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ABSTRACT Recognizing mud rock lithofacies is essential for mapping the subsurface depositional
environments and identifying oil and gas-bearing rock formations. Conventional well logs interpretation
techniques are slow, costly and require high domain expertise. Machine learning (ML) techniques have been
implemented to automate the recognition of lithofacies from the bulk of well logs generated. However, the
reservoir heterogeneity and uneven thickness of rock layers result in imbalanced data conditions that make
the ML models biased. This study proposes a novel multiagent collaborative learning architecture (MCLA)
to handle the imbalanced data problem during the identification of lithofacies. This research investigates four
popular data resampling techniques, i.e. oversampling, SMOTE and ADASYN. Also, resampling techniques
are combinedwith nine differentML classifiers, includingDecision tree, ExtraTree, RandomForest, Logistic
regression, Support vector machine, K-nearest Neighbour, Naïve Bayes and Ensemble methods. Stacking
and voting ensembles combine the outcomes of diverse classifiers working as team members in MCLA.
ADASYN, in combination with Stacking, has produced impressive results in terms of accuracy (99.41%)
along withMCC (0.98) and G-mean (0.98). The proposedMCLA shows an enhancement of 2% in lithofacies
accuracy and an approximately 4% increment in reliability compared with the top-performing Extra Tree
classifier considered in this study.

INDEX TERMS Data imbalance, resampling techniques, machine learning, stacked generalization,
multiagent collaborative learning.

I. INTRODUCTION
Mudstones are a type of sedimentary rock that contain
largely silt and clay-sized particles and play three roles as
a hydrocarbon-producing source, cap, and reservoir rock
to provide generation, migration, and storage of oil and
gas [1]. These rock formations hold sweet spots and shale
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gas reservoirs that are helpful for oil and gas production.
Mudstone formations are complex geological structures
that provide a greater challenge to conventional well-log
interpretation techniques for identifying subsurface lithofa-
cies layers. The petrophysical properties (such as porosity,
permeability, lithofacies, wettability, etc.) are required to be
determined accurately for modelling mudstone reservoirs.
Recognition of underlying lithofacies is important for the
exploration and development phase of oil and gas wells.
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Reservoir characterization involves the determination of
reservoir properties through the data acquired from different
geophysical techniques such as core analysis, seismic, and
well logs. These geostatic properties are required to develop a
trustworthy hydrocarbon reservoir model. However, reservoir
properties have an anisotropy property which results in
heterogeneous reservoir behaviour. The heterogeneous nature
of the reservoir promotes uncertainty in all the sensory data
captured during its characterization. The reservoir data are
found to be complex with nonlinear, noise, and imbalance
problems associated with it. The manual interpretation of
recorded well-log data is costly, time-consuming, and tedious
work even for expert geologists. Thus, intelligent methods
are needed to process the reservoir data for extracting
useful information. Several researchers have suggested
multiple machine learning (ML) models for extracting facies
information from well logs data in conventional reservoirs.
However, there is limited research existing for applying these
models to unconventional mudstone reservoirs. Themodeling
of mudstone lithology using ML paradigms is confined to
two approaches - unsupervised and supervised classifiers,
as reported by several researchers [2], [3], [4], [5]. Mudstone
lithology has been comprehensively reviewed by Aplin and
Macquaker who also investigated its multiple functions as a
source rock, cap rock, and reservoir rock for hydrocarbon
production [1]. In 2017, another in-depth examination of
mudstone facies in the Henry Mountain Region of Utah was
conducted by Li and Schieber [6]. In 2006, Qi and Carr
utilized an ANN model to identify carbonate lithofacies in
Southwest Kansas using well-log data [2]. Gifford and Agah
investigated a multiagent collaborative learning approach to
classify the well logs data obtained for the Kansas field
in the USA [7]. However, they didn’t address the effect
of class imbalance occurring in well-log data during the
classification task. researcher created a 3-D model of shale
facies for the Appalachian basin at the regional scale,
using discriminant analysis, ANN, SVM, and fuzzy logic
techniques, along with core, seismic, and well-logs data [3].
In 2016, unsupervised cluster analysis was implemented to
classify lithofacies and identify productive sweet spots in the
Barnett Shale formation [8]. Another study was conducted
in which researchers evaluated the effectiveness of both
supervised and unsupervised ML models for identifying
mudstone facies in the Mahantango-Marcellus and Bakken
Shale formations in the United States [5]. Similarly, they also
utilized SVM to categorize shale in the Bakken Formation
in North Dakota [9]. Homogenous ensemble methods were
investigated to identifymud rock layers existing in the Kansas
oil and gas field [10]. Further, heterogeneous ensemble
methods were also proposed for the recognition of underlying
mudstone facies [11]. Gu et al. applied generalized and
robust ensemble modelling to classify carbonate diagenetic
rock facies [12]. Song et al. [13] applied ensemble based
deep learning approach for the estimation of rock porosity
using seismic attributes. Liang et al. [14] applied hybrid

machine learning model for the identification of lithofacies
along with the data mining approach. Laplacian SVM
model was utilized to test the semi-supervised approach
for identifying underground subsurface facies [15]. Sixteen
well logs were taken as input to model the lithofacies and
thirteen evolutionary optimizers were used for optimum
feature selection [16]. Convolution neural networks (CNN)
model was trained on five wireline well logs to identify
the facies [17]. Further, a hybrid model was proposed by
combining CNN and LSTM models that was trained on
image logs data to recognise rock facies [18]. Deep learning
model was trained on logging data for 3D modelling of tight
sandstone reservoirs [19]. More machine learning models
were applied to recognise carbonate sedimentary facies
from well logs data [20]. Boosting ensemble methods were
implemented to recognise carbonate reservoir facies [21].
Extreme gradient boosting and resampling algorithms were
employed to identify lithofacies using well logs data [22].
Further, DNN was also utilized to handle the well logs data
related issues and compared with LSTM for identification
of lithofacies [23]. The performance of semi-supervised
generative adversarial network (SSGAN) for lithofacies
identification [24]. Multivariate analysis was also performed
on the well logs for change detection to automate the
lithofacies identification [25]. Various researcher have tried
to rectify the data related issues and tested ML models
to classify the well logs data but imbalance issue was
rarely reported. More research is required to handle the
imbalanced well logs data for the recognition of lithofacies.
The performance of ML classifiers is reduced in imbalance
well logs data conditions. The classifiers become biased
for the majority classes (Classes having large training data
samples) while ignoring minority classes (classes having
fewer data samples) when these models are trained on
imbalanced data. However, only a few have considered
the problem of imbalanced data in the petroleum domain
associated with lithofacies prediction during the training
phase due to the uneven thickness of subsurface rock layers.
Initially, imbalance in well logs data was reported in 2018 for
the identification of lithofacies [26], [27], [28], [29]. Logging
while drilling data was used to identify coal layers using ML
models along with two imbalanced data handling techniques
via Naïve random oversampling (NRUS) and Synthetic
minority oversampling techniques (SMOTE) to improve the
classification accuracy [30]. Further, a TwinSVM model was
implemented to handle the imbalanced drilling data for the
detection of stuck-up pipe conditions [29]. A multi-expert
learning systemwas applied for the recognition of underlying
lithofacies and implemented the Reweighting method for
compensating the impact of the data imbalance issue [31].
A new amultistage SVM classifier architecture was proposed
by modifying the regularization parameter which penalized
wrongly classified minority class data points to handle the
imbalance well logs issue [32]. ML models was tested to
classify different reservoir formation data into seven rock
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permeability scores [33]. They also reported the imbalance
issue in reservoir data and implemented NRUS and SMOTE
techniques for handling it [33]. Gaussian mixture model and
back-propagation neural network combination was applied to
recognize the facies of a tight sandstone reservoir existing in
the Sulige gas field [34]. Various hybrid architectures have
been proposed to handle the complex data and systems [35],
[36]. Therefore, hybrid approach must be tested for handling
the imbalance well logs data issue. This paper proposes a
novel multiagent collaborative learning architecture (MCLA)
for handling data imbalance issues existing in well logs data
utilized for lithofacies prediction. In this hybrid architecture,
data and algorithm levels are combined using ensemble to
achieve higher classification accuracy. Initially, resampling
techniques were also implemented to make the data balance,
then this modified balance dataset will be given to the
Stacking ensemble architecture for classifying the data
samples into their respective lithofacies. Also, a comparative
study of data imbalance has been performed on well-log
data with popular data resampling algorithms in combination
with nine ML classifiers for the recognition of lithofacies.
A proper preprocessing step has been designed to eliminate
the issues related to the data modeling such as noise, high
dimensionality, overfitting, and underfitting, model parame-
ter tuning, etc. The impact of data imbalance on classifiers’
performance has also been studied by training them on
balanced datasets, and imbalanced datasets generated by
considering lithofacies of uneven thickness. The primary
objectives of this research work are mentioned as given
below.

• To design a preprocessing step for eliminating the issues
related to the data modeling.

• To study the impact of imbalance in well logs data on
supervised classifiers’ performance during the recogni-
tion of lithofacies,

• To assess the performance of popular resampling
techniques for imbalanced well logs data.

• To propose a novel hybrid data-driven architecture for
classifying imbalanced well logs data.

• To study the reliability and stability of ML classifiers in
the imbalanced logging data condition.

• To study the effects of different well logs acting as
controlling variables for lithofacies prediction.

• To review and compare the existing imbalanced data
handling approaches.

The remaining paper is organized as follows: Section II
provides a brief introduction to data-driven intelligent
modeling techniques. Section III describes the experimen-
tal evaluation and methodology Section IV discusses the
outcomes of this research work. Section V provides the
conclusion and future implications.

II. A BRIEF DESCRIPTION OF THE DATA IMBALANCE
ISSUE RELATED TO LITHOFACIES
The thickness of subsurface lithofacies layers varies naturally
unevenly in their well-log-based measurements. However,

when ML-based classifiers have been utilized to identify
different rock facies, the imbalanced data condition arises.
This imbalanced data refers to a situation in which the
distribution of data samples in any class inside the training
data is significantly unequal. This means that one class is
underrepresented as compared to another, leading to potential
bias in the result analysis. Imbalanced data is a common
problem in many fields, including healthcare, finance,
and fraud detection, among others. The consequences of
imbalanced data will be severe. Traditional classification
algorithms, which are often optimized for balanced datasets,
will struggle to predict the minority class accurately. As a
result, models trained on imbalanced data may have poor
performance, with high false negative rates for the minority
class and low precision and recall overall. This will lead
to missed opportunities to detect important phenomena,
such as rare diseases or fraudulent activities. Several factors
can contribute to imbalanced data, including data collection
processes and natural class distributions. For example,
in healthcare, rare diseases may naturally have a lower
prevalence in the population, leading to imbalanced datasets.
Similarly, in fraud detection, the number of fraudulent
transactions may be much lower than the number of
legitimate transactions, leading to an imbalanced dataset.
There are three possible solution approaches for handling
imbalanced data issues as given below.

A. DATA LEVEL APPROACH
This approach modifies the training data of classifiers
through resampling techniques such as TOMEK [37], Syn-
thetic Minority Over-sampling Technique (SMOTE) [38],
Adaptive Synthetic Sampling (ADASYN) [39], etc. to make
the number of data samples equal present in each class. The
data level approach can be broadly into two types i.e.

1) Undersampling approach. This type of method bal-
ances the number of samples in minority and majority
classes by removing the data samples existing in
majority classes. This approach is not popular because
removing the original data samples from the training set
reduces the information content and reduces the overall
prediction performance of classifiers. These are mostly
applied and suitable for problems having large datasets.

2) Oversampling approach: This method tries to make
the dataset balance by adding new data samples in
minority classes. ADASYN and SMOTE are two
popular techniques for addressing the class imbalance
in machine learning. Both techniques are designed
to generate synthetic samples for the minority class
(the class with fewer examples) by interpolating
existing examples or creating new ones. This helps
to balance the class distribution and improve the
performance of the classifier. The main difference
between ADASYN and SMOTE lies in how they
generate synthetic samples. While SMOTE creates
synthetic examples by interpolating between existing
minority class examples, ADASYN uses a density
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TABLE 1. A brief details of diverse imbalanced data handling techniques.

distribution to determine the degree of extrapolation
between examples. This means that ADASYN focuses
more on generating synthetic examples in regions
where the density of minority examples is low, making
it more effective in dealing with high-dimensional
datasets.

Majority Weighted Minority Oversampling Technique is
another technique that involves identifying minority class
samples that are difficult to learn and informative, and then
generating synthetic samples using a weighted version of
these samples [38]. Resampling techniques are commonly
used to address the class imbalance in data analysis. However,
when dealing with highly imbalanced data, these methods
have drawbacks. They often involve discarding a significant
number of samples from the majority class or generating
numerous synthetic samples for the minority class. Such
approaches will result in either a loss of valuable information
(in the case of undersampling) or an inappropriate increase
in the negative correlation between samples (in the case of
oversampling). This, in turn, will negatively impact model
performance, as highlighted by Wu [40]. Several other
popular techniques are also available for resampling, such as
TOMEK and its variants, SMOTE variants, etc. The details
about the different data manipulation techniques are given in
Table 1.

B. ALGORITHM LEVEL APPROACH
This algorithm-level approach aims to modify existing ML
methods to address their tendency to favour the majority
class. Among these approaches, cost-sensitive techniques
are mostly used. These techniques assign a higher cost to
the incorrect classification of minority class instances. For
example, the cost-sensitive multilayer perceptron (CSMLP)
method distinguishes between the importance of class errors
using a single cost parameter [44]. Another approach,
CLEMS, incorporates a cost-sensitive label embedding

technique that considers the relevant cost function [45].
The CS-DMLP model is a deep multi-layer perceptron that
employs cost-sensitive learning to regulate a given sam-
ple’s predicted posterior probability distribution [46]. These
approaches typically require expert knowledge to determine
the appropriate cost value, which will be challenging to
obtain in real-world scenarios [47]. Twin SVM (a variant
of the traditional SVM) model was applied for classifying
imbalance well-log data [26]. A brief explanation of machine
learning models utilized for facies recognition is presented in
Table 2.

C. ENSEMBLE APPROACH
Ensemble methods are a type of machine learning approach
that blends data-level and algorithm-level techniques to
improve accuracy. This is achieved by combining the solu-
tions generated bymultiple classifiers [53], [54]. One popular
example of such a method is the WEOB2 model developed
by Wang et al. in 2015, which leverages online bagging
with adaptive weight adjustment to balance the learning bias
between the majority and minority classes [55]. Despite these
advances, a major challenge in ensemble methods is how to
ensure and make use of the diversity of classifiers, which
remains an unresolved issue according to Wu et al. 2017
[41]. The details about ensemble classifiers have been given
in the section in Table 3. Figure 1 shows different popular
approaches utilized for handling data imbalanced issues.

III. METHODOLOGY
In this work, three primary approaches for handling data
imbalance have been investigated for the classification ofwell
logs data to identify nine different rock facies. Ten machine
learning models have been tested (LR, DT, RF, SVC, XGB,
KNN, NB, and ET) along with four popular data manipu-
lation techniques (under-sampling, oversampling, SMOTE,
and ADASYN). All the above-described data-related models
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TABLE 2. A brief explanation of machine learning models utilized for facies recognition.

TABLE 3. A summary of ensemble methods utilized in this study.

have been implemented through Python programming on the
Google Collab platform with Scikit learn package version
1.3.0 for machine learning model development and Scikit
imbalanced-learn package for data manipulation techniques.
This work is done on 4th generation intel core i7-1065G7
processor model configurations along with 8 MB Cache,
GHz, four cores, 16 GB RAM, 8 GB graphic cards, and the
Windows 10 operating system.

A. DATA DESCRIPTION
The well-log data utilized in this study has been downloaded
from the website of the Kansas Geological Survey. This is one
of the largest open-source databases containing Geophysical
data provided on the internet for research purposes. In this
research work, Paradise A well data have been downloaded
in Las file format for testing the performance of the different
algorithms. This well is situated in the Kansas field of the
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FIGURE 1. Different popular approaches utilized for handling data imbalanced issues.

USA. The data samples having missing values were removed
resulting in 2281 data samples made up of 16 different
well logs as attributes and nine lithofacies as class labels
(Wackstone, Dolomite, Clay, Dolomite Packstone, Dolomite
Wackestone, Silt, Packstone, Limestone, Argillaceous clay)
as shown in Table 4. The logging data taken from the Kansas
Geological Survey website of Deforest well is shown in
Figure 2 and the frequency distribution of data samples in
each class is shown in Figure 3.

B. DATA PREPROCESSING
Initially, the well-log data was pre-processed to increase the
lithofacies identification performance of machine learning
models [62]. It cleans the data by removing the samples
containing garbage, null, or missing values. The clean data is
further normalized to remove the influence of data attributes
having large values on smaller ones. The normalization is
applied using the formula given below.

Xi =
xi − xmin

xmax − xmin
(1)

where xi is the actual data samples, xmin is the minimum
value of data samples, and xmax is the maximum value of
the data samples. Further, noise filtering was also performed
to remove any outliers present in the data that might limit
the performance of data-driven machine-learning techniques.
Various noise removal filters are available in the literature for
well-log data, such as wavelet denoising, moving average,
high pass, etc. Savitzky-Golay filter was reported to be
suitable for geophysical well logs as it fits a high degree Nth
polynomial (where N varies from 5 to 15) trend using least
square techniques and convolution technique [63], [64], [65],
[66], [67], [68]. This filter has been selected to smoothen
the geophysical logging signal without destroying its original
characteristics [65]. It is helpful to eliminate the random

non-geological noise from the geophysical data [66]. It is
designed to match the waveform of a corrupted noisy signal
and preserves the height and width of the extrema [68]. The
smoothening of geophysical data is standard practice in the
petroleum sector. Different commercial software packages
for reservoir simulation, well testing, etc., also have similar
inbuilt provisions for data smoothening. The Savitzky-Golay
filter utilized for denoising the well log data for lithofacies
identification is shown in Figure 4.

After the noise removal, the dimensionality of the original
data was reduced by eliminating the redundant well logs that
were not contributing to the identification of lithofacies. This
decreases the size of the original data and the computational
cost associated with the machine learning models during
facies recognition. Various popular algorithms may be
utilized for attribute or feature selection tasks, such as
tree-based feature selection, univariate attribute selection,
principal component analysis, etc. These paradigms are
based on different approaches for selecting attributes or
extracting features. Here, the Relief algorithm (RF) was
chosen for attribute selection as it focuses on discriminatory
information, which is decisive for classification tasks. Most
heuristic algorithms assume that attributes are conditionally
independent and don’t have any interdependencies within
the input attributes [69]. However, this assumption does not
hold for practical conditions. RF algorithm is aware of the
contextual information and correctly estimates the quality of
the input attributes, contributing to the prediction and having
strong relational dependencies between themselves [69].
RF algorithm family can identify correlation and dependence
relationships between the input data attributes. They assign
weights and ranks to the logging data attributes based on their
contribution to the pattern recognition task for predicting the
lithofacies
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TABLE 4. The range of variables utilized for lithofacies prediction.

FIGURE 2. The logging data taken from the Kansas Geological Survey website of Deforest well [48].

Figure 5 shows the results of the Relief algorithm on well
logs data. The well logs assigned with negative weights were
eliminated as they didn’t contribute to the identification of
lithofacies. SP, GR, DT, RILD, DPOR, GR, TT, and NPOR
were given positive weights and recognized as crucial well-
logs. After selecting the data attributes, the well-log data
were partitioned into training and testing sets using the
K-fold cross-validation technique. This technique splits the
data randomly into K subsets. Here, (K-1) subsets were used
to train the machine learning models, whereas the Kth subset
was used to test the trained model. This step was recurring

until all the subsets acted as testing subsets. Further, it aver-
ages the accuracies of themachine learningmodel obtained in
the iterations. The cross-validation technique saves the model
from overfitting and underfitting conditions. Additional test
results have been provided in the Appendix I section of
the manuscript from Table 16-19 to compare the impact of
different cross-validation techniques on lithofacies datasets.
The K-fold cross-validation technique is primarily used in
this research work to avoid overfitting and underfitting
conditions. Since there is a significant difference between
the number of samples in majority and minority classes.
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FIGURE 3. The frequency distribution of data samples in each class.

FIGURE 4. The Savitzky-Golay filter utilized for denoising the well log data for lithofacies identification.

It is quite difficult for Stratified k-fold cross-validation or
any other cross-validation techniques to divide into k-folds
so that each fold has approximately the same proportion
of samples from each class as the original data. Therefore,
this task is separately handled by data resampling techniques
considered in this study. The random_state parameter was set
at 42, as per the parameter range recommended by the Scikit

learn library. The parameters of machine learning models
were also optimized using Bayesian Optimizer to provide the
best possible results. This ensures the good performance of
the trained model on unseen datasets and is quite helpful
for generalization. Machine learning models are prone to
overfitting and underfitting conditions during training and
testing operations which make the model useless. Learning
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FIGURE 5. The well logs arranged in the descending order of their importance weights.

curves were generated to minimize and identify the feasible
search ranges of model parameters to reduce overfitting and
underfitting conditions. Figure 7 shows the learning curves
generated for four different classifiers. The stable search
range does not have any abrupt variations in the training and
validation scores. The Bayesian optimizer searches in this
stable range to find the optimal values for model parameters.
Figure 6 shows the optimization iteration of the DTmodel for
lithofacies prediction. Table 5 shows the search range of each
machine-learning model obtained from validation curves and
the optimal value of model parameters.

Figure 7 shows the learning curves generated for four
different classifiers. The stable search range does not have
any abrupt variations in the training and validation scores.
The Bayesian optimizer searches in this stable range to find
the optimal values for model parameters.

C. PERFORMANCE INDICATOR VARIABLES
The performance of optimally tuned machine learning
models was investigated with six performance indicator
parameters viz—Matthew correlation coefficient (MCC),
Precision, recall, accuracy, f1 scores, and G-mean. MCC
and G-mean are performance indicator parameters specially
utilized for imbalanced data conditions. In case of data
imbalance, classification accuracy, precision, recall, and F1
score are unreliable criteria for performance assessment [70],
[71], MCC and G-means are newer and popular parameters to
evaluate the classification performance of ML models [70],
[71]. MCC considers true and false positives and negatives
while calculating the accuracy for classes of different sizes
and provides balanced measures [71]. MCC will become

zero if any true and false positive and negative values are
zero [70]. It is reported that the performance of MCC remains
consistent and reliable in case of imbalanced data conditions
when compared to accuracy and F-1Score [70]. G-mean is a
performance indicator parameter that measures the capability
of the classifier model to balance precision and recall [72].
It is maximum when both the values are equal. It’s a better
performance indicator when compared to accuracy [73].
Therefore, MCC and G-mean are additionally calculated
along with other parameters as given below.

Accuracy =
T P + TN

T P + FP + FN + FP
(2)

Precision =
T P

T P + FP
(3)

Recall =
T P

T P + FN
(4)

F1 − score = 2 ∗
Precision ∗ Sensitivity
Precision+ Sensitivity

(5)

where accuracy is a popular performance measurement
metric for classifiers, Tp is true positive cases, FP is false
positives, TN is true negatives, and FN is false negatives.
F1score values have been calculated to maintain the authen-
ticity of precision and recall values. These parameters may
be influenced by the data imbalance condition and show good
results. To avoid biased result conditions, MCC and G-means
are estimated to maintain the reliability of these parameters.

MCC =
T P·TN − FP·FN

√
(T P + FP)·(T P + FN)·(TN + FP)·(TN + FN)

(6)
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FIGURE 6. Bayesian optimization during training of GB model for lithofacies classification.

TABLE 5. The range of variables utilized for lithofacies prediction.

where PCK is the iteration for the K class that has been
predicted, TCK is the iteration for the K class that has
been correctly predicted, SC is the correctly classified data

points, and TS is the number of training data samples. MCC
considers TP, TN, FP and FN to calculate the performance
of the classification models [70], [71], [72]. It can be
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FIGURE 7. Learning curves of tree-based algorithms. (a) Decision Trees, (b) Random forest, (c) Xgboost, and (d) Extra Trees.

directly estimated from the confusion matrix. Its value ranges
between the interval of -1 to 1, with 1 showing agreement
with classification models and 100% accurate results, -
1 showing complete disagreement with the classification
model, and 0 meaning predictions are uncorrelated [72].
MCC, along with G-mean, is not affected by the data
imbalance condition [72], [73], as given below.

G− mean =

√
(T P ∗ TN) (7)

where TPrate and TNrate are true positive and negative rates.
Higher values of the MCC and G-means are essential for
ensuring the authenticity and reliability of good classification
results [73]. The G-means range from 0 to 1. The classifica-
tion results with a G-means value nearer to 1 are considered
good. G-means and MCC utilise TP, TN, FP, and FN to
calculate the model performance, making them more reliable
in data imbalance, whereas the F1score includes only three

terms: TP, FP, and FN. The conceptual framework of the
MCLA architecture is shown in Figure 8.

IV. RESULTS AND DISCUSSION
This section investigates the result generated while testing
different machine learning models on the well-log dataset.
Eight supervised classifiers were initially trained and tested
without any data resampling technique, as shown in Table 6.
This will help to understand the impact of adding a resam-
pling technique with the classifier models. The performance
of each classifier was tested on well logs data and evaluated
using metrics such as accuracy, precision, recall, f1 score,
MCC, and G-mean. Table 6 shows that ET has the highest
accuracy (100, 98.76) among all other models; however,
it has lower MCC and G-mean values (0.97, 0.96) due to
imbalance. Similarly, RF and XGB have lower MCC and
G-mean values. LR, SVC, and KNN have secured zero
G-mean values, indicating that they are not fit for data
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FIGURE 8. The conceptual framework of the MCLA architecture.

TABLE 6. Classification results of well logs data with different ML models without any data resampling techniques.

TABLE 7. Classification results of well-log data with different ML models with random undersampling technique.

imbalance conditions, but the rest of the performance parame-
ters have higher values. This suggests that in imbalance cases
other parameters are not fully trustable. These classifiers were
showing slight fluctuations even in the MCC and G-mean
values due to the unequal number of data samples in each
class or target value.

Firstly, the random undersampling technique was utilized
to generate the balanced dataset for training purposes.
This technique removes the extra data samples from the
majority classes. Table 7 shows the performance of various
ML classifiers in combination with the random under-
sampling technique. When compared with the individual
performance of classifiers recorded in Table 6, the clas-
sifiers show a decrease in the classification performance
due to the lesser number of data samples available in
training data when random undersampling was applied. This

condition arises due to the random under-sampling technique,
which eliminates the extra data points from the majority
classes and reduces the data available to learn the hidden
pattern.

In the next step, the random oversampling technique
was tested to understand its impact on the classification
performance of ML classifiers considered in this study. It is
observed from Table 8 that the value of performance indicator
parameters increases significantly due to the addition of
duplicate data samples in the minority classes. The random
oversampling technique increases the data samples in the
minority classes by adding the duplicate data samples existing
within each class. This doesn’t add new information to the
training data but makes the classifier overfit on the data
samples because the same samples may occur in testing data
despite cross-validation. The G-mean and MCC values of
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TABLE 8. Classification results of well logs data with different ML models with random oversampling technique.

TABLE 9. Classification results of well logs data with different ML models with SMOTE resampling technique.

LR, SVC, and NB in Table 8 improve when compared with
Table 7.
Further, the SMOTE resampling algorithm was imple-

mented to enhance the number of data samples existing in
each class. The SMOTE stands for synthetic minority over-
sampling technique, which introduces synthetic data samples
for minority classes by generating new data points in the
segment line and joining two original data points existing in
the feature space [38]. The number of synthetic data points
generated depends upon the requirement of the minority
class. Accordingly, the data points of K-nearest neighbours
were chosen [38] to balance the training data. This SMOTE
oversampling overcomes the disadvantage of the random
oversampling technique as it generates newer synthetic data
points to avoid overfitting conditions during the testing phase.
SMOTE was tested with eight different classifiers to identify
the lithofacies using imbalanced well-log data, as shown
in Table 9. It is observed that SMOTE slightly enhanced
the individual performance of certain classifiers in terms of
accuracy, precision, recall, and F1 score but not for MCC and
G-mean values if Table 9 and Table 6 are compared. These
values don’t enhance synthetic data samples, indicating no
improvement in strong classifiers such as ET, XGB, and RF
performance.

ADASYN is another popular resampling technique that
generates synthetic data samples for minority classes to
generate balanced training datasets. ADASYN standards for
adaptive synthetic sampling approach enhance learning by
data distribution among minority classes. It also tries to
reduce the bias error introduced due to data imbalance and
adaptively manipulate the classification boundary towards
the data samples rigid for classification [39]. ADASYN was
tested on the well logs data in combination with diverse
classifiers, as mentioned in Table 6. The performance of
strong classifiers such as RF, XGB, and ET doesn’t show
any noticeable improvement as no additional information

content has been added in the training set. The performance
of weak classifiers such as KNN, LR, DT, and SVC improves
significantly, as shown in Table 10, compared with Table 6.
Ensemble methods are one of the most popular multi-base

classifier algorithms designed to enhance performance. These
methods comprise several techniques that are utilized for
the classification of lithofacies. Initially, two approaches,
bagging and boosting, were investigated to understand the
influence of data imbalance. Bagging utilizes two main
techniques, i.e. bootstrapping and aggregating, to train the
weak base classifiers. It randomly samples the training
data with replacement [57]. When the same base classifiers
are used in any ensemble architecture, it is known as
the homogeneous ensemble method [10], [11]. Table 11
shows the Bagging ensemble architecture in combination
with different base classifiers. However, no significant
improvement was observed with the Bagging architecture.
SVC and KNN combination failed to maintain their G-mean
score, as shown in Table 11 and became unreliable. However,
their performance became more reliable and stable than
earlier performances when boosting ensemble architecture
was utilized, as shown in Table 12. This also indicates that
boosting algorithms maintain the stability and reliability of
classification results more consistently, even with critical
imbalance conditions, as observed in Table 12. This may be
a key to adding stability to the MCLA. However, a powerful
resampling technique must be integrated with an ensemble
approach to balance the training data; otherwise, they will not
exceed their performance.

Further, Voting and Stacking ensembles were used to
enhance the performance of base classifiers in the heteroge-
nous architecture approach. These ensembles were also com-
bined with the resampling techniques to balance the training
datasets. It was observed that this MCLA became more stable
and reliable, as shown in Tables 13 and 14. However, the
performance of the voting classifier is inferior to that of
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TABLE 10. Classification results of well logs data with different ML models with ADASYN resampling technique.

TABLE 11. Classification results of well logs data with different ML models with Bagging ensemble technique.

TABLE 12. Classification results of well logs data with different ML models with Boosting ensemble technique.

TABLE 13. Classification results of Voting ensemble architecture for lithofacies identification.

TABLE 14. Classification results of well logs data with different ML models with Stacking ensemble technique.

stacking due to the additional meta-classifier algorithm layer
used to combine outcomes of base classifiers in Stacking.
It is also observed that decision tree-based algorithms are
better suited for accuracy enhancement in MCLA. However,
when combined with boosting algorithms and resampling
techniques, this architecture becamemore stable as theMCC,
and G-mean values improved accordingly. LR, KNN, NB,
and SVC were also tried as base classifiers, but no significant
improvement was observed in the classification results.
The highest performance was achieved when ADASYN
combined with the Stacking ensemble (ADASYN +

[ADA+DT+RF+ET+XGB +XGB(META)]), forming the
core of MCLA architecture as shown in Table 14. The

performance of ADASYN was observed to be higher than
SMOTE because ADASYN focused on generating synthetic
data points in minority classes where classification is
complex and adapting according to the challenging aspects
of imbalance well logs data. The results shown in Tables 14
and 15 clearly show the superiority of multiagent Stacking
MCLA for handling imbalanced data. Table 15 also shows
the comparative analysis of the proposed approach with the
existing research works to establish its supremacy.

The proposed MCLA architecture contains provisions
to control data-related issues, imbalanced data, and clas-
sification. It was made using a heterogenous ensemble
model, representing a committee of experts from diverse
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FIGURE 9. The confusion matrix for test data samples of multiagent Stacking architecture during the lithofacies identification.

domains, ensuring better classification accuracy. Due to
ensemble architecture at its core, MCLA easily exceeds
the individual performance of base classifiers. Different
popular algorithms have been tested to classify mudstone
lithofacies in the Kansas region. The MCLA architecture
optimally combines several techniques (ADASYN + [ADA
+DT+RF+ET+XGB+XGB(META)]) at its core, achieving
the highest possible classification accuracy and stability
even for critical imbalance datasets. Collaboration between
different classifiers has been achieved using a heterogeneous
ensemble approach, i.e., Stacking and Voting. During the
training of base classifiers, the ensemble approach also
provided an additional advantage of splitting the imbalance
data internally into balanced subsets using the cross-
validation technique. This splitting of training well logs
data into smaller subsets, which helps to reduce data bias,
which in turn reduces prediction error and enhances overall
classification accuracy. The presence of ADASYN in the
MCLA architecture also lowers bias errors in two ways.

Firstly, ADASYN reduces the bias error introduced by imbal-
ance through improvement in learning. The improvement in
learning is achieved by generating difficult minority-classes
data samples through weighted distributions that are hard
to learn [59]. Secondly, the decision classification boundary
should be shifted towards the complex generated data
samples. The reduction of bias error can be monitored
by enhancing values of precision and recall parameters.
The bias error can also be minimized by increasing the
complexity of modelling through the hybridization with a
multi-agent approach in MCLA architecture. The presence
of more training features and the size of training samples
also minimize the bias error in MCLA. The variance error
is reduced by integrating cross-validation, feature selection
and ensemble methods in MCLA. Tables 19 and 20 of the
appendix section show additional classification results of Vot-
ing and Stacking ensembles based on approximately 50,000
training data samples extracted from five different oil and
gas wells situated near the Deforest well initially taken into
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TABLE 15. Classification results of Voting ensemble architecture for lithofacies identification.

consideration in this research work. The confusion matrix for
test data samples of multiagent Stacking architecture during
the lithofacies identification is shown in Figure 9.
The real-field implementation of ML models also comes

with various challenges and limitations, such as techni-
cal, organisational, and ethical aspects. Gathering data in
real-time is often challenging due to the lack of intelligent
sensors in the mechanical oil drilling rigs. Data is often
scarce, incomplete, noisy, or unstructured, so training the
ML models becomes difficult. Oil and gas companies rarely
share their data for research purposes. Limited open-source
oil and gas databases allow researchers to test their newer
technologies. ML technology is resource-intensive, has high
computational power requirements, and demands extensive
data storage facilities. Deployment and scaling of these
ML models in the oil and gas field to compute a bulk
amount of data in real-time scenarios is challenging as it
has large energy requirements, challenges while integrating
with the existing systems, continuousMLmodelmaintenance
and monitoring requirements, issues of data privacy, needs
protection from adversarial attacks, involvement of high-
cost, and ethical considerations. High domain expertise,
strategic planning, high monetary funds, and a focus on
ethical and responsible AI practices are required to address
the abovementioned limitations. Researchers and engineers
have already overcome similar challenges and limitations in
several megaprojects with team efforts, and ML models will
soon be deployed in the form of intelligent drilling rigs, which
are under development phase in several research groups.

V. CONCLUSION
This study investigates the multiagent collaborative learning
approach for the identification of lithofacies. The number of
training data samples belonging to each class, as shown in
Figure 3, indicates the uneven distribution of data samples
in training data. The proposed architecture is quite helpful

in handling imbalanced data conditions. It is clear from
the analysis of results reported in Tables 6-14 that the
proposed architecture has shown promising improvements in
classification performance and maintained its stability with
imbalanced well-logs data. Diverse resampling techniques
and different classifiers have been tested to investigate the
classification results’ reliability using MCC and G-mean
parameters. Under-sampling and oversampling techniques
were found to be poor while handling data imbalances,
whereas SMOTE and ADASYN had impressive results.
The results of Table 13-14 clearly show that ADASYN
outperformed SMOTE because ADASYN reduces the bias
error related to data. ADASYSN, in combination with
Stacking, has produced impressive results in terms of accu-
racy (99.41%) along with MCC (0.98) and G-mean (0.98).
However, SMOTE has given a slightly lower classification
result when compared with ADASYSN in Stacking, such
as accuracy (97.89%), MCC (.97), and G-mean (0.97),
which are also remarkable. The heterogeneous combination
of decision tree-based base classifiers has consistently
performed satisfactorily, while boosting algorithms as base
classifier members have added reliability to the classification
results. The collaboration between decision tree-based algo-
rithms was found to be beneficial in terms of classification
accuracy in the Stacking and voting. The high variation
in the number of data samples was maintained in the
training data utilized for investigating the performance of
MCLA. Despite the high degree of data imbalance, the
diverse classifiers combined through Stacking inMCLA have
produced satisfactory results for recognising lithofacies. The
highly diverse classifiermembers are essential tomaintain the
robustness of MCLA such that each member complements
their performance and ensures the overall performance of
the architecture. However, there is a trade-off between
the team members section and team size, as well as the
operation time and the decision. Computational cost, time,
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TABLE 16. Classification results of well logs data with different ML models without any data resampling techniques along with K-fold cross-validation
(Same as Table 6).

TABLE 17. Classification results of well logs data with different ML models without any data resampling techniques along with stratified cross-validation.

TABLE 18. Classification results of well logs data with different ML models without any data resampling techniques along with leaving one out
cross-validation.

TABLE 19. Classification results of Voting ensemble architecture for lithofacies identification. (approximate 50,000 data samples extracted from five oil
and gas wells situated near Deforest well initially taken).

TABLE 20. Classification results of Stacking ensemble architecture for lithofacies identification. (approximate 50,000 data samples extracted from five oil
and gas wells situated near Deforest well initially taken).

team member size, team member type, data complexity,
and hardware availability are challenges and constraints

hinderingMCLA development. Before training thesemodels,
a proper preprocessing layer has been utilized to eradicate
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problematic data samples. This is also challenging as the data
from different oil and gas fields may contain different data-
related issues. Diverse deep learning models need to be tested
as team members in the MCLA to develop a more robust
architecture. Such models may reduce the dependency on the
preprocessing step. A transfer learning-based model will be
proposed and trained for the well-log datasets from different
oil and gas fields to replace MCLA. This may overcome
various limitations and challenges related to MCLA, such as
computational cost, time, dependency on the preprocessing
step, etc. The proposed MCLA model may be tested for
diverse field datasets having similar severe imbalances and
data-related issues.

APPENDIX
See Tables 16–20.
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