IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 22 October 2024, accepted 26 November 2024, date of publication 29 November 2024,
date of current version 13 December 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3508793

==l RESEARCH ARTICLE

Optimizing Cloud Computing Performance With
an Enhanced Dynamic Load Balancing Algorithm
for Superior Task Allocation

RAIYMBEK ZHANUZAK“', MOHAMMED ALAA ALAANZY “', (Member, IEEE),
MOHAMED OTHMAN 23, (Senior Member, IEEE), AND ABDULMOHSEN ALGARNI*

! Department of Computer Science, SDU University, 040900 Almaty, Kazakhstan

2Department of Communication Technology and Networks, Universiti Putra Malaysia (UPM), Serdang, Selangor 43400, Malaysia

3Laboratory of Computational Science and Mathematical Physics, Institute for Mathematical Research (INSPEM), Universiti Putra Malaysia (UPM), Serdang,
Selangor 43400, Malaysia

“Department of Computer Science, King Khalid University, Abha 61421, Saudi Arabia

Corresponding author: Mohammed Alaa Ala’anzy (m.alanzy @ieee.org)

This work was supported by the Deanship of Scientific Research, King Khalid University, under Grant R.G.P.2/93/45.

ABSTRACT Cloud computing, particularly within the Infrastructure as a Service (IaaS) model, faces
significant challenges in workload distribution due to limited resource availability and virtual machines
(VMs). Efficient task allocation and load balancing are crucial to avoiding overloading or under-loading
scenarios that can lead to execution delays or machine failures. This paper presents an Enhanced Dynamic
Load Balancing (EDLB) algorithm designed to optimise task scheduling and resource allocation in cloud
environments. Unlike benchmark algorithms that rely on static VM selection or post-hoc relocation of
cloudlets, the EDLB algorithm dynamically identifies optimal cloudlet placement in real-time. Our approach
proactively allocates cloudlets to VMs based on current system states and Service Level Agreement (SLA)
deadlines, thereby preemptively addressing potential SLA violations. Additionally, if a VM cannot meet the
deadline of the cloudlet, the algorithm redirects the cloudlet to a secondary data centre and reconfigures CPU
resources among VMs to ensure optimal allocation. Evaluations using CloudSim simulations demonstrate
that the EDLB algorithm achieves substantial average improvements over benchmark algorithm and the-
state-of-the-art algorithm, including a 59.46% reduction in total makespan, a 12.70% reduction in average
makespan, a 22.46% reduction in execution time, and a 3.10% increase in resource utilisation. Furthermore,
the EDLB algorithm enhances load balancing by 46.46%. These results highlight the effectiveness of the
EDLB algorithm in addressing critical load balancing issues and surpassing existing methods. This research
contributes to the field by introducing a novel approach that significantly improves performance metrics and
operational efficiency in cloud computing environments.

INDEX TERMS Cloud computing, task scheduling, load balancing, resource allocation, CloudSim
simulation.

I. INTRODUCTION

Cloud Computing technology plays a vital role in modern
business operations, offering a range of services such as
software accessible through web browsers and platforms for
developing cloud-based applications.

The associate editor coordinating the review of this manuscript and

approving it for publication was Nitin Gupta

Cloud Service Providers (CSPs) play a crucial role in
the infrastructure domain by overseeing the management
of back-end operations, such as the maintenance of data
centres and servers. The focus on the IaaS model within
cloud computing has significantly increased in recent years.
laaS provides scalable and flexible virtualised computing
resources, allowing users to build and manage IT infrastruc-
ture without the need for physical hardware. This importance
of the model is underscored by the projected growth of the

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by/4.0/

183117

https://orcid.org/0009-0001-6508-4781
https://orcid.org/0000-0002-0005-7037
https://orcid.org/0000-0002-5124-5759
https://orcid.org/0000-0002-7556-958X
https://orcid.org/0000-0001-5067-858X

IEEE Access

R. Zhanuzak et al.: Optimizing Cloud Computing Performance With an Enhanced Dynamic Load Balancing Algorithm

global TaaS market, expected to rise from USD 146.2 billion
in 2023 to USD 461.9 billion by 2029 [1]. With the rise
of cloud computing, many service providers have built
extensive data centres to supply essential resources like cloud
server [2].

Applications based in the cloud are significantly reliant
on virtualisation, an essential component in their function-
ing [3]. Inefficient management of the migration process
and allocation of VM resources can significantly impact the
performance of client services where the cloud performance
is a major challenge in cloud computing [4].

In the cloud setting, users access services through requests
that are executed on VMs [5]. The CSP should provide
services that benefit businesses and enhance user satisfac-
tion [6]. Therefore, our main objective is to propose load
balancing algorithm focuses primarily on the IaaS model,
addressing back-end issues of cloud computing technology,
such as server workload. Figure 1 illustrate the assigning
of the tasks among different physical machine to achieve
efficient load balancing.

00000
USER1 USER2 USER3 USERN

 Cloud Broker

S :
(S X

N

Y4
A\

X X
Hypervisor Hypervisor Hypervisor
Host Host Host
VM 1 VM1 VM 1
%@ %@ %@
VM 2 VM 2 VM 2
%@ %@ %@
VM 3 VM3 VM 3

FIGURE 1. Load balancing model in laaS.

In a typical cloud environment, there are two main
components: the front-end, which users access through an
Internet connection, and the back-end, where cloud service
models are managed [7]. The back-end consists of multiple
physical machines stored in data centres, commonly known
as servers. User requests from applications are dynamically
scheduled, and virtualisation is used to allocate the necessary
resources to clients. Whereas the virtualisation helps with
balancing the loads across the system, including scheduling

183118

and efficient resource allocation [8]. Both CSP and users
in the cloud can benefit from virtualisation and dynamic
task scheduling techniques. Hence, effective scheduling can
significantly reduce execution time and improve resource
utilisation in cloud-based applications.

Task scheduling is closely related to workload balancing,
as user requests are routed through a cloud broker. This
highlights the importance of developing efficient algorithms
for task allocation to suitable VMs, considering critical
parameters such as deadlines which ensure the provision of
high-quality services. It is essential to execute and complete
user requests within the specific requirements outlined in
the SLA [9], [10], [11]. User requests are transmitted via
the internet and stored in VMs. In every delivery model,
CSP must maintain Quality of Service (QoS) by ensuring
requests are fulfilled within set deadlines. The effectiveness
of the scheduling policy is significantly impacts workload
balance among VMs and servers. Thus, to achieve efficient
scheduling and resource utilisation, a dynamic load balancer
(DLB) can be developed and implemented. Cloud computing
heavily relies on the VM monitor (VMM) or hypervisor, such
as VMware, situated in the host layer. The VMM manages
multiple VMs on a single hardware layer [12].

The performance of cloud-based applications can be
compromised by inappropriate scheduling techniques or
inefficient task mapping to the correct VMs/resources, given
the crucial role of virtualisation in cloud technology [13],
[14]. This imbalance has the potential to strain server
workloads. Hence, there exists an opportunity in cloud
computing technology to improve resource-to-task mapping
by focusing on scheduling. It is important to consider key
QoS parameters to achieve efficient resource utilisation
without breaching the SLA, while taking into account
constraints such as deadlines and priority [15].

Therefore, this research aims to improve resource alloca-
tion within the TaaS model by balancing resources for clients
and handling user requests on servers. The contributions of
this paper are:

o Introducing the EDLB algorithm for optimising task
scheduling and load distribution in cloud environments,
integrating preemptive scheduling to mitigate SLA
violations.

« Offering a novel approach in dynamic load balancing by
integrating preemptive scheduling and adaptive resource
allocation based on SLA requirements.

« Evaluation of the proposed algorithm through CloudSim
simulations to efficiently reduce total and average
makespan and execution time while maintaining high
resource utilisation and balancing percentages across
varying VMs and cloudlets configurations.

« Evaluating key metrics to quantify the efficiency of
the EDLB algorithm, scalability, and load balancing
capabilities, showcasing its superiority over benchmark
algorithms under diverse workloads.

The structure of the paper is as follows: Section II delves

into related work, explaining concepts of load balancing

VOLUME 12, 2024

R. Zhanuzak et al.: Optimizing Cloud Computing Performance With an Enhanced Dynamic Load Balancing Algorithm

IEEE Access

and task scheduling, recent research by other authors, and
highlighting strengths, weaknesses, and future directions.
Section III outlines the proposed EDLB algorithm, includ-
ing the framework, flowchart, pseudocode, implementation
details like simulation setup, and performance metrics.
Section IV presents the discussion and results from the
experiment, with a brief comparison to existing related work.
Finally, Section V wraps up the paper by summarising its
concept and content, and offering suggestions for future
improvements in the algorithm.

Il. RELATED WORK

In recent years, significant progress has been made in the
field of task scheduling and load balancing within computing
systems. This progress is driven by the increasing complexity
of computational tasks and the continuous evolution of
hardware architectures. Efficiently managing resources and
distributing workloads across different computing elements
has become crucial for optimising system performance and
resource utilisation.

In this section, we explore existing research on task
scheduling and load balancing. We discuss both general
methodologies and specific approaches designed to tackle
various challenges in this domain. Our discussion begins with
an overview of foundational concepts and widely adopted
techniques, providing a comprehensive understanding of the
underlying principles and strategies.

Subsequently, we focus on examining the most relevant
and beneficial work related to task scheduling and load
balancing. By synthesising key findings and highlighting
notable contributions, we aim to shed light on the current
state-of-the-art approaches and identify promising directions
for future research. Through this exploration, we offer
a holistic perspective on ongoing efforts to enhance the
efficiency, scalability, and robustness of task scheduling and
load balancing mechanisms in computing systems.

The interdependence of the load balancing and task
scheduling was highlighted in this section. While, we will
delve into the foundational principles of these aspects
of optimising cloud resources. Load balancing stands as
a pivotal method for maximising the efficiency of VM
resources in the cloud computing environment, ensuring an
equitable distribution of workload and effective resource
utilisation [16]. Dynamic workload distribution among nodes
in the cloud environment is facilitated by load balancing,
which not only enhances user satisfaction but also optimises
resource allocation. Addressing load balancing issues is
crucial for enhancing cloud application performance.

Task scheduling, a major objective of load balancing,
becomes particularly pertinent as the number of cloud clients
increases, potentially leading to improper task scheduling.
Consequently, task scheduling issues require resolution
through the implementation of algorithms [13], [17]. Task
scheduling involves efficiently executing tasks to fully utilise
system resources [18]. In the cloud environment, where

VOLUME 12, 2024

users extensively utilise virtualised resources, manual task
allocation is impractical.

Cloud computing services have become essential for major
corporations like Google and Amazon, providing flexible
data transfer and continuous streaming capabilities. However,
the algorithms supporting these operations may encounter
difficulties as the number of clients increases. In cloud
computing technology, load balancing is essential to avoid
task delays for users and reduce response times.

As technology advances and companies of all sizes adopt
cloud services. The CSPs face challenges due to imbalanced
load situations, which can hinder the delivery of high-quality
services to users. Issues such as high makespan time can
negatively impact performance and pose risks to SLAs. These
violations can lead to starvation issues, where the system
is overloaded and incoming tasks cannot be appropriately
serviced, potentially resulting in rejection. It is essential to
tackle these issues to minimise SLA violations by cloud
providers for organisations. Several factors contribute to
load unbalancing issues in IaaS clouds, including improper
mapping of tasks to VMs, inadequate scheduling processes,
varying task requirements for heterogeneous user tasks, and
uneven distribution of tasks to VMs.

This paper aims to resolve the aforementioned issues in the
IaaS cloud platform by proposing a dynamic task scheduling
algorithm that takes into account important task requirements
such as deadline and completion time, which are highly
significant as QoS factors. Through proper scheduling and
avoidance of VM violations, the algorithm ensures a balanced
workload in the cloud system.

We now offer a synopsis of the current algorithms
in load balancing and task scheduling. While numerous
recent algorithms aim to improve task scheduling and load
balancing, they still face limitations due to the use of
fundamental algorithms in the process of assigning the
cloudlets or selecting the VMs, which can lead to increased
waiting times or makespan in task scheduling.

In [19], they propose a dynamic load balancing algorithm
to minimise makespan time and efficiently utilise resources.
This algorithm employs the bubble sort algorithm to sort tasks
based on length and processing speed, allocating them to
VMs in a First-Come-First-Serve order. While effective in
optimising resources and reducing makespan, this approach
does not consider priority or QoS parameters like deadline.
Also, the bubble sort algorithm is considered a time consumer
as its time complexity is O(n?).

Using Min-Min algorithm as in [20], where authors
propose an enhanced load-balanced Min-Min (ELBMM)
algorithm to optimise resources. This algorithm seeks tasks
with the minimum execution time and assigns them to
the VM with the minimum completion time, effectively
enhancing the Min-Min algorithm and reducing utilisation
costs and system throughput. A three-layer strategy for cloud
network load balancing is introduced by [21]. This strategy
incorporates both opportunistic load balancing (OLB) and
load balance Min-Min (LBMM) techniques. While this

183119

IEEE Access

R. Zhanuzak et al.: Optimizing Cloud Computing Performance With an Enhanced Dynamic Load Balancing Algorithm

method enhances task scheduling in OLB via a hierarchical
network structure, the complexity of multiple layers could
lead to reduced processing speed. Another hybrid algorithm
that used Min-Min approach for the resource-based load
balanced Min-Min (RBLMM) [21]. The algorithm aims to
reduce makespan and balance workload on VMs. RBLMM
calculates makespan time after resource allocation, using
this value to define a threshold. Results show a significant
reduction in makespan time compared to the traditional Min-
Min algorithm, although the approach lacks prioritisation for
tasks or VMs.

In [22], the authors introduce the ED-LB algorithm to
address load imbalance in IaaS clouds, primarily through
selecting the best-fit VM for each task and dynamically
allocating it to the least-loaded server. While this approach
emphasises resource optimisation, it lacks preemptive
scheduling and real-time monitoring for SLA compliance.
By contrast, our EDLB algorithm dynamically reallocates
resources based on SLA demands, integrates preemptive
scheduling to mitigate potential SLA violations, and proac-
tively redirects tasks across data centres when nearing
deadline constraints. Additionally, our EDLB demonstrates
enhanced scalability in real-world fluctuating environments,
as opposed to the static synthetic settings used in ED-LB
evaluations. This approach allows our algorithm to main-
tain deadline adherence and SLA compliance effectively,
achieving notable improvements in makespan and resource
utilisation.

In [23], the authors implement an enhanced dynamic load
balancer based on the HT'V load balancer, which allows users
to input various parameters such as the number of hosts, VMs,
job requests, and application types to prioritise job execution.
The proposed algorithm achieves better performance and
resource utilisation compared to the HTV load balancer.
However, it lacks real-time dynamic allocation of resources
across multiple data centres. Their approach dynamically
generates a queue based on load and performance factors
and uses dynamic round-robin scheduling. In contrast, our
work adapts to fluctuating workloads and traffic in real-
time, optimising SLA adherence and ensuring more efficient
resource management across multiple cloud environments.

For improved QoSs, authors in [24] introduce a QoS-based
algorithm allocating cloudlets with an enhanced balancing
technique. While beneficial for balancing workload and
decreasing completion time, it may lead to high makespan
values for VMs and hosts, particularly in large-scale envi-
ronments. A Grouped Tasks Scheduling (GTS) algorithm
categorises tasks into groups based on QoS parameters,
improving latency for urgent tasks [25]. However, it may not
be suitable for tasks dependent on a specific order or other
scheduling requirements.

An enhancement to the traditional Shortest Job First
(SJF) scheduling algorithm is proposed by authors in [26],
resolving issues of starvation by allocating longer tasks to
high-response VM. However, their approach overlooks the
availability and current load/status of the VM before task

183120

allocation, and tasks are scheduled solely based on task
length, lacking priority.

In [27], the CMLB load balancing algorithm is presented,
using the Dragonfly optimisation algorithm to determine
optimal thresholds for reallocation of tasks to VMs. The
algorithm exhibits better performance with fewer migrations
compared to methods such as Honey-Bee and dynamic LB.
In [28] proposed a novel load balancing algorithm for cloud
computing using a hybrid approach combining Krill Herd,
Whale Optimisation, and Deep Belief Neural Network. The
method aims to optimise resource usage, reduce execution
time, and improve overall system performance. It claims
superiority over existing load balancing techniques based on
comparative results. The authors of [28] have considered the
hosts only to optimise load balancing, while they failed to
consider the cloudlets in each VM.

The algorithm proposed in [29] combines deep learning
with Particle Swarm Optimisation (PSO) and Genetic Algo-
rithm (GA) to address dynamic workload balancing in cloud
computing. Nevertheless, the algorithm focused solely on the
hosts, overlooking the VMs execution time.

Authors in [30] propose a credit-based resource-aware
load balancing scheduling algorithm (HO-CB-RALB-SA)
for cloud computing. This algorithm leverages a hybrid of
the Walrus Optimisation Algorithm (WOA) and Lyrebird
Optimisation Algorithm (LOA) to optimise load distribution
and resource utilisation across VMs. The framework balances
the system load by evaluating the processing capacity of
each VM and redistributing tasks to maintain equilibrium.
The authors claim that their method outperforms existing
models by efficiently managing resources and ensuring
balanced workloads. The reliance on VM processing power
and a credit-based system may not provide the flexibility
needed to adapt to dynamic and unpredictable workloads,
which are common in cloud computing. This could lead
to inefficiencies, particularly when workload patterns shift
rapidly, as the algorithm may struggle to maintain optimal
load distribution under such conditions.

A dynamic task scheduling in the IaaS cloud platform
presented by [31], considers important task requirements
such as deadline and completion time as crucial QoS factors.
It aims to improve cloud performance by balancing workload
and maximising resource utilisation through appropriate task
scheduling and load balancing techniques. The algorithm
checks completion times against deadlines and reconfigure
VM priorities based on CPU status to address SLA violations.
It also involves workload relocation if necessary to ensure
efficient task execution. Their algorithm aims to reduce
makespan, execution time, and improve resource utilisation
in cloud applications by addressing load balancing issues
and considering task requirements. However, the reliance of
the algorithm on static VM selection without considering
real-time execution times may lead to sub-optimal resource
allocation and inefficient task scheduling. By overlooking
the dynamic nature of workload requirements and VM
performance, the algorithm may fail to adapt effectively

VOLUME 12, 2024

R. Zhanuzak et al.: Optimizing Cloud Computing Performance With an Enhanced Dynamic Load Balancing Algorithm

IEEE Access

TABLE 1. Comparison of related work on task scheduling and load balancing algorithms.

Ref. | Methodology Strengths Drawbacks
[19] Dynamic load balancing using Bubble Sort | Minimises makespan and improves resource | High time complexity (O(n?)); lacks prior-
and FCFS utilisation ity or QoS consideration
[20] Enhanced Min-Min algorithm Reduces utilisation cost and improves | Ignores task prioritisation and complex
throughput multi-layer strategies may slow down pro-
cessing
[22] ED-LB: Best-fit VM selection with dynamic | Emphasises resource optimisation and load | Lacks preemptive scheduling and real-time
allocation balancing SLA monitoring
[23] HTV-based load balancer with dynamic | Better performance and resource utilisation | No real-time dynamic allocation across mul-
round-robin scheduling than HTV tiple data centres
[24] QoS-based cloudlet allocation Balances workload and decreases comple- | High makespan in large-scale environments
tion time
[25] Grouped tasks scheduling based on QoS Improves latency for urgent tasks Unsuitable for dependent or order-specific
tasks
[26] Enhanced SJF scheduling Resolves starvation by allocating longer | Ignores current load/status of VMs; lacks
tasks to high-response VMs task priority consideration
[27] CMLB using Dragonfly optimisation Fewer migrations and better performance | Threshold determination depends heavily on
compared to Honey-Bee the algorithm parameters
[28] Hybrid Krill Herd, Whale Optimisation, and | Optimises resource usage and reduces exe- | Focuses only on hosts without considering
DBNN cution time cloudlets in VMs
[29] Deep learning with PSO and GA for dy- | Addresses workload balancing dynamically Focuses solely on hosts, ignoring VM execu-
namic workload balancing tion time
[30] HO-CB-RALB-SA: Hybrid WOA and LOA | Efficient resource management and balanced | Inflexible with dynamic workloads; strug-
with credit-based system workloads gles under rapid workload shifts
[31] Dynamic task scheduling with deadline and | Reduces makespan and improves resource | Static VM selection leads to suboptimal re-
completion time utilisation source allocation
Ours | Dynamic cloudlet allocation with SLA- | Ensures SLA compliance, reduces | Requires resource reconfiguration across
based redirection makespan, and improves resource allocation | data centres, which may add latency

to changing conditions in cloud environments. Table 1
summarises the methodology, strengths, and drawbacks of the
previous studies.

Therefore, this paper aims to improve resource allocation
within the TaaS model by balancing resources for clients and
handling user requests on servers. Our algorithm dynamically
allocates cloudlets to VMs based on completion time, while
considering the cloudlet deadline, which is crucial for SLA
requirements. Based on the available processor of a VM
where if it is insufficient to complete a cloudlet before
its deadline, the cloudlet is redirected to a second data
centre. In the second data centre, the CPU resources are
reconfigured among the VMs according to their needs,
allowing for optimal cloudlet allocation. This approach
helps achieve a balance between VMs and improves overall
resource allocation efficiency. This collaboration of VMs
is a key aspect that many existing algorithms tend to
overlook. In short, [31] has randomly allocated cloudlets
to VMs and then checked for any SLA violations, which
are cloudlets that cannot be executed before their deadlines.
If a violation occurs, the algorithm relocates the cloudlet to
another VM. If this is still not sufficient, the CPU will be
reconfigured. In contrast, our approach instantly identifies
the best placement for cloudlets, ensuring compliance with
the SLA.

lll. THE PROPOSED EDLB ALGORITHM

This section provides an overview of the EDLB algorithm that
has been introduced. It explains the underlying assumptions,
presents the pseudocode, and concludes with a flowchart.
The main goal of our algorithm is to improve the overall

VOLUME 12, 2024

performance of cloud systems with task scheduling and load
balancing. Using all available CPUs on the machines, the
algorithm strategically schedules tasks to minimise total and
average makespan, execution time, and optimise resource
utilisation.

As depicted in the algorithm steps, both inputs and outputs
are integral to every step. In this study, the primary input
is a list of cloudlets with randomly assigned task length
and deadline, which are crucial elements in the SLA metric.
The SLA serves as a significant metric for CSPs, indicating
the reduction of SLA violation factors, including deadline
constraints and priorities. The main objective or output of
the algorithm is to achieve a balanced workload among VMs
in cloud systems, facilitating reallocation in cases of SLA
violations.

The EDLB algorithm starts by allocating the minimum
required processing capacity that represented by Million
Instructions Per Second (MIPS) to operate a VM, referred
to as NM. As the execution progresses, this allocation
dynamically adapts to ensure timely completion of cloudlets
while meeting SLA requirements. The primary goal is to
efficiently distribute computational resources to maximise
performance and meet deadlines. Figure 2 depicts the
flowchart of the EDLB algorithm, which illustrates the
steps involved in assigning cloudlets to VMs to optimise
processing efficiency and prevent overloading of any sin-
gle VM. Factors such as VM completion time, available
processors, and cloudlet execution deadlines are taken
into consideration. The available processing is measured
by MIPS. Table 2 was provided to show key symbols used in
equations.

183121

IEEE Access

R. Zhanuzak et al.: Optimizing Cloud Computing Performance With an Enhanced Dynamic Load Balancing Algorithm

USERS

E ?/ Length and Deadline are
f—\ randomly generated

CLOUDLETS

Load Balancing
Algorithm

Assign cloudlet
to this VM

START

Find VM with least completion
time and which can execute
cloudlet before deadline

YES Migrate cloudlet
to second Data

Centers VM

Is there enough
MIPS?

Assign cloudlet
to this VM

Is there enough
MIPS?

Reconfigure VMs
A 4
\)\ CPU
x|
v Recompute VMs
Host . . completion time
Update VMs completion time and
VM 1 D minimum MIPS needed to execute -
VM 2 cloudlet without violation SR
N to this VM
Data Centers
VM 6
END
FIGURE 2. Cloudlet assignment flowchart for efficient resource utilisation.
TABLE 2. Key symbols used. their deadlines.
Symbol Explanation CTVM; = Z CTCU .)
J A collection of cloudlets
K A collection of VMs of second data centre If a VM with sufficient resources is found, the cloudlet is
I A collection of all VMs . . X
CTV M; Completion time of V' M; promptly assigned to it. CTC can be calculated as shown in
cro; Completion time of cloudlet ; Equation (2)
L; Length of cloudlet ’
D; Deadline of cloudlet L:
AM Available MIPS of second data centre C TCJ» = 7 s 2)
N MIPS required to execute cloudlet before deadline MIPS;
NM Minimum required MIPS to execute VM . . L .
CGy, MIPS that V M, can give without violating SLA agreements where L is length of cloudlet and let i € I where (i1, i7, .. . i;)
MIPS; resources of V' M, : T :
N; MIPS required to execute a cloudlet within its deadline and letj € J where (ji ’!2’ T ’J")" . .
TG MIPS required for VM to execute cloudlet except its own MIPS In cases where no suitable VM is available, the algorithm
P _ Portions that each VM should give orchestrates the relocation of cloudlets to a secondary data
S TG without CG, of VMs that can not give their P .. . cp- .
a Number of VMs in second data centre centre, streamlining operations within a single data centre for
B Number of VMs that can not give their P improved efficiency.
Number of cloudlets . .
" Norsbor of YMs After relocation, the EDLB algorithm calculates several

Initially, the EDLB algorithm carefully selects VMs with
the shortest completion time (CTVM) as in Equation (1) while
comparing the completion time of cloudlets (CTC) against

183122

crucial values to facilitate resource allocation. These include
the Available MIPS (AM), indicating the surplus MIPS
across all VMs compared to the total NM. Additionally,
CG represents the MIPS that VMs can release with-
out violating constraints, while N quantifies the MIPS

VOLUME 12, 2024

R. Zhanuzak et al.: Optimizing Cloud Computing Performance With an Enhanced Dynamic Load Balancing Algorithm

IEEE Access

required to execute a cloudlet within its deadline as in
Equations (3), (4) and (5), where D is a deadline of the

cloudlet and k € K where (k1, kp, ..., k%).
AM = ZMIPSk — ZNMk. (3)
CGy = MIPS, — NMj,. 4)
Nj = L;/D;. ®)

Next, EDLB algorithm evaluates whether the MIPS of
the chosen VM are adequate for executing the cloudlet.
If affirmative, allocation proceeds; otherwise, the MIPS
reconfiguration process begins among VMs to meet the
demand.

During reconfiguration, the EDLB algorithm ensures an
equitable distribution of resources to ensure each VM
contributes fairly. This involves determining 7G and S. The
TG represents the difference between the required MIPS and
the current MIPS of VMs as represented in Equation (6),

TG =N — MIPS,in. ©6)

While S, initially identical, it facilitates balanced reallocation
and after that, it can be updated, as in Equation (7).

S = Soia — CG. @)

If a VM cannot fully surrender its part, adjustments are made
to the S value accordingly.

The number of VMs that unable to comply with the
allocation is denoted by B. And the HE is a boolean
indicating whether the VM has a sufficient MIPS to allocate
its resources. In the reconfiguration phase, VMs that cannot
meet their designated MIPS capacity contribute whatever
resources they can, while the surplus resources are evenly
distributed among the remaining VMs based on S as in (8),

P= L (8)
a—1—-p

where § is the number of VMs that cannot give their portions.
Subsequently, after the reconfiguration is completed, the
CTVM is adjusted to represent the revised MIPS allocation
among the VMs. The process culminates in updating CTVM
by incorporating the completion time of the new cloudlet
and adjusting NM accordingly to ensure optimal resource
allocation and adherence to SLAs.

The pseudocode for the proposed EDLB algorithm is
demonstrated in Algorithm 1. It presents the formulas,
parameters, and decisions incorporated in this load balancing
algorithm.

The novel aspects of the EDLB algorithm within the prob-
lem definition primarily lie in the dynamic, adaptive resource
allocation strategy. In contrast to the benchmark algorithm,
which allocates cloudlets randomly and only checks for SLA
violations post-allocation, the EDLB algorithm proactively
allocates resources based on the completion time of VMs
(CTVM) and cloudlets (CTC) in real-time, ensuring that
deadlines are met and computational resources are efficiently
distributed from the start.

VOLUME 12, 2024

Algorithm 1 Enhanced Dynamic Load Balancing
Algorithm

Input: List of cloudlets with random length and deadline.
Output: Mapping of cloudlets to the appropriate VM.
Adjust NM; to all VMs with value 1000
for jin J do
find VM with least CTVM (VM,,ir,)
calculate N with Equation (5)
if VM, i, has enough MIPS to execute cloudlet before deadline
(MIPS,,i, >= N) then

| allocate cloudletj to VM yjn
end
else
set min to o
if VM, ,in, has enough MIPS to execute cloudlet before
deadline (MIPS,,;, >= N) then

Allocate cloudlet; to VM

break
end

Calculate AM and TG with Equations (3), (6) and CG for
each VM with Equation (4)
Determine S
else if AM is enough to execute cloudlet before deadline (AM
>= N) then
Adjust N MIPS to VM,,,i,,
Initialise B for k in K do
if VM}. do not have its portion to give (CGy < TG)
then
Set HE}, to False Update S with Equation (7)
Update B to +1

end
else

| Set HEj to True
end
end
Calculate P with Equation (8)
for k in K do
if VM}. have enough MIPS to give (HEy is True)
then

| Give their portion to VM,
end
else

| Give CGy to VM i
end

end
for k in K do
while u <=j do
if cloudlet, allocated to VM, then
| Calculate CTVMy by using Equation (1)
end
end

end
Allocate cloudlet; to VM i

end
else

| Allocate cloudlet;j to VM,
end

end
Update CTVM, i, and NM,,;,

end

The EDLB algorithm introduces two key innovations:

1) Completion Time-Based Allocation: Instead of relying
on random allocation, as seen in the benchmark,
our algorithm selects VMs based on the shortest
completion time (CTVM), as defined in Equation (1).
This ensures that cloudlets are strategically assigned
to VMs capable of completing them most efficiently,
minimising overall makespan and avoiding workload
imbalances.

183123

IEEE Access

R. Zhanuzak et al.: Optimizing Cloud Computing Performance With an Enhanced Dynamic Load Balancing Algorithm

2) Real-Time Adaptation: While the benchmark algo-
rithm simply adds MIPS to underperforming VMs
when SLA violations occur, our approach reallocates
MIPS from VMs with surplus capacity to those needing
additional resources. This real-time adjustment opti-
mises resource usage and prevents idle VMs from
waiting while others remain overloaded.

3) Furthermore, CTC, which measures the completion
time of each cloudlet based on its length and the
processing capacity of the VM (MIPS), as described
in Equation (2), allows us to maintain a more granular
level of control during allocation.

4) Available MIPS (AM): This represents the total surplus
processing capacity across all VMs after meeting the
minimum required MIPS (NM) to operate each VM.
The calculation for AM is presented in Equation (3).

5) MIPS that Each VM Can Release (CG): After ensuring
that a VM has sufficient capacity to handle its tasks, the
remaining MIPS can be released for redistribution to
other VMs that may need additional resources to meet
deadlines. This is captured by Equation (4).

IV. PERFORMANCE EVALUATION

A. SIMULATION TOOL

Our algorithm is implemented throughout CloudSim simula-
tion toolkit, which has gained significant popularity among
researchers and developers in the current cloud-related
research landscape. It effectively reduces the need for
and costs associated with acquiring computing facilities
for performance assessment and research modelling. This
simulation tool serves as an external framework that can
be easily downloaded and integrated into programming
environments such as Eclipse, NetBeans IDE, and others.
In order to conduct the simulation, the cloud computing
environment CloudSim was integrated into the Eclipse IDE
for Java developers running the Windows 10 operating
system.

B. PERFORMANCE METRICS

A set of metrics was used to measure the algorithm efficiency
such as total makespan, average makespan, execution time,
resource utilisation, and balancing percentage.

These five performance metrics used in this approach
were chosen to offer a comprehensive evaluation of the
efficiency of the proposed algorithm. Total makespan and
average makespan show the efficiency of the algorithm
by measuring the total time and average time required
to complete the cloudlets, respectively. Execution time
provides insight into the speed with which individual tasks
are processed, reflecting the performance of the proposed
algorithm at a finer level. Resource utilisation assesses how
well resources are managed and allocated, ensuring that
available resources are used efficiently. Finally, the balancing
percentage evaluates the distribution of workloads across
VMs, ensuring that no single VM is overburdened and that

183124

resources are equally distributed. Together, these metrics
provide a full view of the ability of the proposed algorithm
to manage efficiency, resource allocation, and workload
distribution.

1) Total Makespan (TMT): This metric represents the
maximum makespan among all VMs. It provides
insight into the overall efficiency of the algorithm in
managing the completion times across different VMs.
The calculation is based on the maximum completion
time of cloudlets for each VM as in Equation (9)
[32], [33]:

TMT = Max(MT). 9

2) Makespan (MT): This represents the time taken to
schedule a cloudlet. It is a crucial metric for evaluating
the efficiency of scheduling algorithms in terms of
time [34], [35]. To enhance the execution of tasks and
free up resources for other tasks, it is desirable to
minimise makespan. The calculation involves cloudlet
completion time (CT) and the number of VMs (m) as
in Equations (10) and (11) [36]:

MT = Max(CT) (10)
M = 2D ()

3) Execution Time (ExT): This metric measures the
time taken to execute specified tasks on a VM [26].
A reduction in execution time contributes to improved
algorithm performance. The calculation incorporates
cloudlet Actual CPU Time (AcT) and the number of
cloudlets (n) as in Equations (12) and (13) [36]:

ExT = AcT (12)
> AcT
ExT,,, = . (13)

4) Resource Utilisation (RU): This quantitative metric
is interdependent on the aforementioned metrics and
is assessed to enhance resource efficiency in the
cloud environment [33]. ExT represents total execution
time, and MT represents total makespan. The average
resource utilisation indicates the efficiency of the
EDLB algorithm in terms of CPU utilisation. The
metric ranges from O to 1, with 1 being the best case
(indicating 100% resource utilisation), and O being the
worst case as in Equations (14) and (15) [37]:

ExT
RU = 2 (14)
MT
ExTayg
RUpye = x 100 (15)
avg MTan

5) Balancing Percentage (BP): This metric gauges the
average makespan divided by the total makespan.
It offers a measure of how well the algorithm distributes
the workload among VMs, aiming for a more balanced

VOLUME 12, 2024

R. Zhanuzak et al.: Optimizing Cloud Computing Performance With an Enhanced Dynamic Load Balancing Algorithm

IEEE Access

utilisation of resources as in Equation (16):

P = MTavg x 100 (16)
™T

The five performance metrics—total makespan, average
makespan, execution time, resource utilisation, and balancing
percentage—were chosen to comprehensively evaluate the
efficiency of the proposed algorithm. These metrics assess
task completion times, resource management, and workload
distribution across VMs, providing a well-rounded view of
the effectiveness of the proposed algorithm in optimising

performance and resource allocation.

C. RESULTS AND DISCUSSIONS

To assess the performance of the proposed algorithm and
validate its efficiency, key metrics were selected, including
makespan, execution time, and the balancing percentage.
The results, obtained through two types of experiments, are
discussed in the following subsections.

1) TYPE 1 EXPERIMENT (EDLB ALGORITHM VS.
BENCHMARK)

The experiment aims to demonstrate a significant improve-
ment in makespan, execution time, resource utilisation,
and percentage of the balance, within a dynamic cloud
environment.

To simulate the scenario of scheduling and load balancing
in a cloud environment, a virtual representation of entities and
computing resources was created to assess the effectiveness
of the EDLB algorithm. The experiments were carried out
using a simulation platform that included 2 data centres,
2-6 VMs, and 10-100 cloudlets. The length and deadline
of each task were randomly generated, with the length
staying below a maximum threshold of 1,000,000 Million
Instructions (MI) and the deadline below a maximum
threshold of 2000 seconds (sec), as listed in Table 3.

TABLE 3. Simulation configuration for experiment type 1.

Type Parameters Value
Cloudlet Number of cloudlets 10-100
Deadline of tasks <2000
Length of tasks(bytes) <1000000
Number of Processor Elements 1
VM Number of VMs 2-6
Number of Processor Elements 1
Processor Speed (in MIPS) 9980-15000
RAM 512MB
Bandwidth 1000MB
VMM Xen
Cloudlet scheduler Time Shared
Data centre Number of Data centres 2

Number of Hosts in Data centre 1

The acceptable workload for each VM was determined
based on factors such as processor speed, available memory
space, and bandwidth. The parameters used in the simulation
and the configuration for the proposed algorithm are illus-
trated in Table 4.

VOLUME 12, 2024

TABLE 4. Example of cloudlets.

Cloudlet ID Length Deadline File Size ~ Output Size =~ CPU
0 243168 129 300 300 1
1 620082 85 300 300 1
2 504033 471 300 300 1
3 782555 1713 300 300 1
4 426539 1552 300 300 1
5 597913 1037 300 300 1
6 599203 1937 300 300 1
7 387146 1029 300 300 1
8 425832 1027 300 300 1
9 100034 571 300 300 1

The algorithm was tested with preemptive task scheduling,
allowing tasks to be interrupted and relocated to another
resource if SLA violations occur, as depicted in Table 5.

The scheduling process takes into account various QoS
performance parameters of cloudlets.

1) The task length parameter in CloudSim determines the
size of tasks in bytes, with smaller tasks leading to
higher resource utilisation. Each cloudlet is assigned
a length value to specify its type, whether heavy,
light, or medium request. To ensure client requests are
distinguished, the length of each cloudlet is randomly
assigned for this experiment. This random assignment
of length reflects the overall workload of the cloud
environment and is crucial in determining the load
for each VM. Additionally, this parameter impacts the
time to complete requests in each VM, aiding in the
identification of any SLA violations.

2) The task deadline is the maximum time allotted for
task execution and is a critical consideration for CSPs
within the SLA. In this experiment, each cloudlet has
a unique deadline value, enabling SLA contracts to
be customised to individual client needs and service
expectations from cloud providers. It is advisable to
use random deadline values instead of static ones. The
deadline parameter holds significant importance as it
embodies the SLA; exceeding the deadline with time
to complete requests signifies an SLA violation.

In this experiment, the performance evaluation of the
proposed EDLB algorithm was conducted across three
distinct test cases:

o Scenario 1: 2 VMs and a range of 10 to 100 cloudlets.
e Scenario 2: 4 VMs and a range of 10 to 100 cloudlets.
o Scenario 3: 6 VMs and a range of 10 to 100 cloudlets.

This approach, varying the number of VMs and the range
of cloudlets, was designed to observe the effectiveness of
the proposed algorithm in different simulation environments.
By incrementally adjusting these parameters, we aimed to
thoroughly assess the scheduling process and workload dis-
tribution among VMs, gaining comprehensive insights into
the performance of the algorithm across diverse scenarios.
Tables 6, 7, and 8 illustrate the outcomes for the three
scenarios with cloudlets ranging from 10 to 100. These results
show a consistent increase in balancing percentage, along

183125

IEEE Access

R. Zhanuzak et al.: Optimizing Cloud Computing Performance With an Enhanced Dynamic Load Balancing Algorithm

TABLE 5. Example of output (snapped from CloudSim).

Cloudlet ID Status Data Center ID VM ID Time Start Time Finish Time

5 SUCCESS 3 5 7.3 0.2 7.5

55 SUCCESS 3 4 113.95 0.2 114.15
88 SUCCESS 2 2 120.33 0.2 120.53
60 SUCCESS 3 3 156.48 0.2 156.68
8 SUCCESS 2 0 172.87 0.2 173.07
57 SUCCESS 3 4 187.82 0.2 188.02
6 SUCCESS 3 5 208.41 0.2 208.61
71 SUCCESS 3 3 224.04 0.2 224.24
0 SUCCESS 2 0 239.87 0.2 240.07
87 SUCCESS 2 2 250.25 0.2 250.45
97 SUCCESS 3 4 285.12 0.2 285.32
75 SUCCESS 2 0 342.67 0.2 342.87
38 SUCCESS 3 3 569.51 0.2 569.71
20 SUCCESS 3 3 575.13 0.2 575.33
59 SUCCESS 3 3 581.67 0.2 581.87
73 SUCCESS 3 3 594.45 0.2 594.65
32 SUCCESS 3 4 678.18 0.2 678.38
94 SUCCESS 2 2 726.23 0.2 726.43
37 SUCCESS 2 0 818.74 0.2 818.94
29 SUCCESS 3 4 823.89 0.2 824.09

TABLE 6. Results obtained with 2 VMs. TABLE 7. Results obtained with 4 VMs.

Cloudlets Total Ms AvgMs Avg ExTime Util Balancing Cloudlets Total Ms AvgMs Avg ExTime Util Balancing
10 211.92 195.42 138.14 69.73 92.44 10 261.36 202.3 155.62 76.23 78.63
15 315.59 296.96 205.16 68.38 94.22 15 361.41 299.17 216.73 71.85 83.87
20 409.7 391.13 266.13 67.48 95.55 20 472.0 397.85 278.91 69.63 85.99
25 513.14 492.44 331.77 66.94 96.02 25 574.33 496.98 343.39 68.73 88.12
30 610.45 588.58 393.96 66.53 96.45 30 677.65 596.33 406.61 67.86 89.32
35 713.27 690.19 461.44 66.57 96.81 35 780.92 692.79 468.81 67.41 89.93
40 809.68 783.55 518.86 65.93 96.8 40 887.63 789.61 530.59 66.94 90.52
45 911.48 885.79 588.44 66.19 97.21 45 981.5 888.19 594.37 66.69 91.44
50 1011.93 984.07 651.54 65.99 97.27 50 1088.38 992.17 663.84 66.71 92.13
55 1109.97 1080.91 714.21 65.85 974 55 1209.13 1091.55 726.38 66.33 91.76
60 1215.17 1184.15 782.81 65.91 97.46 60 1303.69 1186.17 785.22 66.04 92.26
65 1306.79 1275.81 840.25 65.67 97.64 65 1399.03 1284.39 849.13 65.96 92.84
70 1410.52 1376.74 908.85 65.84 97.61 70 1507.98 1385.96 916.85 66.01 93.04
75 1512.97 1477.99 975.35 65.84 97.7 75 1610.8 1477.75 973.49 65.75 92.96
80 161149 1574.87 1038.13 65.77 97.74 80 1718.39 1578.82 1038.87 65.67 93.33
85 171341 1675.66 1105.2 65.81 97.81 85 1811.14 1679.11 1104.82 65.68 93.73
90 1809.99 1768.37 1163.0 65.63 97.71 90 1893.7 1769.21 1161.98 65.56 94.16
95 1912.86 1872.17 1233.67 65.76 97.88 95 2027.48 1870.89 1224.12 65.32 93.55
100 2011.94 1968.18 1295.19 65.69 97.83 100 2141.18 1976.74 1297.39 65.54 93.76

Total Ms = Total Makespan; Avg Ms= Average Makespan;
Avg ExTime = Average Execution Time; Util = Utilisation

with favourable trends in total makespan, average makespan,
and execution time. The high utilisation percentages further
demonstrate the efficiency and reliability of the algo-
rithm in handling various VM configurations and cloudlet
thresholds.

Next, we choose 6 VMs to demonstrate the
improvement distribution of our algorithm against the
benchmark algorithm. Figures 3, 4, and 5 collectively
demonstrate a marked enhancement of our algorithm,
indicating a significant performance improvement for the
matter of tasks submission and processing that represented
by makespan and the execution time metrics. Notably, our
algorithm exhibits superior efficiency in reducing the total
makespan and average makespan, as well as in execution
time.

183126

Total Ms = Total Makespan; Avg Ms= Average Makespan;
Avg ExTime = Average Execution Time; Util = Utilisation

Furthermore, our algorithm effectively maintains sys-
tem scalability by sustaining high resource utilisation as
depicted in Figure 6. The resource utilisation begins at
84% and remains consistently high, even as the number
of cloudlets increases. This demonstrates the capability of
the proposed algorithm to handle larger workloads while
efficiently utilising available resources. Figure 7 shows
a comparison of the balancing percentage, where EDLB
algorithm starts at approximately 68% and increases to 90%.
In contrast, the benchmark algorithm only grows up to 70%.
This demonstrates the superior balancing capability of our
algorithm over time.

Additionally, to further enhance the results, a more exten-
sive dataset consisting of 1,000 cloudlets was employed. The

VOLUME 12, 2024

R. Zhanuzak et al.: Optimizing Cloud Computing Performance With an Enhanced Dynamic Load Balancing Algorithm

IEEE Access

TABLE 8. Results obtained with 6 VMs.

Cloudlets TotalMs AvgMs Avg ExTime Util Balancing
10 300.34 202.39 167.04 81.99 68.37
15 416.62 303.61 231.94 75.97 74.05
20 518.38 398.66 288.81 72.11 77.92
25 620.78 498.91 354.98 70.78 81.46
30 731.2 598.4 416.68 69.37 82.97
35 832.61 694.64 477.34 68.48 84.67
40 957.07 796.84 542.73 67.91 84.93
45 1045.68 890.05 602.78 67.55 86.25
50 1165.48 990.48 663.76 66.86 86.46
55 1267.06 1084.9 725.01 66.66 87.03
60 1361.77 1184.3 791.24 66.68 87.94
65 1476.95 1285.94 855.21 66.37 88.57
70 1565.44 1377.87 914.24 66.21 88.96
75 1706.3 1478.06 977.53 66.04 88.23
80 1788.35 1571.19 1037.27 65.92 89.2
85 1878.32 1662.26 1093.72 65.69 89.64
90 1980.42 1758.03 1156.27 65.67 89.83
95 2087.82 1856.14 1216.57 65.47 89.93
100 2180.69 1952.44 1281.77 65.57 90.34

Total Ms = Total Makespan; Avg Ms= Average Makespan;
Avg ExTime = Average Execution Time; Util = Utilisation

3.0kl Benchmark

' EDLB
c 2.5K
©
o
9 2.0K
©
= 15K
8
1.0k

500

20 40 60 80 100
Cloudlets

FIGURE 3. Total makespan comparison for 6 VMs.

—— Benchmark
2.0K{ —~— EDLB

20 40 60 80 100
Cloudlets

FIGURE 4. Average makespan comparison for 6 VMs.

algorithm continued to demonstrate superior performance,
as illustrated in Figures 8, 9, 10, 11, 12, respectively.

The aforementioned figures are highlighting the effective-
ness of our algorithm. Figures 8, 9, and 10, prove that our
algorithm achieves lower total makespan, average makespan,
and execution time compared to the benchmark, indicating
more efficient task scheduling and execution.

Figure 11 shows that both our algorithm and the benchmark
maintain a resource utilisation rate of around 65% which
remains consistently high. Figure 12 demonstrates the

VOLUME 12, 2024

Leky Benchmark
1.4K| —~ EDLB

g 1.2K
F 10k
800
600
400
200

Executio

20 40 60 80 100
Cloudlets

FIGURE 5. Execution time comparison for 6 VMs.

95 —— Benchmark
g EDLB
= 90
©
]
585
>
S 80
= §
o
875
-4 —~—
70
20 40 60 80 100

Cloudlets

FIGURE 6. Resource utilisation comparison for 6 VMs.

90
85

[o0)
o U1 O

Balancing
~N N

(o)}
(9]

—— Benchmark
EDLB

20 40 60 80 100
Cloudlets

[e2)
o

u
(9]

FIGURE 7. Balancing percentage comparison for 6 VMs.

25K [3 Benchmark
[0 EDLB

= 20K
©
o
n
Sisk
©
=
810K
kS)

5K

o 2VMs 4VMs 6VMs

FIGURE 8. Total makespan comparison with 1000 cloudlets.

superior balancing percentage of our algorithm at 98 to 99%
compared to the benchmark at 81 to 85% showcasing better
cloudlet distribution among VMs. These results confirm that

183127

IEEE Access

R. Zhanuzak et al.: Optimizing Cloud Computing Performance With an Enhanced Dynamic Load Balancing Algorithm

[= Benchmark
20K 3 EDLB
=
©
15K
]
L
©
=
o 10K
o
o
$
< sk
0 2VMs 4VMs 6VMs

FIGURE 9. Average makespan comparison with 1000 cloudlets.

14K [3 Benchmark
= EDLB

Execution Time

[
e [«)} © o N
X A XA A R

N
~

2VMs 4VMs 6VMs

FIGURE 10. Execution time comparison with 1000 cloudlets.

70

[~ 3 Benchmark
3 EDLB

N W A~ U O
o O o o o

Resource Utilisation

—
e

2VMs 4VMs 6VMs

FIGURE 11. Resource utilisation comparison with 1000 cloudlets.

100 [Benchmark
@3 EDLB
80
o
£ 60
v
C
o
& 40
20
Q 2VMs 4VMs 6VMs

FIGURE 12. Balancing percentage comparison with 1000 cloudlets.

our algorithm effectively handles a large number of cloudlets
while optimising performance and resource use.

The EDLB algorithm consistently exhibits a stable trend
across these figures. This indicates that the performance

183128

of the proposed algorithm remains reliable even as the
number of cloudlets and VMs varies. While the benchmark
algorithm maintain the SLA violations and adjusting resource
configurations, it tends to fall short in load balancing,
potentially leading to sub-optimal resource utilisation. On the
other hand, EDLB algorithm prioritises load balancing and
makespan reduction while still considering SLA and QoS
parameters.

The benchmark algorithm utilises a random allocation
strategy for cloudlets. After allocation, it detects SLA
violations, triggering migrations and subsequently adjusting
CPU configurations if necessary. However, this random
allocation approach often leads to imbalanced workloads
across VMs, negatively affecting overall system efficiency.
In contrast, the EDLB algorithm adopts a more sophisticated
approach. By considering the completion times of individual
cloudlets, it strategically allocates them to VMs. When
SLA violations occur, the algorithm relocates cloudlets
and reconfigures CPU resources if insufficient capacity is
detected. This approach aims to achieve load balancing and
reduce makespan by intelligently distributing tasks based
on their characteristics. Notably, the performance results
from both algorithms highlight distinct characteristics. The
benchmark algorithm exhibits variability in performance
as the number of cloudlets increases, potentially affecting
SLA adherence and resource utilisation. Meanwhile, the
EDLB algorithm demonstrates consistent load balancing and
makespan reduction, showcasing robust performance under
varying conditions.

2) TYPE 2 EXPERIMENT (EDLB ALGORITHM VS.
STATE-OF-THE-ART ALGORITHM)
In the second experiment, we assess the performance of
our EDLB algorithm against a state-of-the-art algorithm,
the credit-based resource-aware load balancing scheduling
algorithm (HO-CB-RALB-SA) [30]. The HO-CB-RALB-SA
algorithm employs a hybrid approach, combining the Walrus
Optimisation Algorithm (WOA) and the Lyrebird Optimisa-
tion Algorithm (LOA) to enhance scheduling efficiency and
fairness in cloud computing environments.

The simulation configuration for this experiment is pre-
sented in Table 9.

TABLE 9. Simulation configuration for experiment type 2.

Type Parameters Value
Cloudlet Number of cloudlets 400-2000
Length of tasks (bytes) 1000-10000
Number of Processor Elements 1
VM Number of VMs 100
Number of Processor Elements 1
MIPS per VM 5000
VMM Xen
Cloudlet Scheduler Time Shared
Data centre Number of Data centres 15
Number of Hosts in Data centre 2

In this experiment, we aimed to demonstrate that our
proposed EDLB algorithm outperforms the-state-of-the-art

VOLUME 12, 2024

R. Zhanuzak et al.: Optimizing Cloud Computing Performance With an Enhanced Dynamic Load Balancing Algorithm

IEEE Access

algorithm (i.e., HO-CB-RALB-SA algorithm). The HO-CB-
RALB-SA algorithm is designed to enhance scheduling
efficiency and fairness by addressing common challenges
in traditional scheduling algorithms, such as load imbal-
ance and suboptimal resource utilisation. It uses a hybrid
approach that incorporates credit-based job prioritisation and
resource-aware load balancing. By evaluating tasks based
on parameters such as duration, cost, deadline, and priority,
and by assigning additional credits to effectively prioritise
jobs, the algorithm ensures balanced task distribution across
VMs. This approach not only improves task scheduling
but also optimises resource usage, leading to better overall
performance and efficiency.

The same metrics of the first experiment has been selected
which are the five key metrics—total makespan, average
makespan, execution time, resource utilisation, and balancing
percentage—to evaluate the performance of the algorithms.
These metrics are crucial for assessing the efficiency and
effectiveness of cloud computing algorithms, as they offer
valuable insights into overall performance and the ability to
manage and process tasks, which is essential for determining
practical utility.

Total makespan: measures the efficiency with which an
algorithm handles the complete set of tasks from start to
finish. This metric directly reflects the capability of the
algorithm to minimise processing time, a critical factor in
cloud environments where time efficiency translates into
cost savings and improved user satisfaction. As shown in
Figure 13, the EDLB algorithm consistently achieves a lower
total makespan compared to HO-CB-RALB-SA across all
cloudlet sizes. For instance, with 1600 cloudlets, EDLB
records a total makespan of 93.76 sec., while HO-CB-RALB-
SA logs 461.87 sec., highlighting a significant improvement
in task completion time. The overall improvement of the total
makespan achieved 62.90% compared with HO-CB-RALB-
SA algorithm.

600
—+—HO-CB-RALB-SA

—ETSOO 4| —=—EDLB) ////"’
=
§4OO B
3
s 300 H
B
2200 -

100 _—

_—
o
0 T T T T T T T T T
400 800 1200 1600 2000

Number of cloudlets

FIGURE 13. Total makespan.

Average makespan: provides insight into time efficiency
per task, which is especially important in scenarios with
varying task complexities. By focusing on this metric,
we can evaluate how well the algorithm handles individual

VOLUME 12, 2024

250
——HO-CB-RALB-SA
- ——EDLB
3200 T
=
3
£ 150 A
©
s
gnloo 4 /
g
I /
50 A }
//
//
0 . . : : : : : : :
400 800 200 1600 2000

120
Number of cloudlets

FIGURE 14. Average makespan.

tasks, ensuring high performance under diverse workloads.
Figure 14 illustrates that the EDLB algorithm consistently
outperforms HO-CB-RALB-SA with an average makespan
of 65.85 sec. for 1200 cloudlets compared to HO-CB-RALB-
SA 90.32 sec. This result underscores the EDLB algorithm
effectiveness in optimising task execution times. The overall
improvement in the average makespan compared to the HO-
CB-RALB-SA algorithm is 10%.

Execution time is critical for assessing the efficiency
of algorithm in utilising processing resources. Reducing
execution time not only decreases operational costs but also
increases throughput, which is paramount in large-scale cloud
environments. As shown in Figure 15, EDLB demonstrates
more efficient use of processing resources. For instance,
with 2,000 cloudlets, EDLB records an execution time of
81.29 sec., while HO-CB-RALB-SA requires 172.32 sec.,
further demonstrating the superiority of EDLB in terms of
execution time reduction. The overall average improvement
in execution time was 15.6%.

—+—HO-CB-RALB-SA
—~—EDLB

5160 -

n Time

0 T T T T T T

400 800 1200 1600
Number of cloudlets

T

2000

FIGURE 15. Execution time.

Resource utilisation reflects how effectively the algorithm
leverages available resources, with a higher percentage indi-
cating more efficient usage. As shown in Figure 16, EDLB
consistently maintains high resource utilisation. For instance,
in scenarios with 800 cloudlets EDLB achieves a resource

183129

IEEE Access

R. Zhanuzak et al.: Optimizing Cloud Computing Performance With an Enhanced Dynamic Load Balancing Algorithm

TABLE 10. Comparison of HO-CB-RALB-SA (HO-CB.) and EDLB algorithms across various metrics.

Total makespan Average makespan

Execution time Resource utilisation | Balancing percentage

Cloudlets HO-CB. EDLB HO-CB. EDLB HO-CB. EDLB HO-CB. EDLB | HO-CB. EDLB
400 37.39 27.7704 12.6625 21.9991988 11.36 17.25287628 89.71 78.41 33.87 79.23
800 115.57 49.73136 43.0221 44.041538 34.88 33.22872084 80.61 75.44 37.27 88.57
1200 277.094 71.67702 90.3242 65.8495791 69.54 49.00320871 76.99 74.41 32.57 91.87
1600 461.87 93.76393 | 156.0465 87.979621 114.13 65.11754391 73.14 74.01 33.79 93.83
2000 526.02 115.96867 | 237.7045 110.148627 172.32 81.28508741 72.49 73.79 45.19 94.98
95 100
—e—HO-CB-RALB-SA ——HO-CB-RALB-SA
—~—EDLB 90 | “_EDIB
90 A
s g 80 -
©)
£ 85 - & 70
° s
I & 60 o
5 s
2 80 1 S~ § 50 -
: ~ : —
T~ 40 + _—
75 ~__ . — —-—
~— 30 -
70 T T T T T T T T T 20 T T T T T ' T Ll
400 800 1600 2000 400 800 1600 2000

12
Number of cloudlets

FIGURE 16. Resource utilisation.

utilisation rate of 75.44% compared to HO-CB-RALB-SA
80.61%. This trend persists across various cloudlet sizes
confirming the robustness of EDLB in efficiently utilising
resources.

Even as the number of cloudlets increases, EDLB
maintains steady resource utilisation, while the HO-CB-
RALB-SA algorithm shows a decline. The overall improve-
ment of our algorithm, across cloudlet sizes ranging
from 400 to 2,000, was 3.8%.

Balancing percentage: measures the effectiveness of
workload distribution across available resources, with a
higher score indicating a more even distribution. Figure 17
reveals that the EDLB algorithm demonstrates superior
balancing capabilities, particularly in scenarios with higher
cloudlet counts. For instance, with 2,000 cloudlets, EDLB
achieves a balancing efficiency of 95%, while HO-CB-
RALB-SA manages only 45.2%. This superior balancing
performance is consistent across all tested scenarios. The
overall improvement of our algorithm, across cloudlet sizes
ranging from 400 to 2,000, was 59.2%.

Overall, the EDLB algorithm consistently outperforms
HO-CB-RALB-SA across all evaluated metrics, making it
a more reliable and efficient choice for managing cloud
computing tasks. The results clearly demonstrate the practical
benefits of EDLB, affirming its superiority over HO-
CB-RALB-SA. Table 10 illustrates the superiority of our
algorithm against the state-of-the-art algorithm.

Furthermore, EDLB algorithm employs a sophisticated
task allocation strategy by considering the completion times
of individual cloudlets before assigning them to VMs. This
ensures an optimal distribution of workloads, preventing

183130

120
Number of cloudlets

FIGURE 17. Balancing percentage.

imbalances that can negatively impact system efficiency.
In the event of SLA violations, EDLB dynamically relocates
cloudlets and adjusts CPU configurations when resource
insufficiencies are detected. By intelligently managing task
distribution based on cloudlet characteristics, EDLB con-
sistently achieves load balancing, reduces makespan, and
maintains high resource utilisation, even as the number of
cloudlets increases. This methodology distinguishes EDLB
from other algorithms that rely on random allocation, making
it more robust and efficient under varying conditions.

V. CONCLUSION AND FUTURE WORK

This research highlights the critical role of cloud computing,
particularly within the IaaS model, and emphasises the impor-
tance of employing advanced load balancing algorithms to
optimise resource allocation. The EDLB algorithm, evaluated
using the CloudSim toolkit, focuses on preemptive task
scheduling and cloudlet parameters such as arrival time,
task length, and deadlines. By doing so, it consistently
improves performance metrics and addresses SLA concerns.
The results confirm the reliability of the algorithm across
various scenarios, demonstrating its robust performance
under different quantities of cloudlets and VMs. Compared
to the benchmark algorithm, which employs random cloudlet
allocation, and the HO-CB-RALB-SA algorithm, EDLB
shows superior stability and load balancing capabilities. The
benchmark algorithm often leads to imbalanced workloads
and inefficiencies, while HO-CB-RALB-SA exhibits higher
execution times. In contrast, EDLB effectively balances
workloads, optimises makespan, execution time, and resource
utilisation, enhancing the overall efficiency of cloud-based
services.

VOLUME 12, 2024

R. Zhanuzak et al.: Optimizing Cloud Computing Performance With an Enhanced Dynamic Load Balancing Algorithm

IEEE Access

Future research should incorporate reliability and fairness
as key metrics to further strengthen the robustness of the
algorithm. Additionally, expanding the evaluation to include
a broader range of QoS parameters—such as response
time, throughput, and fault tolerance—would provide deeper
insights into its effectiveness. Furthermore, it is essential to
consider other resources, such as RAM, in the allocation
process, as this could impact the overall performance and
efficiency of cloud operations. Exploring the scalability
of EDLB in larger, more diverse cloud environments and
refining the inter-VM resource transfer mechanism, poten-
tially with machine learning for dynamic resource prediction,
could further optimise allocation. This could also extend the
applicability of the algorithm to emerging areas like green
computing.

ACKNOWLEDGMENT

Raiymbek Zhanuzak, Mohammed Alaa Ala’anzy, and
Mohamed Othman would like to extend their gratitude to the
Science Department, SDU University, and Dr. Abdulmohsen
Algarni for their invaluable guidance and support throughout
this research.

REFERENCES

[1] Statista. (Jul. 2024). Infrastructure as a Service: Market Data &
Analysis. Accessed: Sep. 8,2024. [Online]. Available: https://www.statista.
com/study/84972/infrastructure-as-a-service-report/

[2] F. Xia, Y. Chen, and J. Huang, “Privacy-preserving task offloading in
mobile edge computing: A deep reinforcement learning approach,” Softw.,
Pract. Exper., vol. 54, no. 9, pp. 1774-1792, Sep. 2024.

[3] T. Kumar, P. Sharma, J. Tanwar, H. Alsghier, S. Bhushan, H. Alhumyani,
V. Sharma, and A. I. Alutaibi, “Cloud-based video streaming services:
Trends, challenges, and opportunities,” CAAI Trans. Intell. Technol., vol. 9,
no. 2, pp. 265-285, Apr. 2024.

[4] S.M. Rozehkhani, F. Mahan, and W. Pedrycz, “Efficient cloud data center:
An adaptive framework for dynamic virtual machine consolidation,”
J. Netw. Comput. Appl., vol. 226, Jun. 2024, Art. no. 103885.

[5] J. Sung, S.-J. Han, and J.-W. Kim, “Cloning-based virtual machine
pre-provisioning for resource-constrained edge cloud server,” Cluster
Comput., vol. 27, no. 2, pp. 1831-1847, Apr. 2024.

[6] S. K. Mishra, B. Sahoo, and P. P. Parida, “Load balancing in cloud
computing: A big picture,” J. King Saud Univ.-Comput. Inf. Sci., vol. 32,
no. 2, pp. 149-158, Feb. 2020.

[71 A. Rajagopalan, D. Swaminathan, M. Bajaj, I. Damaj, R. S. Rathore, A.
R. Singh, V. Blazek, and L. Prokop, “Empowering power distribution:
Unleashing the synergy of IoT and cloud computing for sustainable
and efficient energy systems,” Results Eng., vol. 21, Mar. 2024,
Art. no. 101949.

[8] M. Zakarya, A. A. Khan, M. R. C. Qazani, H. Ali, M. Al-Bahri,
A.U.R. Khan, A. Ali, and R. Khan, “Sustainable computing across
datacenters: A review of enabling models and techniques,” Comput. Sci.
Rev., vol. 52, May 2024, Art. no. 100620.

[9] F Qazi, D. Kwak, F. G. Khan, F. Ali, and S. U. Khan, “Service level
agreement in cloud computing: Taxonomy, prospects, and challenges,”
Internet Things, vol. 25, Apr. 2024, Art. no. 101126.

[10] M. A. Ala’anzy and M. Othman, “Mapping and consolidation of VMs
using locust-inspired algorithms for green cloud computing,” Neural
Process. Lett., vol. 54, no. 1, pp. 405-421, Feb. 2022.

[11] M. A. Ala’anzy, M. Othman, S. Hasan, S. M. Ghaleb, and R. Latip,
“Optimising cloud servers utilisation based on locust-inspired algorithm,”
in Proc. 7th Int. Conf. Soft Comput. Mach. Intell. (ISCMI), Nov. 2020,
pp. 23-27.

[12] S. Sha, C. Li, X. Wang, Z. Wang, and Y. Luo, ‘“Hardware-software
collaborative tiered-memory management framework for virtualization,”
ACM Trans. Comput. Syst., vol. 42, nos. 1-2, pp. 1-32, May 2024.

VOLUME 12, 2024

(13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

M. Ala’anzy and M. Othman, “Load balancing and server consolidation
in cloud computing environments: A meta-study,” IEEE Access, vol. 7,
pp. 141868-141887, 2019.

Z. Ahmad, A. I. Jehangiri, M. A. Ala’anzy, M. Othman, and A. I. Umar,
“Fault-tolerant and data-intensive resource scheduling and management
for scientific applications in cloud computing,” Sensors, vol. 21, no. 21,
p. 7238, Oct. 2021.

M. Kumar, S. C. Sharma, A. Goel, and S. P. Singh, “A comprehensive
survey for scheduling techniques in cloud computing,” J. Netw. Comput.
Appl., vol. 143, pp. 1-33, Oct. 2019.

J. Zhou, U. K. Lilhore, P. M. T. Hai, S. Simaiya, D. N. A. Jawawi,
D. Alsekait, S. Ahuja, C. Biamba, and M. Hamdi, “Comparative analysis
of metaheuristic load balancing algorithms for efficient load balancing in
cloud computing,” J. Cloud Comput., vol. 12, no. 1, p. 85, Jun. 2023.

A. Arunarani, D. Manjula, and V. Sugumaran, ‘“Task scheduling techniques
in cloud computing: A literature survey,” Future Gener. Comput. Syst.,
vol. 91, pp. 407-415, Feb. 2019.

T. Bu, Z. Huang, K. Zhang, Y. Wang, H. Song, J. Zhou, Z. Ren, and S. Liu,
“Task scheduling in the Internet of Things: Challenges, solutions, and
future trends,” Cluster Comput., vol. 27, no. 1, pp. 1017-1046, Feb. 2024.
M. Kumar and S. C. Sharma, “Dynamic load balancing algorithm to
minimize the makespan time and utilize the resources effectively in cloud
environment,” Int. J. Comput. Appl., vol. 42, no. 1, pp. 108-117, Jan. 2020.
G. Patel, R. Mehta, and U. Bhoi, “Enhanced load balanced
min-min algorithm for static meta task scheduling in cloud
computing,” Procedia Comput. Sci., vol. 57, pp.545-553,
Jan. 2015, doi: 10.1016/j.procs.2015.07.385. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050915019146

B. H. Shanthan and L. Arockiam, “Resource based load balanced min min
algorithm (RBLMM) for static meta task scheduling in cloud,” in Proc.
Int. Conf. Adv. Comput. Sci. Technol., 2018, pp. 1-8.

M. Adhikari and T. Amgoth, “An enhanced dynamic load balancing
mechanism for task deployment in IaaS cloud,” in Proc. Int. Conf.
Comput., Power Commun. Technol. (GUCON), Sep. 2018, pp. 451-456.
S. Acharya and D. A. D’Mello, “Enhanced dynamic load balancing
algorithm for resource provisioning in cloud,” in Proc. Int. Conf. Inventive
Comput. Technol. (ICICT), vol. 2, Aug. 2016, pp. 1-5.

S. Banerjee, M. Adhikari, S. Kar, and U. Biswas, “Development and
analysis of a new cloudlet allocation strategy for QoS improvement in
cloud,” Arabian J. Sci. Eng., vol. 40, no. 5, pp. 1409-1425, May 2015.
H. Gamal El Din Hassan Ali, I. A. Saroit, and A. M. Kotb, “Grouped
tasks scheduling algorithm based on QoS in cloud computing network,”
Egyptian Informat. J., vol. 18, no. 1, pp. 11-19, Mar. 2017.

M. A. Alworafi, A. Dhari, A. A. Al-Hashmi, A. B. Darem, and
Suresha, “An improved SJF scheduling algorithm in cloud computing
environment,” in Proc. Int. Conf. Electr., Electron., Commun., Comput.
Optim. Techn. (ICEECCOT), Dec. 2016, pp. 208-212.

V. Polepally and K. Shahu Chatrapati, ‘“Dragonfly optimization and
constraint measure-based load balancing in cloud computing,” Cluster
Comput., vol. 22, no. S1, pp. 1099-1111, Jan. 2019.

P. Neelakantan and N. S. Yadav, “An optimized load balancing strategy
for an enhancement of cloud computing environment,” Wireless Pers.
Commun., vol. 131, no. 3, pp. 1745-1765, Aug. 2023.

S. Simaiya, U. K. Lilhore, Y. K. Sharma, K. B. V. B. Rao, V. V. R. M. Rao,
A. Baliyan, A. Bijalwan, and R. Alroobaea, “A hybrid cloud load
balancing and host utilization prediction method using deep learning and
optimization techniques,” Sci. Rep., vol. 14, no. 1, p. 1337, Jan. 2024.

A. Narwal, “Resource utilization based on hybrid WOA-LOA optimiza-
tion with credit based resource aware load balancing and scheduling
algorithm for cloud computing,” J. Grid Comput., vol. 22, no. 3, pp. 1-24,
Sep. 2024.

D. A. Shafig, N. Z. Jhanjhi, A. Abdullah, and M. A. Alzain, “A load
balancing algorithm for the data centres to optimize cloud computing
applications,” IEEE Access, vol. 9, pp. 41731-41744, 2021.

M. Alanzy, R. Latip, and A. Muhammed, ‘“Range wise busy checking
2-way imbalanced algorithm for cloudlet allocation in cloud environment,”
J. Phys., Conf. Ser., vol. 1018, May 2018, Art. no. 012018.

M. A. Ala’anzy, M. Othman, Z. M. Hanapi, and M. A. Alrshah,
“Locust inspired algorithm for cloudlet scheduling in cloud computing
environments,” Sensors, vol. 21, no. 21, p. 7308, Nov. 2021.

J. Konjaang, F. H. Ayob, and A. Muhammed, “An optimized max-min
scheduling algorithm in cloud computing,” J. Theor. Appl. Inf. Technol.,
vol. 95, no. 9, pp. 1-10, 2017.

A. Dhari and K. I. Arif, “An efficient load balancing scheme for cloud
computing,” Indian J. Sci. Technol., vol. 10, no. 11, pp. 1-8, Mar. 2017.

183131

http://dx.doi.org/10.1016/j.procs.2015.07.385

IEEE Access

R. Zhanuzak et al.: Optimizing Cloud Computing Performance With an Enhanced Dynamic Load Balancing Algorithm

[36] Y. Vijay and B. V. Ghita, “Evaluating cloud computing scheduling
algorithms under different environment and scenarios,” in Proc. 8th Int.
Conf. Comput., Commun. Netw. Technol. (ICCCNT), Jul. 2017, pp. 1-5.

[37] A. Pradhan and S. K. Bisoy, “A novel load balancing technique for cloud
computing platform based on PSO,” J. King Saud Univ.-Comput. Inf. Sci.,
vol. 34, no. 7, pp. 3988-3995, Jul. 2022.

RAIYMBEK ZHANUZAK is currently pursuing
the degree with the Faculty of Natural Sciences and
Engineering, SDU University.

With a strong interest in algorithm design
and optimization, he has worked on projects
to improve existing algorithms and solve com-
plex computational problems. He has a good
understanding of algorithmic paradigms, such as
dynamic programming, greedy algorithms, and
graph theory. He collaborates well with peers and
mentors and actively engages in research opportunities and extracurricular
activities related to computer science. He participates in coding competitions,
workshops, and conferences to enhance his skills and knowledge. His
research interests include data science, distributed systems, and cloud
computing.

MOHAMMED ALAA ALAANZY (Member,
IEEE) received the Ph.D. degree in computer
science from Universiti Putra Malaysia (UPM),
in 2023.

He is currently an Assistant Professor with
Suleyman Demirel University (SDU). He special-
izes in advanced fields, such as algorithms, cloud
computing, green computing, load balancing, task
scheduling, fog computing, and the Internet of
Things (IoT). He is widely recognized for his
significant contributions to the academic community through high-impact
journals and conference publications. Additionally, he serves as a respected
reviewer for prestigious journals, such as IEEE, Elsevier, and Springer.
He is also a member of the Dissertation Council, SDU University, where
he contributes to the evaluation of doctoral theses. In addition, he plays
an essential role on the admissions committee responsible for evaluating
candidates for the Kazakhstan government grant program. He is also a
member of the International Program Committee for the 2024 11th Inter-
national Conference on Soft Computing and Machine Intelligence (ISCMI),
Melbourne, Australia, and Technical Program Committee for 2024 Seventh
International Symposium on Telecommunication Technologies in Langkawi,
Malaysia.

183132

MOHAMED OTHMAN (Senior Member, IEEE)
received the Ph.D. degree (Hons.) from the
National University of Malaysia. He is currently
a Professor in computer science with the Depart-
ment of Communication Technology and Net-
work, Universiti Putra Malaysia (UPM). Prior to
that, he was the Deputy Director of the Information
Development and Communication Centre, where
he was in charge of UMPNet Network Campus,
uSport Wireless Communication Project, and the
UPM DataCentre. He is also an Associate Researcher and a Coordinator
in high speed machine with the Laboratory of Computational Science
and Mathematical Physics, Institute of Mathematical Research (INSPEM),
UPM. In 2017, he received an Honorable Professor from South Kazakhstan
Pedagogical University, Shymkent, Kazakhstan, where he was a Visiting
Professor, and L. N. Gumilyov Eurasian National University, Astana,
Kazakhstan. He has published more than 300 international journals and
330 proceeding articles. He has also filed six Malaysian, one Japanese, one
South Korean, and three U.S. patents. His research interests include computer
networks, parallel and distributed computing, high speed interconnection
networks, network design and management (network security, wireless,
and traffic monitoring), consensus in IoT, and mathematical model in
scientific computing. He is a Life Member of Malaysian National Computer
Confederation and Malaysian Mathematical Society. He was a recipient of
the Best Ph.D. Thesis, in 2000, by Sime Darby Malaysia and Malaysian
Mathematical Science Society.

ABDULMOHSEN ALGARNI received the Ph.D.
degree from Queensland University of Technol-
ogy, Australia, in 2012. He was a Research Asso-
ciate with the School of Electrical Engineering
and Computer Science, Queensland University of
Technology, in 2012. He is currently an Associate
Professor with the College of Computer Science,
King Khalid University. His research interests
include artificial intelligence, data mining, text
mining, machine learning, information retrieval,
and information filtering.

VOLUME 12, 2024

