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ABSTRACT Fractional order calculus (FOC) uses arbitrary order operations in differentiation and integra-
tion. Previously, the absence of methods to solve fractional differential equations limited the application
of fractional order calculus. However, with the development of new methods, FOC is now applicable in
various fields and has been utilized to enhance control system performance in traditional techniques. FOC
is used in this study to develop a new fractional structure for the sliding mode control approach that
offers improved performance and more robustness to external disturbances. The fractional order sliding
mode control (FOSMC) strategy is designed using a Lyapunov-based sliding condition to ensure system
stability. To enhance performance, genetic algorithms are used to adjust the fractional orders and controller
parameters. The proposed fractional sliding mode control system is applied on an unmanned aerial vehicle
system affected by external disturbances and then it is compared with a conventional integer order sliding
mode control (IOSMC) system. Simulation results have proved the efficiency of the proposed fractional
order controller where it outperforms the conventional sliding mode controller in terms of better transient
dynamics and more robustness to external disturbances.

INDEX TERMS Sliding mode control, fractional sliding mode control, unmanned aerial vehicle, genetic
algorithm.

I. INTRODUCTION

Fractional order calculus (FOC) is a branch of mathematics
that expands the concepts of differentiation and integration to
encompass orders beyond just integers. It supports derivatives
and integrals of any order (integer, real, or even complex)
[1]. As a result of the lack of solution approaches that dealt
with fractional differential equations, it was rare to use FOC.
Currently, recent advancements have opened doors to FOC
application in diverse fields. The theory of fractional calculus
has found applications in various engineering disciplines,
including mechanical [2, 46], electrical [3], bioengineer-
ing [4], and environmental engineering [5]. As a powerful
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tool for enhancing control system performance, fractional
calculus has found its way into various established control
structures. This includes fractional order PID control [6],
optimal control [7], adaptive control [8], and sliding mode
control (SMC) [9]. Studies have demonstrated that fractional
order control systems can achieve better performance than
integer-order control systems [10].

Driven by their potential to revolutionize fields like logis-
tics, agriculture, and environmental monitoring, the research
of unmanned aerial vehicles (UAV) has gained increased
focus in the last few years. These versatile aircraft offer
valuable tools for both military and civilian applications.
In military operations, UAVs are versatile tools, employed for
tasks like carrying radar systems, operating cameras, trans-
porting weaponry, and conducting reconnaissance in hostile

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

179204

For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 12, 2024


https://orcid.org/0009-0000-3512-2268
https://orcid.org/0000-0003-2969-1581
https://orcid.org/0000-0001-5648-4786
https://orcid.org/0000-0001-6128-9184
https://orcid.org/0000-0002-2875-562X
https://orcid.org/0000-0002-9540-3675

N. Alabsari et al.: Fractional Order Sliding Mode Control With GA Tuning for a UAV Quadrotor

IEEE Access

environments. Unmanned aerial vehicles, employed by
civilians, contribute to scientific advancements, facili-
tate life-saving search and rescue missions, track natu-
ral resources, and support security tasks [11]. Nowadays,
quadrotor UAVS are used widely in agriculture to ensure
accurate agricultural production [12]. Several control strate-
gies have been employed to stabilize and control UAVs
such as classical and implicit PID controllers [13], [14],
linear quadratic regulator (LQR) [15], feedback linearization
and adaptive feedback linearization control [16], [17], back
stepping [18], sliding mode [19], adaptive fuzzy [20], neu-
ral network based MPC [21], in addition to other control
approaches [22].

In the literature, the PID and sliding mode control schemes
are the most common controllers that have been widely used
with fractional structures. In 1994, 1. Podlubny [23] intro-
duced the fractional order PID control strategy to control a
fractional order system. Then, several fractional order PID
controllers were designed using different designs and tuning
approaches [24], [25]. The use of FOSMC to stabilize and
control UAVs has been studied with employing several frac-
tional schemes to build the control action. In [26] and [27],
an integer order sliding surface in addition to a fractional
order control action were employed to design the proposed
FOSMC. In [28] and [29], the proposed FOSMC is calculated
using a fractional sliding surface structure, which incorpo-
rates a proportional term and a fractional order derivative
term. The authors in [30] proposed a design for a sliding
surface, utilizing a fractional-order derivative and integral in
addition to an integer-order derivative of the error signal,
notably excluding a proportional term. The authors of [31]
propose a design for a sliding surface, which utilizes integer
and fractional order derivatives of the error term. Researchers
in [32] and [33] propose a fractional-order sliding mode
control design that utilizes a fractional order manifold. This
manifold incorporates both fractional-order derivatives and
integrals of the state’s error. In [34], the authors designed a
fractional-order sliding mode control scheme by employing
an integer-order sliding surface in addition to a fractional
order switching law.

Genetic algorithms are used as valuable tools for optimiz-
ing the control parameters of various controllers. Notably,
it has been widely employed to fine-tune the control parame-
ters in fractional order controllers, particularly those used in
PID [25], [35] and sliding mode control [36], [37], [38].

The design of fractional order sliding mode control
(FOSMC) with a sliding manifold incorporating integral,
and fractional-order derivative terms, in addition the pro-
portional term, for controlling UAV altitude and attitude is
still not addressed especially with the use of GA to adjust
the control parameters. This problem is investigated in this
research where a novel fractional-order sliding mode control
(FOSMC) scheme is designed for controlling the quadrotor’s
attitude and altitude dynamics to enhance tracking perfor-
mance. The approach involves designing a fractional-order
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sliding manifold, incorporating a proportional term in addi-
tion to integer and fractional order derivatives of the tracking
error. The FOSMC enhances the vehicle’s stability in both
altitude and attitude, while a conventional proportional-
derivative (PD) controller computes roll and pitch angles to
maintain stability along the x and y axes. For the tuning
of the designed control system parameters, including frac-
tional orders, a genetic algorithm (GA) is used aiming for
improved system performance. A conventional integer-order
sliding mode control (IOSMC) system is designed and also
tuned using the GA to be compared with the proposed FSCM
controller and the comparison results proved that the FSMC
controller outperforms the conventional one. A fractional
integral term is then added to the fractional sliding surface and
the obtained control system is studied and resulted in better
performance. The Matlab-Simulink software is utilized for
simulating all the systems in this research and the FOMCON
toolbox [39] is employed to calculate numerical solutions of
the fractional parts.

In this research, section II introduces preliminaries and
background on the fractional calculus, UAV mathematical
model, and genetic algorithms (GA). Section III explains the
derivation and design of the FOSMC system and verifies
and compares the results of the designed control approaches
through simulations. Section IV presents a comparison
between the application of fractional and conventional sliding
mode control to Quadrotor where GA is used to optimize
the parameters involved in the control scheme. Section V
presents the results when adding the fractional integral term
to the sliding mode control. Section VI concludes this
research.

Il. PRELIMINARIES

Fractional calculus is defined by the fundamental operator
DY, used for non-integer order differentiation and integra-
tion, where « denotes the fractional order which can be a
complex number while a and t denote the bounds of the
operation. ,DY is defined as [23];

dOl
ﬁiR(Ol).>O;
D=1 1:R@).=0; (1)

t
/ dt)” :R() <0
a
The following definitions are the most commonly utilized for

fractional differentiation [40]:

i. Grunwald-Letnikov (GL) definition is given by;

Dif (@)
AR
= lim A~ ¢ -1 —jh 2
lim A~ > )’(j)f(t ho @
Jj=0
where [.] represents the integer part.

179205



IEEE Access

N. Alabsari et al.: Fractional Order Sliding Mode Control With GA Tuning for a UAV Quadrotor

ii. Riemann-Liouville (RL) definition is given by;
dn t
DU (1) = __/ _f® .
Fn—a)d™ ), (t—17)@"*!
for(n—1 <o <n) 3)
where I'(.) represents Euler’s gamma function.
iii. Caputo definition is given by;
t n
/' (@)
DYf (1) = ;
a tf( ) T (n _ a) g (t _ T)Ot—n-i-l
for(n—1 <o <n) @

To ensure full coverage, it is worth noting the utility of
the Laplace transform method in addressing fractional order
differential equations. Notably, under zero initial conditions,
the Laplace transform of the aforementioned fractional order
operator for the listed function is given by;

L{Df (1) ; 5} = s°F (s) )

Nonetheless, there are well-established numerical method-
ologies exist for evaluating fractional-order derivatives.
These encompass Griinwald-Letnikov technique, various
continuous and discrete time approximation methods, and the
matrix method by Podlubny. Fortunately, certain MATLAB
tools serve as valuable assets when employing these meth-
ods [40]. Figure 1 shows the difference between integer order
(IO) and Riemann-Liouville fractional order (FO) differential
and integral of functions @ (r) = ¢ > 0.

A. QUADROTOR’S DYNAMIC MODEL
To determine the quadrotor’s dynamic model, two reference
frames are considered. One is described by the axes X, Y, and
Z (the inertial frame I), and the other is attached to the UAV’s
center of mass and described by the axes xp, yp, and zp (the
body fixed frame B), as shown in Figure 2.

The UAV dynamic model can be obtained based on the
Newton-Euler method, with considering the vehicle as a rigid
body, as [41] and [42]:

. (cos () sin (8) cos (¢p) +sin(g) sin (d)))
X = uy + dy;
m
(6)
. (Sin (¢) sin (0) cos (¢) — cos (p) sin (¢))
y= up + dy§
m
(7
2=—9+(55@%§$@)m+u5 ®)
v @Oy — 1L,
¢=—(p(yly )+;—2+d¢; ©
é: ¢¢(Izz_lxx) +u—3+d9; (10)
. IYY Iyy
O(Ixx — I
¢5=—¢(I yy)+;l—4+d(p a1

where Iy, Iyy and I, denote the vehicle moments of inertia
about the corresponding axis, & represents the gravitational
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FIGURE 1. Fractional-Order derivative and integral of y (t)=t for different
values of 8.

FIGURE 2. The UAV and the coordinate systems [27].

constant, m represents the quadrotor mass, (X, y, z) is the
position vector, ¢, 6 and ¢ are the vehicle Euler angles,
and uj, up, u3, uy are considered as control signals. The
terms dy, dy, dz, dg, de and d,, represent perturbation terms
of unknown bounds.

The vehicle is equipped with four rotors that are connected
to four motor. Each motor has an angular velocity w;, where
(i=1,2...4) and produces a vertical force F; and moment
M; that are related to w; as [43]:

F; = kpo?,

M; = kmo?,
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where kp is the thrust coefficient while ky; is the drag coef-
ficient. The relation between the angular velocities and the
control signals, u;, is [43]:

2
up kr kr kr kg wj
wl | 0 ke 0 —lkg ||
u3 | | =lkp O kg O a)%
ug kM —kM kM —kM w2

4

where [ denotes the length of the vehicle arm.

B. GENETIC ALGORITHM

Genetic algorithms (GAs) are powerful Heuristic tools that
minimize a fitness (cost) function by fine-tuning the parame-
ters of that fitness function. Unlike other methods, to perform
their search, The GA techniques need only evolutions of
fitness function rather than derivatives or other auxiliary
knowledge. Genetic algorithms rely on probabilistic rules
rather than deterministic ones, evolving a population of
potential solutions for a given problem. These solutions are
known as chromosomes or individuals and evolve iteratively.
To select the individuals that will produce the next gener-
ation, the cost function is used to evaluate the population
solutions in a process known as selection, Then the algorithm
utilizes crossover and mutation, two essential genetic oper-
ators, to produce the next generation of chromosomes. The
following steps [44] can summarize the process of genetic
algorithm as shown in Figure 3:

e Step 1. Create an initial population of individuals repre-
senting potential solutions.

e Step 2. Using the fitness function, measure the perfor-
mance of each solution.

e Step 3. Choose superior solutions and apply
crossover/mutation to generate offspring.

e Step 4. Repeat Iterates (2 and 3) until optimal fitness is
reached.

The crossover is a mechanism for chromosomes to share
their features by combining the characteristics of two par-
ent individuals to produce offspring. With this process it is
possible for good solutions to yield better ones. Mutation is
a random change in the composition of a chromosome in a
selected individual, occurring with a low probability. This
introduces genetic variability within the population, helping
to prevent premature convergence and explore new areas of
the search space. GA is used here to tune the parameters of
the designed control systems, including the fractional orders,
aiming to minimize the tracking errors in the quadrotor UAV’s
position and attitude performance. Thus, each candidate solu-
tion (chromosome) within the genetic algorithm is encoded as
a vector. This vector holds candidate solutions for the control
parameters, including the fractional orders, which act as the
“genes” of the solution. The performance of each candidate
is evaluated by a cost function, where the tracking error is
minimized.
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FIGURE 3. Genetic algorithm flow diagram [44].

The cost function is set as the total Integral Absolute Error
(IAE).

IAE =/0 (lex O + ey O] +1e, 0D (12)

where ey, e, and e, represent the errors of tracking perfor-
mance in the x, y and z axes, defined as ¢; = j — jg for
j =Xy, z. The Matlab/Simulink software is employed to
implement a genetic algorithm with real-coded chromosomes
during control system simulations. The algorithm is imple-
mented with a population size of 50 for chromosomes with
5 or fewer genes and 200 for more than 5 genes. Crossover
and mutation probabilities are set to 0.8 and 0.01, respec-
tively. During each iteration, the algorithm calculates the
system total Integral Absolute Error (IAE) for the cost func-
tion evaluation. The GA is used in the comparison between
the conventional and fractional controllers. It is firstly used
to tune the control parameters of the conventional control
(SMC) and then to tune the control parameters and frac-
tional orders of the FSMC system. Once these parameters
are obtained, the conventional and fractional control systems
are simulated to compare their results as described in a next
section.

Ill. FRACTIONAL ORDER SLIDING MODE

CONTROL (FOSMC)

Assuming that the UAV is under the effect of external pertur-
bations, this section proposes a fractional order sliding mode
control (FOSMC) scheme to control and stabilize both the
UAV’s attitude (Euler angles) and its dynamics in the z direc-
tion. Figure 4 shows the proposed control system, which uses
two control approaches: FSMC and PD controllers, to control
and stabilize the vehicle. While the FSMC controller stabi-
lizes both the quadrotor’s attitude and altitude dynamics, the
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PD controller calculates the roll (¢) and pitch (6) angles that
are needed for the stability of the vehicle position dynamics
in both x and y directions.

C ] Ga
€z =Z—Zg Ez
Za FOSMC
paramerers
Xar¥a
@d u
¢ 30,3

2 d Uz =

] ‘PD o FOSMC Quadrotor .

coitroller| '3
‘I controller| W dynamics i
w —|

FIGURE 4. Block diagram of the control system.

The results and discussion may be presented separately,
or in one combined section, and may optionally be divided
into headed subsections.

Assumption: each perturbation signal is unknown but
bounded and fulfil the following:

ldi| = mi=x.y26.0.9 (13)

Hence, the terms dy, dy, d,, dy, d, and d, in equations (6)-
(11) satisfy (13) and represent unspecified disturbance terms
with real positive limits nx, ny, 112, 1g, 7 and 7.

A. CONTROL STRATEGY

To control the vehicle altitude dynamics (the dynamics in z
direction) which is described by Equation (8), a tracking error
e, can be defined,

e, =7—14 (14)

where the term zq represents a given altitude reference signal.
Thus, the proposed sliding manifold (s, = 0) is chosen such
that

S, =&, + p, D%, + 10,0 < < 1 (15)
and $ can be obtained as:
S, =¢é,+ pzDaéz + Aze, (16)

The parameters p, and A, are required to be selected such that
the differential equation (15) has a solution that exponentially
converges to zero.

6 =i—1q4 (17)

The FSMC control strategy contains two control parts uq; and
uyz. The responsibility of uy; is to keep the system on the
sliding manifold while responsibility of uj, is to make the
system reach the sliding manifold.

Firstly, by considering d,= 0, the signal uy1, that maintain
the system on the sliding manifold, is calculated as follows:
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substituting (8) in (17)
é,=—P+Muy —ig (13)

where,

M — (cos(¢)cos(9))
m

Then, substituting (18) in (16)
Sz = -9+ Muj; —Zq + pzDaéz + Azey (19)

Hence uj; can be calculated such that it makes $,= 0:
1 .. . .
up] = M (g’ +zq — pzDaez - )\zez) (20)

Now, for the dynamic system to reach the sliding manifold,
an extra control command uj; is required. For this purpose,
the following Lyapunov based sliding condition is needed to
be satisfied [45]

28, < —V; |8, 21

where v, represents a positive constant.

Satisfying condition (21) also proves the control system
stability. Thus, it is used here to build the controller which
guarantees the system stability.

Considering d, # 0, makes §;, as:

$,=-9+M (u1 +up2) +d, — Zg+p, D%, + 1, (22)

Substituting from (20) into (22) then multiplying by s,
gives:

$z8, = s;Muyp + s,d; (23)

which will be satisfied with putting:

up = % (—ozsgn (s2)) (24)

where o, = v, + 1, and n, denotes the upper bound of the
disturbance signal as in assumption (13).
Substituting from (24) into (23)

828, = — (v + 17) szsgn (sz) + s,d; (25)
The term s;sgn(s;) can be replaced by |[s,|
287 = —Vz I8z — nz [sz| + s2d; (26)

Replacing s, and d; by|s;|sgn (s;) and |d,| sgn (d,) respec-
tively leads to:

8287 = =V ISz] — Isz] (12
+ sgn(sz)sgn(d,) [d,[) 27

Thus, if the signs of s, and d, are similar, we obtain:

8287 = —Vz |8z — (2 + |dz]) Isz]
< —vsg] (28)

and, if their signs are different, we have:

8282 = —Vz |8z — (N2 — |dz]) Isz] (29)
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Since 7, is the bound of the disturbance signal d,, as in (13),
thus:

|d.| < n,
which makes:
8282 = —Vz |8z — (nz — |dy]) Isy]
< —vlsg| (30

From (28) and (30), (21) is always satisfied.
Since u; = uy; + uyo, thus, from (20) and (24),

1
up = M (Nz+g')
m
= ) (P,+9) (31)
where
N, = Z4 — p, D%, — A é,—0,5gn(s;) (32)

In order to design the control inputs u; and u3, ¢q and 6y
are defined as the desired reference roll and pitch angles
respectively and the small angle approximation is used to
model the system. Therefore, equations (6, 7, 9, and 11) are
expressed as:

¥~ tan (0) (N, 49) + dy; (33)
y~ —tan(¢) (N,+&) + dy; (34)
é = E—i-d(ﬁ;@.:ﬁ—i-de;
L I,y
§=—+4d, (35)
IZZ

To determine the necessary angles ¢q and 63 to achieve
convergence of tracking errors ex and ey to zero, the terms
tan(¢) and tan(0) are selected as virtual inputs in (33) and (34)
respectively. Subsequently ex and ey are defined as:

€x= X—X4.y=y—Yd. (36)

where the terms x4 and y; are given reference signals in x
and y directions respectively. Supposing d, and dy are zeros,
a PD controller can be designed as:

L. .
Qd = tanfl (N +g)(Xd — KdXCX_prex)) (37)
VA

¢q = —tan™! ( (¥4 — Kayéy — prey)) (38)

N.+¢
where Kax.Kpx.Kgy and Kpy are the PD control parameters
and should be selected to achieve exponential convergence of
ex and ey to zero.

It should be noticed that, for e, and ey to converge expo-
nentially to zero, angles 6 and ¢ are required to approach
the calculated 64 and ¢4 as soon as possible. Therefore, the
control inputs u and uj are required to be designed for that
purpose. The same strategy of designing u; is utilized again
for designing the control inputs uy, uz and u4. The fractional
manifolds are now defined as:

S/l‘,=é/i+p/l:Da€/l:+)L/l:e’i=O 39)
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ei=4—14.1=¢.0,¢ (40)

By repeating the same process of designing uj, the input
signals up, uz and uy are found as

Uy = Lyy(dy — pgD e — Apey — 0psgn(sy)); (41
u3 = Iyy(6g — pgD%ép — Ageg — opsgn(se)); (42)
uy = Iz (¢a — /Ochaégo — hpep — TpSgN(sy)). 43)

B. SIMULATION RESULTS WITHOUT USING GA

In this part, the designed control strategy is evaluated
using MATLAB-Simulink software. The system is simulated
with applying the FOSMC scheme on the UAV model in
Equations 6-11, using the control signals given in
Equations 31, 41-43.

The simulated quadrotor system has a mass (m) of 1.4 kg
and moments of inertia Iy, Iy, and I, of 0.02 kg.m?,
0.02 kg.m?, and 0.04 kg.m? respectively. The controllers
parameters are selected through trial and error as indicated
in Table 1.

TABLE 1. The FOSMC and PD control parameters.

rameters FOSM Parameters

o, =10 Py =

pr = 30 )\9 =1 Og = 1.5 Pe =

Il
N — [EnN ~

Kgy =5 Ap =1 o, =10 Py =

To study the efficiency of the proposed FOSMC system,
reference and perturbation signals are applied on the system
at different times. Firstly, when ¢+ = 1s, a reference input
of unit step in z direction is imposed to be followed by the
system. Then, when ¢ = 10s, two signals of sinusoidal form
are applied as references to be tracked in x and y directions
as:

Zref = Yref = Psin(1urt) (44)

where P =1 [m], while 4+ = 0.086 % 7 [s~!]. The reference
of angle ¢ is defined as:

@ref=0

To prevent excessively high derivative values, low pass filters
are used to filter these reference signals. The applied refer-
ence signals are shown in figure 5.

When ¢ = 23s, external disturbance signals are applied on
the system as:

2t
d =k, + kbsin(Tl) (45)
1
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x referance signal
- — — -y referance signal
—— z referance signal

x,y and z referance signals

N,

distanc [m]

05

-1

(o] 10 20 30 40 50 60 70 80
Tim [s]

FIGURE 5. The applied reference signals in x, y and z directions.

The parameters k,, kp and T are set as follows:

d
ko =0.1 [%} ky = 0.01,T; = 1.8 sec.
S

The perturbation terms in equations (6)-(11) are taken as:

d)(: y:dZ:O;
d¢:d9: (ﬂ:d

Throughout the system simulation, saturation functions are
employed to enforce the control inputs to be within pre-
defined limits to ensure safe and stable operation of the
system. The specific limits applied are [0 30], [—10 10], and
[—10 10] for uy, up and u3, respectively. To compute the
required numerical solutions, the Matlab ode45 solver is used
during the simulation of the proposed control system. The
numerical calculations of the fractional parts are handled
using the FOMCON toolbox. The sgn function is applied here
as:

sgn(s) = e

The value of c is a tiny positive constant, specifically set as:
¢ = 0.005.

Figures 6-8 show simulation results of the designed frac-
tional control system (FOSMC) with different values of the
orders (o). Figure 6 shows the system tracking performances,
whereas figures 7 and 8 demonstrate the system’ tracking
error and the control inputs, respectively. These results illus-
trate that deferent fractional orders lead to deferent behaviors
with achieving better performance at lower « values. It can be
noted that, using higher values of the fractional order «, result
in slower transient dynamics where both raise and settling
times increase. It also results in lower robustness against
the applied external perturbations. Additionally, the figures
demonstrate that higher values of « cause higher initial input
efforts when applying sinusoidal reference signals in both x
and y directions. Nevertheless, the proposed fractional con-
trol structure accomplished the tracking tasks efficiently.

These Figures show that, the best performance is achieved
with o« set at 0.1. Nevertheless, varying the fractional
order produces varied system responses. Thus, the genetic
algorithm will be employed in the following section to tune

179210

the control parameters including the fractional orders «’s in
order to accomplish better response.

IV. COMPARISON BETWEEN THE FRACTIONAL AND
CONVENTIONAL SLIDING MODE CONTROL

In order to assess the proposed fractional sliding mode con-
trol strategy, it will be compared here with the conventional
sliding mode approach. First, the conventional controller can
be obtained by following the same steps of deriving the
fractional one that is reported in the previous section, except
that the sliding services are introduced as

si=eéj+Arej =0,j=2,¢,0,¢ (46)

Therefore, the resulted control inputs will take the forms:

m
=— (N 47
4 cos (¢) cos (0) ( Z+g) “7)
where:

N, = Zq — Aze;, — 0,58n(8,); (48)
U = Lyy(dag — Apey — opsgn(sy)); (49)
u3 = Iyy(0g — Aoés — 0psgn(se)); (50
ug = Ip(@a — Apéy — 0u5gn(sy)) (5D

The PD controller described by equations (37) and (38) is
utilized to obtain the roll and pitch angles that are needed for
the stability of the position dynamics in both x and y axes.

A. SIMULATION RESULTS WITH USING GA

In this section the proposed FOSMC system is compared
with conventional IOSMC system using the Matlab Simulink
environment. The quadrotor system is first simulated using
the conventional sliding mode control approach. Then, the
resulting performance is compared with simulations of the
proposed FOSMC technique.

Unlike the fractional control system that simulated in
subsection (-B-III-B) which was supposed to have the same
fractional order « for all the included fractional manifolds,
the system here is designed with different fractional order
for each fractional manifold. The GA is employed to adjust
the control parameters for both conventional and fractional
control systems. For the conventional system the GA is
used to tune the parameters Az, Ay, Ag and A,. This means
that each chromosome in the population contains these four
genes. For the fractional system, the GA is used to tune
the parameters A, Ay, Ag, Ay, 0z, Py, P9 and p, along with
the fractional orders o, g, g, and a, making up a total
of twelve genes in each chromosome. Other parameters are
used as in the previous simulation subsection (BIII-B) and
the fitness function (12) is used to evaluate all the solutions.
The process of adjusting the FOSMC parameters is achieved
by following the GA steps described in subsection (II-B)
where step 2 includes simulating the system to calculate
the errors then measuring performance of each solution
using the fitness function. Figure 9 depicts the convergence
behavior of the IAE error function of the FOSMC system,
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FIGURE 7. The system tracking errors with different values of «.

illustrating the evolution of its fitness value as the num-
ber of generations progresses. As evident from the figure,
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the FOSMC error function exhibits a clear trend of con-
vergence, effectively reaching a stable fitness value after
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FIGURE 8. The system control efforts with changing the order «.

approximately eight generations. This observation suggests
that the algorithm has successfully identified a near-optimal
solution within a reasonable timeframe. While there might
be slight fluctuations in the fitness value beyond this point,
the overall trend indicates that the algorithm has reached
a point of diminishing returns, and further generations are
unlikely to yield significant improvements. The same GA
steps are applied to both control techniques with no differ-
ence except that the FSOMS approach have more control
parameters. The tuned fractional orders o; are constrained
to the range [0.01, 0.9], while the remaining parameters
(A, p, p) are limited to the interval [1], [10]. Table 2 shows
the GA-tuned parameters. These parameters are used to
obtain the simulation results that will be used to compare the
systems.
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TABLE 2. The tuned control parameterss (p, 1, «).

Convectional | Fractional control parameters
control para
meters
A, =9 A, =165 p, =1.15 a, =0.05
A, = 8.82 Ay, =5.57 Py =3.31 a, =0.05

As shown in Figure 10, a similar form of the reference
signals that were used in subsection (-B-1II-B) will be used
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FIGURE 9. The change of best fitness values with increasing no.
of generations for the FOSMC.

here. The difference here is that the x and y sinusoidal ref-
erence signals start earlier (at t=1s) with higher frequency,
and the parameters values of the perturbation parameters are
increased to obtain:

Zyef = unit step signal;
Xief = Yref = Asin(0.127t) [m] ;

¢ref =0 (52)
A=1 [m]; and
dy = 0.5+ 0.04sin [ 224) | ™9
=0. Odsin| — ) | —= |;
! 1.8 s2 |’
dy = dy = d,= 0;
dp =dy =d, = d; (53)

T T T
x and y reference signal

- - - -z reference signal

0.5

-0.5

-1.5

L L I L L L . L L
0 5 10 15 20 25 30 35 40 45 50

FIGURE 10. The input reference signals (sinusoidal).

Throughout the simulations of the systems, saturation func-
tions are employed to enforce the control inputs to be within
predefined limits to ensure safe and stable operation of the
system. The specific limits applied are [0 30], [—10 10],
and [—10 10] for u;, up and uz, respectively. To compute
the required numerical solutions, the Matlab ode45 solver is
used during the simulation of the proposed control system.
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The numerical solutions of the fractional parts are calculated
using the FOMCON toolbox.

Figure 11 shows the system’s tracking trajectories in the X,
y, and z directions for both controllers. Equations 31, 32, 41,
42, and 43 are used as control inputs to plot the response of the
FOSMC system while equations 47-51 are used to control and
obtain the response of the conventional integer order sliding
mod control system.

It is clear that, in both cases the quadrotor system achieves
the required tracking tasks. However, Figure 12, Figure 13
and Figure 14, which compare the tracking errors of both con-
trollers in the X, y, and z directions, show better performance
and more robustness when applying the proposed FOSMC.
Figure 12 shows the tracking errors of both controllers in the
x direction while Figure 13 shows their tracking error in the
y direction. Both figures show that the conventional control
system results in high deviations from the required paths
during the transient period and responds to the applied per-
turbation signals with large oscillations around the required
paths. However, these figures clearly demonstrate that the
fractional order control system shows smaller deviations with
less response to the perturbations and more robustness than
the conventional one. Figure 14 shows the tracking errors of
both controllers in the z direction. The fitness function (IAE),
described in equation (12), also proves that the proposed
fractional system outperforms the conventional one where it
equals 193.76 m for the conventional system while it is equal
to 132.95 m for the fractional system. Figure 15 shows a
comparison between the errors of the Euler angles (¢, 6 and
@) for both control systems. It demonstrates that the Euler
angles errors of the fractional order system converge to zero
faster than those of the conventional system.

These figures show that the proposed fractional sliding
mode controller achieved better results than the conventional
sliding mode controller in terms of robustness against exter-
nal perturbations and improving the tracking performance
during the transient period. In fact the tunable fractional
orders add more degree of freedom and flexibility to tune
the controller what expand the search space and in sequence
increase the possibility to find better results and better
performance.

V. PRELIMINARIES EFFECT OF ADDING FRACTIONAL
INTEGRAL (1)

So far, the control strategy has been implemented with con-
sidering a sliding manifold without including any integral
term. In this section the fractional control method is designed
with considering that the fractional sliding manifolds include
an additional term which has a fractional integral structure
(IP). Firstly, it is well known that the integral I# term can
be written as a derivative term in the form D~#. By adding
fractional integrator terms to the sliding manifolds, they can
be defined as:

8j = éj + ijaej + /Lijﬁej + Ajej= 0;j=12z2¢,0,0 (54
where ) < 8 < 1
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FIGURE 13. The tracking error in y direction for both conventional and

fractional SMC.

By following the same procedure in subsection (III-A) to
compute the control signals, we obtain:

- cos (¢) cos (0)

where

N, = Zq — p,D%¢, — MZD_'BéZ — Az€,—0,5gn(s,);
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(Nz+g) (55)

(56)
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FIGURE 14. The tracking error in z-direction of both conventional and
fractional SMC.

and
w2 = Tix(ha — gD ey — gD ey — dpéy — opsgn(se));
(57)
uz = Iyy(dg — ppD*ép — oD P&y — Aoy — apsgn(sy));
(58)
ug = Iz (¢q — PwDaéw - MwD_ﬁéw — hp€p — 0psgN(sy));
(59)

A. SIMULATION RESULTS WITH USING GA

To evaluate the fractional-order sliding mode control sys-
tem with adding the fractional integral term in the sliding
manifold, the fractional control system is simulated with
considering the control input signals in equations (55)-(59)
to control the system.

The same reference signals shown in Figure 10 which were
used in subsection (IV-A) will be used here as reference
signals such that we can study the effect of adding the integral
term.

Therefore,

Zyef = unit step signal;
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TABLE 3. GA tuned control parameters (x, p, &, p, B).

A, =14 Pz a; =0.1 Hz Bz
=1.53 =3.11| =0.02
=181 =494 =05

ﬂ.g =38 Pe =12 dg = 0.05 Ug ﬁg

=484| =02
Ay = Py =8.5 ap =0.1 He Bg
9.61 =6.61| =0.1

Xref = Yrer = 1 %5in(0.127m1) [m] ;
Pref = 0

Moreover, the same perturbation signals are also used as:
. 2mt 2
dy =dy =d, =0.5+0.04 sm(ﬁ)[rad/s ]

To avoid obtaining too high derivative values, low pass filters
are used to filter all reference signals. The same GA process
that is conducted in subsection (IV-A) is used here with more
eight genes (U, g, Uo, g, Bz Bp, Bo, and By) for each
chromosome as shown in Table 3. The tuned fractional orders
are constrained to the range [0.01, 0.9], while the remaining
parameters (A, p, p) are limited to the interval [1], [10]. The
results of applying the GA tuning are shown in Table 3.
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FIGURE 18. Zoomed tracking errors (by adding /# term).

By adding an integral term to the fractional sliding man-
ifolds, the performance of the control system gains more
improvement than in the case of only proportional and deriva-
tive terms.

Figure 16 and Figure 17 show the tracking performance
and errors of the fractional controller when adding the /7
term. The system achieves the task of following the refer-
ence signals (Xyer, Yrer and Z,,r) efficiently. Figure 18 and
Figure 19 show zoomed illustrations for the tracking errors
of the fractional control case with adding /# term and the
case without it respectively. Figure 20 shows the Euler errors
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FIGURE 20. The Euler errors (when adding /? term).

with adding 7# term. These figures show an improvement in
terms of robustness against external perturbations in the case
of adding the I# term to the fractional control. The total IAE
in this case is equal to 125.94 m which is better than 132.95 m
of the case without I# term.

This leads to the conclusion that adding a fractional integral
term to the sliding manifold achieved better performance than
the obtained results with only proportional and derivative
terms.

VI. CONCLUSION

This paper proposed a novel fractional-order sliding mode
control (FOSMC) approach for stabilizing and controlling
the nonlinear model of a UAV quadrotor subject to external
disturbances. The FOSMC effectively regulates the attitude
and altitude dynamics, while a conventional PD controller
manages the roll and pitch angles, ensuring the quadrotor’s
stability in tracking accuracy. Finally, a genetic algorithm
effectively tunes the control parameters with the fractional
orders in the FOSMC systems, for optimized system perfor-
mance based on a predefined fitness function. The extension
of this work to heterogeneous multi-agent systems is under
consideration.
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