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ABSTRACT The Transformers architecture has recently emerged as a revolutionary paradigm in the
field of deep learning, particularly excelling in Natural Language Processing (NLP) and Computer
Vision (CV) applications. Despite its success, the security implications of Transformers have not been
comprehensively explored, encompassing a broad spectrum of both hardware and software vulnerabilities.
This paper aims to address this critical gap by conducting an extensive exploration of security challenges
confronting Transformers from both software and hardware perspectives. While software-related concerns
like adversarial attacks, private inference, and watermarking have been studied, the paper sheds light on
previously underexplored hardware vulnerabilities such as trojans and side-channel attacks. By unraveling
the intricacies of these hardware threats, the study aims to contribute to a comprehensive understanding of
Transformer security. It presents an in-depth analysis of recent advancements in the security of Transformers.
Additionally, it outlines existing challenges and forecasts future research trends, offering insights for
researchers and practitioners aiming for the secure and resilient design and deployment of Transformers.
The survey categorizes different attacks and defenses related to Transformers, helping researchers identify
gaps and opportunities in this area. Furthermore, it defines a roadmap for a unified security framework,
serving as a foundational starting point for developers seeking to implement robust security measures.

INDEX TERMS Deep learning security, hardware security, NLP, transformers, vision.

I. INTRODUCTION
The Transformers have revolutionized various fields of
artificial intelligence, offering powerful solutions in Natural
Language Processing (NLP), computer vision, audio and
signal processing, and multi-modal tasks. In NLP, Trans-
formers have become essential for state-of-the-art models,
enabling tasks like text classification, question answer-
ing, language modeling, understanding, and generation.
Their attention mechanisms capture long-range dependencies
effectively [28], [170]. In computer vision, Transformers
excel in tasks such as image classification, object detection,
and image captioning. Treating images as sequences of
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tokens, Transformers efficiently process visual information
while preserving spatial relationships [32], [144], [167].

In audio and signal processing, Transformers have been
used for tasks like speech recognition, music generation,
and sound classification. Transformer-based models excel in
deciphering timing relationships within audio data, adeptly
capturing complex patterns and structures [11], [172]. Addi-
tionally, Transformers are useful in multi-modal learning,
where they can handle different types of data such as text,
images, and audio all at once [185], [213]. Figure 1 illustrates
the demographic distribution of Transformer applications
across various fields.

Nevertheless, similar to their predecessors such as Con-
volutional Neural Networks (CNNs), Transformers are not
immune to vulnerabilities and potential security threats.
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FIGURE 1. Transformer applications across key domains, including NLP,
Computer Vision, Multi-Modal tasks, Audio and Speech, and Signal
Processing. This visualization provides an overview of the versatile
utilization of Transformers in various fields, emphasizing their impact on
diverse domains.

Previous research has primarily focused on analyzing
Transformers from a software security standpoint, often
overlooking a comprehensive exploration of hardware secu-
rity aspects. Software-level security analysis studies have
focused on various topics, including adversarial attacks [90],
[107], [126], federated learning and private inference [136],
intellectual property concerns and watermarking [61], [127],
as well as differential privacy [205].

In contrast to the extensive examination of software-level
vulnerabilities in recent years, the susceptibility of Trans-
formers to hardware security threats [128], [129] has
received limited attention [4], [125]. This study represents
a pioneering effort to provide a comprehensive analysis
of Transformers from both software and hardware security
perspectives, aiming to shed light on previously unattended
areas and bridge the gap between software and hardware
security considerations in Transformer models. This paper
seeks to address this gap by offering a detailed exploration
of the security challenges confronting Transformers. Through
a comprehensive review of existing research in the field,
it examines both hardware and software perspectives to
provide a comprehensive understanding of the security
landscape of Transformer-based models. By unraveling the
intricacies of potential threats at both intersection of hardware
and software, this study aims to contribute to a holistic
understanding of Transformer security, paving the way for
robust defenses in the face of evolving threats.

A. COMPREHENSIVE ANALYSIS OF SOFTWARE
VULNERABILITIES
Our work contributes to the field by providing a com-
prehensive analysis of various software-level security
threats affecting Transformer-based models. While previous
research predominantly focused on adversarial attacks,
our study delves into a broader spectrum of security
concerns. By examining various aspects such as federated
learning, private inference, intellectual property concerns,

watermarking, and differential privacy, we offer a thorough
understanding of the security landscape surrounding the
Transformer-based models. Through this comprehensive
analysis, we aim to provide valuable insights that facilitate the
development of more secure and resilient AI-based systems
for real-world applications.

B. UNRAVELING HARDWARE VULNERABILITIES
Hardware vulnerabilities [52], [93] present unique chal-
lenges, ranging from trojans injected [50], [168], [169]
during manufacturing to side-channel attacks exploiting
subtle information leaks. Understanding and investigating
these hardware intricacies is crucial not only for identifying
vulnerabilities but also for designing effective countermea-
sures that fortify Transformers against malicious exploits.
Within this survey paper, we delve into various emerging
hardware vulnerabilities in Transformers which enhances
the research community’s capacity to fortify Transformers
against potential malicious exploits, thereby ensuring their
resilience and security across emerging applications.

C. TOWARDS A UNIFIED SECURITY FRAMEWORK
Efforts to secure Transformers must transcend the conven-
tional silos of hardware and software security. A unified
framework that integrates insights from both realms is
imperative. This paper advocates for a holistic approach that
acknowledges the symbiotic relationship between hardware
and software vulnerabilities. By fostering a comprehensive
understanding of security challenges and solutions, we aim to
propel the development of robust and adaptive defense mech-
anisms for Transformers, ensuring their continued success
in an increasingly complex threat landscape. Additionally,
this survey outlines existing challenges and forecasts future
research trends, providing valuable insights for researchers
and practitioners dedicated to the secure and resilient design
and deployment of Transformers.

Figure 2 shows the overview of our work. The organization
of this paper is as follows: Section II describes the appli-
cation of Transformers and the architecture of the models.
Section III covers vulnerability points in the architecture
of Transformers. Section IV presents the detailed review
of software-level security aspects of Transformers including
adversarial attack and defense, trojan insertion, federated
learning, input encryption, watermarking, and differential
privacy. Section V provides a comprehensive review of the
hardware security aspects of Transformers in both ASIC
and FPGA accelerators. In section VI, potential research
challenges and future opportunities of this emerging field of
study are discussed. Finally, section VII concludes the survey.

II. BACKGROUND AND APPLICATION DOMAINS
This section provides an overview of the essential background
knowledge and architecture of the Transformers published
extensively from 2017, as shown in Figure 3. It further
explores diverse application domains where the Transformers
find practical utility.
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FIGURE 2. Overview of the ‘‘Transformers: A Security Perspective’’ paper.

A. TRANSFORMERS IN DIFFERENT DOMAINS
1) TRANSFORMERS FOR NLP
In the era preceding Transformers, Deep Learning heavily
relied on Recurrent Neural Networks (RNNs) for text
comprehension. The challenge with RNNs lies in their
difficulty to train and their inability to be parallelized,
given their sequential word-processing nature. This is where
Transformers emerged as a solution. Transformers are
applied to a diverse range of NLP tasks, including but not
limited to text classification, question answering, language
modeling and understanding, text generation, information
retrieval, text summarization, and translation [15], [22],
[28], [38], [47], [85], [87], [97], [130], [137], [138], [149],
[170]. The Generative Pre-trained Transformer (GPT) series
from OpenAI, along with Google’s models like Palm and
Bard, are recognized and widely acknowledged within this
group. GPT models, like GPT-4 and GPT-3.5, are advanced
text generation models by OpenAI. They understand both
natural and formal language, generating text in response
to provided inputs called ‘‘prompts.’’ These models are
versatile, used for tasks such as content generation, code
writing, summarization, conversation, and creative writing.
Explore our guides for more details.

In the realm of NLP research, three developing security
concerns include adversarial and backdoor attacks [184],
the potential compromise of private data [113], and the
vulnerabilities associated with imitation attacks [69]. These
security challenges may result in problems such as unautho-
rized data access, financial setbacks, reputation damage and
other adverse consequences [186]. GPT models, with their
remarkable progress, have garnered attention for applications
in healthcare and finance. However, caution is needed as
they can generate biased outputs, risking the disclosure of
private information. While GPT-4 outperforms GPT-3.5 on

standard benchmarks, it is more susceptible to manipulation
through unauthorized system access or manipulated user
prompts [173].

2) TRANSFORMERS FOR VISION
Due to the remarkable capabilities of Transformers in NLP,
researchers have explored their application in computer
vision. Traditionally, CNNs held a central role in vision-
related tasks; however, Transformers have recently garnered
attention and prominence in the realm of computer vision.
Computer vision Transformers are employed for a myriad of
tasks, encompassing supervised and self-supervised learning,
as well as tasks such as object detection, segmentation,
generation, video captioning/summarization, action recogni-
tion, and sign language recognition [16], [32], [55], [99],
[121], [167], [191], [195]. Beyond these applications, fields
like medical imaging, autonomous driving, and agriculture
have also experienced benefits from the utilization of
Transformers for image and video processing [151], [158],
[164]. Transformer architectures leverage a self-attention
mechanism, treating images as sequences of patches [32].
Given their distinctive design in contrast to CNNs, it is

imperative to investigate Transformers’ susceptibility to a
range of attacks, including backdoor attacks and other
security threats. Additionally, it is crucial to delve into how
different Transformer architectures impact overall robustness
of the system. The risks linked to these vulnerabilities become
more pronounced when implementing deep learning models
in safety-sensitive fields such as autonomous vehicles.
In these contexts, a security breach could lead to a dangerous
scenario where the vehicle fails to recognize a pedestrian due
to a specific adversarial stimulus captured by the camera,
posing a direct threat to the safety and reliability of the
autonomous system. [160].
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FIGURE 3. Analyzing the proliferation of Transformer model publications
across various domains from 2017, sourced from app.dimensions.ai, with
‘‘Transformer model’’ as the primary keyword. Additionally, the figure
projects the anticipated number of publications in 2024.

3) TRANSFORMERS FOR AUDIO PROCESSING
The Transformer architecture extends its applications to
Audio Processing (AP) as well. Notable examples include
Audio Transformers [172], Septr [142], and SpecTNT [101],
showcasing successful implementations of the Transformer
architecture in audio processing. The ability of Transformers
to effectively capture long-range dependencies and inter-
actions makes them especially attractive for time series
modeling. This has led to significant advancements in
various applications within the realm of time series analy-
sis, [182]. Voice assistant applications like Google Home,
Amazon Alexa, and Siri rely on key models—Automatic
Speech Recognition (ASR) and Speaker Identification (SI).
However, with the rise of IoT, security threats targeting
machine learning models and hardware components have
surfaced, raising concerns about information theft and
privacy breaches. Transformers, a popular machine learning
model, are increasingly employed in audio processing within
this domain [89].

4) TRANSFORMERS FOR SIGNAL PROCESSING
Researchers applied Transformers for signal processing.
In [11], an automated seizure prediction framework inte-
grated Fourier transform and a Transformer model, blending
signal processing and deep learning for effective epilepsy
identification. Utilizing face videos for heart rate estima-
tion, researchers encountered challenges with time-varying
ambient lighting. Neglecting optical modeling, they found
poor performance in existing methods. To address this,
a demodulation-based Transformer was designed for efficient
rPPG signal purification [211]. In Music Source Separation
(MSS), researchers examined the relevance of long-range
contextual information and introduced Hybrid Transformer
Demucs (HT Demucs), a model outperforming Hybrid
Demucs by 0.45 dB in Signal-to-Distortion Ratio (SDR)
with an extra 800 training songs, employing a cross-domain
Transformer Encoder [143].

5) MULTI-MODELS BASED ON TRANSFORMER
Multimodal learning [185], [213] entails creating models
with the ability to analyze and connect information from

various sources. Overcoming the obstacle of integration,
the task involves crafting a unified network capable of
addressing distinct modalities, including natural language,
2D images, 3D point clouds, audio, video, time series,
and tabular data, despite their inherent disparities. Meta-
Transformer [213], employing a frozen encoder, achieved
multimodal perception without paired training data by map-
ping diverse inputs into a shared token space. The framework
excelled across 12 modalities, demonstrating effectiveness
in fundamental perception, practical applications, and data
mining tasks according to benchmark experiments. Google
recently unveiled Gemini [48], its most extensive and
advanced AI model, tailored for multimodal comprehension
and available in different sizes—Ultra, Pro, and Nano. With
cutting-edge performance, intricate reasoning abilities, and
proficiency in tasks like coding, Gemini marks a noteworthy
advancement in AI, promising widespread availability and
ongoing innovation.

B. ARCHITECTURE OF TRANSFORMERS
In this section, we embark on a detailed exploration of the
foundational elements that make up the Transformer archi-
tecture. The Transformer architecture, as detailed in [170],
typically consists of multiple Transformer blocks. Each of
these blocks includes a multi-head attention (MHA) module
alongside a feed-forward (FFN) module. Importantly, every
block is sequentially accompanied by a Layer Normalization
(LayerNorm) operation and a residual connection.

The attention mechanism enhances model accuracy by
prioritizing relevant data and disregarding less important
information, assigning weights to input attributes based on
their significance to the output. It’s particularly advantageous
for tasks in NLP, computer vision, and speech recognition.
Unlike CNNs which typically focus on local information,
the attention mechanism can gather information globally
from the entire input sequence. The MHA module in the
Transformer architecture involves projection layers, matrix
multiplications, and Softmax operations, as outlined in [170].
On the other hand, the FFNmodule comprises two projection
layers separated by a nonlinear function. The specific
computations for both the MHA and FFN are illustrated in
Figure 4.
The MHA module begins by processing a sequence

consisting of n tokens through a projection step. This step
involves multiplying the sequence with three distinct weight
matrices:WQ,WK , andWV , resulting in query, key, and value
representations. These representations are then divided into h
segments, each possessing a hidden dimension of d/h.Within
each head, the query and key undergo multiplication along
the hidden dimension, producing a matrix of representations,
as articulated in Equation 1.

Qi = QW i
Q

K i
= KW i

K ; i ∈ heads

V i
= VW i

V (1)
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FIGURE 4. Illustration detailing the computational processes within the Transformer encoder block, showcasing the
multi-head attention (MHA) module and the feed-forward network (FFN) module.

FIGURE 5. Variants of Transformer networks depicted: (a) Encoder-only model conducts parallel inference for all tokens.
(b) Decoder-only model follows an auto-regressive inference approach. (c) Encoder-decoder model utilizes the encoded
sequence output as input for a cross-attention module.

The matrices from each head are subject to process-
ing through the ‘‘scaled dot-product attention’’ function,
as detailed in Equation 2, to calculate attention scores and
generate output matrices. Following a Softmax operation, the
resulting attention scores are then multiplied by the value
segment, resulting in an activation with a hidden dimension
of d/h.

O = SoftMax(
QKT
√
dk

)V = SV (2)

The outputs from all attention heads are consolidated
along the hidden dimension, resulting in a unified activation
with a hidden dimension of d . This aggregated result
undergoes projection using the weight matrix Wout within a
concluding linear layer. Following this, the output undergoes
normalization via LayerNorm and is combined with a
residual connection, ultimately producing the final output of
the MHA module.

Regarding the FFN module, it is a straightforward block
comprising two linear layers. Initially, the input sequence
is projected from the hidden dimension d to a higher
FFN dimension through the first linear layer. Subsequently,
the projected sequence is transformed back to the original
dimension d using the second linear layer.

1) NLP TRANSFORMER ARCHITECTURE
Figure 5 depicts various types of NLP Transformer archi-
tectures: Encoder, Decoder, and Encoder-Decoder. The
Transformer architecture was originally devised as an
Enncoder-Decoder model [170]. In this configuration, the
encoder receives the entire source language sentence and
processes it through multiple Transformer encoder blocks to
distill high-level features. These features are then transmitted
to the decoder, which, in turn, is responsible for the stepwise
generation of tokens in the target language. In encoder-only
Transformer models, the input sequence is processed directly
by multiple encoder blocks as a continuous flow. This design,
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FIGURE 6. Illustration outlining the fundamental structure of the (a) original Visual Transformer (ViT), highlighting the key
architectural elements, (b) DeiT, (c) Swin Transformer, and (d) Two consecutive blocks of Swin Transformer.

exemplified by models like BERT, is particularly effective
for tasks centered around natural language understanding.
Decoder-onlymodels, composed of recurring decoder blocks,
exhibit an auto-regressive nature. This implies that the
output at a specific time step relies on the outputs from
previous time steps. Essentially, the model predicts a token
in a sentence by considering the tokens it has generated
earlier.

As a consequence, inference in decoder-only models must
be executed sequentially and iteratively for each output token.
An example of a decoder-only architecture is GPT-based
models.

2) VISION TRANSFORMER ARCHITECTURE
Figure 6-(a) illustrates the Vision Transformer (ViT) [32],
designed with inspiration from the architecture of encoder-
only Transformers frequently employed in NLP. ViT archi-
tecture utilizes self-attention mechanisms to process images,
employing a series of Transformer blocks. Each block
comprises two sub-layers: a multi-head self-attention layer
and a feed-forward layer. The self-attention layer computes
attention weights for each image pixel based on its rela-
tionships with others, while the feed-forward layer applies a
non-linear transformation to the self-attention layer output.
The multi-head attention enables simultaneous attention to
different parts of the input sequence. In the design of the
ViT model, a patch embedding layer is integrated alongside
Transformer blocks. This involves breaking down the image
into fixed-size patches and assigning each patch to high-
dimensional vectors. The model’s final class prediction is
generated by passing the last output of the Transformer block
through a classification head, typically composed of a single
fully connected layer. This architectural approach efficiently
processes images by combining self-attention and patch-
based representations. A crucial feature introduced in ViT,
similar to BERT, is the incorporation of a ‘‘classification

token.’’ This token serves as a comprehensive summary of
the entire input image and is appended to the sequence of
patch embeddings before entering the Transformer blocks.
Acting as a global context aggregator, the classification
token empowers the model to consider the overall content of
the image during the classification process. This integration
enhances ViT’s capacity to capture holistic information,
resulting in improved performance across various image
classification tasks. Other popular variants of ViT, such
as DeiT [167] and Swin Transformer [99], are shown in
parts (b) and (c) of Figure 5, respectively. DeiT employs a
teacher-student strategy specifically designed for Transform-
ers, using a distillation token to enable the student model
to learn from the teacher model through attention. This
approach eliminates the need for training on a huge dataset,
producing a competitive convolution-free Transformer by
training on ImageNet only. Swin Transformer constructs
hierarchical feature maps by progressively merging image
patches in deeper layers and computing self-attention within
local windows, leading to linear complexity relative to the
input image size. Figure 6-(d) shows Swin Transformer
blocks replace the standard MSA module with a shifted
window-based MSA module while keeping other layers
unchanged. Each Swin Transformer block consists of a
shifted window-based MSA module, followed by a 2-layer
MLP with GELU nonlinearity. LayerNorm (LN) is applied
before each MSA module and each MLP, with a residual
connection following each module.

III. SECURITY ANALYSIS AND VULNERABILITY POINTS
IN TRANSFORMER ARCHITECTURE
In this section, we delve into the security aspects inherent
within Transformers, highlighting potential vulnerability
points in which the attackers can leverage. The goal is to
pinpoint areas prone to exploitation, offering insights crucial
for enhancing the security of Transformer-based models.
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Figure 7 presents a comprehensive overview of vulnerability
points in Transformer-based models, including input, output,
and hardware vulnerabilities, which will be discussed in
detail below.

A. INPUT DATA
In Transformer-based models, the input data itself emerges as
a critical attack point, susceptible to manipulation at various
stages of the model’s lifecycle. Two primary attack vectors
on the input data are data poisoning attacks [76], [192] and
evasion attacks [72], [217].
In data poisoning attacks, attackers strategically introduce

malicious samples during the model’s training phase to
manipulate the learning process. By injecting deceptive data
points into the training set, adversaries aim to induce the
model to generate inaccurate predictions. This deliberate
poisoning can have a lasting impact on the model’s behavior,
leading to unexpected and potentially harmful outputs during
real-world usage [131].

In contrast, evasion attacks are devised after the Trans-
former model has been deployed in real-world scenarios.
Attackers, in this case, modify specific data samples, often
referred to as adversarial examples, to deceive the model
into misclassifying them according to a predefined output
label. This manipulation occurs at the inference stage, where
the model encounters real-world data, and the attacker seeks
to exploit vulnerabilities to force misclassification. Such
attacks canmanifest as adversarial patches and tokens. Vision
Transformers may be vulnerable to adversarial patches,
where manipulated regions in the input images deceive the
model [49], [78], [159]. Meanwhile, in NLP tasks, attacks
may occur at the token level, where adversaries manipu-
late specific words or segments to influence the model’s
output. These vulnerabilities underscore the importance of
robust defense mechanisms to safeguard Transformer models
against adversarial manipulations at the input data level [119],
[198].

FIGURE 7. Overview of vulnerability points in Transformer models,
encompassing input, output, and hardware vulnerabilities.

1) MODEL OUTPUT
In addition to the input data, the model output represents
a critical attack point in Transformer-based systems, with
model inversion being a specific security threat that exploits
this vulnerability. In model inversion attacks, adversaries
leverage the output of a machine learning model, such as
Transformers, to gain insights into some of its parameters
or architectural details. This is achieved through a process
of querying the model and utilizing the obtained output
to infer specific characteristics of the model or input data.
In the field of NLP, by meticulously analyzing the model’s
predictions and utilizing the output, adversaries attempt to
reverse-engineer sensitive information, potentially exposing
details about the training dataset [209].

In a membership inference attack, the adversary seeks to
ascertain whether specific personal information was part of
the training dataset used for a target machine learning model.
This attack hinges on training a separate model, known as a
membership inference model, using the output or predictions
generated by the target model. The attacker’s model is
trained to predict whether a given data point (e.g., personal
information) was included in the target model’s training
dataset. The successful prediction by the attacker’s model
implies that the target model has potentially memorized or
learned details about the input data, posing privacy concerns.
This method underscores the need for privacy-preserving
measures, such as differential privacy or data anonymization,
to mitigate the risks associated with divulging sensitive
information during the training process of machine learning
models [68], [153].

B. MODEL PARAMETERS
In these attacks, adversaries leverage the model weights
and corresponding gradients to reconstruct the original data
batch. Essentially, they exploit the relationship between the
model’s parameters and its output to gain insights into
the internal workings of the model [57]. Recent research
indicates that despite the growing interest in distributed
learning for enhancing data privacy on local devices, there’s
a concerning revelation. Publicly shared gradients during
the training process have the potential to expose private
training data, a phenomenon known as gradient leakage,
to unauthorized third parties. TAG suggests a method to
retrieve private training data of Transformer-based language
models from the shared gradients [27]. Utilizing the Inte-
grated Gradients (IG) method, saliency scores for model
predictions were computed, guiding perturbation updates
based on gradients’ signs. IG indicated input sensitivity,
with more pronounced perturbations expected at influential
locations. Improved attack performance was achieved with a
momentum-based iterative strategy akin to gradient descent,
facilitating faster perturbation updates and aiding in escaping
poor local optima. These strategies enhanced perturbation
transferability across different models including ViT [106].
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C. PROMPT
Prompt injection attacks within large language mod-
els (LLMs) involve exploiting vulnerabilities by insert-
ing prompts into data expected to be processed during
model inference. This type of attack, known as ‘‘Indirect
Prompt Injection’’ allows adversaries to remotely exploit
LLM-integrated applications, even without direct user inter-
action. The primary goal is to manipulate these applications,
causing unintended actions or generating content that aligns
with the attacker’s goals. By skillfully injecting specific
prompts into data streams encountered by LLMs during
inference, adversaries can influence the model’s behavior,
highlighting the vulnerability of LLM-Integrated Applica-
tions to strategic manipulations [2], [98], [196].

D. UNDERLYING HARDWARE
Underlying hardware hosting calculation processes can
pose vulnerabilities, particularly to hardware-oriented attacks
like side-channel attacks [34], [35], [36]. These attacks,
as demonstrated by studies such as [165], [166], and
[190], have been proposed to compromise machine learning
systems’ security and privacy. These attacks could potentially
threaten Transformer model hardware accelerators, which
are crucial components of many AI systems. Additionally,
with the global integrated circuit (IC) design flow, there
is a possibility of maliciously inserting Trojans into the
design, further amplifying security risks. Such Trojans could
compromise the integrity and functionality of the hardware,
potentially leading to severe security breaches. Moreover,
there is the possibility of extracting sensitive information
from memory units, adding another layer of vulnerability
to the system. This underscores the importance of robust
security measures and thorough validation processes in
the design and deployment of Transformer-based systems,
particularly in hardware-accelerated environments.

IV. SOFTWARE LEVEL SECURITY CHALLENGES
This section addresses the security concerns associated with
Transformer models at the software level, encompassing
adversarial attacks, Trojan insertion, federated learning,
private inference, encryption-based approaches, intellec-
tual property (IP), watermarking, and differential privacy.
We conduct a comprehensive review of prior research in these
domains.

A. ADVERSARIAL ATTACK AND DEFENCE
Adversarial examples [9], [79], [111], [112], [124], [193],
[194] refer to manipulated input data that can deceive
machine learning models while remaining imperceptible to
humans. A white-box attack involves an adversarial attack
where the attacker has full access to the details of the targeted
model, including its architecture, parameters, and training
data. With this knowledge, the attacker can develop a highly
effective attack strategy. On the other hand, a black-box attack
is an adversarial attack where the attacker lacks access to the

FIGURE 8. Adversarial Attacks on NLP Transformers. Adversarial attacks
are categorized into white, gray, and black box attacks, contingent on the
attacker’s access level. The attacks exhibit granularity at the character,
word, or sentence levels. Defense strategies at different levels are
proposed to prevent the attacks like checking misspellings and checking
words.

details of the targeted model and can only interact with it
through input-output channels. In this scenario, the attacker
must rely on limited information obtained by querying the
model to develop their attack strategy. Numerous studies have
demonstrated the susceptibility of Transformer-based models
across various applications to adversarial attacks [3], [210].

1) ATTACK ON NLP TRANSFORMER MODELS
Figure 8 demonstrates an overview of adversarial attacks
on NLP-based Transformers. Such attacks are classified
into white, gray, and black box attacks, contingent on the
attacker’s access level, while showing granularity at the
character, word, or sentence levels. Numerous methods have
been developed in prior research to generate adversarial
examples in image data, causing systems to fail [31], [90],
[117]. However, these techniques cannot be readily extended
to NLP models due to the distinct nature of data representa-
tion and the challenges associated with characterizing subtle
alterations in text [146]. Optimization and gradient descent
algorithms are used to create adversarial examples for visual
applications. Due to the specific nature of textual data, there
are only a limited number of white-box attacks available for
NLP models. As it is challenging to compute gradients in the
discrete space of textual data, one proposed approach is to
determine the gradients in the continuous embedding space
instead. Cheng et al. [21], proposed a white-box gradient-
based method called AdvGen to generate adversarial exam-
ples targeting Neural machine translation (NMT). AdvGen
generates adversarial examples using the final translation
loss as a guide based on clean input data. It is applied
to both the encoding and decoding stages. They showed
that AdvGen improved BLEU scores by 2.8 and 1.6 points
over state-of-the-art models, including Transformer, on
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standard Chinese-English and English-German translation
benchmarks.

This research [114] delves into the susceptibility of
Transformer-based language models to adversarial attacks,
particularly those categorized as ‘‘black box’’ attacks.
Membership inference, in this context, pertains to the process
of ascertaining whether a given data record was part of
the training data used for the model’s training. An attack
involving membership inference considers the scenario
where amalicious user of a black box prediction service could
provide input messages resembling those of a competitor
and, through the model’s output, gather information about the
user’s data inclusion in the model’s training set. This study
specifically focuses on determiningwhether sample customer
message data was incorporated into the training data when
constructing a language model.

Seq2Sick [20] investigates the vulnerability of seq2seq
models to adversarial attacks, comparing their robustness
with CNN-based classifiers. The framework optimizes input
sequences to produce desired outputs while preserving
sentiment in word embeddings. It tackles discrete inputs
using projected gradient descent, group lasso, and gradient
regularization and addresses infinite output sequences with
novel loss functions for non-overlapping and targeted key-
word attacks. Seq2Sick’s results show that while seq2seq
models are susceptible to attacks with a high success rate,
they are more robust than CNN-based models.

TextAttack [119], is a Python framework that facilitates
adversarial attacks, data augmentation, and adversarial train-
ing for NLP models. TextAttack utilizes four components
to construct attacks: a goal function, a set of constraints,
a transformation, and a search method. TextAttack supports
a range of models and datasets, including BERT, and
offers implementations of 16 adversarial attacks previously
proposed in the literature. The work in [197] investigates
black-box attacks in NLP and offers recommendations on
the most effective approach. The study revealed that in terms
of attack success rate, beam search, and particle swarm
optimization were the most optimal algorithms. If there is a
time limitation or the input text is lengthy, using the greedy
algorithm with word importance ranking is recommended,
as it provides adequate performance. Also, simple greedy
methods are often more effective and faster than complex
algorithms like PWWS and genetic algorithms in terms
of both attack success rate and speed. They showed that,
on average, 10.05% of words were perturbed when BERT
was used as the base model with theMR dataset andWordNet
transformation.

The lack of a standardized definition and evaluation system
has hindered the effective use of adversarial examples to
enhance and comprehend NLP models. Perturbations often
fail to preserve semantics, and 38% introduce grammatical
errors. In response, the authors [118] propose a unified
definition for successful adversarial examples in natural
language, emphasizing modifications that not only deceive

the model but also conform to predetermined linguistic
constraints. They introduce four categories of constraints—
semantics, grammaticality, overlap, and non-suspicion to
human readers—that NLP adversarial examples can align
with depending on the context. This establishes a common
vocabulary for discussing constraints on adversarial attacks,
presenting distinct categories to which adversarial examples
may adhere. The authors enhance the TEXTFOOLER
algorithm with TFADJUSTED, incorporating a constraint
enforcement mechanism to generate higher-quality NLP
adversarial examples that better preserve semantics and
grammaticality. Through human evaluation, the proposed
algorithm produces perturbations that are less noticeable to
humans, albeit with a lower attack success rate (70%) under
stricter constraints. In adversarial training, TFADJUSTED’s
examples do not reduce model accuracy compared to
TEXTFOOLER’s examples.

In the work by Jin et al. [77], the authors introduced
TEXTFOOLER as a method for generating adversarial text
in a black-box setting. This approach comprises two primary
steps: word importance ranking and a word Transformer,
which serves as their method for replacing words in the
text. They reduced the accuracy of almost all target models
across all tasks to below 10% on the adversarial examples,
with fewer than 20% of the original words perturbed In the
study by Yuan et al. [203], a framework is introduced for
generating adversarial samples in text data. The methodology
includes the incorporation of continuously optimized pertur-
bations into the embedding layer, subsequently amplifying
them during forward propagation. The ultimate perturbed
latent representations are decoded using a masked language
model head to derive potential adversarial samples. The
authors implement this framework by employing an attack
algorithm known as Textual Projected Gradient Descent
(T-PGD). The quality of the adversarial samples generated by
T-PGD increases with text length. These adversarial samples
achieved higher overall USE scores (similarity between
original and adversarial samples) compared to baseline
models, with a 97% attack success rate. This indicates that the
proposed method can manipulate adversarial samples more
precisely using explicit gradient information.

In the work by Liu et al. [94], the authors employed
Attachable Subwords Substitution (ASS) and introduced the
Character-level White-Box Attack (CWBA) method targeted
at Transformer models. The proposed approach leverages
Transformer models’ practice of dividing words into subto-
kens, finding that substituting consecutive subtokens can be
as impactful as modifying individual characters. To generate
adversarial examples, they follow three steps: using a
gradient-based technique to identify the most susceptible
words, breaking these words into subtokens as replacements
for the original tokens, and applying an adversarial loss to
guide subtoken substitution. To ensure gradient propaga-
tion, they incorporate the Gumbel-softmax method. Their
required query number was similar to the GBDA model and
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much lower than other black-box methods. Their CWBA
outperformed DeepWordBug by 20.0 adversarial accuracy
on average, showing the advantages of the white-box
attack.

The study in [146] introduced a token-level gradient-based
white-box adversarial attack method for Transformer-based
text classifiers. This method ensures block-sparse adversarial
perturbations, altering only a few words in the sentence.
By selectively perturbing embedding vectors and optimizing
the perturbation vector under a block-sparsity constraint,
only a few tokens are modified. To preserve semantics,
the modified embeddings are projected onto original token
embeddings with the highest cosine similarity. Their exper-
iments show that their attack maintains sentence semantics
while reducing GPT-2’s accuracy to below 5% on AG News,
MNLI, and Yelp Reviews.

In [41], the proposed method, MANGO, uses gradients to
navigate a continuous space of token probabilities to find
adversarial examples. As an optimization-based white-box
attack, MANGO reduces the disparity between adversarial
loss in continuous and discrete text representations through
a quantization-compensation loop. This involves iterative
quantization of token representations and reoptimization to
maintain the adversarial loss value.

GPTFUZZER [201], a black-box jailbreak fuzzing frame-
work inspired by AFL, automated the creation of jailbreak
templates for red-teaming LLMs, eliminating manual efforts.
Employing seed selection, mutate operators, and a judgment
model, it effectively tested against LLMs like ChatGPT,
LLaMa-2, and Vicuna. Results showcased its ability to unveil
vulnerabilities and assess LLM robustness in diverse attack
scenarios.

2) DEFENSE FOR NLP TRANSFORMER MODELS
In response to attacks targeting NLP Transformer models,
it is crucial to deploy robust defense strategies to counter
potential vulnerabilities and thwart adversarial attacks.
Defense strategies at different levels are proposed to prevent
the attacks like checking misspellings and checking words
as shown in figure 8. The authors in [21] defend NMT
models by attempting to decrease the prediction errors for
the corresponding adversarial source inputs. The proposed
approach consists of two main components: first, subjecting
the translation model to adversarial source examples as an
attack; and second, reinforcing the model by introducing
adversarial target inputs, thereby improving its resilience
against adversarial source inputs.

The study [80] addressed orthographic attacks on the
Zeroe benchmark, encompassing various cognitive model-
based attacks. Unlike previous spelling correction modules,
which were effective against simple typo attacks, they
failed on the more diverse Zeroe benchmark. In response,
the authors introduced a novel technique that leverages
context-independent extensions of the Levenshtein distance,
probability distributions from a dictionary, and BERT’s
masked language modeling objective. This iterative process

FIGURE 9. In the context of a backdoor attack, using a patch-wise trigger
effectively disrupts the attention distribution in images. This strategy
ensures that the ViTs’ attention is primarily focused on the patch
containing the trigger, thereby influencing the model’s focus on the entire
backdoor input [204].

refines word context, predicts clean words, and utilizes a
source text-independent language model to generate fluent
output, providing a more robust defense against diverse
orthographic adversaries.

In [62], it was observed that many existing adversar-
ial attacks fail to maintain the original text’s meaning,
challenging their claimed semantic preservation. The root
cause was identified in the text encoders used for assessing
adversarial example similarity, specifically in their training
methodologies. Encoders trained through unsupervisedmeth-
ods exhibited difficulty recognizing antonyms. To overcome
this limitation, the authors introduced a fully supervised
sentence embedding approach named Semantics-Preserving
Encoder (SPE). The key idea behind SPE involves supervised
training using labeled datasets to mitigate issues related to
antonyms within the same context. This approach clusters
words significant for a given label in the vector space.
The incorporation of various classifiers trained on diverse
annotated datasets further enriches their arsenal of sentence
vectors.

3) ATTACK ON VISION TRANSFORMER MODELS AND ITS
TRANSFERABILITY
Recent research has highlighted the superior resilience of
ViTs compared to CNNs against different perturbations,
including natural corruption and adversarial attacks. The
reasons behind the enhanced robustness of ViTs are a subject
of debate within the research community. Some argue that
the segmentation of input images in ViTs plays a central
role, while others attribute it to the utilization of MSA in
ViTs. In this study [107], the authors assess the robustness
of ViTs against two types of adversarial attacks: white-
box and black-box attacks. The evaluation is carried out
across various benchmark datasets, including CIFAR-10,
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CIFAR-100, and ImageNet, utilizing two ViT architectures,
namely DeiT and ViT-B/16. Comparative analyses involve
state-of-the-art models such as ResNet and EfficientNet
under both types of attacks. The experimental outcomes
reveal that ViTs generally exhibit greater robustness to
adversarial examples compared to ResNet and EfficientNet.
Notably, ViTs demonstrate heightened resilience to black-
box attacks. Furthermore, the study observes a correla-
tion between increased model size in ViTs and enhanced
robustness. White-box attacks involve the use of the Fast
Gradient Sign Method (FGSM) and the projected gradient
descent (PGD) attack, while black-box attacks employ
a substitute model strategy. The authors also conduct a
sensitivity analysis, discovering that adjusting hyperparam-
eters, such as increasing Transformer layers and reducing
the learning rate, can positively impact the robustness
of ViTs.

Joshi et al. [78], introduced a block sparse attack on
deep neural networks, with a specific focus on a patch-
based approach. The study compared the vulnerability of
Transformer models to traditional CNNs regarding this
attack. Interestingly, the results indicated that ViTs were
more susceptible to patch attacks and mixed norm attacks (a
variant of their patch-based block sparse attack) compared
to CNN-based with ResNets outperforming Transformer
models by up to approximately 30% in robust accuracy
for single token attacks. Notably, ViTs exhibited increased
robustness only for smaller patch sizes, as they could effec-
tively compensate for perturbations in patch attacks that were
smaller than the token size. The authors in [176] leverage
the inherent architectural aspects of vision Transformers,
such as self-attention and image embedding, to craft potent
transferable attacks. Initially, their model determines an
‘uncertainty index’ for all patches by capitalizing on the
self-attention mechanism present in vision Transformers.
Subsequently, after pinpointing the most uncertain patches,
the model identifies the pixels significantly influencing the
image embedding process as the primary sites for the attack.
These attacks showcase high transferability, attributed to
exploiting the image embedding and self-attention features
inherent in vision Transformers. This underscores the pivotal
roles played by image embedding and self-attention in
bolstering the resilience of Transformers.

Figure 9. shows the backdoor training in ViT. This
backdoor attack involves inserting a small, imperceptible
patch (trigger) into an image during training to manipulate
a ViT model’s behavior. The trigger is designed to disrupt
the model’s attention, causing it to focus primarily on the
patch with the trigger. During training, the model learns to
associate this trigger with a specific incorrect prediction,
regardless of the actual image content. The goal is to
ensure that whenever the trigger is present, the model
consistently makes the intended wrong prediction, effectively
creating a backdoor in the model [204]. The research
in [122] delved into the adversarial feature space of ViTs

and their transferability compared to conventional CNNs.
Large ViT models exhibited low black-box transferability
due to suboptimal attack procedures that underutilized ViTs’
representation potential. The compositional nature of ViT
models, with multiple blocks independently producing class
tokens, revealed limitations in attacking only the last class
token. To address this, two strategies were introduced: ‘‘Self-
Ensemble,’’ creating an ensemble of networks from a ViT
model, and ‘‘Token Refinement,’’ combining class tokens
with structural information from patch tokens. Applying
adversarial attacks to refined tokens within the ensemble
demonstrated significantly higher transferability, showcasing
the true generalization potential of ViTs. The proposed
method involves augmenting the training data with adversar-
ial examples generated through a combination of PGD and
Carlini-Wagner (CW) attacks.

Wei et al. [180] proposed a method to enhance the transfer-
ability of adversarial attacks across various ViT models. The
attack utilized a dual approach, combining the self-attention
mechanism and the patch embedding layer. This method
generates adversarial examples capable of disrupting the
feature extraction process across a diverse range of neural
network architectures, showcasing high transferability. They
observed that the ASR decreases as more attention gradients
are used during backpropagation. Bypassing all gradients of
attention improves theASR from 29.92% to 42.47%. Existing
adversarial attackmethods often struggle to achieve compara-
ble levels of transferability when targeting ViTs. In the paper
byHan et al. [56], the Partial Blocks SearchAttack (PBSA) is
introduced. PBSA aims to generate adversarial examples for
ViTs with increased transferability by categorizing encoder
blocks into two groups based on a block weight score.
Unlike applying a uniform strategy to all blocks, distinct
strategies are employed for each group. The optimization of
perturbation generation involves incorporating regularization
of self-attention feature maps and utilizing an ensemble of
partial blocks. Additionally, the authors introduce adaptive
weight adjustments for perturbations, specifically targeting
the most effective pixels in the original images. The proposed
PBSA method shows significantly higher transferability,
outperforming baseline attacks by 12% to 26% on average.
For instance, PBSA achieves a 97.38% success rate against
ViT-S and 50.82% against T2T-24, while the PGD attack only
reaches 84.46% and 22.12%, respectively.

The work in [104] introduced Data-Free Backdoor Attack
(DBIA). Leveraging attention mechanisms, the attack gen-
erates triggers to alter model predictions. The authors
outline algorithms for poisoned dataset creation and back-
door injection, involving maximum attention triggers and
fine-tuning selected neurons. The DBIA attack is compared
with BadNets and Trojaning in terms of data-free capability
and computational cost, demonstrating a cost of at most
O((α×m)+n), where α is a constant,m is the dataset size, and
n is themodel size. The evaluation involves three Transformer
models (ViT, DeiT, Swin Transformer) trained on CIFAR-10
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and ImageNet, with performance assessed using Clean Data
Accuracy (CDA) and ASR. Experimental results indicate
the effectiveness of the proposed DBIA attack in injecting
backdoors with a high ASR.

4) DEFENSE FOR VISION TRANSFORMER MODELS
The work in [70], the authors present a novel defense mech-
anism known as PatchVeto, designed to provide zero-shot
defense against adversarial patches targeting ViT models.
Unlike traditional approaches involving the training of robust
models, which may compromise accuracy, PatchVeto adopts
a unique strategy. It utilizes a pretrained ViT model without
additional training, maintaining high accuracy on clean
inputs. PatchVeto leverages manipulation of the attention
map in ViT to detect adversarial patched inputs. The method
employs a voting process, where each input undergoes
multiple inferences with different attention masks. This
ensures that at least one inference will exclude the adversarial
patch. If all masked inferences are in agreement, the
prediction is considered certifiably robust, providing reliable
detection of any adversarial patch without false negatives.
PatchVeto achieves 67.1% certified accuracy on ImageNet for
2%-pixel adversarial patches, outperforming state-of-the-art
methods, while maintaining the clean accuracy of vanilla ViT
models at 81.8%.

The authors of the paper [115] argue that ViTs do
not exhibit superior resilience against adversarial attacks
compared to traditional CNNs under widely used threat
models. Consequently, the authors assert that ViTs still
require adversarial training to enhance their robustness
against such attacks. The study suggests that effective
adversarial training for ViTs involves the incorporation
of pre-training and the utilization of the SGD optimizer.
Their findings indicate that introducing random masking of
gradients from specific attention blocks or applying mask
perturbations on specific patches during adversarial training
significantly improves the adversarial robustness of ViTs.
Two proposed techniques for this enhancement are Atten-
tion Random Dropping (ARD) and Perturbation Random
Masking (PRM).

In [177], the authors undertake a theoretical analysis
of ViTs adversarial robustness using the Cauchy Problem.
This approach allows them to quantify the propagation of
robustness across different layers of the network. Their
conclusions suggest that the initial and final layers exert the
most significant impact on ViTs’ robustness. Additionally,
empirical evidence indicates thatMSA enhances ViTs’ adver-
sarial robustness primarily against weak attacks like FGSM.
Surprisingly, under stronger attacks such as PGD attacks,
MSA contributes to the model’s vulnerability, challenging
previous assumptions about its role in ViTs’ adversarial
robustness.

The authors [152] discovered that ViTs exhibit greater
robustness than CNNs against adversarial attacks, particu-
larly in the context of high-frequency perturbations. This
resilience is attributed to ViTs learning features with less

low-level information, rendering them less sensitive to
high-frequency perturbations. Notably, adversarial examples
crafted for ViTs demonstrate higher transferability to CNNs
compared to the reverse scenario. The introduction of
convolutional blocks in ViTs may enhance the learning of
low-level features but adversely affects adversarial robust-
ness. Conversely, CNNs equipped with attention mechanisms
demonstrate improved robustness against attacks. ViTs attain
a robust accuracy (RA) of 59.8%, while CNNs achieve only
16.7% at best.

Wu et al. [183] study factors influencing ViTs’ robust-
ness, emphasizing low-level features in patch embed-
ding and the impact of position encoding on semantic
features. They advocate for a multi-stage structure for
ViTs, highlighting the adverse effects of increasing Trans-
former blocks with large spatial resolution on robustness.
Attention heads are crucial, with an optimal number enhanc-
ing robustness through diverse attentive information. The
authors propose position-aware attention scaling (PAAS)
and patch-wise augmentation, showing superior performance
against adversarial attacks on ImageNet and robustness
benchmarks.

The paper [8] investigates methods to enhance the robust-
ness of CNNs inspired by Transformer architecture. Three
key strategies, including patchifying images, using small
convolutional kernels, and reducing normalization and activa-
tion functions, are explored. Experimental results on diverse
benchmarks, such as Stylized-ImageNet, ImageNet-C, and
ImageNet-R, demonstrate that these methods significantly
improve the out-of-distribution robustness of CNNs. Notably,
increasing the patch size and mimicking self-attention with
larger convolution kernel sizes contribute to closing the
robustness gap between CNNs and Transformers. The study
introduces a CNN architecture model, leveraging these
methods, capable of matching or surpassing the robustness
of comparable Vision Transformer models.

In the exploration of universal adversarial perturba-
tions for ViTs, the paper [67] introduces Inheritance
Attention Matrix-based Universal Adversarial Perturbations
(IAM-UAPs) by incorporating an inheritance attention
weight matrix. ViTs exhibit superior robustness compared to
CNNs against existing adversarial attacks, mainly attributed
to the attention operator. The proposed IAM-UAP leverages
the activation of the inheritance attention matrix to measure
deviations between adversarial and legitimate samples.
By focusing on attention-based attacks and introducing the
IAM, the paper evaluates the robustness of various ViTmodes
against Universal Adversarial Perturbations (UAPs). Experi-
mental results highlight the impact of IAM-UAP on attention
maps, directly affecting the classification performance of
ViTs and emphasizing their stronger robustness compared to
CNNs.

In the assessment of adversarial robustness for image
classification, this study [10] examines ViT, MLP-Mixer, and
CNN architectures. It highlights that the reduced robustness
of CNNs is mainly attributed to their shift invariance.
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ViTs, although less shift-invariant, exhibit higher frequency
responses than CNNs. Additionally, adversarial examples
crafted for CNNs demonstrate poor transferability to foreign
architectures, while the reverse holds true. The overall
robustness ranking is ViTs being the most robust, followed
by MLP-Mixers, with CNNs exhibiting the least robustness.
The paper [5] introduces the Transformer-Encoder Detector
module (TEDM), incorporating a Transformer encoder,
a detector, and a context encoder. Leveraging an attention
mechanism, TEDM enhances object detection by improving
the labeling of image regions and encoding contextual
statistics implicitly. This model boosts performance on both
natural and perturbed images, showcasing its effectiveness in
robust object detection. This work focuses on using context
to improve robustness, achieving significant advancements,
including up to a 13% increase in mAP scores, F1 scores, and
AUC average scores compared to the baseline Faster-RCNN
detector.

In the research [26], the authors studied a part of the
ImageNet dataset to create a better way to train ViTs
against adversarial attacks. The usual method for ViT training
involves strong data augmentation, but the researchers
found that this approach didn’t work well for adversarial
training. Instead, they discovered that by avoiding heavy data
augmentation and adding techniques like warmup and larger
weight decay, they significantly improved ViTs’ ability to
handle adversarial situations. This method proved effective
for different ViT architectures and larger models.

MIA-Former [202] addresses the challenge of fitting ViTs
onto resource-constrained devices, as ViTs are computation-
ally expensive and treating all regions of images equally is
unnecessary. This framework allows ViTs to input-adaptively
adjust their structure at three levels of granularity: model
depth, the number of model heads, and the number of
tokens. Mia-former achieves this by making input-dependent
decisions at each level of granularity using a MIA-controller,
which is jointly trained with the ViT models via a hybrid
supervised and reinforcement learning scheme. At the coarse
granularity, MIA-Former first decides whether to mask out
a given ViT block. When a ViT block is masked out, the
outputs of the previous block skip the current block and are
directly fed into the next block. However, if the current block
is not skipped, Mia-former decides to mask out certain tokens
and heads. Similar to the effect of ensemble models, this
input-dependent control improves the model diversity and
increases the difficulty of adversarial attacks against ViT’s
sub-blocks. The proposed method enhances ViTs’ robustness
accuracy against various adversarial attacks, outperforming
their vanilla counterparts by 2.4% and 3.0%, respectively.

RViT, proposed by Mao et al. [109], focuses on enhancing
the robustness of ViTs through a multi-faceted analysis. The
key factors explored include the impact of low-level features
in patch embedding, the critical role of position encoding, and
the design considerations for Transformer blocks. The study
emphasizes the importance of attention head completeness

and compactness, with an optimal head number contributing
to increased robustness. Additionally, modifications such as
position-aware attention scaling and patch-wise augmenta-
tion are introduced to further enhance ViTs’ robustness.
Experimental results demonstrate the effectiveness of RViT
across ImageNet and various robustness benchmarks.

SEViT [7], introduces a self-ensembling approach. Within
the SEViT framework, feature representations (patch tokens)
are extracted from the initial blocks of the ViT model, and
separate intermediate classifiers, such as MLPs, are trained.
By combining the predictions from these intermediate
classifiers with the final ViT classifier, the self-ensemble
method strengthens the robustness of ViTs against adversarial
attacks. To identify adversarial samples, SEViT utilizes the
consistency between predictions within the ensemble. The
evaluation of SEViT was conducted on two publicly available
medical datasets, with attacks generated using the Foolbox
library.

The paper [159] investigates security concerns and defense
strategies against Backdoor Attacks, including BadNets and
Hidden Trigger Backdoor Attacks. Addressing potential
threats during themodel’s training phase, the study introduces
a feature-collision-based attack method, concealing triggers
in poisoned images. It further proposes a test-time image-
blocking defense, leveraging trigger localization results
specific to Vision Transformers. Typically, backdoor triggers
are small patches (2)-5% of the image area), influencing the
model’s decision. The paper utilizes a heatmap to identify
influential image regions, successfully defending against
backdoor attacks. Performance evaluation metrics, including
Val Accuracy, ASR, and Source Accuracy, demonstrate a
significant reduction in ASR with the proposed defense
mechanisms.

Chang et al. [17] aimed to enhance the resilience of the
ViT model by incorporating the ResNet-SE module into the
Attention module. Beyond its initial role in edge and line
data detection, the Attention module gains the capability to
discern intricate feature information. Through the ResNet-SE
module, the model enhances its feature extraction capacity
by prioritizing crucial data points and suppressing extraneous
details within each feature map. Integration of the SE module
into the ViT model involves incorporating convolutional
operations. Notably, the SE module excels in capturing local
features, allowing it to effectively grasp intricate details
of textures and lines. Consequently, the proposed defense
method exhibits high proficiency in thwarting both white-box
and black-box attacks. The accuracy of the proposed defense
method is 19.812% against BIM, 17.083% against C&W,
18.802% against DeepFool, 21.490% against DI2FGSM, and
18.010% against MDI2FGSM attacks.

The research in [29] investigates ViTmodels’ vulnerability
to backdoor attacks through patch-based and blending-
based transformations, comparing their robustness to CNNs.
ViT experiences a significant drop in ASR for patch-
based attacks and a decline in clean-data performance for
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blending-based attacks. The study proposes a test-time
defense using heatmaps to localize influential image patches,
resulting in reduced ASR.

The work in [88] introduces ViP, a unified framework for
certified robustness that enhances performance in certified
detection and recovery tasks. To conduct certified detection,
a small mask slides across a clean image, producing partially
occluded images analyzed by a DNN. However, scalability is
limited by computational complexity and reliance on CNNs
with small receptive fields. To address this, the authors deploy
self-supervised vision Transformers and a patch-dropping
strategy. Certifiable detection is achieved by dropping a few
patches and ensuring consistent predictions, while certifiable
recovery involves dropping many patches and comparing
majority voting predictions to sub-majority predictions. The
proposed method surpasses prior techniques, with up to a
16% improvement in the certified detection rate on ImageNet.
The authors also offer a theoretical guarantee for dual-patch
attack detection. This method achieves a new state-of-the-art
performance for certified recovery by increasing the certified
accuracy by approximately 2% for all attack sizes on the
ImageNet dataset.

In this study [154], the authors introduce MixVAT as a
means to enhance the adversarial robustness of pre-trained
vision Transformers. They achieve this by employing
data-augmented virtual adversarial training. The key innova-
tion of this work lies in reformulating the overall loss func-
tion. This is accomplished by incorporating the cross-entropy
loss function with the virtual adversarial training loss, both
applied to the augmented data, which is further multiplied
by a hyper-parameter. The augmented data is generated
through the MixUp approach applied to unlabeled data.
Additionally, the local distributional smoothness of the
newly created synthetic data is regularized. One of the
advantages of MixUp is its ability to leverage information
from two different images to generate a new synthetic data
point. This new synthetic data encompasses the semantic
information present in both images, thereby increasing the
complexity of the training data. Ultimately, this augmen-
tation process enhances the robustness of the models after
training.

In the paper by Wang et al. [178], the authors propose an
approach to assess adversarial robustness in neural networks
by decomposing the network into submodules and calculating
themaximal singular value for eachmodule concerning input.
The results suggest thatMSA exhibits limited effectiveness in
defending against adversarial attacks. The provided software
includes a training module facilitating the training of a basic
ViT model from scratch using the SAM optimizer. A modi-
fied ViTmodel, replacing itsMultihead-Self-Attention with a
1-D convolutional layer, is included for comparative analysis.
Additionally, an attack ensemble, employing the torchattack
library, is introduced, offering FGSM, PGD, and CW
attack strategies. Certified patch defenses can protect image
classifiers against arbitrary changes in a bounded region but

at the cost of accuracy degradation and increased inference
time.

The work in [147] presents a method to enhance certified
patch defenses by using ViTs. The enhancement is a result of
the inherent capability of ViT to adeptly process images that
are substantially masked. The authors show that using ViTs
improves certified patch robustness while reducing inference
time by up to two orders of magnitude compared to previous
methods. They achieve this by deploying and optimizing the
ViT architecture to eliminate unnecessary tokens and reduce
the smoothing process, leading to avoiding redundant com-
putations. Furthermore, this method maintains the model’s
accuracy and performs inference with comparable speed to
the non-robust model (ResNet).

The study by Parekh et al. [133] investigates the perfor-
mance of adversarial attacks on a compressed ViT model
using three advanced compression techniques: Quantization,
Pruning, and Weight Multiplexing. The research explores the
transferability of attacks between compressed and original
models, revealing that ViTs show resistance to Spatial
Attacks, while quantized models are more susceptible, with
increased transferability from quantized to original models.
Pruned models are generally more vulnerable to attacks
than the original ones, and attack transferability decreases
with higher pruning probabilities due to increased model
sparsity. Weight multiplexed models demonstrate greater
resistance to attacks compared to both distilled and original
models. However, attacks from weight multiplexed models
are more potent against the original model than those from
purely distilled models, highlighting the former’s enhanced
resistance to attacks and the consequent generation of
stronger attacks.

The ViT model, emphasizing global interaction among
image patches, exhibits reduced sensitivity to local noise.
However, prevailing decision-based attacks overlook vari-
ations in noise sensitivity across image regions, posing
challenges in efficiently compressing noise, particularly
for ViT models. Addressing this issue, the authors of
the paper [155] introduce a novel attack strategy named
Patch-wise Adversarial Removal (PAR). PAR considers
differences in noise sensitivity among image patches and
conducts a theoretical analysis of limitations in existing
decision-based attacks. The approach employs a coarse-to-
fine search, dividing images into patches and applying noise
compression to each patch individually. Furthermore, PAR
tracks the noise magnitude and sensitivity of each patch,
selecting the patch with the highest query value for noise
compression. This strategy aims to enhance the assessment
of black-box adversarial robustness in ViT models when only
query access to the target model is available.

In the study presented in [24], the focus is on assessing
the security of block-based image encryption methods for
vision Transformers, particularly in the context of a specific
adversarial attack known as the Jigsaw Puzzle Solver Attack
(JPSA). The author utilizes a dataset of images to scrutinize
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TABLE 1. Summary of adversarial attack and defense techniques.
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FIGURE 10. Demonstration of a harmful attack on an important audio
application.

various image encryption schemes, including the block-based
encryption approach. Additionally, a novel evaluationmethod
is proposed to gauge the security of image encryption
schemes against JPSA. This method involves partitioning
the encrypted image into blocks and shuffling them, with
subsequent assessment of the JPSA’s effectiveness against
these image encryption schemes.

VITs face scalability challenges as they rely on labeled data
for training. To address this concern, DINO [140] was intro-
duced as a self-supervised training method for Transformers.
This study aims to explore various adversarial attacks and
defenses onDINOViTs. The researchers conductedwhitebox
attacks (FGSM, PGD, andC&W) and discovered that training
DINO ViTs did not enhance their robustness. Additionally,
they examined the transferability of adversarial attacks and
found that ViTs are more resilient against attacks gener-
ated on ResNet-50 compared to those from Transformers.
Regarding defense analysis, the study revealed that Ensemble
Adversarial Training exhibited the highest level of robustness
compared to Adversarial Training and the ensemble network
approach.

5) ATTACK AND DEFENCE ON OTHER TRANSFORMER
BASED MODELS
Other applications [71] utilizing Transformer-based models
are also susceptible to adversarial attacks. Figure 10 depicts
an attack on a critical application: by adding a carefully
computed small perturbation to any waveform, the resulting
transcript can be manipulated to produce any desired target
sentence. This could result in a catastrophic scenario, such
as triggering an unintended explosion or crash of an aircraft
if the flight path is compromised or not correctly monitored.
The paper [72] introduces a malware detection system using
Google’s Transformer neural network architecture. It com-
prises three modules: assembly, static feature extraction, and
a neural network. Adversarial samples were generated using
the Fast Gradient Sign Method attack to test the system’s
resilience. Two defenses were explored: practical adversarial
learning reduced misclassification to 11.2%, while feature
space reduction varied misclassification rates from 2.4% to
21.5%. In the paper [206], the authors investigate the impact
of adversarial attacks and defenses on automatic speech
recognition (ASR) systems, employing two models: Deep-
Speech and the Espresso framework. Two types of attacks
were examined: a denial-of-service attack using FGSM or

weak PGD to reduce the word error rate (WER), and an
imperceptible targeted attack to manipulate the system into
recognizing a specific phrase. Limited attack transferability
between the two ASR systems was observed. The authors
employed two defense strategies - randomized smoothing and
a WaveGAN-based vocoder - both significantly enhancing
the models’ adversarial robustness.

In this study [207], the robustness of Transformer-based
neural networks in addressing adversarial examples within
the context of modulation classification in wireless commu-
nication design is investigated. A specific class of adversarial
attack, known as the white-box PGD algorithm, is used
to generate adversarial examples. Using real datasets, they
demonstrate that the Transformer-based neural network
shows greater resilience against PGD attacks compared
to CNNs. The study [208] highlighted vulnerabilities in
Transformer-based radio signal classification due to adver-
sarial examples.

To counter this, they proposed a defense system for
modulation classification using a compact Transformer
design, crucial for power-efficient IoT applications. Despite
limitations in achieving robustness like larger Transform-
ers, they introduced a method of transferring adversarial
attention maps to enhance robustness in compact Trans-
formers. This approach surpassed existing techniques in
handling white-box scenarios and attacks like fast gra-
dient and projected gradient descent methods. Moreover,
Ghaffari et al. [43] finding suggests using ViTs over CNNs
for large-scale deployment in computational pathology to
ensure inherent protection against adversarial attacks on input
data.

Table 1 provides a summary of all the defense tech-
niques covered previously, categorizing them into NLP and
vision-related methods. Each row lists the publication year
and the specific type of attack that the defense method
addresses.

B. TROJAN INSERTION
The process of trojan insertion in deep learning and
Transformers entails clandestinely introducing a malicious
component or trigger into the training phase of a neural
network or Transformer model. This adversarial tactic
seeks to alter the model’s behavior, causing it to generate
unforeseen and potentially harmful outputs when confronted
with particular inputs. Trojan insertion poses a significant
threat, as it can compromise the integrity and reliability of the
model, potentially leading to adverse consequences in various
applications and domains [105], [162], [175].
TrojViT, presented in this research [218], introduces a

covert backdoor attack method on ViTs. By leveraging
the Rowhammer attack technique to corrupt the inputs
and weights of a ViT model, TrojViT stealthily inserts
a trojan and induces a predetermined misbehavior in the
model. To minimize the number of bit flips, the Trojan
is inserted using the parameter distillation technique. The
misbehavior is triggered by skillfully crafted patches, with
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FIGURE 11. Malicious Trojan insertion on Transformer-based models. (a) Overview of TrojViT [218]. (b) Overview of TrojLLM [187].

high-attention triggers generated through patch salience
ranking. To enhance the ASR of a specific target class,
TrojViT utilizes the Attention-Target loss function. During
benign input scenarios, the ViT model behaves normally
and performs regular inference. However, once the trigger is
activated, the ViT model is compelled to classify the input
into the predefined target class. Through experimentation,
it was demonstrated that by flipping a mere 345 bits on
an ImageNet-based ViT, TrojViT achieved a remarkable
99.64% classification rate of test images into the target
class.

TrojLLM [187] is an automatic black-box framework,
that aims to address security concerns in LLMs, particularly
regarding adversarial and Trojan attacks. It efficiently
generates universal and stealthy triggers, manipulating LLM
outputs when integrated into input data. The framework sup-
ports Trojan embedding within discrete prompts, enhancing
attack precision. The trigger discovery algorithm generates
universal triggers for various inputs, while a progressive
Trojan poisoning algorithm generates effective and transfer-
able poisoned prompts. Experiments demonstrate TrojLLM’s
effectiveness in inserting Trojans into text prompts in real-
world black-box LLM APIs like GPT-3.5 and GPT-4,
maintaining high performance on clean test sets. TrojLLM
consistently achieved an ASR of over 88.2% across all
pre-trained language models, with ASR exceeding 99% on
both BERT-large and GPT-3.

Figure 11 shows the overview of these Trojan insertion
attacks.

C. FEDERATED LEARNING (FL)
Federated learning is a decentralized machine learning
approach where model training occurs on local devices or
servers holding data samples. It involves iterative model
updates exchanged between local devices and a central
server without sharing raw data, preserving privacy. Despite
recent progress in federated learning, fundamental challenges
persisted, including issues like the lack of convergence and
the potential for catastrophic forgetting across real-world
heterogeneous devices. This section explores the application
of federated learning for training Transformer models.
Figure 12 encapsulates the essence of federated learning,
a Transformer model is trained using FL over multiple

participants without directly sharing their raw data. Each
participant can then encrypt the trained model using an
independent secret key that they manage individually. This
encryption ensures the privacy of test (query) data, as each
user’s unique key protects their model from unauthorized
access.

Qu et al. [136] conducted a comprehensive investigation
into the robustness of self-attention-based architectures,
such as Transformers, in the context of federated learning
over heterogeneous data. Their study represents the first
rigorous empirical exploration of diverse neural architectures
within a range of federated algorithms, employing real-world
benchmarks and heterogeneous data splits. The key insight
from their experiments reveals that replacing convolutional
networks with Transformers significantly mitigates catas-
trophic forgetting, accelerates convergence, and results in an
improved global model, particularly when confronted with
the challenges of heterogeneous data.

Hilmkil et al. [63] investigate the fine-tuning of
Transformer-based language models, including BERT,
ALBERT, and DistilBERT, within a federated learning
framework for various text classification tasks. The study
explores client numbers up to 32 to assess the impact of
distributed computing on task performance in the federated
averaging setting. While larger model sizes generally did
not impede federated training, distinctions were observed in
how each model handled federated averaging. Particularly,
DistilBERT showed slower convergence with larger client
numbers and, in specific circumstances, exhibited a decline
in chance-level performance.

FedNLP [92] is introduced as a benchmarking framework
that evaluated federated learning methods across four preva-
lent formulations of NLP tasks: text classification, sequence
tagging, question answering, and seq2seq generation. A uni-
versal interface was proposed between Transformer-based
language models (e.g., BERT, BART) and federated learning
methods under different non-IID partitioning strategies.
FedPT [157] utilized partially trainable neural networks to
address challenges in federated learning for decentralized
machine learning on millions of edge devices. The authors
proposed the use of partially trainable neural networks,
where a portion of the model parameters remains frozen
throughout the training process. Demonstrating up to a
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46× reduction in communication cost with minimal accu-
racy loss, FedPT offered superior communication-accuracy
trade-offs. This approach enabled faster training, reduced
memory usage, and enhanced utility for strong differential
privacy guarantees. Tested on various network architectures,
including convolutional networks and Transformers, FedPT
showcased advantages across benchmark datasets. Results
indicate FedPT’s potential to overcome overparameterization
limitations in on-device learning.

The use of gradient updates in federated learning raised
concerns about the potential leakage of user information.
While industrial federated learning applications predomi-
nantly focus on text, such as keystroke prediction, attacks
on user privacy have typically targeted simple image
classifiers, assuming the server’s honest execution of the
federated learning protocol. In this context, an attack [40]
was introduced, revealing private user text through the
deployment of malicious parameter vectors. Remarkably,
this attack achieved success with mini-batches, multiple
users, and long sequences, leveraging the characteristics of
both the Transformer architecture and token embedding.
By separately extracting tokens and positional embeddings,
it distinguished itself from previous federated learning
attacks.

FedVKD [163], a federated knowledge distillation training
algorithm, was devised to leverage the potent structure
of ViTs for computer vision tasks while accommodat-
ing the computational constraints of resource-limited edge
devices. They reformulated traditional federated learning
into FedVKD, using an alternating minimization strategy
to train compact convolutional neural networks on edge
nodes. Periodic knowledge transfer from these edge nodes
to a large server-side Transformer encoder occurred through
knowledge distillation.

Dynamic Transfer (FedDT-TTS) [64] was introduced to
enhance the federated learning framework for the Text-
to-Speech (TTS) task, exhibiting faster convergence speed
and reduced communication costs. The novel approach
involved adjusting the layer-wise training using the wake-
sleep algorithm, dynamically expanding both the encoder
and decoder throughout the training process. This dynamic
addition of layers aimed to expedite the learning of low-level
text features in the shallow layers, enabling the deeper
layers in the encoder and decoder to more effortlessly
capture high-level text feature information. Evasion attacks,
particularly adversarial examples, pose a challenge to the
effectiveness of FL. To address this vulnerability in the global
model, adversarial training has proven effective, particularly
in the context of CNNs.

Aldahdooh et al. [6] investigate the feasibility of imple-
menting adversarial training within FL, exploring different
federated model aggregation methods and utilizing vision
Transformer models with varied tokenization and classifi-
cation head techniques. To enhance robust accuracy under
non-independent and non-identically distributed (Non-IID)
conditions, the study introduces FedWAvg—an extension

FIGURE 12. Overview of federated learning: a decentralized approach
enabling model training on local devices or servers without sharing raw
data, preserving privacy. A transformer model is trained using Federated
Learning (FL) across participants. Each user can encrypt the trained model
with their own secret key, ensuring the privacy of test (query) data and
protecting against unauthorized access [120].

to the FedAvg aggregation method. FedWAvg calculates
weights for aggregating local model updates based on the
similarities between the last layer of the global model and
the last layer of the client updates.

D. ENCRYPTION BASED DEFENCE APPROACHES
Preserving privacy while training models can be chal-
lenging due to the presence of sensitive information
within data. Specifically, sharing data containing sen-
sitive details becomes a concern, preventing its trans-
fer to untrusted third-party cloud environments, despite
the substantial computing capabilities these environments
offer [86]. Nagamori et al. [120] introduced an approach for
privacy-preserving image classification utilizing a combina-
tion of federated learning and encrypted test images with
the ViT. In their proposed method, the patch embedding and
position embedding of ViT were encrypted using random
matrices generated by secret keys. This technique aimed to
enhance the confidentiality of image classification processes,
ensuring the protection of sensitive information during model
training and testing. The authors expanded their previous
method by applying JPEG compression to encrypted test
images, observing a significant reduction in data size [54].
Zheng et al. [219] highlighted the increasing importance of
enabling privacy-preserving inference for cloud services
reliant on Transformers. They explored post-quantum cryp-
tography techniques such as fully homomorphic encryption
(FHE) and multi-party computation (MPC) as popular
methods to support private Transformer inference. Despite
their potential, previous approaches encountered com-
putational and communication overhead. In their study,
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Zheng et al. introduced Primer, a solution aimed at enabling
fast and accurate Transformer operations on encrypted
data for natural language processing tasks. Primer was
devised using a hybrid cryptographic protocol optimized
for attention-based Transformers and incorporated tech-
niques like computation merge and tokens-first ciphertext
packing.

E. IP AND WATERMARKING
To safeguard the intellectual property of deep learning
models, researchers have proposed various approaches to
watermarking models. As illustrated in Figure 13, one
common method involves embedding the watermark directly
into the model’s weights. This technique typically requires
white-box access to the model for verification purposes.
Alternatively, specific labels can be assigned to a trigger
set that only requires black-box access. Most of the
existing methods for watermarking models have primarily
focused on image classification networks. However, there
has been limited prior work that has attempted to develop
watermarking techniques specifically tailored for language
models. In [1] Instead of focusing on watermarking the
languagemodel itself, their research delves into studying data
or language watermarking techniques using deep learning
methods. The language watermarking scheme aims to enable
tracking of origin and deter inappropriate use, necessitat-
ing its continuous presence in the resulting output. They
proposed the Adversarial Watermarking Transformer (AWT)
to watermark language models. The proposed framework
includes a hiding network and a revealing network that
are trained against a discriminator. The hiding network
translates the input to the watermarked text, and the revealing
network reconstructs the input message. To maintain subtle
message encoding without altering language statistics, the
approach involves incorporating adversarial training with a
discriminator. The deployment of a fine-tuned BERT model
as a service exposes it to potential attacks from malicious
users. Previous research has discovered that NLP APIs can be
locally imitated using carefully designed queries and outputs,
which raises concerns about the vulnerability of these APIs.
Competing companies could copy the victim model with
minimal costs, bypassing the need for data annotation and
algorithm design, and offer a competing service at a more
competitive price. This security issue is more serious when
back-end models, such as BERT, are publicly available.
The extracted model successfully demonstrates the ability
to create adversarial examples that can be applied to the
black-box victimmodel. In terms of commercial competition,
if competitors can accurately predict incorrect outcomes from
the victim model, they can utilize these adversarial examples
to launch an advertising campaign against the victim
model.

This study [58] demonstrates how a perpetrator with
limited prior knowledge and queries can successfully steal
a BERT-based API service on various benchmark datasets.
The research demonstrates that using an extracted model,

FIGURE 13. Preserving Intellectual Property in Transformer Models:
Researchers propose innovative watermarking techniques, with one
prevalent method involving the direct embedding of watermarks into the
model’s weights. This approach adds an extra layer of security, enhancing
the safeguarding of Transformer-based deep learning models [1].

potentially based on BERT, can result in effective adversarial
attacks that can be transferred to a different model. The
findings indicate that even when the attack model and the
victim model have different architectures, the vulnerabilities
observed in BERT-basedAPI services persist. In the first step,
they do a model extraction attack, and then they perform
an adversarial attack against the victim model. Recent
studies have revealed that cloud platforms are experiencing
significant financial losses due to model extraction attacks.
These attacks are specifically designed to replicate the
functionality and usefulness of targeted cloud services,
thereby infringing upon cloud APIs’ IP rights.

This study’s main objective [61] was to safeguard the intel-
lectual property (IP) of natural language generation (NLG)
APIs by detecting the perpetrators who have employed
watermarked responses obtained from the targeted NLG
APIs. Due to the challenge of identifying malicious users,
it is essential to ensure equal delivery of cloud services.
To achieve this, a policy is implemented that ensures the
following: i) the customer experience is not negatively
impacted, and ii) the watermark remains undetectable by
malicious users. In line with this policy, a new algorithm
has been developed that utilizes interchangeable lexical
replacements to watermark the outputs of the API. Previous
research has demonstrated that an adversary can exploit an
extracted model to perform adversarial example transfer,
which can compromise the accuracy of the victim model’s
predictions. Based on the effectiveness of Model Extraction
Attacks (MEA) and the transfer of adversarial examples,
the authors [60] proposed a hypothesis that the predictions
made by a victimmodel may inadvertently disclose its private
information. This is due to the fact that victim models can
memorize additional information beyond the primary task at
hand. Consequently, the authors aim to investigate whether a
victim model can unintentionally reveal its private data to the
extracted model.

Deng et al. [27] initiated an exploration into the privacy
challenges associated with distributed learning, focusing on
Transformer-based language models. Their study revealed
that publicly shared gradients during training can result in
the leakage of private training data. The authors introduced
the gradient attack problem and proposed TAG, a novel
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gradient attack algorithm designed to recover local train-
ing data. Chen et al. [19] conducted an investigation into
the potential information leakage from extracted models,
focusing on the vulnerability of BERT-based APIs. They
introduced a practical model extraction attack, revealing
that adversaries can successfully pilfer a target API with a
minimal number of queries. Furthermore, they demonstrated
an attribute inference attack capable of deducing sensitive
training data attributes. The experiments conducted under-
scored vulnerabilities across diverse scenarios, highlighting
the limited effectiveness of defense mechanisms such as
Softening predictions (SOFT) and Prediction perturbation
(PERT).

Zhao et al. [215] introduced Distillation-Resistant Water-
marking (DRW) as a method to protect NLP models from
theft through distillation. DRW injects watermarks into
prediction probabilities using a secret key, enabling the
detection of this key in a suspected model. Notably, the
authors demonstrated that a model protected with DRW
can maintain its original accuracy within a specified range.
Previously, a watermarking algorithm was introduced, and
researchers utilized the null-hypothesis test as a post-hoc
ownership verification for the imitationmodels. He et al. [59]
discovered the potential for watermark detection through fre-
quency statistics. To address this, they proposed Conditional
wATERmarking (CATER) for text generationAPI protection.
CATER optimizes rules to minimize overall distortion while
maximizing conditional word changes. Theoretically proven
undetectable, even to knowledgeable attackers, CATER
enhances stealthiness through high-order conditions. Empiri-
cally, it effectively identifies IP infringement in various attack
scenarios. The intellectual property value of commercial
LLMs attracted imitation attacks, but creating comparable
models was costly.

The study [91] explored slicing black-box LLMs using
medium-sized backbone models, investigating the feasibility
of extracting code abilities such as ‘‘code synthesis’’ and
‘‘code translation.’’ The research demonstrated that attack-
ers, with a reasonable number of queries, could train a
medium-sized model to replicate specialized code behaviors
similar to the target LLMs. Naseh et al. [123] highlighted
the significance of decoding algorithms in text generation
from modern language models (LM). They revealed that
adversaries with typical API access to an LM could steal
decoding algorithm types and hyperparameters at very low
costs. The attack, effective against popular LMs like GPT-
2, GPT-3, and GPT-Neo, demonstrated the feasibility of
information theft with just a few dollars, e.g., $0.8, $1, $4,
and $40 for the four versions of GPT-3.

GINSEW [216] was introduced to protect text generation
models from being stolen through distillation. The key idea
involved injecting secret signals into the probability vector
of the decoding steps for each target token, enabling the
detection of the secret message by probing a suspect model
to ascertain if it had been distilled from the protected one.
Authors in [82] introduced a watermarking framework for

FIGURE 14. Differential privacy protects against inference attacks, where
an attacker tries to uncover specific information about individuals in a
dataset, by adding noise to the data. This noise ensures that analysis
results remain almost the same, even when small changes occur, making
it difficult to trace back to any individual’s information [53].

proprietary languagemodels. Thewatermark, embeddedwith
negligible impact on text quality, utilized a randomized set of
‘‘green’’ tokens during sampling. The proposed statistical test
provided interpretable p-values, and an information-theoretic
framework analyzed watermark sensitivity. Testing on a
multi-billion parameter model from the Open Pretrained
Transformer (OPT) family demonstrated robustness and
security.

F. DIFFERENTIAL PRIVACY
Differential privacy in deep learning is a pivotal concept
focused on preserving individual privacy when training
neural networks on sensitive data. Imagine you have two
almost identical datasets, except for one person’s information.
A process is used to analyze the data. By adding noise
to the data it ensures that models extract only intended
insights from the data, preventing overfitting specific indi-
viduals or sensitive details, as depicted in Figure 14. This
privacy-preserving approach involves strategies such as
adding controlled noise to the training data using techniques
like the Laplace or Gaussian mechanisms. By incorporating
differential privacy in deep learning, practitioners strike
a crucial balance between maintaining model utility and
upholding the confidentiality of individual data points.

Yue et al. [205] demonstrated that generating synthetic
versions of such data with a formal privacy guarantee, such as
differential privacy (DP), offered a promising avenue formiti-
gating privacy concerns. Previous approaches in this direction
had typically failed to produce high-quality synthetic data.
Their work revealed that a straightforward and practical
recipe in the text domain proved effective: fine-tuning a
pre-trained generative language model with DP enabled the
model to generate useful synthetic text with strong privacy
protection. Yu et al. [200] introduced advanced algorithms
designed for differentially private fine-tuning of large-scale
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language models, demonstrating superior tradeoffs between
privacy and utility, particularly with GPT-2. Their meta-
framework, inspired by efficient fine-tuning methods, sur-
passed previous private algorithms in terms of utility, privacy,
and computational costs. Experimental results showcased
comparable utility between private and non-private models
across diverse datasets, underscoring the effectiveness of
their approach. The study emphasized the benefits of larger
models, including GPT-2, in maintaining accuracy while
adhering to privacy constraints.

V. HARDWARE SECURITY ASPECT
This section summarizes the potential security concerns
related to the Transformers hardware platforms including
ASIC and FPGA. Different attack and defense techniques
are discussed, highlighting methods such as hardware Trojan,
side-channel attacks, fault injection attacks, and correspond-
ing countermeasures.

A. SECURITY OF ASIC ACCELERATORS
Deep Learning models, particularly Transformer-based neu-
ral networks, have witnessed widespread adoption, with
many implementations leveraging ASIC accelerators for
enhanced performance [100], [171]. While these accelerators
offer efficiency gains, they also introduce specific hardware
security vulnerabilities [23], [65] that can compromise the
integrity and confidentiality of Transformer models. In this
section, we explore potential hardware security challenges,
focusing on ASIC accelerators and their implications for
Transformer-based models.

1) SIDE-CHANNEL ATTACKS
ASIC accelerators, designed for efficient deep-learning
computations, are susceptible to side-channel attacks due
to their inherent parallelism. Attacks exploiting power con-
sumption, electromagnetic emanations, or timing variations
may compromise the confidentiality of Transformer models
accelerated by ASICs. Research indicates that the unique
architecture of ASIC accelerators can amplify certain side-
channel vulnerabilities [83].
Potluri et al. in [134] focus on the systematization of

knowledge (SoK) regarding model reverse engineering (RE)
threats specific to neural network (NN) hardware. The paper
presents a detailed taxonomy of NN hardware widely used
by academia and industry, including ASIC accelerators. The
authors also discuss RE attacks, categorizing them based on
the degree of hardware parallelism and threat vectors such as
side-channels, fault injection, scan-chain attacks, and system-
level attacks. This paper addresses the challenges associated
with launching side-channel attacks on ASIC accelerators.
Due to the optimized, high-throughput parallel execution in
ASICs, extracting side-channel data from the hardware is
extremely difficult. To extract sensitive model parameters,
the authors launched a side-channel attack that indirectly
exploits leakage channels such as power consumption,
electromagnetic emissions, or timing variations. This paper

FIGURE 15. Depicting the vulnerability of Transformer accelerators to
Row Hammer attacks, a potential security threat. The DRAM structure
shows highlighted victim and aggressor rows. Repeated activation of
aggressor rows leads to bit flips in the victim row [81].

examines these different attack methodologies, focusing
on the vulnerabilities exposed by parallel execution in
modern NN accelerators, including ASICs. At the same
time, it addresses the challenges associated with secur-
ing large-scale, high-performance NN models in hardware
environments. This work discusses and compares state-of-
the-art defenses, including trusted execution environments
(TEEs), hardware masking, obfuscation, shuffling, and
cryptographic methods. To evaluate defenses for different
hardware types, the authors followed a set of criteria, includ-
ing scalability, security effectiveness, performance impact,
and applicability. By highlighting the limitations of current
research, particularly in the context of ASIC accelerators
and their unique vulnerabilities to side-channel attacks, the
paper identifies significant gaps in defense strategies and
recommends open research directions for safeguarding NN
models.

2) ROWHAMMER ATTACKS
ASIC accelerators heavily rely on efficient memory access
for optimal performance. However, this reliance introduces
vulnerabilities to Rowhammer attacks, where repeated mem-
ory accesses can induce bit flips in adjacent rows. Figure 15
shows howRowhammer can damage data in the memory. The
figure shows the DRAM structure as a grid of cells, with
highlighted victim and aggressor rows. Repeated activation
of the aggressor rows causes electrical disturbances leading to
bit flips in the victim row, illustrating the core mechanism of
the attack. The attacker achieves data corruption indirectly by
hammering the aggressor rows, emphasizing the vulnerability
of modern DRAM to such attacks. Such attacks on the
memory subsystem of ASIC-accelerated Transformers may
lead to the corruption of critical parameters, impacting both
integrity and reliability [156], [181].

3) FAULT INJECTION ATTACKS
Fault injection attacks pose a threat to ASIC accelera-
tors through deliberate manipulation of supply voltage or
clock frequency during inference or training. The unique
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characteristics of ASICs may exacerbate the impact of
these attacks, potentially leading to misclassification or
model malfunction, as shown in Figure 16. Addressing
fault injection vulnerabilities in ASIC-accelerated Trans-
formers is crucial for ensuring the robustness of deployed
models.

FIGURE 16. Hardware acceleration devices for Transformers are becoming
more common, but they are also susceptible to vulnerabilities during the
inference process. These vulnerabilities can be categorized into two main
types of physical attacks: side-channel attacks and fault attacks [110].

4) HARDWARE TROJANS
The deployment of ASIC accelerators introduces concerns
about potential hardware Trojans that could compromise the
security of Transformer models, illustrated in Figure 17.
Malicious alterations during the design or manufacturing of
ASICs may lead to unauthorized access or manipulation of
model parameters, emphasizing the need for robust security
measures [84], [188].

As Transformer-based neural networks increasingly rely
on ASIC accelerators for efficient computation, understand-
ing and mitigating hardware security vulnerabilities become
paramount. Research efforts should focus on developing
ASIC-specific defenses to safeguard against side-channel
attacks, Rowhammer vulnerabilities, fault injections, and
hardware Trojans. Ensuring the security of ASIC-accelerated
Transformers is essential for maintaining the trustworthiness
of deep learning applications in critical domains. The authors
in [4] introduce TrojBits, a novel approach to Trojan attacks
on Transformer-based language models. It addresses the
susceptibility of these models to hardware-based backdoor
attacks by employing three modules: Vulnerable Param-
eters Ranking (VPR), Hardware-aware Attack Optimiza-
tion (HAO), and Vulnerable Bits Pruning (VBP). TrojBits
achieves an effective inference-time attack with minimal
impact on model performance, using only 64 parameters
out of 116 million and 90-bit flips across evaluation on
BERT and XLNE models in three NLP classification
tasks.

Gubbi et al. in [51] presented a comprehensive review of
the potential threats and mitigation approaches of HTs for
securing AI/ML hardware accelerators. A detailed analysis of
vulnerabilities in ML accelerators is provided, with a focus
on HTs at various stages of the design and manufacturing
process. Furthermore, the survey discusses several state-
of-the-art mitigation techniques including Design-for-Trust,
ML-based detection methods, formal verification, side-
channel analysis, hardware redundancy, logic obfuscation,
and post-fabrication testing. This paper also highlights

opportunities for researchers to address open challenges in
HT detection and mitigation.

B. SECURITY OF FPGA ACCELERATORS
In the recent decade, there has been a rapid growth in the
number of FPGA accelerators being applied in production.
These FPGA accelerators serve as components that perform
specific computations in heterogeneous computing systems
and have been proven to be able to greatly accelerate certain
computation tasks, especially AI inference. However, inte-
grating this type of hardware also brings new security threats.
When victims use heterogeneous hardware to accelerate
Transformers, an attacker can either use side-channel attacks
to steal model information or the input or can use fault attacks
to cause the acceleration hardware to malfunction [110],
as shown in Figure 16 like ASIC accelerators, FPGA
accelerators are also vulnerable to side-channel and fault
attacks. In this part, we first introduce commonly used
FPGA side-channels, then provide a review of attack and
defense methods on FPGA AI accelerators and an overview
of potential works in the field of FPGA hardware security for
Transformer acceleration.

1) FPGA SIDE-CHANNELS ATTACKS
We prioritize practical remote side-channel attacks instead of
attacks that require physical access to the FPGAboards [199].
This enables us to focus on the more prevalent scenario of
FPGA acceleration. The previously revealed side-channels,
especially power side-channel attacks, have been widely
utilized in research works to attack AI accelerators in
FPGAs. We categorize the existing works into the following
categories:

2) POWER/VOLTAGE BASED ATTACKS
A majority of FPGA side-channel attack works focus on
using the power or voltage fluctuation side-channel to
steal sensitive information. These attacks usually assume a
cloud scenario, with power distribution networks (PDNs)
being the source of side-channel leakage. Schellenberg et al
[148] implement on-board trojan sensors to sample power
consumption and collect traces, which go through a series
of statistical analyses for information recovery. The authors
showcase that their method successfully attacks a neigh-
boring AES encryption module on board. In a concurrent
work, Zhao et al. [214] show that RO-based attacks not only
work in FPGA-to-FPGA scenarios but can also be utilized
to monitor CPU activities on FPGA-CPU heterogeneous
SoCs. Glamovcanin et al. [46] perform an attack on AWS
and confirm that these power side-channel attacks could
be actual threats to commercial cloud providers and users.
Figure 18 illustrates the Differential Power Analysis (DPA)
threat model, where an adversary targets a device performing
neural network inference in an untrusted environment. The
training phase is considered secure, but once the trained
model is deployed, the adversary gains direct physical access
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FIGURE 17. Potential threat of hardware Trojans jeopardizing the security of Transformer models, shedding light on crucial considerations for the
deployment of ASIC accelerators. A malicious party at any stage of the IC design or manufacturing process can insert a Trojan at multiple levels of
abstraction [50], [150].

to the device or can remotely obtain power measurements
during neural network computations. By controlling inputs
and observing outputs, the adversary seeks to extract sensitive
model parameters, such as weights and biases.

FIGURE 18. Side Channel Differential Power Analysis (DPA) attack
targeting a DNN model layer, such as the Feed-Forward (FF) layer, during
the inference phase. Despite undergoing a trusted training phase, the
model’s secret parameters are susceptible to extraction through subtle
power differentials [33].

This research work [34] focuses on the defense framework
for physical side-channel attacks on ML models deployed on
FPGA hardware. The authors demonstrated the deployment
and combination of different types of side-channel defenses
for ML models in the hardware blocks. A dual-layer defense
combining Boolean masking and shuffling is proposed in
this paper. The paper presents an optimized adder design to
reduce area and latency overheads associated with masking.
Boolean masking disrupts the correlation between sensitive
data and power consumption, while shuffling introduces

temporal noise to impede second-order attacks. This paper
demonstrates the perfect balancing of hardware efficiency
and security, focusing on resource-constrained environ-
ments like FPGAs. The authors in paper [189] presented
AIAShield, a novel defense framework for FPGA-based AI
accelerators against ML-based power side-channel attacks.
AIAShield leverages adversarial attack techniques from the
ML community to generate noise that obfuscates power side-
channel traces. The defense mechanism in this work includes
adversarial noise injection into the power traces to mislead
the attacker, and at the hardware level, a new module based
on ring oscillators to create fine-grained voltage fluctuations.
The authors evaluated this framework using the Nvidia Deep
Learning Accelerator (NVDLA), and it outperforms existing
solutions with excellent transferability.

This research work in [14] proposes a masked hardware
accelerator for feed-forward neural networks that utilizes
fixed-point arithmetic and is protected against side-channel
analysis (SCA). The authors improve an existing arith-
metic masking scheme to prevent incorrect results and
adapt it to the hardware layer using the glitch-extended
probing model. By implementing the design on FPGA, the
authors validate the effectiveness of the masked design.
The proposed accelerator is up to 38 times faster than
masked software implementations and improves throughput
by about 4.1 times compared to other masked hardware
accelerators.

3) TIMING BASED ATTACKS
Besides targeting PDNs, delays caused by data propagation
can also serve as a side-channel. Giechaskiel [44] exploit
the effect that logical 1s being transmitted in FPGA long
wires will cause delays in adjacent wires to drop. The
authors implement sensors on FPGA boards to monitor such
timing delay changes and demonstrate that their attack can
recover data with a high success rate. The authors propose
countermeasures in a follow-up work [45], where they further
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verify and enhance the effectiveness of this side-channel
attack.

4) FAULT INJECTION
These types of side-channel attacks mainly aim to inject
physical side-channel noises to interfere with the inference
computation running on FPGAs and induce timing violations
to generate faulty outputs. Boutros et al. [13] propose a
voltage attack that targets machine learning inference circuits
located on the same board as the attacker. They prove
that by employing circuits like asynchronous ROs, timing
violations in victim circuits can be triggered, resulting
in decreased prediction accuracy. Liu et al. [95] achieves a
similar goal with a different approach by inserting infrequent
and instantaneous glitches into clock signals to corrupt the
inference circuits. Luo et al. [102] propose a method to stress
the PDN and disrupt the DSP kernels on board to cause the
production of incorrect outputs. In the DeepStrike attacker,
the TDC-based delay sensors will first track the execution of
target DNNs and the outputs will be used to build a profile
for scheduling power strikers. Following information in the
generated schedule (attack delay and hold time, etc.), the
power striker will be activated to cause the victim to produce
incorrect outputs. DeepDup [139] also targets the PDN.
By using power-plundering circuits, the attacker’s method
renders timing violations during data transmission between
off-chip memory and on-chip buffer hence compromising the
integrity of the target model.

The authors in paper [96] demonstrate a forward error
compensation method that enhances the fault resilience of
DNN accelerators, specifically against deliberate fault injec-
tion attacks. For error detection, the proposed design utilizes
shadow flip-flops and a lightweight circuit to correct errors in
the next computation cycle without interrupting the pipeline.
To implement the proposed design, the authors used an
Intel FPGA-based DNN accelerator to demonstrate enhanced
resilience against deliberate fault attacks on two popular
DNNmodels, ResNet50 and VGG16, trained with ImageNet.
In this paper [39], the authors have developed a runtime
verification method for detecting fault injection attacks on
FPGA-based DNN models. To detect fault injections during
runtime, they introduced the Siamese Path Verification (SPV)
method. SPV adds neurons to check the integrity of the model
without impacting the original functionality, and therefore,
model retraining is not required. The evaluation of the
proposed SPV, conducted on a Xilinx Virtex-7 FPGA using
the MNIST dataset, showed effectiveness in detecting fault
injection attacks with low overhead.

The research work in [75] is an extension of the previous
work in [74]. The authors proposed the first framework
called AccHashtag for detecting fault-injection attacks on
DNNs with higher accuracy. Compared to the previous
work, this paper introduces a specialized FPGA-based
hardware accelerator. This addition significantly improves
the efficiency and speed of the hash computation process,

allowing hash generation and validation to occur in par-
allel with DNN execution with minimal system overhead.
Compared to previous methods, this framework achieves
a 100% detection rate with zero false positives. Luo et al.
in [103] presented DeepShuffle, a novel moving-target-
defense (MTD) framework that effectively protects DNNs on
multi-tenant cloud-FPGA against the state-of-the-art Deep-
Dup attack using a lightweight model parameter shuffling
methodology. By injecting faults into small amounts of
sensitive weight data, the Deep-Dup attack exploits vulner-
abilities in off-chip data communication. This training-free
defense framework counters the Deep-Dup attack by altering
the weight transmission sequence, preventing adversaries
from identifying critical model parameters during inference.
When incorporated into the VTA FPGA-DNN accelera-
tor, DeepShuffle shows a significant improvement in the
robustness of DNNs like VGG-11, enhancing accuracy by
approximately 93% against Deep-Dup.

5) INPUT RECOVERY
This type of attack aims to recover input data from
side-channel leakage during execution. Also focusing on
power side-channel, Wei et al. [179] develop a method to
extract and process power traces from FPGA circuits and
design a novel algorithm to recover input images to an input
classification circuit. Besides targeting traditional neural net-
work accelerators, binarized convolutional neural networks
(BNNs) that are optimized for hardware performance can also
be targets of side-channel attacks. Moini et al. [116] utilizes
time-to-digital converters (TDCs) to extract power traces of
BNN accelerators deployed on AWS and use them to recover
input images.

6) MODEL EXTRACTION
Besides recovering inputs, side-channel leakage can also
be utilized to reveal information regarding the model,
e.g. model architecture. Zhang et al [212] utilize ROs as
power sensors to obtain power traces. These traces are then
segmented and passed through a pretrained ML model to
identify each layer and eventually determine the overall
architecture. Similarly, [165], [166], [190] also utilize the
power side-channel along with power trace analysis to steal
the identities of ML models or other information like matrix
shapes in cloud FPGA accelerators.

7) FPGA HARDWARE TROJAN
The rise in FPGA adoption, especially for AI and ML
acceleration, brings increased flexibility but also significant
security risks due to post-manufacturing reconfiguration. Due
to their reprogrammable nature, attackers could exploit this
feature to insert malicious modifications, or Trojans, into
the hardware. These Trojans can be used to extract sensitive
information and can degrade system performance, potentially
causing the system to fail at critical times. This part of the

181094 VOLUME 12, 2024



B. S. Latibari et al.: Transformers: A Security Perspective

paper will explore the existing vulnerabilities of FPGA-based
systems to hardware Trojan attacks.

Hou et al., in paper [66], presented the vulnerability
of reconfigurable CNN accelerators to hardware Trojan
attacks and proposed a promising detection technique to
mitigate potential security risks. The authors proposed a
hardware Trojan that targets the reconfigurable intercon-
nection network in FPGA-based CNN accelerators. The
results from the paper demonstrate that accelerators with a
mere 0.27% hardware overhead can degrade the inference
accuracy of CNN models like LeNet, AlexNet, and VGG
by a significant range of 8.93% to 86.20%. In defense,
the authors introduced a novel detection technique based
on physically unclonable functions (PUFs) to safeguard
the reconfigurable interconnection network against hard-
ware Trojan attacks. An arbiter-based circuit on a Xilinx
Zynq platform was used to implement the PUF-based
countermeasure.

Paper [30] focuses on detecting hardware Trojans within
FPGA bitstreams using recurrent neural networks (RNNs)
and long short-term memory (LSTM) networks. Due to the
dynamic reconfiguration capability and remote configuration
access in FPGAs, a critical security vulnerability exists,
which adversaries can exploit to insert dormant HTs into the
FPGA’s bitstream, bypassing conventional security checks.
This research focuses on Trojans that are hidden within the
FPGA bitstream and how they affect the FPGA’s security
and functionality, particularly in cloud-based and multi-
tenant environments. To recognize malicious patterns in
the bitstreams, the authors developed a dataset to train
RNN and LSTM models by simulating various FPGA
configurations, including models with potential HT insertion.
To enable real-time detection and recognize the indicative
patterns of HTs, the models were trained on both normal
and malicious bitstreams. Upon comparing both models,
the results demonstrate that the LSTM model significantly
outperforms the RNN model, achieving an average detection
accuracy of 93.5%. The approach is robust in detecting
HTs and eliminates the need for resource-intensive reverse
engineering processes. Findings from this research indicate
the involvement of advanced machine learning techniques
to protect FPGA-based systems from HTs. Mal-Sarkar et al.
in their paper [108] provide a comprehensive analysis of
HTs in FPGAs and propose a countermeasure to mitigate
these threats. This research mainly focuses on the various
HTs which exploit the reconfigurable nature of FPGAs.
This allows the malicious entities to insert unauthorized
modifications during the design or fabrication stages. Authors
in this paper categorize these HT attacks in FPGAs based
on activation triggers and type of damage like logical
malfunctions, information leakage, or physical destruction
that they are accountable for. To countermeasure these
damages the authors also propose a novel defense strategy
called Adapted TripleModular Redundancy (ATMR). ATMR
maintains a high level of security with reduced hardware
overhead and power consumption as compared to the

traditional redundancy methods. Results from extensive
simulations on a commercial FPGA device prove, that the
ATMR approach is scalable and an efficient solution for
demonstrating superiority in terms of both detecting and
mitigating various Trojan attacks with minimal resource
usage. The authors also indicate this ATMR approach is
scalable and an efficient solution for enhancing the security
of FPGAs.

8) FPGA ACCELERATOR SECURITY IN THE
TRANSFORMER/LLM ERA
Due to the prevalence of deep learning architecture, most
side-channel attacks on FPGA accelerators use CNN accel-
erators as their targets. In the Transformer/LLM era, with
new FPGA accelerators aiming to accelerate Transformer
computation being proposed, there could potentially be
new forms of FPGA side-channel attacks. The same phys-
ical side-channels, e.g. power side-channel, can still leak
information regarding these models although a massive
amount of work should be dedicated to the design of trace
analysis algorithms since these model architectures are more
complicated.

C. SECURITY OF GPUs AND CPUs
The final category of machine learning hardware platforms
that are particularly susceptible to hardware attacks includes
CPUs and GPUs. These processing units, which are integral
to executing machine learning tasks [37], can be targeted by
attackers seeking to exploit vulnerabilities at the hardware
level. Figure 19 depicts a side-channel attack designed to
deduce input labels from a victim model. The attack consists
of two parts: offline preparation and online deployment.
In the offline phase, the attacker mimics the victim model
using knowledge of its architecture and weights. During
inference, the attacker collects Flush+Reload traces from
the mimicked model to train a classifier. In the online
deployment phase, the attacker uses Flush+Reload to gather
traces from the actual victim model and feeds them into
the trained classifier to deduce the labels of the input
data [174]. Evaluations were performed on a 32-core Intel
Xeon server with an inclusive L3 cache, making it vulnerable
to last-level cache attacks. The proposed Flush+Reload infer-
ence attack is likely effective on other platforms with similar
vulnerabilities.

In paper [74], a real-time detection framework named
HASHTAG is proposed. The framework uses hash-based
signatures, which ensure low overhead on embedded plat-
forms and higher accuracy in detecting fault-injection attacks
on DNNs. This paper introduces a novel methodology for
generating unique hash signatures from benign DNNs before
deployment, which are later used to validate the integrity of
DNNs during runtime. A novel sensitivity analysis scheme
is proposed to identify the DNN layers most vulnerable to
fault-injection attacks. This technology identifies the most
susceptible DNN layers to bit-flip attacks, and for efficient
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FIGURE 19. Overview of the Stealthy Cache-Based SCA on DNNs attack
in [174]: ‘‘Offline preparation’’ mimics victim model, training the
attacker’s classifier. ‘‘Online deployment’’ uses Flush+Reload to collect
victim model traces, deducing label information for inputs.

detection, it focuses the hash signature generation on those
vulnerable layers. In paper [42], the authors worked on
securing neural networks on IoT devices against side-channel
attacks. They introduced BLACKJACK, a hardware-based
shuffling unit added as a functional unit within the CPU.
Software shuffling is less secure due to side-channel leakage
and latency overhead; therefore, a secure and efficient
alternative, hardware shuffling, is used here. BLACKJACK
secures the NN by significantly increasing the time required
for an attacker. It increases the number of permutations
of operations in the model while adding just 2.46%
area, 3.28% power, and 0.56% latency overhead on an
ARM M0+ SoC. Dubey et al. in paper [35], proposed a
defense framework for creating secure machine learning
hardware. The authors developed the defense against DPA
by targeting BNNs implemented on FPGA. They have
outlined four key objectives as a complete solution for
side-channel protectedML. The process starts with analyzing
the side-channel vulnerabilities in the various hardware
blocks of the ML accelerators, which involves masking the
hardware gadgets. By doing this, they assessed the feasibility
of model parameter extraction. In the next step, they designed
provably secure gadgets and implemented them on FPGA
to validate the countermeasures. Then, in the third stage,
they added usability and flexibility to the solution to support
multiple ML architectures via secure software APIs. Finally,
they fabricated the final solution at the Skywater 130nm
node.

VI. CHALLENGES AND OPPORTUNITIES
In this section, we explore the vital challenges, open prob-
lems, and opportunities confronting researchers within the
realm of Transformer security. Shedding light on these issues,
we aim to provide a comprehensive understanding of the
evolving landscape and potential avenues for advancement in
this critical domain.

A. SECURITY VERSUS ENERGY EFFICIENCY:
APPLICATIONS IN RESOURCE LIMITED DEVICES
The trade-off between security and energy efficiency presents
a critical challenge in the field of AI, especially when
considering Transformer models. These models, while robust
in various tasks, face significant challenges due to their
extensive model parameters, demanding substantial memory
and computational resources. This issue makes them a
less attractive option for resource-constrained IoT and edge
devices.

Balancing the need for security with the imperative
of energy efficiency remains a pressing challenge in AI
research. While strides have been made in developing
energy-efficient acceleration mechanisms to optimize Trans-
former models [145], the incorporation of robust security
measures as a third dimension has received compara-
tively less attention. EdgeBERT [161] optimizes energy
consumption and reduces latency for multi-task NLP on
edge devices. It employs entropy-based early exit pre-
diction for dynamic voltage-frequency scaling at a sen-
tence level. This approach minimizes energy usage while
meeting specified latency targets. Additionally, it reduces
computation and memory overheads through adaptive atten-
tion span, selective network pruning, and floating-point
quantization.

EdgeViTs [132] introduce lightweight ViTs that rival
top-performing CNNs in accuracy and on-device effi-
ciency. They achieve this through a novel local-global-
local (LGL) information exchange bottleneck, integrating
self-attention and convolutions cost-effectively. Evaluation
prioritizes on-device latency and energy efficiency over
traditional metrics like FLOPs or parameters. Despite
these advancements, the intricate trade-off challenge of
security and energy-efficient remains a persistent chal-
lenge, necessitating continued exploration and innovation to
develop holistic solutions that that effectively balance both
imperatives.

B. ENHANCING THE INTERPRETABILITY OF
TRANSFORMERS
In recent years, there has been a rise in methods aimed at
explaining the workings of black box models. These methods
focus on identifying the essential features used by the model
to make predictions. Among these, attention mechanisms
offer insights into themodel’s reasoning and decision-making
process by highlighting the significance of specific input
regions or features. Although the interpretability of attention
remains a subject of debate, certain architectures, and
scenarios allow for a meaningful interpretation of this
mechanism [18], [141].

Interpretability of attention scores can be utilized to assess
the vulnerability of Transformers in both hardware and
software domains. In software, it is essential to explore
the interplay between adversarial attacks and defenses
alongside interpretability. In the hardware domain, leveraging
interpretability can uncover vulnerabilities in Transformer
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TABLE 2. Summary of hardware attacks targeting accelerator architectures.

TABLE 3. Summary of hardware defense mechanisms for accelerator architectures.

implementation, thereby facilitating the development of
robust defenses. Additionally, interpretability guides hard-
ware accelerator optimization, enhancing efficiency and
security. Ultimately, enhancing Transformer’s interpretability
not only enhances trust in models but also drives advance-
ments across various emerging domains, such as natural
language processing, computer vision, cybersecurity, and
autonomous systems.

C. SECURITY VERSUS SCALABILITY
As Transformer models scale up in size and complexity,
maintaining their security and reliability becomes increas-
ingly challenging. The expansion of these models demands
greater computational resources and memory, making them
more susceptible to security threats like adversarial attacks
and privacy breaches. Moreover, the intricate architectures of
larger models increase the difficulty of ensuring their security
and validating their integrity. Upholding security entails
safeguarding data privacy, maintaining model integrity, and

fortifying defenses against adversarial attacks, requiring
meticulous security measures throughout the development
and deployment phases.

Furthermore, developing efficient model architectures,
compression techniques, and hardware accelerators tailored
for Transformer models is essential for scaling these models
to resource-constrained environments without compromising
their security and performance. In the domain of hardware
scalability, Transformer accelerator hardware encounters dis-
tinctive security challenges. These include vulnerabilities in
hardware designs, expanded attack surfaces, risks associated
with hardware Trojans, and susceptibility to side-channel
attacks. Addressing these challenges requires a holistic
approach that incorporates secure hardware design practices,
robust testing methodologies, effective cryptographic tech-
niques, and continuous monitoring to promptly identify and
mitigate security threats. Overall, this direction stands as one
of the urgent research problems to address in the field of
Transformers’ security.
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D. ENHANCING THE GENERALIZATION OF
TRANSFORMERS
Transformer models trained on large-scale datasets may
exhibit overfitting to the training data or struggle to generalize
to unseen examples from different distributions. Improving
the generalization capabilities of Transformer models is
a pressing challenge, especially in scenarios with limited
labeled data or when encountering new distributions of
data. To tackle this challenge, techniques such as transfer
learning and few-shot learning have been explored in existing
research. Transfer learning technique enables models to
leverage knowledge gained from pre-training on large-
scale datasets and adapt it to new tasks or domains with
limited labeled data. By fine-tuning pre-trained models on
task-specific datasets, transfer learning allows for more
effective utilization of available labeled data, enhancing the
generalization performance of the model.

Furthermore, the few-shot learning technique enables
models to learn from only a handful of labeled examples,
facilitating adaptation to new tasks and accurate predictions
or classifications even in scenarios with limited labeled data.
Given the paramount importance of addressing the general-
ization challenge across various domains, additional strides
are imperative to illuminate new avenues within Transformer
security and guarantee robustness in real-world applications.
By improving the ability of Transformer models to generalize
to new tasks, domains, and data distributions, this research
direction can pave the way for more reliable, adaptable,
and effective machine-learning solutions in various emerging
fields.

E. UNIFIED SECURITY FRAMEWORK FOR
TRANSFORMERS IN HARDWARE AND SOFTWARE
The primary objective of this paper is to highlight the
critical need for a comprehensive, unified framework that
addresses the security of the Transformer-based models
across both hardware and software domains. Building upon
previous work [73], we suggest a comprehensive framework
to address the security of Transformer-based models against
both hardware and software-level threats. Based on our
thorough analysis of existing methods and vulnerabilities,
the proposed framework is conceptualized in two phases: an
online phase and an offline phase, which is outlined in the
following subsections. Figure 20 provides an overview of this
proposed framework, extending the principles from the prior
work to Transformer-specific security concerns. However,
this remains a suggested approach, intended to guide future
development and research in addressing emerging security
challenges in Transformer-based systems.

1) OFFLINE PHASE
The offline phase ensures the security of the hardware
platform before inference by addressing potential threats at
both the software and hardware levels. This phase consists of
two main components: pre-training and post-training.

Pre-Training- Pre-training focuses on securing the model
and hardware setup before the deployment phase. One of the
potential threats during this stage is the presence of a Trojan
within the hardware platform intended for model training.
Therefore, before training begins, it is crucial to verify the
hardware platform using established methods to ensure it
is free from Trojans and other vulnerabilities. This step is
essential to maintaining the integrity and security of the
training environment.

Post-Training- Post-training focuses on validating and
reinforcing security measures after the model has been
trained but before it is used for inference. To ensure the secu-
rity of the trained model, several steps must be taken. First,
it is crucial to verify that the model is free from Trojans or any
malicious alterations. Additionally, the model’s intellectual
property (IP) must be validated to confirm its integrity and
that it has been properly verified. To further safeguard both
themodel and the data, implementing side-channel protection
mechanisms is essential, preventing any unauthorized access
or leakage of sensitive information during the inference
phase.

FIGURE 20. Overview of the suggested unified secure framework for
Transformers.

2) ONLINE PHASE
During the online or inference phase, the model is vulnerable
to adversarial threats that can target both the input data and
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the model itself. Adversarial inputs, specifically crafted to
deceive the model, can lead to incorrect predictions or expose
vulnerabilities. Therefore, a robust detection mechanism is
essential to identify and mitigate these adversarial inputs
before they impact the model’s performance.

In addition to detecting adversarial inputs, it is crucial to
implement strategies that protect the model against adver-
sarial attacks. These attacks can exploit weaknesses in the
model’s architecture or parameters, leading to compromised
security and functionality. Techniques such as adversarial
training, model robustness enhancement, and incorporating
defensive layers can help safeguard the model from such
attacks, ensuring reliable and secure performance during
inference. Overall, both detection and protection mechanisms
are necessary to defend the model against adversarial threats
and maintain its integrity in real-world applications.

VII. CONCLUSION AND FUTURE WORK
This survey paper has provided a comprehensive overview
of the security threats facing Transformer models, spanning
both software and hardware domains. In addressing the
critical gap in understanding the security implications of
Transformers, our paper conducts an extensive exploration
of the challenges faced, presenting a thorough analysis of
recent advancements in their security perspective. By delving
into software vulnerabilities, including adversarial attacks,
privacy breaches, and model extraction techniques, we have
highlighted the pressing necessity for robust security mea-
sures in Transformer-based applications. Furthermore, our
review of potential threats at the hardware level underscores
the multifaceted nature of security challenges in deploying
Transformer models. From side-channel attacks to hardware
trojans, the vulnerabilities present at the hardware level
pose significant risks to the integrity and confidentiality of
Transformer-based systems. Additionally, we outline existing
challenges and forecast future research trends, offering
valuable insights for researchers and practitioners striving
for the secure and resilient design and deployment of
Transformers. By embracing a proactive approach to security
and fostering collaboration across disciplines, we can ensure
the safe and secure deployment of Transformer models in
diverse domains, safeguarding sensitive data and preserving
user privacy. In our future work, we intend to explore and
implement various hardware security threats and defenses
specifically designed for Transformer-based accelerators.
Moreover, we will investigate the role of quantum computing,
which can potentially impact the security of Transformer
models. Additionally, we are committed to developing
a unified security framework as an end-to-end solution,
ensuring the comprehensive protection of these widely
utilized models.
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