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ABSTRACT Reconstructing low-dose CT imaging deals with handling the inherent noise within the
data, which makes it a complex mathematical problem known as an ill-posed inverse problem. Recent
attention has shifted towards deep learning-based techniques in CT image reconstruction. However, these
approaches encounter limitations due to extensive data requirements for training and validation. We propose
an unsupervised CT reconstruction technique that leverages the power of Deep convolutional neural
networks (Deep CNNs), demonstrating that a randomly initialized neural network can serve as a prior.
We have proposed a completely unsupervised deep learning technique called Loss-construct unsupervised
network (LUNA) adjustment for low-dose CT image reconstruction. Our approach combines the traditional
reconstruction technique, i.e., simultaneous algebraic reconstruction technique (SART), and integrates
the image prior i.e., weighted total variation (WTV) regularization within the Deep CNN model. The
overall reconstruction process is optimized using the alternating direction method of multipliers (ADMM)
framework, that balances the neural network’s internal representation with the observed data, yielding a more
consistent and accurate final image. The proposed method uses various loss functions to update the Deep
CNN. The optimal update of the network depends on the various loss functions. Different loss functions,
including perceptual loss, SSIM loss, WL2 loss, WTV loss, and sinogram loss, are used to guide the overall
reconstruction. This approach effectively handles the constraints of data limitation of deep learning-based
techniques, offering a robust and unsupervised solution for low-dose CT image reconstruction.

INDEX TERMS Low dose CT, unsupervised learning, SART, ADMM based optimization, loss functions.

I. INTRODUCTION
Compute tomography (CT) [1] imaging serves as a diagnostic
tool providing valuable clinical insights into the anatomical
structures of the body, encompassing organs, tissues, bones,
and blood arteries. The mathematical formulation of the CT
reconstruction process is given as

D = Ae∗ + η (1)

The system matrix is denoted by A. The vector e∗ ∈ Rp,
represents the unknown image in vector form and η denotes
the noise component. D ∈ Rq, represents the measurement
vector corrupted by noise. Due to the significant disparity
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between the number of measurements, denoted as q, and
the number of unknowns p, this particular scenario may be
classified as a very under-determined linear inverse problem.

Nevertheless, prolonged exposure to X-ray radiation can
lead to adverse consequences, such as an elevated risk
of cancer, genetic issues, and other health conditions [2].
In response to this concern, low-dose computed tomography
(LDCT) imaging protocols have been established by adjust-
ing various settings on CT devices, such as tube current (mA)
and tube potential (kVp), in alignment with the ALARA [3]
radiation safety principle. However, modifying these device
settings in LDCT procedures significantly affects the visual
quality of the resulting LDCT images. Consequently, the
acquired LDCT images may exhibit various artifacts and
degradation, including quantum noise.

180992

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0006-2976-4225
https://orcid.org/0000-0002-1988-3734
https://orcid.org/0000-0002-5931-6603
https://orcid.org/0000-0001-7201-2092


R. Gothwal et al.: LUNA Adjustment for Low-Dose CT Image Reconstruction

Various approaches aimed at enhancing the diagnostic
quality of low-dose CT scan can be classified into sinogram
refining [4], iterative reconstruction [5], and techniques based
on deep learning [6].
Sinogram filtering [7], [8] is a procedure that involves

applying a smoothing technique directly to the raw data
before executing any reconstruction algorithm. Some of
the techniques in this category are structural adaptive
filtering [9], non-linear sinogram smoothing [10], bilat-
eral filtering [11] and Penalized weighted least-squares
(PWLS) [12].
Iterative reconstruction (IR) presents an alternative method

for LDCT. Iterative reconstruction techniques make use of
prior information in the reconstruction phase. For example
Anisotropic diffusion (AD) [13], Nonlocal means (NLM)
[14], Dictionary acquisition [15], low-rank matrix decom-
position [16], techniques based on Statistical Models and
Bayesian Inference [17]. Despite their effectiveness, iterative
reconstruction techniques have a substantial processing cost.

Deep learning (DL) [18], [19], [20], [21] holds significant
potential in advancing efficient image reconstruction algo-
rithms for CT reconstruction, particularly in the context of
LDCT [22]. The most of deep learning based techniques are
based upon supervised learning [23].

Supervised learning methods typically require large
datasets containing pairs of low-dose and corresponding
normal-dose images, which are often complex and expensive
to acquire. These datasets involve performing two scans per
patient (one low dose and one regular dose) and ensuring the
precise alignment of these images. This process is both costly
and time-consuming. This endeavor is further complicated by
variations in patient anatomy, imaging protocols, and scanner
types, necessitating attention to distinct artifacts and noise
patterns. Additionally, the availability of large, clean, and
labeled datasets is limited, particularly in the case of low-dose
CT (LDCT), where ethical concerns and the need tominimize
radiation exposure restrict data collection. Furthermore,
supervised approaches require significant manual effort from
domain experts, such as radiologists, to annotate and evaluate
the datasets. Creating reliable training data for supervised
learning in medical imaging makes it even more challenging.
Given these constraints, unsupervised deep learning methods
have emerged as a powerful alternative, especially in data-
limited environments. These methods do not rely on paired
ground-truth images but instead learn from the data, and
the Deep network itself can act as a regularizer within
the reconstruction process. Unsupervised techniques allow
models to generalize better across various data types and
reduce the need for large-scale, labeled datasets, enabling
broader applications in real-world scenarios where data
collection is inherently limited.

This research presents an unsupervised technique for
reconstructing LDCT images using a Deep Convolutional
Neural Network (CNN). Deep image priors enable the
network to acquire appropriate regularization directly from
the data, whichmay result in enhanced reconstruction quality.

The proposed technique LUNA operates independently of
training and testing data. It employs (SART) as the recon-
struction algorithm, utilizing the architecture of untrained
deep neural networks as image priors. This design eliminates
the necessity for external datasets or training examples. The
main contribution of the proposed approach are

• We propose an unsupervised CT reconstruction tech-
nique that harnesses the capabilities of Deep CNNs,
demonstrating that a randomly initialized neural net-
work can function as a prior.

• The overall network performance depends upon the
network updation done using various loss functions,
including sinogram loss, perceptual loss, TV loss, SSIM
loss, and L2 loss.

• ADMM is used to optimize the reconstruction process
and balance out the NN internal representation with the
observed data.

II. RELATED WORK
Deep learning (DL) has been a popular technology in recent
years for creating effective image reconstruction techniques
in LDCT imaging. There are various deep learning networks
which includes CNN [24], Convolutional auto-encoder [25],
[26], [27], U-net [28], [29] that can be utilized in image
reconstruction tasks. The reconstruction domain makes use
of deep learning based approaches including, post-processing
methods [19], [30], prepossessing [20], [31], [32], unrolling
strategy [33] and plug-and-play [34], [35].
In post-processing setup Deep learning networks are used

as a priors. The purpose of post-processing approaches
is to improve the quality of applied reconstruction algo-
rithms. Wolterink et al. [36] introduced a post-processing
methodology that aims to predict regular-dose CT images
by using low-dose CT images. Chen et al. [30] proposed a
post-processing method known as RED-CNN for low-dose
CT imaging based on auto-encoder. Yang et al. [19] suggested
a post-processing-based deep learning approach that employs
2-D and 3-D residual convolutional networks.

There are deep-learning based approaches that can be
effectively be used in sinogram domain or prepossessing.
The investigation done by Bai et al. [37] developed a novel
methodology that employs a deep learning model for the
purpose of predicting the absent elements of a signal that
weren’t collected during the data collection phase. The
filtered back projection (FBP) method is used to rebuild CT
images after first making predictions based on the inadequate
data. In the research [31] Deep Learning-enabled Iterative
Reconstruction (Deep IR) strategy for CT denoising was
introduced that includes a synthetic sinogram-based noise
simulation tool. The Deep IR method effectively reduces
noise in ultra-low dose CT images while preserving image
quality through the training of a Convolutional Neural
Network (CNN) on simulated noisy sinograms.

Deep learning based techniques can be used in both in
prepossessing and post-processing steps. Yin et al., [38]
have proposed such a technique known as the progressive
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3D residual convolution network (DP-ResNet) in order to
improve thewhole imaging procedure, namely the conversion
of low-dose computed tomography (LDCT) projections
into computed tomography (CT) images. The proposed
methodology is a two-step approach incorporating sequential
network processing in both the image and sinogram domains.

Unrolling techniques combine a learnt prior to the inver-
sion with a conventional iterative approach. These methods
resemble traditional methods for tomographic reconstruction
optimization. Deep learning is used in each iteration to find
the best update, taking into account the result of the former
iteration as well as the input from forward operator and its
adjoint. In their study, Ding et al., [39] introduced a deep
learning approach for reconstructing LDCT images. They
utilized a half-quadratic splitting strategy and incorporated
a trainable image prior that was based on a framelet filter
bank. The method automatically adjusts hyperparameters,
requiring only one universal model for processing data
acquired at different dose levels. In order to guarantee
measurement consistency while repeatedly improving the
image, Gupta et al. [40] introduces a new method of image
reconstruction that integrates a convolutional neural network
(CNN) with projected gradient descent (PGD).

Plug-and-play [41] methods utilize pre-trained denoising
algorithms, which are commonly constructed using deep
learning or machine learning principles, to function as
regularizers within a framework for iterative reconstruction.
He et al. [34] developed a novel parameterized 3pADMM
algorithm, which optimizes the parameterized plug-and-
play (3p) prior and its associated parameters simultaneously
within a single framework by integrating deep learning
techniques.

Wang et al. [42] introduced an innovative solution called
as ADMMBDR algorithm for limited-angle CT. Initially,
the ADMM algorithm break down a regularization recon-
struction model. Subsequently, integrate a deep convolutional
neural network (CNN) within the ADMM framework to
reduce artifacts, thus eliminating the need for manually
selecting the regularization term and its associated parameter.

Deep learning approaches [6] are widely utilized in CT
reconstruction, but a significant drawback is their dependence
on large datasets, specifically a set of consisting both
low-dose and normal-dose images for supervised learning.
Acquiring such image pairings involves costly and time-
consuming processes, including two scans and registrations
for each projection pair. Moreover, the scarcity of real-world
low-dose CT images adds to the challenges. The need for
good unsupervised deep learning algorithms [43] for LDCT
imaging that can handle situations with less data is thus
growing in popularity.

Unal et al. [44] introduced an unsupervised technique
tailored for sparse view CT, incorporating the SART
reconstruction algorithm and leveraging a deep generative
regularizer as a prior. The researchers, Wu et al. [21],
proposed an unsupervised learning strategy to train a prior

function specifically designed for iterative low-dose CT
reconstruction. This approach incorporates K-sparse auto-
encoders. Addressing the challenge, the team employed
a combination of alternating optimization and sequential
quadratic programming (SQP) methods, enhancing them to
effectively handle the non-convex nature of the problem.
Jiang et al. [45] develop a novel semi-supervised generative
technique for accurate super-resolution CT image reconstruc-
tion. The approach involves using a deep untrained network
with 16 residual blocks as the generator and building a
discriminator based on a supervised network.

Liang et al. [46] presented a novel unsupervised
model-based deep learning (MBDL) technique for recon-
structing low-dose CT (LDCT) images. The MBDL frame-
work is flexible, allowing for the inclusion of supervised
training when there are just a few paired NDCT datasets
available to assist in optimising network parameters. This
allows the framework to operate in a semi-supervised mode.

III. PROPOSED TECHNIQUE
Inverse problems are inherently ill posed; therefore, prior
knowledge must be incorporated into the solution. In gen-
eral, the regularized least-squares formulation is utilised
frequently in image reconstruction process.

e∗ = argmine ∥A − De∥2l2 + λR(e) (2)

where, Data fidelity argmine∥A − De∥2l2 term that penalises
the l2 distance between measurements which is provided by
SART [47] algorithm in the proposed approach. The term
‘‘R(.)’’ is commonly referred to as the regularization term,
which serves the purpose of encapsulating prior knowledge
regarding the data. The control variable λ is employed to
regulate the extent to which the regularization term influences
the overall solution. This regularization component assumes
a vital role in the modeling process by narrowing down
the solution space, relying on assumptions grounded in
the underlying data. The regularizer is chosen to impose
constraints on the solution set in accordance with prior data.

SART is one of the most common iterative techniques.
The TV prior is frequently employed as a regularizer R(e)
to enforce minimal gradient magnitude (TV norm) in natural
images.

TV prior imposes the constraint that a natural image’s
gradient magnitude (TV norm) must be small. We employ
space-variant total variation [48], where µ is a positive scalar
that controls the strength of regularization.

WTV (e) ≜
N∑
i=1

µ|| [Me] ∥2 (3)

For a two-dimensional image that is subject to boundary
constraints, the operatorsM is finite difference operations and
Me is discrete gradient of e at pixel i.

CNN can create a high-quality [49] image from an
untrained input vector. Following optimization equation is
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used to train deep learning model.

2∗
= argmin2 L (f2D, e) (4)

such that

e∗ = f2∗ (D) (5)

where e∗ is denoised image, f2∗ signifies the CNN parame-
terized by 2 and L defines the loss function.

The corresponding optimisation for DIP may be stated
within the context of image reconstruction as follows.

2∗
= argmin

2

∥D − Af2(z)∥2l2 (6)

such that

e∗
= f2∗ (z) (7)

Data fidelity is represented by the term ∥D − Af2(z)∥2l2
in the DIP optimisation problem, with f2∗ standing in for
the unknown image output. The optimisation issue may be
formulated using regularized least-squares formulation stated
as.

2∗
= argmin

2

{
∥D − Af2(z)∥2ℓ2 + λWTV (f2(z))

}
(8)

The constraint counter part of above equation can be
represented as:

2∗
= argmin

2

{
∥D − Af2(z)∥2ℓ2 + λWTV (t)

}
(9)

where

f2(z) = t (10)

In order to obtain a low dose image, we will employ an
iterative approach to update theweight parameter2. This will
result in an output ek that is a function of 2.
such that

ek = f2∗ (D) (11)

The output ek is then multiplied by a sampling mask,
with the expectation that it will closely resemble the low
dose image. In the context of our undersampling problem,
the operator may be described as a binary undersampling
mask, which subsequently yields the following operator. In
this context, the symbol ◦ represents the Hadamard product
[50], and the variable j belongs to the set (0, 1)a×b, which
represents the binary mask used for the undersampling
pattern.

e∗k = f2∗ (D) ◦ j (12)

The value of 1 represents pixels that have been sampled,
whereas the value of 0 represents pixels that have been
skipped. The multiplication of the estimated CT image by
the binary mask ensures that the estimated image aligns
with the low-dose image in the sampled regions, preserving
data fidelity. The mask is not created randomly in each
iteration; rather, it is constant and signifies the particular

under-sampling pattern of the low-dose acquisition. This
method enables the model to rebuild the complete image
while maintaining coherence with the low-dose data.

To solve equation 9, an iterative procedure is required to
minimize the equation. This can be achieved by utilizing the
ADMM [42] algorithm. The augmented Lagrangian function
for this problem can be expressed as

L(2, t, λ) = ∥D− Af2(z)∥2ℓ2 + λWTV(t)

+
βt

2
∥f2(z) − t∥2l2

+ ⟨λ, f2(z)−t⟩ (13)

where
2 is the optimization variable or weight parameter that is

updated during iterative optimization
t is an auxiliary variable, it serves as a reference

image from which variations in the reconstructed image are
penalized.

λ is the dual variable. It is a hyperparameter that regulates
the degree of the TV regularization.

The penalization parameter is called β. It controls the ratio
of penalizing deviations from the reference image to fitting
the data.

2k+1 = argmin
2

(
∥D− Af2(z)∥2l2

+
βt

2
∥f2(z) − tk +

β

2
λtk∥2l2

)
(14)

This step updates the parameters2 by minimizing the data
fidelity term and the penalty term that ensures f2(z) is close
to tk −

β
2λtk

The first part of the ∥D−Af2(z)∥2l2 equation is data-fidelity
term ensuring that the reconstructed image f2(z) matches the
givenmeasurements D as closely as possible. The second part
is a regularization term. It introduces a penalty for solutions
that deviate from the previous auxiliary variable tk . and the
dual variable λk . This helps to incorporate prior knowledge
or constraints on the solution.

tk+1
= argmin

t

(
λWTV(t)

+
βt

2

∥∥∥∥f2k+1 (z)−t +
1
βt

λkt

∥∥∥∥2
l2

)
(15)

The term
∑N

i=1 µk i ∥ti∥22 represents a regularization
on the auxiliary variables ti. This term encourages sparsity
in the auxiliary variables and helps to refine the solution. The
other half of the equation ensures that the auxiliary variable
aligns with the measurements. It introduces a penalty if the
auxiliary variable deviates from the current estimate of the
reconstructed image.

λk+1
t = λkt + βt

(
f2k+1 (z) − tk+1

)
(16)

The equation modifies the dual variable λ on each iteration
by considering the discrepancy between the reconstructed
image and the updated auxiliary variable. The equation
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updates the dual variable λ based on the difference between
the current estimate of the reconstructed image f2k+1(z)−tk+1

and the updated auxiliary variable tk+1. The dual variable
plays a role in enforcing coherence among the reconstructed
image and the auxiliary variables.

IV. RESULT AND DISCUSSION
In this section we will discuss the experiential results
performed, regularization strategies used in the experimental
process.

A. RECONSTRUCTION STRATEGIES
The center of our approach is DIP, which does not require
a large dataset of labeled images for training. The network
architecture naturally favors the generation of realistic image
structure over noise. This allows the network to serve
as a powerful regularizer, guiding reconstruction toward a
more accurate image without needing ground truth data.
The network learns the input data alone. In our proposed
method, the DIP network acts as a regularizer due to
its architecture and various losses, which help guide the
model toward reconstructing noise-free images. All the loss
functions used in this approach follow an unsupervised
adaption. This approach combines elements of conventional
image reconstruction methods with the utilization of a neural
network acting as image prior. The optimization process
involves iteratively refining the latent vector and weights
to enhance the consistency between generated and actual
image based on specified measurements. The reconstruction
idea is to optimize the loss of randomly initialized neural
network in such a way that NN act as a prior without the
need of any training and testing. The iterative fusion of
SART and Deep Convolutional Neural network is displayed
in Figure 1. The first module is reconstruction module it
generates an initial low dose CT image using the SART
algorithm. This act as a starting point for the succeeding
modules. The second module is the Neural Network Module,
in this module network is initialized with random noise
image (Gaussian noise). The random image has the same
dimensions as the image generated by SART. Networks
estimates what the image is, and then they multiply that guess
by a binary mask. In our case, we used a Hadamard matrix.
The resultant multiplied image is used to figure out different
types of loss, like perceptual loss, SSIM loss and l2 loss.
Perceptual loss capture more complex visual details and
structures. The major emphasis of l2 loss is the pixel-by-pixel
disparities between the estimated and reconstructed images.
Where its main intent is to cut-down the overall mean squared
error, guaranteeing a close match between the reconstructed
low dose image and the estimated image in terms of pixel
intensities and SSIM loss ensures the structure similarities
between estimated image the reconstructed low-dose image.
For maintaining the unsupervised characteristics of SSIM
loss rather than comparing the output to a labeled ground
truth image, the SSIM loss compares the generated image
with an initial estimate obtained through SART and product

of Hadamard product. This resulatnt image e′k is generated
directly from the input data itself, not from external labels or
pre-trained models, thus maintaining the unsupervised nature
of the method.

LSSIM(e0, e∗k ) = (1 − SSIM
(
e0, e∗k

)
) (17)

Here LSSIM is structural similarity, e0 image estimated by
SART reconstruction algorithm, e∗k = f2∗ (D) ◦ j
The l2 loss emphasizes the pixel-by-pixel disparities

between the reconstructed image and the input data (such
as noisy or incomplete observations). Its primary intent
is to ensure a close match between the reconstructed
image and the input observations regarding pixel intensities
without requiring a ground truth image, or labeled data.
l2 loss is given as

Ll2 (e0, e
∗
k ) =

N∑
i=1

(
φl(e0)i − φl(e∗k )i

)2 (18)

where e0 is image generated by SART, with total number of
iteartions equal to 40. And e∗k is image obtained from NN and
Hadamard product. Here l2 loss maintains the unsupervised
characteristics.

Lperceptual(f2(z) ◦ j, e0) =

∑
l

∥φl(f2(z)) − φl(e0)∥22 (19)

Here f2(z) is output of neural network f parameterized
by 2, e0 is reference image. φl denotes the feature maps
extracted from the l − th layer of a pre-trained network,
here we have used VGG-19. The reference image e0 is not a
labeled ground truth image but rather derived from the SART.

In the third module Weighted TV Loss Module used to
calculate weighted TV loss among the predicted (Initial
estimated image) image and the reconstructed low-dose
image. This encourages the network to produce images with
minimal variation while staying close to the initial recon-
struction. TV loss is applied to reduce noise and encourage
smoothness in the reconstructed image, a common goal
in image reconstruction tasks. For unsupervised adaption,
this loss operates directly on the generated image without
any comparison to labeled data. It simply regularizes the
image’s gradient to promote smoothness, a feature common
in unsupervised methods.

LWTV = WTV (fθ (z)) (20)

The fourth module contains weighted Sinogram loss or
measurement loss between initial Sinogram data generated by
NN and original Sinogram data. The projection loss is here
used to measure of the discrepancy between the measured
projection data and the simulation generated projection
data. We enforce consistency between the reconstructed and
the raw data, making this unsupervised. Also, we are not
providing labeled data to ensure that the proposed loss adapts
to the unsupervised characteristics.

LSinogram Loss = ∥D− Af2(z)∥2l2 (21)
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FIGURE 1. Working of the proposed Technique.

The fifth module is Network Update Module this module
utilizes the calculated loss functions to update the network
parameters and fine-tunes the network’s ability to generate
images that align with both the low-dose CT image and the
original sinogram data.

B. NETWORK ARCHITECTURE AND EXPERIMENTAL
SETUP
The CNN design utilised in all tests is depicted in Figure 2,
which is a modified version of the U-net architecture
first suggested by [49]. Specifically, the popular U-net
architecture is modified to include a convolutional layer
in the skip connections. The proposed network consists
of two parts the left is encoding path and right part is
decoding path. The encoded region is like a standard CNN
architecture, that consists of two convolational layes of 3 ×

3 × 3, succeeded by batch normalization (BN) and a leaky
rectified linear unit (LReLU) as activation. Additionally, a
3 × 3 × 3, 3D downsampling convolution layer with a stride
of two is applied, succeeded by the BN and the LReLU.
Additionally, the number of feature channels doubles with
each round of downsampling. The decoding path includes
a 3 × 3 × 3 deconvolution layer, Batch Normalization
(BN), Leaky Rectified Linear Unit (LReLU), upsampling,
skip connection with the matching linked feature map from
the encoding path, and two 3 × 3 × 3 convolution layers,
each succeeded by BN and LReLU. The Adam optimizer

employed in this case. As the input moves farther into
the network, this structure causes the network’s functional
receptive field to grow. Furthermore, use of skip connections
allows future layers to effectively rebuild feature maps by
including both local and global texture information. The
experimental configuration consisted of the NVIDIA RTX
A4000, a 16 GB Graphics Processing Unit (GPU), an Intel
Xeon Gold Processor 6142 with a maximum turbo frequency
of 3.70 GHz, and 32 GB of RAM.

C. RESULTS ON REAL DATASET
The real dataset known as the dead piglet dataset, which was
published by Yi and Babyn [54], is utilized to assess the
denoising performance of the suggested DL model.

This data set provides CT images at different doses
by reducing the tube current from 300 mA to 150mAs,
75mAs, and 15mAs. Accordingly, in this study, the CT
images obtained at 300mAswere considered the Regular dose
(RDCT) or Full dose CT (FDCT) dataset and the rest the
Low dose dataset (LDCT) datasets. Also, these three LDCT
piglet data sets consisting of 150mAs, 75mAs, and 15mAs
are labelled as half dose, quarter dose, and ultra-low dose data
sets.

Figure 3 presents results from the piglet dataset at a dose
level of 150 mAs and tube current of 100 kV. Figure 4 shows
results at 75 mAs with the same tube current of 100 kV, and
Figure 5 shows results at 15 mAs, also with a tube current of
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FIGURE 2. Neural network Architecture used in the proposed approach. Total number of channels (N = 512) are depicted on the top of each box and pixel
size are displayed on the left. Arrows are used for displaying different set of operations.

100 kV. The display window for all experiments is set to [40,
350] HU.

D. CLINICAL DATA RECONSTRUCTION
In order to evaluate the suggested technique in practical
situations, a clinical images facilitated by Mayo Clinics for
the 2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand
Challenge [30] was utilized. Results obtained forMayo-clinic
dataset is shown in Figure 6, 7 the window size for all
experiments is set as [−160 to 240]. In Figure 6, the image
shown is of a patient with a lesion. Data obtained at 120 kV
and 200 quality reference mAs (QRM) is termed as Full Dose
(FD) data, while simulated data that corresponds to 120 kV
and 50 QRM is referred as Quarter Dose (QD) or Low-Dose
CT (LDCT) data. In Figure 7, the image shown is of a patient
with a lesion.

E. METHODS IN COMPARISON
To evaluate the performance of the suggested approach, it is
compared with other existing techniques like BM3D [51],
SwinCT [52], DIP+TV [53], Dataset free learning [55],
Proj2Proj [56].
Total number of iterations selected are 400 with Adam

optimizer is utilized. The proposed method is compared
with various reconstructed methods LDCT (QD), BM3D,
SwinCT, DIP+TV, Dataset Free learning and Proj2Proj.

In low-dose CT (LDCT) imaging, a reduction in dose
generally results in increased noise, which considerably
impairs overall image quality. Traditional denoising methods
such as BM3D are effective in noise suppression; however,
they frequently result in over-smoothing, which causes a
significant loss of the structural details in the image. SwinCT,
a supervised technique, seeks to improve structural details;
however, it sometimes exhibits a lack of clarity in finer image
elements. The unsupervised DIP+TV method demonstrates
potential by effectively preserving the majority of structural
information, although certain subtle details remain unclear.
At the half dose (150mAS) dose level, the proposed technique
demonstrated a PSNRof 37.2240 and an SSIMof 0.9613, sur-
passing Proj2Proj, which achieved a PSNR of 35.8921, and
Dataset Free Learning, which attained a PSNR of 35.7362.
While Proj2Proj andDataset Free Learning produced visually
appealing outcomes, the proposed method demonstrated
superior structural preservation. At the 75 mAs dose level,
our method attained a PSNR of 36.751, in contrast to
35.5910 for Proj2Proj and 35.0411 for Dataset Free Learning.
At the 15 mAs dose, Proj2Proj and Dataset Free Learning
demonstrated performance comparable to our method regard-
ing PSNR and SSIM metrics. This analysis demonstrates
the proposed method’s balanced performance across dose
levels, showcasing superior structural preservation and image
clarity. The proposed method attained a maximum PSNR of
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FIGURE 3. Comparative analysis of visual performance and Difference map of various techniques on piglet dataset on dose level 150mAs. The images are
arranged from top to bottom in the order: FDCT, LDCT, BM3D [51], SwinCT [52], DIP+TV [53], Dataset Free Learning [55], Proj2Proj [56], and LUNA.

37.500 and a structural similarity index of 0.9629 for the
Mayo Clinic dataset. Figures 6 and 7 illustrate that Dataset

Free Learning and Proj2Proj yield visually promising results;
nevertheless, certain finer details are compromised in their
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FIGURE 4. Comparative analysis of visual performance and Difference map of various techniques on piglet dataset on dose level 75mAs. The images are
arranged from top to bottom in the order: FDCT, LDCT, BM3D [51], SwinCT [52], DIP+TV [53], Dataset Free Learning [55], Proj2Proj [56], and LUNA.

reconstructions. Our method exhibits enhanced capability in
maintaining intricate structural details. The proposed method

effectively balances noise reduction and detail preservation,
resulting in high-quality images that clearly display both
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FIGURE 5. Comparative analysis of visual performance and Difference map of various techniques on piglet dataset on dose level 15mAs. The images are
arranged from top to bottom in the order: FDCT, LDCT, BM3D [51], SwinCT [52], DIP+TV [53],Dataset Free Learning [55], Proj2Proj [56], and LUNA.

major structural details and finer elements. This indicates
the effectiveness and advantages of the proposed method

in preserving both structural integrity and fine details in
reconstructed images.
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TABLE 1. Comparison of evaluation metrics using the piglet data-set with state-of-art methods.

TABLE 2. Comparison of evaluation metrics using the Mayo-clinic data-set with state-of-art methods.

TABLE 3. PSNR and SSIM values estimated by changing the weights of the various loss functions used in the experiments.

The values in Table 3 represent the weights assigned to
different loss functions used in our experiments. We provided

multiple sets of these weights to assess their impact on the
model’s performance. The table illustrates how adjusting
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FIGURE 6. Comparative analysis of visual performance and Difference map of multiple techniques on a Mayo Clinic dataset image having lesion in liver.
The images are arranged from top to bottom in the order: FDCT, LDCT, BM3D [51], SwinCT [52], DIP+TV [53], Dataset Free Learning [55], Proj2Proj [56], and
LUNA.

these weights influences the PSNR and SSIM metrics.
The loss functions incorporated in our experiments include

sinogram loss, perceptual loss, WTV loss, WSSIM loss,
and l2 loss. The weights of these loss functions are
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FIGURE 7. Comparative analysis of visual performance Difference map of multiple techniques on a Mayo Clinic dataset of Lung image. The images are
arranged from top to bottom in the order: FDCT, LDCT, BM3D [51], SwinCT [52], DIP+TV [53], Dataset Free Learning [55], Proj2Proj [56], and LUNA.

tuned randomly throughout experimentation to obtain the
best possible performance. Additionally, we used β as a

penalty parameter; this helps enforce consistency between
the subproblems of the ADMM framework, stabilizing and
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FIGURE 8. PSNR and RMSE values along with number of iterations.

improving the convergence during image reconstruction.
These losses collectively contribute to the network’s overall
performance. The significance of these weights is discussed
in the section on reconstruction strategies.

The proposed technique has 2,272,649 parameters and a
run time of 55 minutes per image. Initially, the network
calculates the total cost or loss, aiming tominimize it through-
out the optimization process. As the figure demonstrates,
increasing the number of iterations leads to a significant
decrease in the network’s loss, while simultaneously increas-
ing the PSNR value, indicating improved image quality. The
reconstruction quality of the generated images is assessed
by comparing them with Full Dose (FD) and Half Dose
(QD) reference images. Notably, the network achieves sat-
isfactory results after only 355 iterations. Initially, the PSNR
values exhibit a rapid radial increase, indicating substantial
improvement. This observation highlights the remarkable
performance of our network, achieving significant improve-
ment rapidly and maintaining high quality throughout the

FIGURE 9. SSIM and Loss values along with number of iterations.

iterative process. However, after the 300th iteration, the
rate of increase starts to slow down, indicating a phase of
diminishing returns. So we decide to stop after 400 iterations.
The obtained results emphasizes the excellent performance of
our network, achieving significant improvement quickly and
maintaining good quality throughout the iterative process.
Based on our experimental observation, it has been found
that unsupervised methods are highly effective and can
successfully mitigate the requirement for a large amount of
data.

The success of our proposed unsupervised framework
relies on the dynamic interaction of network weights across
various configurations. Table 3 displays the different weight
values assigned to the network. We performed a thorough
analysis comparing the quality of image reconstruction in
scenarios with full dose and quarter dose. The graphi-
cal representation showcases the fine outcomes obtained.
Figure 8 (a) displays the values for PSNR versus iterations,
while Figure 8 (b) shows the RMSE versus iterations.
Figure 9 (a) displays the SSIM values plotted against itera-
tions, while Figure 9 (b) showcases the loss values plotted
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FIGURE 10. PSNR and SSIM values assessment with existing techniques.

against iterations. The assessment of proposed techniques
based on PSNR and SSIM values is shown in the Figure 10.
Based on the graph of PSNR vs Iterations, it is visible that
the initial PSNR value is 18.500 and the SSIM value is 0.680.
Additionally, the loss value is recorded as 1868.64953. The
loss value experiences a significant decrease, while the PSNR
value shows a notable increase of 27.323 at iteration 10. The
corresponding loss value is 291.80734, and the ssim value is
0891. After reaching iteration 50, the PSNR value obtained
is 34.937 and the SSIM value is 0.948. After 50 iterations,
there is a gradual improvement in the PSNR value, as shown
in Figure 5. After 120 iterations, we achieved a PSNR value
of 36.760 and an SSIM value of 0.951. At 355 iterations,
we obtain a PSNR value of 37.503. After this iteration, there
is only a slight increase in the PSNR value, so we decide to
stop at 400 iterations.

The reconstructed image quality achieved a score of
37.5 dB for FD and 33.5 dB for QD. In addition, our approach
demonstrated significant improvements with the Structural
Similarity Index Measure (SSIM) values reaching 97.13 for
FD and 96.24 for QD, highlighting its effectiveness.

For optimal results, it is recommended to configure the
Sinogram loss, perceptual loss, weighted TV loss, Weighted
SSIM loss, weighted norm2 loss,Beta, and learning rate
lambda with the following values: Sinogram loss = 1,

perceptual loss = 1, weighted TV loss = 1, SSIM loss = 1,
weighted L2 loss = 1, Beta = 50, and learning rate λ = 0.1.

V. CONCLUSION AND FUTURE WORK
In this paper an efficient approach for low-dose CT
reconstruction technique is proposed. A hybrid approach
is developed where the SART reconstruction algorithm
is integrated with a Deep Convolutional Neural Network
(Deep CNN) serving as a prior. This approach leverages
the effectiveness of Deep Convolutional Neural Networks
in identifying significant patterns within the dataset, hence
reducing the reliance on extensive training data, which is
often a constraint on the effectiveness of deep learning meth-
ods. The suggested technique exhibits superior performance
compared to conventional reconstruction methods.

In future research, efforts will be made to integrate a
wider range of loss functions and reduce the overall number
of iterations. The clinical usability, an additional criterion
used to evaluate the reconstruction of medical images, can
be further examined by the domain experts to validate the
proposed approach.
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