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ABSTRACT New technologies, including artificial intelligence (AI), offer significant opportunities to
improve blood glucose level (BGL) estimation systems, potentially enhancing care and quality of life for
diabetic patients. This study aimed to assess the accuracy of BGL estimation using photoplethysmographic
signal (PPG) analysis and AI methods by comparing various studies in terms of population, PPG signal
acquisition and analysis, AI approaches, and BGL estimation performance. A systematic search was
conducted in Scopus, Web of Science, Embase, PubMed and CINAHL databases. Conference proceedings
and book chapters were included, excluding other gray literature, focusing on English-language studies
published from 2010 to February 2024. Only publications concerning PPG signal analysis using AI
algorithms for noninvasive estimation of BGL in patients with diabetes were considered. Of 48 identified
articles, 24 were reviewed in full text, and 5 were deemed eligible. These studies varied in methodology
(populations, devices, AI solutions) and evaluation metrics. However, all studies used Clarke error grid or
Parkes error grid, with over 98% of estimates falling into clinically acceptable zones A or B. Current research
confirm that PPG-based BGL estimation is feasible and accurate. Further studies are needed to overcome
existing limitations and make this procedure available, accurate, and easy to perform.

INDEX TERMS Artificial intelligence, blood glucose level, diabetes, glycemia, photoplethysmography.

LIST OF ABBREVIATIONS
AI Artificial Intelligence.
BGL Blood Glucose Level.
CEG Clarke’s Error Grid.
CGM Continuous Glucose Monitoring.
FBG Fasting Blood Glucose.
MAE Mean Absolute Error.
MAPE Mean Absolute Percentage Error.
MARD Mean Absolute Relative Difference.
PEG Parkes’ Error Grid.
PPG Photoplethysmography.
RBG Random Blood Glucose.
RMSE Root Mean Square Error.
SMBG Self-Monitoring of Blood Sugar.
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I. INTRODUCTION
A. RATIONALE
Diabetes is a dreaded disease and a main cause of morbidity
and mortality in many countries around the world [1], [2].
In addition to having a large negative impact on the health
and quality of life of patients, with an increasing incidence
worldwide, diabetes also represents a huge cost for healthcare
systems. It is known that today, more than ten percent of
adults worldwide are affected by diabetes and the number of
young patients is also constantly growing. In particular, it has
been reported that diabetes is a global epidemic affecting over
530 million patients worldwide and that this number may
rise over 780 million in 2045 [1], [2], [3]. All this makes
diabetes one of the most challenging health problems for
many healthcare systems and indicates the need to prevent
the disease or treat patients in a timely and appropriate
manner [4], [5].
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Diabetes is caused by the loss, even partial, of the body’s
ability to produce or use insulin. This condition can lead to
too high levels of glucose in the blood (hyperglycaemia). The
presence of hyperglycemia is particularly feared and should
be avoided since it can cause dangerous acute and chronic
consequences. In the short term, hyperglycemia can lead
to dangerous conditions such as diabetic ketoacidosis and
hyperosmolar hyperglycemic state. In the long term, chronic
hyperglycemia contributes significantly to the development
of microvascular complications, such as diabetic retinopathy,
diabetic nephropathy, and diabetic neuropathy, as well
as macrovascular complications, including cardiovascular
disease, stroke, and atherosclerosis [6], [7]. The appropriate
management of blood sugar levels (Blood Glucose Level
(BGL)) is the main objective of the treatment of patients with
diabetes [8], [9].

To obtain this results it is necessary to know the exact
blood glucose level (BGL) of the patients. Over time,
increasingly reliable, easy-to-perform and less invasive
methods have emerged for the evaluation of BGL in patients
with diabetes [10], [11], [12]. In this sense, almost 2 centuries
have passed since the first attempts to evaluate the quantity
of glucose in urine. Only at the beginning of the last century,
tests were made available to perform this evaluation in the
clinical setting.More recently, in 1957, a methodology for the
semi-quantitative clinical assessment of blood sugar levels
through the use of a blood test strip was developed [12],
[13], [14]. A few years later, glucose meters increasingly
precise and usable even at home by patients began to be
available. Over the years, these devices have become less
invasive, painful and expensive, resulting in better precision
and ease of use. All this has favoured their increasing use
by patients, promoting the monitoring and treatment of
diabetes. In this regard, self-monitoring of blood glucose has
become the standard of care for an ever-increasing number
of patients. Initially, in fact, self-monitoring of blood sugar
(Self-Monitoring of Blood Sugar (SMBG)) was indicated for
patients with greater needs, such as those with type 1 diabetes
or, more generally, on insulin therapy [12], [13], [15]. It was
only at the end of the last century that continuous glucose
monitoring (Continuous Glucose Monitoring (CGM)) was
introduced under the supervision and management of spe-
cialized healthcare personnel. A first real-time, non-invasive
BGL monitoring system (Glucowatch Biographer) was
introduced about 25 years ago [12], [14], [15]. Subsequently,
some CGM system were marketed within a few years.
Devices capable to alert patients in case of hyperglycemia
or hypoglycemia and real-time CGM devices represented
a great opportunity for the management of patients with
diabetes. Another important technology was developed and
made available during this period. In particular, a real-time
CGM system was integrated with an insulin delivery device.
Over time, diabetes centers have increasingly used systems
to remotely monitor patients’ blood glucose levels, using data
obtained and stored by CGM devices [12], [13], [15].
The use of these technologies for the treatment of patients

with diabetes has become increasingly systematic [11], [16].

Indeed, the achievements obtained in the BGL evaluation
and, in particular, those associated with the CGM and
the new technologies typical of the last 20 years, have
revolutionized the way diabetes, particularly type 1 diabetes,
is managed [12], [14], [15]. Over the last few years, the
increasingly strong technological development has offered
other potentially useful techniques for the assessment of
blood sugar levels [12], [15], [17]. In particular, technologies
based on optical techniques, e.g., laser doppler and videomi-
croscopy, have found increasing use in the assessment of
microcirculatory district function [18], [19]. Among these
techniques, photoplethysmography (Photoplethysmography
(PPG)) emerges as one of the most promising for application
in health care. Photoplethysmography is a noninvasive tech-
nique that uses the optical properties of light to assess changes
in blood flow in the microvascular bed of the skin [20], [21].

The growing interest in the study of photoplethysmo-
graphic signal in health care is due to several factors.
Recent studies showed that PPG is a technique that can
provide important information about the health status of
the cardiovascular system and its aging, as well as several
other important conditions (e.g., sepsis, sleep quality) [22],
[23], [24]. Moreover, PPG acquisition requires a noninvasive,
easy-to-perform, and low-cost procedure [24], [25], [26].
In this sense, further interest in the study of the PPG
signal is due to the fact that the acquisition of the signal
has become increasingly possible and easy to use also
thanks to different devices such as smartphones [24], [25].
Furthermore, the spread of the use of photoplethysmography
in the management of patients has been favoured by the use
of Artificial Intelligence (AI) in the analysis of the signal and
the results obtained.

An increasing number of AI solutions were used to study
PPG for the BGL assessment in patients with diabetes or
at risk of developing diabetes. Although these studies seem
to have yielded interesting results, the complexity of this
recent field of AI application requires a thorough overview
and mapping of the available scientific literature.

In particular, it is important to highlight, review and
summarize emerging evidence, as well as to analyze the
characteristics of the proposed procedures.

Our scoping review could represent an important opportu-
nity to reduce or eliminate any knowledge or procedural gaps.

The purpose of this work was to explore and critically
evaluate studies on the effectiveness of AI algorithms applied
to PPG signal analysis for the estimation of blood glucose
level in patients with diabetes or at risk of developing
diabetes.

Furthermore, the examination of the selected studies with
respect to the procedures for acquisition and analysis of the
PPG signal, creation of the datasets and quantification of the
BGL represented a further objective of the study.

B. OBJECTIVES
The main objective of this scoping review was to provide
an overview of available studies and to examine emerging
evidence related to glycemia assessment based on PPG signal
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analysis and AI algorithms in patients with diabetes or at
risk of diabetes. Summarizing the results obtained from the
bibliographic search and describing the characteristics of the
selected studies represented a further objective [27], [28].
Finally, this study was conducted to identify and analyze

the knowledge gaps and limitations of the considered studies,
particularly with respect to the role of PPG analysis in blood
glucose assessment. The research question of the study was:
‘‘How many and what are the characteristics of the published
studies related to the use of artificial intelligence algorithms
for the analysis of the PPG signal and the estimation of blood
glucose levels in diabetic patients?’’

II. METHODS
This study was conducted according to the framework
proposed by Arksey and O’Malley [29], and complies with
the recommendations of the Joanna Briggs Institute for
elaborating scoping reviews [30]. We used the PRISMA-
ScR (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses extension for Scoping Reviews) as the
guideline for this scoping review [31].

A. ELIGIBITY CRITERIA
We conducted this review in five key phases: (1) identify-
ing the research question, (2) identifying relevant studies,
(3) selecting the studies, (4) charting the data and (5) col-
lating, summarising and reporting the results [32]. To answer
our research question we defined specific eligibility criteria
to ensure the relevance and quality of the examined research.

Eligibility criteria of this scoping review were the
selection of research articles from peer-reviewed journals
and conference proceedings that deal with PPG signal
analysis using artificial intelligence algorithms for nonin-
vasive blood glucose estimation in diabetic patients. Our
approach includes all research designs, from randomized
controlled trials to cross-sectional studies, to capture the
broadest spectrum of advances in this field. We considered
studies applied specifically to human diabetic populations,
without imposing limitations on age, gender, ethnicity,
or comorbidities. Studies with an incomplete description of
the AI procedure performed were not considered. Particular
attention was given to the type of the procedure adopted
for dataset construction, data analysis and application of
AI solutions. Indeed, understanding whether and in what
way the analysis of PPG signals through AI can allow
the correct estimation of the BG level of patients with
diabetes is the main objective of this scoping review.
In terms of temporal scope, the review focused on studies
published between January 1, 2010, and February 2024,
to incorporate the most current contributions to this field
of research. In addition, to facilitate universal accessibility
and understanding, only studies published in English were
considered. Conversely, the review deliberately excluded
abstracts, literature reviews, commentaries, editorials, and
opinion articles to maintain an exclusive focus on original
research. Studies involving animals were also excluded,

reinforcing the review’s commitment to directly applicable
human research findings. In addition, studies published in
languages other than English and published before 2010 were
not considered.

B. INFORMATION SOURCES AND SEARCH STRATEGY
To identify relevant studies, we performed a systematic
search of the following electronic databases: Scopus, Web
Of Science, Embase, PubMed, and Cumulative Index to
Nursing and Allied Health Literature (CINAHL). Conference
proceedings and book chapters were included to ensure a
complete coverage, excluding other forms of grey literature.
The search strategies used the following keywords to capture
concepts related to diabetes (diabetes, diabetes mellitus, dia-
betic patients), photoplethysmography (photoplethysmogra-
phy, photoplethysmogram, PPG signal), artificial intelligence
(AI, artificial intelligence, machine learning, deep learning,
predictive models), and blood glucose level in diabetic
patients (metabolic control, blood glucose level, glycaemia,
glycemia, glycemic index, glycated hemoglobin, hemoglobin
A1c, HbA1c, glycosylated hemoglobin). The query string was
adapted to the specific characteristics and requirements of
each database. The complete search strings can be found in
the Appendix.

C. DATA EXTRACTION
In accordance with inclusion criteria, two of the authors (SL
and PF) independently selected the articles considering the
title and abstract. Articles were collected in an EndNote
X9 library (Clarivate) by both authors and, once duplicates
were removed, were compared. The final list of considered
articles was imported into an Excel spreadsheet by one of the
authors and checked by another. The information considered
was: date of publication, population investigated including
type of diabetes, sex, BMI, ethnicity, skin characteristics,
duration of the disease, blood glucose and glycosylated
hemoglobin values, therapy, presence of complications and
comorbidities. In addition, the following elements were taken
into account: blood glucose measurement device and PPG
signal acquisition device, type of PPG signal evaluation
(duration, acquisition protocol), data set characteristics, data
set processing, artificial intelligencemethod andmain results.
The studies were sorted by year of publication. For each of the
studies considered, the information analyzedwas presented in
summary tables.

III. RESULTS
A. SEARCH RESULTS
The bibliographic search carried out in the various libraries
identified a total of 48 articles after the removal of duplicates.
The distribution by publishing year of these articles is shown
in Figure 1.
After the analysis of the title and the abstract 17workswere

removed. An additional 8 articles were retrieved and assessed
for eligibility by comparison between the two reviewers.
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FIGURE 1. Year of publication of revised articles (N=48).

FIGURE 2. Preferred Reporting Items for Systematic Reviews and
Meta-Analyses for Scoping Reviews (PRISMA) flow diagram of the search
and study selection process.

Among them, one article was retrieved and thus a total
of 24 articles were examined as full text. Of the reviewed
articles, 20 were journal publications and 4 conference pro-
ceedings. At the end of the full-text examination procedure,
a further 19 articles were excluded for the following reasons:
the group of subjects investigated by PPG analysis was
not diabetic (n=5), unclear description of the methodology
(n=3), PPG analysis to evaluate the presence of diabetes
and not the blood sugar level (n=6), lack of data or lack of
characteristics on the study population (n=5). The PRISMA
flowchart illustrating the study selection process is outlined
in Figure 2.

B. CHARACTERISTICS OF THE INCLUDED STUDIES
After the selection process, 5 studies were considered eligible
for this scoping review [33], [34], [35], [36], [37]. All studies
were published in peer-reviewed journals and are reported in
Table 1.
Among the included studies, two are from China, one

from Taiwan, one from India, and one from Spain. One

study was published in 2011, while all other studies have
been published recently, starting from 2022 (Table 1). The
studies were analyzed in terms of study population, study
protocol and design, AI methodologies used, and results
obtained in blood glucose level estimation. With regard to the
characterisation of the population included in the 5 studies
considered, Table 2, the description of the participants was
partial or incomplete apart from the study by Lu et al. [36].
In this sense, even the main characteristics of clinical interest,
such as gender, age, BMI, metabolic control, type of diabetes,
years of disease and therapy, were not described in detail.
Moreover, in some studies there was an under-representation
of the population with diabetes (Table 2). In the Monte-
Moreno study [33], only 79 out 410 subjects investigated
were patients with diabetes, while in the study by Li et al.
[35], investigated 21 subjects included only 4 patients with
diabetes. In these studies, the characteristics of the two
populations investigated, with and without diabetes, were
not specified. In contrast, in the article by Lu et al. [36],
PPG and BGL measurements were acquired in 30 diabetic
subjects. However, this study did not include a control
group. In this study, important parameters for the evaluation
of the PPG signal were considered, namely gender, type
of treatment, smoking, age and BMI. In the study by
Padmavilochanan et al. [34], the 283 participants included
in the dataset had glucose levels in the normal, pre-diabetic
range and diabetic range. However, the study does not
report a description of the specific population characteristics
for the three groups. The same condition is present in
the article published by Chen et al. [37]. In this study,
3 subgroups of patients are considered without specifying
the characteristics of the three populations. In addition,
Table 2 reports recruitment strategies, including inclusion and
exclusion criteria, and provides guidance on study design
and potential bias in results. As reported, some studies
lack a clear description of inclusion and exclusion criteria
for the recruitment of participants. Indeed, only 2 studies
(Padmavilochanan et al. and Li et al. [34], [35]) report
exclusion criteria (see Table 2).

C. DEVICES AND PROCEDURES
The examined research studies used a variety of PPG devices,
ranging from commercially available devices [33], [35]
to customised sensors designed specifically for the
research [34], [36], [37] (see Table 3). The glucometers used
for measuring the blood glucose level (BGL) also differed
between the studies. Chen et al. [37] used BGL measurement
by blood test, while Li et al. [35] adopted a continuous
blood glucose monitoring patch without fingertip sampling.
The other studies adopted commercial glucometers requiring
acquisition by finger prick. Two different commercial
glucometers were used in the study by Padmavilochanan et al.
[34] however, their type was not specified.Most studies opted
for fasting blood glucose (Fasting Blood Glucose (FBG))
measurement [34], [35], [36], [37], in line with standard
practice for reliably assessing glucose levels. One study [33]
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TABLE 1. Selected articles.

employed random blood glucose (Random Blood Glucose
(RBG)) measurement.

Regarding the acquisition protocol, the adoption of stan-
dardized procedures is critical to ensure that measurements
are robust and can be reliably compared while minimizing the
influence of external factors. In the selected articles, the PPG
measurement site was the fingertip for all studies involved,
with possible differences from the finger considered. Notably,
only in the studies of Lu et al. and Li et al. [35], [36],
it was specified that the measurement were conducted on
the left middle finger for all subjects involved in the study.
In Monte-Moreno’s study [33], experiments to assess BGL
were conducted in different environments and by different
operators. In particular, some measurements were acquired
within the university research laboratory by the author, while
others were acquired in out-patient clinics by a physician.

Four out of five studies [34], [35], [36], [37] specified that
data acquisition took place after a resting phase. In addition,
in Li’s study [35], restrictions were adopted on the use of
drugs and physical activity two hours before the experiment,
while in Chen’s study [37], the use of glucose-lowering drugs
was avoided from the day before the experiment.

In 3 studies [33], [35], [37] PPG and BGL measurements
were performed only once per subject investigated. In the
study by Lu et al. [36], the acquisition was repeated several
times on different days, while in the study by Li et al.
[35] the duration of the period of signal acquisition and test
performance was longer than in the other works considered.
In fact, the experiments started at 9:00 a.m. and lasted
150 minutes for each participant. In addition, signals were
also acquired after the participants ate 100 g of bread and
250 ml of water.

D. ARTIFICIAL INTELLIGENCE METHODS
Table 4 provides an overview of the artificial intelligence
methods applied to blood glucose level estimation using the
PPG signal. It can be seen that 3 out of 5 studies adopted
deep learning techniques, indicating a prevalent trend toward
complex models that can capture and analyze fine patterns
in PPG data. Conversely, in his work, Monte-Moreno [33]

used the random forest model, an ensemble approach that
often offers robustness and ease of interpretation. The random
forest regressor was also used in Li’s study [35], in which
its integration with other ensemble models, namely gradient
boosting and bagging, via the choquet integral was explored.
All 5 studies used supervised learning approaches using
the BGL value measured by commercial devices or blood
test as ground truth. Regarding the input used for artificial
intelligence algorithms, it is possible to distinguish between
twomain approaches: the use of pre-processed portions of the
signal and the use of features extracted from signals through
a feature engineering process. Regarding the construction of
data sets for model training and evaluation, 3 studies [33],
[34] adopted a data set split into training set and test set,
assigning part of the subjects to the training test and part to the
evaluation set. In Lu and Li’s studies, however, the division
was made according to the time of acquisition. Li et al.
[35] divided the training and evaluation sets according to
days of acquisition, assuming that physiological signals
collected between different individuals and on different days
may reflect physiological changes for a partial population.
Lu et al. [36] used the first 12 round of PPG acquisition
to train the model and the last 3 rounds (13-15) for
model evaluation. Only one study, Padmavilochan et al.
[34], included the construction of an additional test set
(deployment dataset) to evaluate their model. The different
input data and dataset construction adopted for the artificial
intelligence methods are described in detail in Table 4.

To train and validate the models, 4 out of 5 studies [33],
[35], [36], [37] used a cross-validation approach. In the study
by Padmavilochanan et al. [34] the GlucoNet model was
trained and evaluated on a dataset of 283 participants of which
10% used as validation set and 30% used as test set. Finally,
the generalization ability of the GlucoNet was evaluated on
an additional dataset of 600 subjects (deployment dataset).

E. BLOOD GLUCOSE LEVEL ESTIMATION
The reviewed studies used several metrics to evaluate the
performance of artificial intelligence approaches. Only one
study used the coefficient of determination R2 [33], while
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the other 4 studies [34], [35], [36], [37] quantified mean
prediction error using mean absolute error (Mean Absolute
Error (MAE)) or root mean square error (Root Mean
Square Error (RMSE)). Two studies [35], [36] used the
accuracy score metric. Two studies [35], [36] expressed
the percentage estimation error by resorting to the metrics
Mean Absolute Percentage Error (Mean Absolute Percentage
Error (MAPE)) and Mean Absolute Relative Difference
(Mean Absolute Relative Difference (MARD)). All studies
introduced Clarke’s error grid (Clarke’s Error Grid (CEG))
or Parkes’error grid (Parkes’ Error Grid (PEG)) analyses as
evaluation metrics. Both evaluation grids divide the results
into five zones (A-E) according to the accuracy of clinical
decisions resulting from the estimated blood glucose values
with respect to reference values. Zone A includes estimates
that lead to clinically correct decisions, while zone B includes
clinically non-critical estimates, where the error does not
expose the patient to risk. Zone C denotes potentially
harmful over-corrections, while zone D indicates missing
necessary corrections. Finally, zone E represents dangerous
errors, where the estimate leads to making the opposite
of the necessary decision (e.g. administration of insulin
when the patient is hypoglycaemic). The later developed
Parkes’ Error Grid has a similar structure, but introduces
smoother transitions between zones and specific differences
for patients with type 1 and type 2 diabetes, making the
assessment more adaptable to clinical practice [38]. The
description of the models’ performance is shown in Table 5.
The study by Monte-Moreno [33] showed a high coefficient
of determination (R2 = 0.88), suggesting that the model is
effective in explaining the variability in the observed data.
In addition, the majority of predictions (87.71%) fell within
the Clarke’s Error Grid Zone A, indicating high clinical
reliability of the measurements.

GlucoNet model by Padmavilochanan et al. [34] achieved
a MAE of 1.4 mmol/L and a mean absolute percent error
(MAPE) of 17.8 % (±12.8 %) on the test set. The Clarke’s
Error Grid (CGE) analysis shows a significant percentage of
predictions (45%) in zone B, even though all predictions fall
within the clinically acceptable A and B zones. Regarding the
additional deployment set, the metrics values of MAE (1.3±

1.0), MAPE (21.8%), CGE-Zone A (57%) and CGE-Zone
B (43%) obtained in this test scenario further confirm the
robustness of the model.

The results of Li et al. [35] demonstrated a solid
performance of their AI model in predicting glucose levels,
with most predictions falling within clinically acceptable
ranges (CGE Zone A (80.09%)).

The model proposed by Chen et al. [37] obtained a lower
MAE value of 0.656 mmol/L, but an higher RMSE value
of 1.129 mmol/L. Regarding the clinical acceptability of
the predictions, most of the predictions falling in Zone A
(87.89%) and a small percentage in Zone B (12.11%).

IV. DISCUSSION
The results of this scoping review show that in recent
years there has been a growing interest in the study of the

relationship among PPG signal analysis and AI solutions
for monitoring blood glucose level (Figure 1). However,
evidence regarding the possibility of using PPG signal
analysis to estimate the BGL of patients with diabetes is still
limited. In fact, only a limited number of studies applied this
method of analysis to a diabetic patients’ population. Among
these, only 5 papers [33], [34], [35], [36], [37] provided
sufficient methodological description and met the inclusion
criteria to be considered in our study. In accordance with
the main purpose of this scoping review, particular attention
was paid to the adopted PPG signal acquisition and analysis
procedures as well as to the implemented AI solutions.

A direct comparison of results across studies is hindered
by the variation in methods and evaluation metrics used to
analyze datasets. Indeed, each article presented differences
in the methods adopted as well as in the characteristics of
the investigated population. Likewise, each study applied
distinct evaluation metrics. The selection of different accu-
racy metrics across studies can be justified by the fact
that each method has specific purposes and characteristics.
Furthermore, the combined use of multiple metrics within
individual studies offers a more comprehensive assessment
of model robustness [39]. Regarding the evaluation of
AI performance in the 5 studies considered, only one of
them [33] used the coefficient of determination R2. The
other four studies [34], [35], [36], [37] quantified mean
prediction error using Mean Absolute Error (MAE) or Root
Mean Square Error (RMSE). Moreover, Accuracy score
metric, Mean Absolute Percentage Error (MAPE) and Mean
Absolute Relative Difference (MARD) were used. Finally, all
studies introduced Clarke or Parkes error grid analyses.

Given these differences, we focused on analysing each
study individually, highlighting the specific strengths and
limitations of each approach. This analysis allows us to
present an insight into the contributions and challenges of
each study, thus highlighting the diversity of methodologies
while recognising the advancements made in this emerging
field.

For the BGL estimation performed, the high coefficient
of determination obtained by Monte-Moreno [33] suggested
that their model was effective in explaining the variability
of the observed data. Moreover, the result of the performed
Clarke Error Grid test indicated high clinical reliability
of the BGL estimates. Notably, this study used Random
Blood Glucose measurements rather than Fasting Blood
Glucose measurements, which were employed in all the
other studies. A key strength of using RBG is that it allows
for glucose monitoring at any time of the day without the
need for fasting. This approach aligns well to real-time
BGL monitoring, through the use of wearable devices, where
photoplethysmography can be easily integrated.

However, it is important to consider that less then 20%
of the study subjects had a diagnosis of diabetes. This
small percentage of diabetic individuals could imply that
the majority of the dataset consists in normal glucose
level readings. This scenario could significantly affect the
variability and range of blood glucose levels considered by
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TABLE 5. Performances of AI models.

the model, tilting the results toward a lower variability typical
of non-diabetic ranges. The absence of targeted validation
on diabetic subjects may limit the generalizability of the
model’s results to the broader diabetic population. Therefore,
although the model demonstrates robust performance, the
results should be interpreted with caution, particularly with
regard to their application to the management of glucose
levels in diabetes.

GlucoNet model used by Padmavilochanan et al. [34]
achieved good MAE and MAPE results. Regarding the
performed Clarke’s Error Grid analysis, even though all
predictions fall within the clinically acceptable A and B
zones, a significant percentage of predictions were in zone B.
This indicated a lower accuracy in the estimation of BGL
compared with the estimates in zone A.

Compared to the other considered studies, the strength of
the research by Padmavilochanan et al. [34] is the inclusion of
a large populationwith a significant representation of diabetic
patients. Additionally, the authors validated their model using
an additional dataset (deployment set) collected from various
sources, including a university hospital clinic, intensive care
units, and rural check-up health clinics. This diverse testing
framework ensure the versatility and adaptability of the
model across different clinical settings. Moreover, the model
proposed by the authors showed to generalize well across
different patient demographics, as indicated by the variations
in age and sex distribution across the test set and deployment
datasets reported by the authors.

Despite its strengths, the study does not describe in detail
the characteristics and the performance metrics of the three
considered subgroup populations. This lack may limit a
properly understanding of the model’s effectiveness across
different blood glucose levels and its potential clinical utility
in the diabetic population.

The results of Li et al. [35] demonstrated a solid
performance of their AI model in estimating glucose levels.
In fact, most of the BGL predictions fell within clinically
acceptable ranges (CGE zone A and B). However, regarding
the estimation of BGL in patients with diabetes this is a
preliminary study. Specifically, the study involved a small
sample size compared to other larger studies included in this
scoping review and included only 4 participants diagnosed
with diabetes. Consequently, the results of the study should
be interpreted with caution regarding their applicability to

larger populations. The lack of a detailed demographic and
clinical profile limits the possibility of assessing whether
the performance of the AI model may vary among different
subgroups. Therefore, the promising results achieved require
the extension of the study to more diverse and larger
populations, as well as providing more detailed subgroup
analyses.

In contrast, Lu et al. [36] focused exclusively on a diabetic
population but targeted short-term glucose level estimation.
The authors trained their model on sequential acquisition
rounds and used subsequent rounds for validation. This
method ensures that the model is trained on a comprehensive
temporal dataset, capturing potential day-to-day variations in
glucose levels and physiological response. At the same time,
it is important to consider that this methodology may result in
models that are finely tuned to predict short-term fluctuations
in glucose levels with high accuracy but, it might not perform
as well when compared to long-term physiological changes
or significantly different conditions. This aspect is crucial
for clinical applications where conditions can vary widely
over time. Therefore, while Lu et al. [36] achieved high
performance in blood glucose estimation, on the other hand
these results could be due to blood glucose values with lower
variability than those tested in other studies [34], [37].

In comparison to the other studies considered, the model
proposed by Chen et al. [37] obtained a lower MAE but a
higher RMSE. These results indicate that the average pre-
diction error is relatively low and that the model predictions
are, on average, aligned with actual glucose measurements.
However, the higher RMSE value, which gives greater weight
to large errors, suggests that although most predictions are
accurate, significant deviations occasionally occur. This is
a particularly important aspect to investigate, indeed if this
type of error involves patients with poorer glycemic control,
the results obtained would be less promising. Similar to
Padmavilochanan’s study [34], Chen’s study included three
groups of subjects, with and without diabetes, but lacks a
detailed descriptions of these subgroups.

Overall, the articles considered in this scoping review
showed good performances with respect to the ability to
estimate the BGL of the subjects investigated. However,
the limited number of patients enrolled and the lack of the
description of the patients themselves limit the possibility of
using and comparing the results obtained. In fact, detailed
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and targeted knowledge of the population characteristics is
important because many factors (e.g., obesity, age, gender,
skin tone, skin thickness, body site of measurement, local
body temperature, health condition and sweat) can influence
the PPG signal and should be taken into account [25], [40],
[41].

As regards the study protocol the quality of data acquisition
procedures is critical to ensure that the data collected are
not only accurate but also reproducible in different contexts.
At the same time, the adoption of restrictions such as those
adopted in some of the studies considered [35], [37] (i.e.
diet, lifestyle, pharmacological therapy) should be managed
carefully. In fact, it is important to consider that the main
objective was to obtain an accurate estimate of BGL through
PPG analysis in all conditions of daily life in patients with
diabetes [42], [43], [44]. Differences between the studies
considered also concerned the preparation of patients for
the test. Four of the five used the fasting blood glucose
measure, which requires subjects to fast for at least 8 hours
before measurement. In contrast, the study conducted by
Monte-Moreno [33] did not specify any particular acquisition
conditions, which makes us assume that the measurement is
random blood glucose.

Regarding other parameters, four out of five studies [34],
[35], [36], [37] specified that data were collected after a
resting phase. In addition, in Li’s study [35], restrictions were
adopted on the use of drugs and physical activity two hours
before the experiment, while in Chen’s study [37], the use of
glucose-lowering drugs was avoided from the day before the
experiment.

The studies conducted by Li et al. and Chen et al. [35],
[37] standardized acquisition conditions with the goal of
minimizing the influence of external factors. In fact, their
protocols included considerations such as pre-measurement
conditions, drug control, and body site measurement.
In Monte-Moreno’s study [33], experiments to assess BGL
were conducted in different environments and by different
operators. While some measurements were carried out by
the author within the university research laboratory, other
measurements were conducted in out-patient clinics by a
physician. This procedure may be a limitation with respect to
intra-observer and inter-observer reliability [45] as well as to
the conditions under which the test was administered. In fact,
both blood glucose and the PPG signal may be affected by
the environmental conditions (e.g. motion artefact, sensor
positioning, environmental light, applied pressure to the skin)
[40], [41], [46].

All this demonstrates how complex it is to develop a
reliable, real-time, non-invasive glucose estimation system
based on PPG.

At the same time, the complexity of this estimation
procedure does not mean that further important objectives
cannot be achieved. In particular, in addition to estimate the
current BGL, the use of artificial intelligence may be used
for the prediction of BGL in patients with diabetes [47].
Predicting patients’ BGL with acceptable accuracy would

represent a great step forward in the treatment of patients with
diabetes and could allow us to reduce the negative impact
on glycemic control of many important factors, such as the
effect of nutrition, physical activity, sleep characteristics,
seasonal changes, working activity [42], [43]. In this sense,
it is known that diabetes is chronic disease that highlights
the importance of a constant and personalizedmanagement of
patients. In addition, the ease with which the PPG signal can
be acquired through a wide range of user-friendly wearable
products (e.g., pulse oximeter, smartwatch, smartphones,
smart bracelets, and smart rings) may further encourage the
spread of this technology [24], [25]. If, on one hand, the
results of this scoping review provide the first evidence
regarding the possibility of defining a potentially useful
technical solution to evaluate glycemia and improve diabetes
monitoring, on the other hand, there are only a limited
number of studies in this field to date. Furthermore, the
shortcomings of the considered studies with regard to
the population investigated hindered the drafting of this
scoping review, limiting the ability to generalize the results
and make meaningful comparisons between the different
works. Similarly, the various approaches used to acquire and
analyze photoplethysmographic signals, including different
artificial intelligence methods, prevented an easy and clear
definition of the strengths and weaknesses of the different
reviewed studies. This methodological heterogeneity made it
difficult to synthesize results and identify common trends,
representing a significant limitation of the scoping review
process. In this sense, the definition of an accessible database,
of appropriate size and characteristics, relating to patients at
risk or with diabetes, as well as to a control group, could
represent a significant progress in the study of the role of
PPG analysis in the assessment of glycaemia. Such a database
would allow standardisation of data collection and analy-
sis methods, facilitating comparison between studies and
improving the robustness of the developed methodologies.

As a result, there is currently no definitive evidence
regarding the presence of immediately usable devices and
adequately validated procedures for the assessment of BGL
in patients with diabetes. At the same time, the technologies
available today appear to be suitable to achieve this
objective.

The results presented in this scoping review highlight
limitations and strengths of the studies in the literature and
represent a starting point for future research in this area aimed
at translating this promising technology into practical tools
for diabetes management in clinical practice.

V. CONCLUSION
Some studies have verified the possibility of using PPG
analysis and AI solutions to estimate BGL in patients
with diabetes. Although only 5 articles were considered in
this scoping review, overall these studies provided the first
important evidence regarding the possibility of estimating
BGLwith good accuracy using PPG analysis. The availability
of a non-invasive, affordable, and user-friendly method for
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estimating BGL could represent an important step forward for
the quality of monitoring and life of patients with diabetes.
Unfortunately, the limited number of studies conducted in
this field and some limitations found such as those relating
to the differences in the devices, datasets and AI solutions
confirm the need for further studies. New studies should
consider larger populations of patients with diabetes and take
into account numerous factors that may influence the PPG
signal, overcoming the limitations present in the reviewed

publications. Overall, the results published to date confirm
how the estimation of the BGL starting from the PPG signal is
possible and accurate. Further studies are needed to overcome
the limitations found in the considered articles and to make
this procedure accurate, safe and easy to perform.

APPENDIX
SEARCH STRATEGIES FOR ELECTRONIC DATABASE
See Table 6.

TABLE 6. Search strategies for electronic database.
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TABLE 6. (Continued.) Search strategies for electronic database.
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