battery models. To meet
this requirement, various control strategies for power split
have been developed. Vehicle power demand, battery SOC,
Vehicle speed, road load, and synchronous data from GPS
about the traffic are the input variables of a typical power split
controller. The set of decisions generated by the controller
determines whether the vehicle should function within prede-
termined modes. The classification of HEV control strategies
can be categorized into Online and Offline control strategies,
as illustrated in Fig. 1.

A. OFFLINE STRATEGIES
In optimization-based control strategies, control signals are
decided based on either global or local optimizations. Global
optimization involves minimizing the sum of the objective
function over time, while local optimization focuses on min-
imizing the objective function instantaneously.

Global optimal techniques rely mostly on the entire driv-
ing cycle, which becomes a non-causal system that is not
practical in real time. However, most optimization techniques
consider it to be a guiding technique for all other causal
techniques. A few of the global optimization techniques
discussed here are Linear programming, Dynamic program-
ming, stochastic control strategies, and genetic algorithms.

1) LINEAR PROGRAMMING
It is applied to address and approximate the non-linear fuel
consumption in HEVs, aiming to achieve a globally optimal
solution. Kleimaier and Schroder introduced a convex opti-
mization technique for propulsion capability analysis within
the context of HEVs [7]. In their work, a steady and potent
controller was formulated by Pisu et al., utilizingmatrix linear
inequalities to minimize fuel consumption [8].

2) DYNAMIC PROGRAMMING
A method pioneered by Richard Bellman is a technique
employed to uncover optimal control policies in multi-stage

decision-making scenarios that lead to the same optimal
control policies but provide distinct results. The backward
method calculates optimized results from each state to its end,
while the forward method determines optimal values from
initial states to all subsequent stages. Dynamic programming
is versatile, as it can be employed in both linear and non-linear
systems, and it can handle problems with constraints as well
as unconstrained situations.

It offers optimal control strategies for power allocation
among the ICE and the motor. However, it has two limi-
tations: it requires prior information of the complete drive
cycle and faces design challenges due to large dimension-
ality. Despite these setbacks, dynamic programming serves
as a benchmark and a foundation for developing sub-optimal
controllers.

Several studies have applied dynamic programming in
HEV energy management. For instance, Brahma et al. used
it in series HEV to achieve real-time optimal power distribu-
tion [9]. Wang and Jiao derived optimal control rules from
dynamic programming to enhance a rule-based controller,
leading to enhanced fuel economy [5]. In a separate study,
heuristic control rules obtained from dynamic programming
were applied across various driving cycles, resulting in a
performance improvement that narrowed the gap compared
to the optimal controller by 50-70%.

Kum combined dynamic programming with rule-based
control to manage charge-sustaining control in HEVs [10],
[11]. Kum applied dynamic programming to maintain bat-
tery energy levels within specified limits without negatively
impacting battery health [11]. Computationally efficient
algorithm for managing power in Plug-in Hybrid Electric
Vehicles (PHEVs). Initially, Complicated dynamic program-
ming was used to plan fuel and battery use for the entire trip.
Gong and Li recently made changes, dividing the trip into
smaller segments with fixed lengths.

For each segment, fuel use and battery level for differ-
ent speeds and power-mixing ratios (engine vs. battery) are
calculated. Instead of considering time, the best sequence of
segments (like choosing puzzle pieces) to minimize fuel use
throughout the trip is found.

Simplified dynamic programming within this ‘‘spatial
domain’’ to further optimize, accepting a slight fuel effi-
ciency trade-off compared to original dynamic programming,
is used [12]. Pre-calculated segments and spatial optimization
greatly improve speed compared to full dynamic program-
ming.

The effectiveness of simplified macro-SOC profiles by
applying a two-scale dynamic programming (DP) algorithm
to three versions of the profile, each generated using different
segmentation lengths (100m, 200m, 300m). They used the
actual speed data from the first day as input for the two-scale
DP simulations.

To summarize, dynamic programming is a powerful tool
in HEV energy management, despite its limitations, and has
been applied in various studies to improve energy efficiency
and control strategies in hybrid vehicles.
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FIGURE 1. Different approaches are used to manage energy flow and power in hybrid vehicles.

3) GENETIC ALGORITHM
GA is increasingly used in energy management systems
(EMS) of HEVs due to their ability to optimize complex
and non-linear systems. GA is inspired by the principles of
natural selection and evolution [13]. They work by generat-
ing a population of potential solutions (chromosomes). Each
chromosome represents a set of control parameters for the
EMS. Once the control parameters are set, the fitness of each
chromosomewill be evaluated. This is done by simulating the
HEV’s performance with that set of control parameters and
measuring desired outcomes like fuel economy, emissions,
or drivability. Then, chromosomes are selected based on their
fitness. More fit chromosomes are more likely to be selected
for reproduction. Crossing over and mutation of selected
chromosomes is the next step in the process. This introduces
variations in the next generation, allowing the algorithm to
explore different control strategies. The process is repeated
until a satisfactory solution is found [1].

4) PARTICLE SWARM OPTIMIZATION (PSO)
It is a computational technique developed by Dr. Eberhart and
Dr. Kennedy in 1995, inspired by the collective behavior of
bird flocks. It iteratively refines candidate solutions within
a specified search space based on their quality. PSO serves
as a versatile meta-heuristic approach suitable for optimizing
non-differentiable problems characterized by noise or irreg-
ularities. Its effective implementation expands to the domain
of HEVs. In a particular study, an enhanced PSO approach

optimized a multilevel hierarchical control strategy for a
parallel HEV, depicted in Fig. 2,14. This optimization led
to improved coordination among the engine, electric motor,
and battery, resulting in reduced fuel consumption and emis-
sions. Another application involved Junhong utilizing PSO to
address an HEV energy management problem, successfully
achieving the simultaneous minimization of fuel consump-
tion and emissions.

Rathor and Saxena proposed a PSO-based control strat-
egy to optimize fuel consumption and emissions in HEVs,
demonstrating notable enhancements in fuel economy during
high-speed driving cycles and reduced emissions during mid-
dle or low-speed driving cycles [15].Wu et al. utilized Particle
SwarmOptimization (PSO) to optimize both the membership
function and rules within a fuzzy logic-based HEV controller.
This application resulted in the generation of near-optimal
charge-sustaining control signals.

Additionally, Al-Aawar et al. and Wu et al. employed PSO
to size electromechanical components, aiming to enhance
efficiency and reduce fuel consumption. The design opti-
mization environment included a PSO module and an
electromagnetic-team fuzzy logic (EM-TFL) module [16].
The PSO optimizer explored the EM-TFL algorithm’s
database to identify the optimal population, aligning it with
the objective functions illustrated in Fig. 3 [16]. A PSO
candidate was considered successful if the degree of match
surpassed the current tolerance. Successful candidates from
all components were collected, and a global optimum was
determined using a PSO method, as depicted in Fig. 4 [15].
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TABLE 1. Comparison of advantages and disadvantages of offline EMS in HEV.
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TABLE 1. (Continued.) Comparison of advantages and disadvantages of offline EMS in HEV.

FIGURE 2. Multi-level hierarchical EMS for parallel.

Table 1. summarizes the advantages and disadvantages of
offline strategies.

Table 2 covers various offline optimization algorithms,
including their objectives, control strategies, factors con-
sidered, software used, and constraints handled. This table
provides a comprehensive overview of different optimization
algorithms for EMS in HEVs, highlighting their objectives,
control strategies, factors considered, and the software used.
It also outlines the constraints each algorithm considers, help-
ing to illustrate how they handle various aspects of energy
management in electric vehicles.

B. ONLINE CONTROL STRATEGIES
HEVs are real-time and causal, unlike their offline counter-
parts. These strategies can be rule-based, employ heuristic
control rules, or involve instantaneous optimization of a spec-
ified objective function.

1) RULE-BASED CONTROL STRATEGIES
It is a prevalent method for real-time supervisory control
in HEVs. These control algorithms often rely on heuristics,
engineering intelligence, or mathematical models to optimize

the internal combustion engine’s efficiency while enabling
energy recovery through regenerative braking [50], [51]. The
development of rule based HEV control involves creating
rules for powertrain management and calibrating the strategy
through simulations on a vehicle model. However, rule-based
approaches may not guarantee optimality or meet integral
constraints like charge sustainability.

To address this, control rules must be revised to ensure
the integral constraint (State of Charge, SOC) remains within
specified limits. While there is no standard method for for-
mulating control rules, they can be made complex enough to
account for various exceptional occurrences that may affect
the vehicle [52]. The simplicity of rule based HEV man-
agement makes them easy to implement on actual vehicles.
Despite their widespread use due to minimal computa-
tional demands, natural applicability to online applications,
high reliability, and reasonable fuel consumption outcomes,
rule-based HEV management approaches require periodic
revisions.

The lengthy rules creation and calibration process, along
with the need for rewriting rules for each new driving scenario
and powertrain, raise concerns about their robustness [53].
Research indicates that rule-based systems yield acceptable
but poorer fuel consumption outcomes compared to optimiza-
tion methods. Rule-based controllers are further classified
into deterministic and fuzzy rule-based control strategies.

a: DETERMINISTIC RULE-BASED CONTROL STRATEGY
Deterministic rule-based control strategies aim to achieve
optimal fuel economy or emissions by relying on pre-
computed look-up tables. This approach is effective in
determining optimal settings for various parameters, such as
CVT gear ratio, motor torque, and engine throttle, in real
time.

One of the successful deterministic rule-based HEV con-
trol systems is the electric assist control method [54]. In this
approach, the electric motor serves as the primary power
source (ICE) and is engaged only when necessary. This
method has proven effective in optimizing fuel efficiency.

Another variant is the thermostat control technique, where
the electric motor and internal combustion engine work
together to generate electrical energy for vehicle propul-
sion. By cycling the internal combustion engine on and
off, this technique maintains the battery state of charge
within specified high and low values. However, it’s worth
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FIGURE 3. EM-TFL optimization environment HEV.

TABLE 2. Summary table of offline EMS in HEV.

noting that the thermostatic control technique has demon-
strated sub-optimality when compared to other deterministic
rule-based control systems [55]. Common deterministic
rule-based control strategies include:

1. Exclusive Electric Vehicle (EV) Mode: Operate the
vehicle solely in electric mode when power require-
ments are below a specific threshold. This rule is
designed to avoid inefficient engine operating points,

with its effectiveness depending on the electric motor
and battery sizes.

2. Electric Motor Assistance: Help with the electric motor
if the power demand of the vehicle exceeds the permit-
ted engine power.

3. Regenerative Braking: Charge the battery using regen-
erative braking to capture and store energy during
deceleration.
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FIGURE 4. Global optimal solution using PSO.

Torque Boost for SOC Maintenance: Produce additional
torque to ensure the battery’s state of charge remains
above a predetermined minimum value. These deterministic
rule-based control strategies are employed to optimize the
operation of HEVs in real-time, focusing on achieving the
best balance between fuel efficiency, emissions, and overall
system performance.

b: FUZZY RULE-BASED CONTROL STRATEGY
Fuzzy rule controllers represent a control strategy that trans-
forms linguistic descriptions of control inputs into numerical
values through the processes of fuzzification and defuzzi-
fication [56]. These controllers utilize multivalued logic
derived from fuzzy set theory to handle approximate rea-
soning. The simplicity of fuzzy rule controllers allows for
effective tuning and adaptation, providing increased control

FIGURE 5. A simple fuzzy logic controller.

flexibility. They find applicability in intricate systems such
as advanced powertrains, where inputs like battery state of
charge, desired internal combustion engine (ICE) torque, and
intended mode are processed to determine the ICE operating
point. Fuzzy sets encompass variables such as driver com-
mand, battery state of charge, and motor/generator speeds.
Some frameworks also incorporate a power notification sys-
tem to facilitate high-efficiency engine operation, as depicted
in Fig. 5 [57]. Various versions of fuzzy rule-based control
include traditional, adaptive, and predictive strategies.
Traditional Fuzzy Control Strategy:
It enhances efficiency, which allows ICE to operate more

effectively. This is achieved through load balancing, where
the electric motor guides the engine to operate within its most
efficient range while also maintaining the battery’s charge.
Wang et al. introduced a fuzzy logic controller designed to
optimize fuel consumption in a parallel HEV, focusing on
the efficiency optimization of critical components such as the
internal combustion engine, electric motor, and battery [58].
The approach involves utilizing a primary compression igni-
tion direct injection (CIDI) engine efficiency map, with the
fuzzy controller monitoring individual components to operate
close to the ideal curve [59]. The process includes translating
inputs from the accelerator and brake pedals into the driver’s
power command and using this command in conjunction with
the battery and other components. Torque distribution control
using fuzzy logic is evaluated in a parallel hybrid vehicle
under the FTP75 urban driving cycle. Different fuzzy rule
sets are applied to each energy management strategy within
the FTDC. The vehicle’s performance adheres to the fuzzy
rule set that reflects the driver’s preferences. The study shows
that vehicle performance, including fuel economy, emissions,
and battery state of charge (SOC), is highly dependent on the
chosen energy management strategy [60].
Adaptive Fuzzy Control Strategy:
Because of its ability to improve fuel efficiency and emis-

sions, the adaptive fuzzy control approach is gaining favour
for automotive applications like HEVs [61]. This strategy
is especially beneficial if fuel efficiency and pollution are
frequently competing goals, making it hard to obtain an ideal
solution. However, a suboptimal solution can be obtained
using the weighted-sum technique, in which suitable weights
are modified for varied driving situations [62]. Individ-
ual objectives can be controlled by adjusting the weights
allocated to them. Adaptive fuzzy logic controllers are
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FIGURE 6. Predictive fuzzy logic controller with GPS.

FIGURE 7. Fuzzy logic controller and by Lee et al.

documented in the literature for handling conflicting objec-
tive control issues.
Predictive Fuzzy Control:
This method utilizes pre-existing information regarding a

planned driving route, often obtained through a Global Posi-
tioning System (GPS), as shown in Fig. 6 [63]. This data is
typically collected by considering the vehicle’s speed, speed
conditions within a lookahead window, and the altitude of
sampled locations along a predefined path. In this approach,
the predictive fuzzy controller assesses the suitable internal
combustion engine (ICE) torque contribution at each vehicle
speed. It then generates a normalized signal within the range
of −1 to +1, indicating whether the power source should
be charged or discharged [64]. Due to their simplicity and
robustness, fuzzy controllers have attracted the attention of
professionals in heuristic control, particularly in the fields
of study and automobile industries. Arsie and colleagues
employed a fuzzy controller to regulate parameters related to
the driver-vehicle interface, torque administration, and bat-
tery recharging. Their suggested driver model utilized fuzzy
control principles, providing a realistic representation of a
human driver and achieving a perfect match between the
goal and immediate vehicle speed. Kakouche et al. proposed
a robust and unaffected-by-vehicle-load-change fuzzy logic
controller, as depicted in Fig.7 [65].

Baumann et al. demonstrated the effectiveness of fuzzy
controllers in improving fuel economy, proving their suit-
ability for nonlinear, multi-domain, and time-varying sys-
tems [65], [66]. Their control strategy encouraged most
operating conditions to be near the most efficient point,

resulting in an increase in mean efficiency from 23% to
35.4% across the nation’s urban driving schedule. Fig. 8a
and 8b illustrate a PID-like fuzzy controller developed by
Stockar et al., featuring intuitive, functional scaling that is
easy to tune even without a vehicle mathematical model [67].
Proportional-integral (PI) controllers have also demon-

strated success in nonlinear plant control. Syed et al.
optimally planned a HEV’s engine power and speed
using a fuzzy-gain scheduling technique. Jianlong et al.
aimed to develop a highly computational fuzzy control
approach with a two-input, one-output network topology.
Zhou et al. employed particle swarm optimization to enhance
the accuracy, flexibility, and resilience of a fuzzy control
method.

Kakouche et al. proposed a predictive fuzzy logic con-
troller to manage power flow in a series HEV [65]. The
regulations were set based on the vehicle’s future state,
considering road conditions and elevation locations. The out-
put instruction indicated ‘‘high discharging’’ when the GPS
showed ‘‘reducing elevation’’ and ‘‘growing traffic flow’’ for
the future condition.

Considering the current vehicle condition, engine power
demand, and available online driving cycle data, Zhang et al.
introduced the concept of a fuzzy intelligent energy manage-
ment agent (IEMA) for vehicle torque distribution and charge
sustenance [28], [68], [69]. Niu et al. presented a digital
adaptive intelligent fuzzy controller to optimally manage the
Internal Combustion Engine (ICE) torque while minimizing
competing objectives such as fuel consumption and pollu-
tion [70]. Fuzzy techniques are also applicable to non-control
applications, such as developing HEV modeling software
with versatile applications. Table 3. compares the advantages
and disadvantages of rule-based strategies in the energy man-
agement of HEV.

2) ONLINE OPTIMIZATION-BASED STRATEGIES
Optimization systems, such as ECMS and PMP, transform
global optimization issues into local ones, lowering comput-
ing effort and making them real-time implementable. Despite
producing suboptimal outcomes, local optimization algo-
rithms have received much interest in HEV control research.
These solutions are intended to decrease global optimization
while increasing HEV control efficiency.

a: PONTRYAGIN’S MINIMAL PRINCIPLE
Pontryagin’s Minimum Principle (PMP), formulated in
1956 by the Russian scientist Lev Pontryagin and his stu-
dents, is a specific instance of the Euler-Lagrange equation
in the calculus of variations. It mandates that the opti-
mal solution to a global optimization problem must satisfy
the optimality criterion [82]. The PMP algorithm relies on
the instantaneous minimization of a Hamiltonian function
throughout a driving cycle. If the trajectory obtained by PMP
is unique and adheres to the specified constraints and bound-
ary conditions, it can be termed a globally optimal trajectory.
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FIGURE 8. a. Block diagram of fuzzy controller with FPIDF. b. Block diagram of fuzzy logic controller with PIDF.

TABLE 3. Advantages and disadvantages of rule-based EMS strategies in HEV.

Kim et al. applied PMP to identify the optimal control law
for a PHEV, as illustrated in Fig. 9,83. They demonstrated
this by establishing an accurate initial estimate. The study
revealed that when state boundary requirements are met, the
immediate reduction of the Hamiltonian function across a
driving cycle yields a control strategy that closely resembles
the findings of dynamic programming.

Stockar et al. devised a model-based control technique for
a PHEV inspired by Pontryagin’s Minimum Principle (PMP)
with the aim of reducing CO2 emissions. They observed a

significant dependency of the PMP controller’s efficiency
on the anticipated co-state value [83]. In their model-based
PMP control approach, the vehicle is directed to deplete
the battery when the co-state value surpasses 10. Once the
reduced State of Energy (SOC) constraint is encountered,
the mode transitions into a charge-sustaining state. Their
conclusions suggest that PMP operates as a shooting tech-
nique, dealing with a boundary value optimization problem,
resulting in a non-causal and non-real-time optimal control
approach [84].
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TABLE 4. Comparison of online optimization strategies.

b: EQUIVALENT CONSUMPTION MINIMIZATION STRATEGY
The Equivalent ConsumptionMinimization Strategy (ECMS)
functions as a local optimization approach aimed at reduc-
ing fuel consumption and emissions of pollutants in HEVs.
ECMS is grounded in the heuristic assumption that the energy
used to propel a vehicle over its driving cycle ultimately
originates from the engine, with the hybrid system acting as
an energy buffer [85]. It involves the immediate reduction of a
cost index, which is the sum of various operational indicators
adjusted by equivalence factors. Commonly used variables
in ECMS HEV control include the turbine cost of fuel and
battery fuel cost.

Several modifications to the ECMS optimization control
technique have been proposed, including Adaptive ECMS

and Telemetry ECMS. These variations adjust the equiv-
alency factor based on historical driving data and future
projections. However, these adaptive strategies require the
use of predictive technologies such as GPS, incurring addi-
tional expenses.

Paganelli et al. applied an ECMS technique to reduce fuel
consumption and pollutant emissions in a charge-sustaining
sport utility vehicle [85]. The results demonstrated that the
ECMS technique could lead to a charge-sustaining reduction
in emissions without adversely affecting fuel efficiency. Sim-
ilar outcomes were observed by Gu et al. and Rousseau et al.,
indicating that ECMS consistently produces near-optimal
fuel economy results, even in the absence of detailed oper-
ating information.
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FIGURE 9. Flowchart of Model-based PMP control strategy.

FIGURE 10. DPR approach to EMCS real-time adaption.

Hwang et al. recommended an adaptive Equivalent Con-
sumption Minimization Strategy (A-ECMS) for real-world
energy flow management in a HEV [86]. This technique
dynamically adjusts the controlling parameter (equivalence
factor) in response to varying road load conditions.

This approach continuously adjusts the control parameter
(equivalence factor) based on road load conditions, generat-
ing charge-sustaining quasi-optimal control signals. Fig.10.
illustrates that Gu et al. introduced the driving pattern recog-
nition (DPR) technique to enable real-time adaptation of

ECMS, enhancing the estimation of the equivalency factor
under diverse driving situations.

Yang et al. devised a multi-objective nonlinear ECMS that
transforms a multi-objective nonlinear optimal torque distri-
bution approach into a single-objective linear optimization
problem [87], [88]. Simulation data indicates that linearizing
a nonlinear optimization problem can reduce computation
time by up to 38% compared to typical drive cycles, withmin-
imal or no compromise on the achieved optimization solution.
Olin et al. developed an ECMS strategy to improve fuel
efficiency by predicting equivalency parameters using the
known total trip distance rather than driving pattern data [88].

c: STOCHASTIC CONTROL STRATEGY
It is used to find the optimal solution having uncertainties.
Random Markov process is used to model the vehicular
power demand, using which future power demand can be
predicted [89]. This leads to the acquisition of the optimal
control strategy utilizing stochastic dynamic programming
(SDP), presented in its complete steady-state form, making it
directly implementable on vehicles. Applying SDP, Lin et al.
employed an engine-in-loop system to assess the influence
of transients on engine emissions. A comparison was made
between two variants of SDP, namely infinite horizon and
short path SDP, in the context of HEVs [15], [90]. The results
indicated that the short-path HEV exhibited more optimal
outcomes. This was attributed to the fewer parameters requir-
ing tuning in this test, coupled with a more favorable battery
State of Charge (SOC) [91].

d: MODEL PREDICTIVE CONTROL STRATEGY
Model Predictive Control (MPC) is an approach to derive
a control signal that minimizes the objective function by
employing a plant process model. It operates in real time by
predicting the impact of a control input on the system output
using a model [92]. The essence of MPC lies in calculating
the optimal control for the prediction horizon in real time
and implementing only the first element. MPC heavily relies
on high model accuracy and prior knowledge of reference
trajectories, aspects that are not readily attainable in vehicular
applications.

MPC has proven to be effective, saving up to 31.6%
more gasoline compared to rule-based control techniques.
Although MPC has been less commonly applied to control
the energy of HEVs, Justo et al. introduced an MPC energy
management approach for a parallel HEV [64]. They utilized
GPS data to determine the road grade over the predicted hori-
zon and maintained a constant vehicle speed in their analysis.
The optimal control sequenceminimizing fuel usagewas then
computed using dynamic programming [93]. According to
simulation data, the model predictive controller can achieve
up to 20% gasoline savings by extending the prediction hori-
zon throughout the entire journey.

In the study conducted by Chen et al., Model Predictive
Control (MPC) is employed to enhance battery life, extend
driving range, and simultaneously reduce pollutants, fuel
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FIGURE 11. Borhan’s two-phase MPC strategy.

consumption, and drivetrain oscillations in HEVs [94].
In another investigation by Rajagopalan et al., traffic data,
including road speed limits and topological information from
GPS, are utilized alongside a fuzzy logic controller. This
combination is used to determine the power split between the
internal combustion engine and the electric motor based on
considerations of efficiency and emissions.

For the control of parallel HEVs, Sciaretta et al. and
Borhan et al. introduce an MPC framework that doesn’t
require knowledge of future driving conditions. Simulation
results, particularly during an ECE driving cycle, reveal a
noteworthy 50% reduction in fuel consumption compared to
a typical urban driving scenario [90], [95].
Ripaccioli et al. presented a hybridMPC technique to coor-

dinate powertrains and impose state and control limitations.
Ripaccioli et al. established a stochastic model predictive
control (SMPC) paradigm for the power management of a
series HEV in another investigation. When compared with
deterministic receding horizon control approaches, simula-
tion results reveal that the SMPC system drives engine, motor,
and battery functions through a causal, time-invariant, state-
feedback manner, resulting in enhanced fuel efficiency and
vehicle performance [90].
In the work by Vogal et al., a predictive Model Predic-

tive Control (MPC) model is formulated, utilizing driving
route prediction, and optimized through inverse reinforce-
ment learning for the purpose of fuel economy optimization.
Borhan et al. also contribute to the field by introducing
a sophisticated two-phase MPC control approach designed
for a power split HEV, as depicted in Fig. 11. When
applied to a linear time-varying MPC strategy; this suggested
two-step nonlinear MPC technique demonstrates a substan-
tial improvement in fuel efficiency across standard driving
cycles [95].
Poramapojana et al. present another MPC-based control

method focused on minimizing fuel consumption and sus-
taining charge based on future torque demand projections,
as illustrated in Fig. 12. Simulation results indicate that the
proposed method has the potential to significantly enhance
fuel economy compared to conventional driving cycles [96].

e: ARTIFICIAL NEURAL NETWORKS
Imagine a system for computing that resembles the human
brain, where linked processing units interact with each other
and adapt to incoming information. This is the essence of an

FIGURE 12. MPC-based control method.

FIGURE 13. Neural Fuzzy controller.

artificial neural network, brought to life in 1943 by McCul-
loch and Pitts, and further revolutionized by Hebb’s learning
rule in 1949 [97]. The back-propagation approach allows
ANN to be taught to comprehend an extremely non-linear
input/output connection. Because of its adaptive structure,
it is well-suited for HEV management of energy applications
since it allows for the learning and replication of non-linear
correlations among the inputs and results of an established
energy management network.

Several studies have been conducted to create control sys-
tems that integrate ANN with fuzzy logic to increase fuel
costs andminimize pollution for various drivers and operating
models.
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TABLE 5. Comparison of different parameters in the implementation of various control strategies in HEV in real time.

For instance, Baumann developed a load-levelling
approach that integrates Artificial Neural Networks (ANN)
and fuzzy logic to implement a load-levelling strategy, aiming
at increased fuel efficiency and reduced emissions across
various drivers and driving patterns [98], [99]. Arsie et al.
utilized a dynamic model to emulate the vehicle driveline,
internal combustion engine, and electric motor/generator
(EM). Mohebbi et al. proposed an Adaptive Neuro-Fuzzy
Inference System (ANFIS) controller based on the required
horsepower for driving and battery state of charge, aiming
to maximize fuel efficiency and minimize emissions in a
HEV [72]. Suzuki et al. improved the neural network control
framework to accommodate multiple objectives, including
velocity distribution optimization, fuel efficiency optimiza-
tion, and reduction in electric current consumption [99].
Prokhorov et al. introduced a neural network-based regulator
for the Toyota Prius HEV, built on a recurrent neural network
and utilized in both online and offline training, resulting
in a 17% improvement in average fuel economy across
standard driving cycles. Gong et al. introduced an artificial
neural network (ANN)-based model for highway journeys,
leading to a notable improvement in the accuracy of trip
modeling and fuel efficiency [25]. Additionally, Boyali et al.
presented a technique based on neuro-dynamic programming
(NDP) for real-time control of HEVs, illustrated in Fig. 13.
However, simulation studies revealed that it achieved lower
fuel economy compared to the ideal dynamic programming
controller [76].
A few online energy management strategies are designed

mainly to concentrate on cost minimization without power
source degradation. To cluster the driving patterns, a map
that self-organizes (SOM) is trained [100]. In this study, the
SOM competitive layer is built of 10 driving parameters as

inputs and classifies the driving patterns into three groups
as output. Following that, the evolutionary algorithm designs
and optimizes an offline three-mode fuzzy logic controller
(FLC) for each driving pattern [79]. Unlike previous studies,
the FLC output membership function is based on the online
determination of the optimum power and effectiveness of the
fuel cell system, which fluctuates over time. Table 4 compares
and summarizes the advantages and disadvantages of online
optimization strategies in the energy management of HEVs.

Table 5. shows the comparison of different parame-
ters in the real-time implementation of offline and online
(Rule-based and Optimization-based) control strategies.

III. OTHER RECENT TRENDS IN EMS STRATEGIES (DEEP
AND REINFORCEMENT LEARNING)
Beyond the previously discussed broad categories of HEV
control strategies, emerging research has yielded several
recently developed techniques that warrant further investi-
gation. In HEVs, optimizing the use of the electric motor
and internal combustion engine for fuel efficiency and emis-
sions reduction is crucial. This is where deep learning and
reinforcement learning come in, offering promising control
strategies for Energy Management Systems (EMS).

Neural networks can learn complex relationships between
various aspects of HEV operation, like battery state, engine
power, and driving conditions. This allows for more sophis-
ticated decision-making compared to traditional rule-based
systems. Examples include predicting future power demands,
optimizing engine start-stop strategies, and managing battery
degradation. The EMS acts as an agent in the HEV envi-
ronment, continuously learning through trial and error [122].
Based on rewards (e.g., fuel efficiency) and penalties (e.g.,
emissions), the agent learns optimal control policies for
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TABLE 6. Benefits and challenges of deep learning and reinforcement learning.

different driving scenarios. This data-driven approach adapts
to different driving styles and road conditions, improving
performance over time.

Deep Q-Networks (DQNs) are a popular Deep Reinforce-
ment Learning (DRL) technique gaining traction in HEV
Energy Management Systems (EMS) [123]. They offer an
attractive option for simultaneously optimizing fuel effi-
ciency, emissions, and battery health. DQNs rely on a
neural network to estimate the Q-value, which represents
the expected future reward of taking a specific action in
each state. The agent interacts with the HEV environment
(simulator or real vehicle), taking actions based on learned
Q-values and receiving rewards/penalties [29]. Over time,
the DQN adjusts its internal parameters to maximize future
rewards, driving towards optimal control policies.

Beyond established control strategies for HEVs, research
delves into three promising areas to enhance DQN perfor-
mance: reward function design,transfer learning,and integra-
tion with other strategies [124]. Crafting effective reward
functions that accurately capture desired objectives, like

fuel efficiency and smooth driving, is crucial for successful
DQN learning.Transfer learning tackles training efficiency
by adapting pre-trained DQNs from similar models or driv-
ing scenarios, reducing data and time requirements. Finally,
integration with other control strategies seeks to leverage
the strengths of each approach. Combining DQNs with
rule-based algorithms, for example, can benefit from the
adaptability of DQNs and the clear-cut rules of traditional
methods. Exploring these areas holds significant potential for
optimizing DQN-based control in HEVs [29].

Proximal Policy Optimization (PPO) is another power-
ful Deep Reinforcement Learning (DRL) technique used in
HEV Energy Management Systems (EMS) alongside Deep
Q-Networks (DQNs). PPO belongs to the policy gradient
class of DRL algorithms. Instead of estimating Q-values
like DQNs, PPO directly learns a policy, which maps states
to actions [125], [126]. In the HEV context, the policy
decides how to allocate power between the electric motor
and engine in various driving situations. PPO updates the
policy through iterations, aiming to maximize the expected
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cumulative reward (e.g., fuel efficiency). In addition,
Tang et al. explored an optimal control-based energymanage-
ment strategy for HEVs, which balances fuel consumption
with battery capacity degradation. The optimal controller
integrates a battery aging model, providing valuable insights
into the tradeoff between fuel efficiency and battery aging in
HEVs. While specific models and results will differ based
on battery chemistry and vehicle architecture, the developed
models and control algorithms demonstrate the feasibility
of considering battery aging in an energy management con-
troller. This approach can significantly extend battery life
across various operating conditions with minimal impact
on performance and a negligible decrease in fuel economy,
[127].

While traditional RL techniques focus on single objectives,
recent research is pushing boundaries with Proximal Policy
Optimization (PPO). Multi-objective PPO incorporates mul-
tiple reward functions to optimize not just fuel efficiency but
also crucial considerations like emissions and battery health,
leading to a more holistic approach [27]. PPO with off-policy
learning leverages past experiences from different driving
scenarios, potentially reducing data requirements compared
to traditional on-policy approaches. Additionally, combining
PPO with other techniques like rule-based systems opens
doors for leveraging the adaptability of PPO alongside the
clear-cut rules of established methods, potentially leading to
further performance improvements. These advanced develop-
ments show the promise of PPO in optimizing HEV control
for a multitude of objectives [128]. Table 5. compares the
benefits and challenges of Deep Q- Networks and Proximal
Policy Optimization strategies in HEV.

IV. CHALLENGES AND OPPORTUNITIES
• Different HEV designs have unique limitations. Opti-
mizing size, power demand, and functionality based on
specific needs remains an ongoing challenge. Utilizing
advanced technologies can boost reliability and effi-
ciency [135], [136].

• Existing EMS solutions often perform well in simu-
lated scenarios but struggle to achieve optimal results
in real-time due to dynamic driving conditions [137],
[138].

• Global optimization methods offer optimal solutions,
but their high computational demands make them
impractical for real-time applications. Finding the right
balance is crucial [139], [140], [141].

• While fuel efficiency is important, current EMS often
neglects other factors like battery health, emissions, and
computational complexity. Comprehensive optimization
methods considering these factors are needed [139],
[142].

• Reducing uncertainty in future driving conditions is key.
Integrating information from sources like GIS, ITS, and
GPS can provide more accurate traffic data. Addition-
ally, predicting driver behavior and style can further
improve efficiency [143], [144], [145].

• Using numerical optimization methods on simplified
vehicle models can reduce computational load while
maintaining reasonable accuracy [146], [147].

• Considering various performance metrics like battery
life, energy savings, emissions, driving style, and driv-
ability in a unified optimization framework presents a
promising approach [148], [149].

This review suggests combining RB and optimization meth-
ods for a potent blend. It highlights fuzzy logic RB methods
as particularly promising due to their ease of implemen-
tation, adaptability, and low computational load. However,
choosing the right settings for these methods can be tricky.
It emphasizes that HEV complexity goes beyond batteries.
Sophisticated designs pose additional challenges, such as:

• Choosing the right driving mode: The system needs to
dynamically select the most efficient mode based on
varying driving conditions.

• Harmonious energy cooperation: Ensuring seamless
collaboration between electric and traditional energy
sources is crucial for optimal efficiency and reduced
emissions.

While methods like Dynamic Programming (DP) offer ideal
optimization, their impracticality in real-time applications
due to high computational demands and requiring future
driving knowledge limits their use. However, DP serves as a
valuable benchmark for evaluating other methods and devel-
oping guiding principles. This review highlights important
trends and open issues in HEV Energy Management Systems
(EMS):

• From rule-based to optimization-based methods:
Researchers are increasingly focusing on optimization
techniques to achieve better performance compared to
simpler rule-based approaches [150], [151].

• From predetermined cycles to real-time adaptation: The
focus is moving from optimizing for predefined driving
cycles to real-time optimization and dynamic control
parameter adjustments based on actual driving condi-
tions [152], [153], [154].

• From single objective to multi-objective optimiza-
tion: Recognizing the need to balance various factors
like fuel efficiency, emissions, and battery health,
research is shifting towards multi-objective optimization
approaches [155], [156].

Crafting better reward functions, leveraging pre-trained mod-
els, and integrating with other strategies optimize DQNs for
specific goals like fuel efficiency and

smooth driving. Multi-objective PPO tackles emissions,
battery health, etc., alongside fuel efficiency. PPO, with
off-policy learning, harnesses past experiences for efficient
training and combines themwith other techniques to leverage
their adaptability. These advancements in both DQNs and
PPO show promise for optimizing HEV control for diverse
objectives.

Lastly, in [159], the author provides a thorough and up-
to-date review of energy management systems (EMS) in
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hybrid electric vehicles (HEVs), 1) Multivariable Output
Neural Network Models: These models use artificial neu-
ral networks (ANNs) with inverse function mechanisms to
simulate fuel consumption in plug-in hybrid electric vehicles
(PHEVs). This simulation approach accurately predicts fac-
tors such as driving range, battery recharge time, and CO2
emissions across varied driving conditions, offering valuable
insights for enhancing fuel economy and energy efficiency in
hybrid systems. 2) Cloud-Based Eco-Driving Solutions: This
approach, applied in autonomous hybrid buses, uses cooper-
ative vehicle-infrastructure systems combined with dynamic
programming to enhance fuel efficiency and driving patterns.
Cloud integration allows for real-time data processing and
adaptive driving adjustments, which are particularly benefi-
cial for optimizing energy use in urban transit environments.

V. CONCLUSION
This paper explores the intricate world of Energy Manage-
ment Systems (EMS) in Hybrid Electric Vehicles (HEVs).
It examines various strategies and technologies while high-
lighting key challenges faced in optimizing performance and
efficiency. This review contrasts three main approaches: i)
Offline EMS plays a crucial role in designing and analyzing
HEV control strategies. While they don’t handle real-time
decision-making, their ability to leverage prior knowledge
and computationally intensive algorithms makes them valu-
able tools for optimizing performance, evaluating online
approaches, and generating training data for machine learn-
ing. ii) Rule-based methods offer a straightforward way to
manage HEV powertrains but often come at the cost of opti-
mality and adaptability. Understanding their advantages and
limitations is crucial when designing and implementing HEV
control systems. The future of rule-based methods likely lies
in hybrid approaches that integrate them with data-driven
learning for more intelligent and adaptable control strategies.
iii) Optimization-based methods hold immense potential for
maximizing HEV performance but require careful consider-
ation of their computational demands, real-time challenges,
and dependence on model accuracy. The future lies in con-
tinuous advancements, hybrid approaches, and leveraging
data-driven techniques to unlock the full potential of these
sophisticated EMS strategies.
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