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ABSTRACT The diverse applications of Machine-Type Communication (MTC) lead to exponential growth
in Machine to Machine traffic. In connection with MTC deployment, a large number of devices are
expected to access the wireless network simultaneously, resulting in network congestion. The conventional
Random Access mechanism lacks the capability to handle the large number of access attempts expected
from massive MTC (mMTC). Additionally, mMTC transceivers often operate by generating short data
packets in a sporadic and sometimes unpredictable manner. To address the growing need for efficient
communication inmassivemachine-type communication scenarios we propose an innovative solution, called
Deep Reinforcement Learning-Based Multi-Access (DRLMA). Our model considers the Base Station (BS)
as an agent navigating the landscape of machine-type communication devices. This agent dynamically
switches between grant-based and grant-free access to leverage their strengths. We address the multi-access
problem, formulating it as a Partially Observable Markov Decision Process (POMDP), to better understand
and tackle challenges associated with dynamic access policies. Leveraging Deep Reinforcement Learning
techniques, our approach optimizes sporadic traffic patterns, crafting an adaptable access policy to maximize
both network throughput and energy efficiency under the battery constraint. Simulation results show that
proposed DRLMA scheme outperforms traditional access schemes and existing access protocols in sporadic
traffic in terms of the energy efficiency, throughput and network life time.

INDEX TERMS Massive machine-type communication, multiple access, deep reinforcement learning,
grant-based, grant-free, sporadic traffic.

I. INTRODUCTION
Fifth generation (5G) and Beyond 5G (B5G) wireless
networks have been developed to support a wide range
of highly demanding services and applications by pushing
network capabilities for improving performance. To meet
all the needs and requirements of mobile networks in the
future, the projected use of mobile networks is divided
into three use-cases: Enhanced Mobile Broadband (eMBB),
Ultra-Reliable Low-Latency Communication (URLLC), and
massive Machine-Type Communication (mMTC), each serv-
ing different application purposes. mMTC applications cover
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various sectors like transportation, utilities, health, environ-
ment, and security. In these scenarios, data packets often
contain small amounts of information, such as control
commands or sensor readings. Despite the relatively small
data size, mMTC networks can comprise significantly
more nodes compared to regular consumer mobile cellular
networks [1].

3GPP initiated feasibility studies for Machine-Type Com-
munication (MTC), defining it as a form of communication
involving one or more entities that do not necessarily require
human interaction. Most Machine-Type Devices (MTDs)
are low-complexity devices and should operate for years
entirely dependent on low cost batteries. Furthermore, these
devices are usually placed in locations that suffer from
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significant penetration loss in the building (up to 50 dB),
such as deep inside buildings or basements. In other words,
they generally have unfavorable link budgets. Therefore, the
main challenges in mMTC applications are to ensure the
connection of a large number of MTDs while maintaining
network performance and to minimize energy consumption
by MTDs [2].

The Medium Access Control (MAC) layer is vital for
managing channel access among nodes in a network. For
mMTC, MAC protocols need to be efficient, scalable,
low-power, and low-latency. However, conventional Ran-
dom Access (RA) mechanisms, like those in Long Term
Evolution (LTE) networks, struggle with a high number
of connected devices, leading to network congestion and
degraded Quality-of-Service (QoS). In cellular networks, the
random RA procedure relies on grant-based and grant-free
transmission schemes. Grant-based transmission involves
devices requesting and receiving explicit permission (grant)
from the base station before transmitting data, ensuring
controlled and coordinated access with QoS guarantees
but introducing overhead and delay. In contrast, grant-
free transmission allows devices to autonomously initiate
transmission without prior grant requests, reducing signaling
overhead and latency. These grant-free schemes are suitable
for mMTC scenarios with short packets, enabling direct
transmission from active devices to the base station [3], often
including metadata like preambles for device detection and
channel estimation [4], but may face challenges such as
increased collision probability and reduced coordination.

A. MOTIVATION AND CONTRIBUTIONS
As the number of MTC devices grows to hundreds of
millions [5], the access channels in existing cellular networks
are expected to face severe congestion and increased sig-
naling overhead. This issue is particularly problematic with
grant-based access methods, which require devices to request
and receive permission before transmitting data, leading to
significant delays and inefficiencies. On the other hand,
in grant free, devices send data without requesting channel
access and the lack of coordination results in tremendous
amount of collisions due to the limited resources for massive
number of MTCDs. Additionally, the heterogeneous nature
of the network further complicates the design of an effective
solution. Previous approaches have traditionally optimized
either grant-based or grant-free schemes separately, for exam-
ple, existing studies have worked on optimizing resource
allocation in grant-based access or solving challenges like
activity and signal detection in grant-free access, without
addressing both methods simultaneously.

In our previouswork [6], we introduced aDynamic Switch-
ing Access (DSA) protocol that focused solely on switching
from grant-free to grant-based access based on the continu-
ously increasing number of active devices in a periodic traffic
environment with constant arrival rates. The limitation of that
work was that it only allowed switching in one direction,

from grant-free to grant-based, due to the nature of the traffic
model, which did not account for the sporadic traffic patterns
seen in real-worldMTC environments. In contrast, the current
work significantly extends that approach by introducing a
bi-directional switching mechanism that dynamically adapts
between both access methods (grant-free and grant-based)
based on real-time network conditions. This allows for more
flexible and efficient management of network resources in
environments where traffic is unpredictable. Additionally,
unlike the previous work, which relied on a static threshold-
based method, this paper formulates the access problem as
a Partially Observable Markov Decision Process (POMDP),
enabling more sophisticated decision-making in dynamic and
uncertain environments. By applying Deep Reinforcement
Learning (DRL), we optimize the access policy to handle
sporadic traffic effectively, allowing the system to adapt
flexibly between access protocols depending on network
conditions. The major contributions of this paper can be
summarized as follows:

• Wepropose a novel approach that leverages the strengths
of distinct access protocols through an intelligent
switching mechanism. This involves the base station
guiding devices to adapt their access type based
on real-time network conditions. In massive MTC
environments with sporadic data transmissions, this
approach allows devices to dynamically switch access
type, enhancing network performance;

• We model the energy efficiency and throughput sep-
arately for both access types to demonstrate their
dependency on different access protocols;

• We address the multi-access problem by formulating it
as a POMDP to better understand and resolve challenges
associated with dynamic access policies;

• Leveraging DRL techniques, our approach optimizes
sporadic traffic, crafting an adaptable access policy to
maximize both network throughput and energy effi-
ciency. Additionally, we consider an essential parameter
of device batteries by treating the BS as the agent,
thereby avoiding unnecessary drain on device batteries
during training;

• We evaluate our proposed method against benchmarks
and other access protocols in the literature. Numerical
results show that our DRL-based algorithm outperforms
traditional access schemes, achieving significant aver-
age gains of throughput, energy efficiency and battery
life time;

B. PAPER ORGANIZATION
The rest of the paper is organized as follows. Section II
provides an overview of related literature. Section III
describes the systemmodel and problem formulation, includ-
ing energy efficiency and throughput modeling. Section IV
details the proposed DRL framework, including its training
process and algorithm. Section V introduces the simulation
environment used to evaluate our approach and demonstrates
efficiency of proposed Deep Reinforcement Learning-Based
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Multi-Access (DRLMA) compared to existing methods and
finally, Section VI concludes the work.

II. RELATED WORK
3GPP identified the RA process as crucial for improving
MTC support and proposed candidate solutions to enhance
Physical Random Access Channel (PRACH) performance in
overload scenarios [7]. Guo et al. [8] utilized Access Class
Barring (ACB) for reducing preamble collisions, with the
scheme’s performance varying based on parameter configu-
rations. However, recent studies combine learning methods
with ACB to enhance network performance; [9] integrates
Long-Short Term Memory (LSTM)-based traffic prediction
and RS with ACB, improving throughput compared to grant-
free benchmarks. Tello-Oquendo et al. [10] proposed a
dynamic algorithm using reinforcement learning to adapt
ACB’s barring rate parameter, effectively reducing conges-
tion and collisions in the Random Access Channel (RACH).
In [11] an optimal ACB control and resource allocation
scheme proposed to maximize system capacity while ensur-
ing efficient resource utilization. Additionally, Salam et al.
[12] and [13] proposed prioritized contention-based MTCD
access with dynamic resource allocation by the aggregator to
enhance access management in mMTC networks.

In recent years, there has been a decline in the focus on
enhancing the grant-based, suggesting a reduced emphasis on
further improvements. However, a new grant-based scheme
introduced in [14] enhances the massive random access
Gaussian channel by enabling coordinated user interactions
and improving overall performance. This scheme utilizes
short broadcast feedback from the base station, considering
energy consumption and transmission delay, and benefits
from a simplified design and optimization process with
its closed-form expression for error probability approxima-
tion. Additionally, Liu et al. [15] propose a grant-based
random access transmission scheme based on a sparse
Tanner graph, employing source channel estimation and
M-ary modulation to reduce transmission delay and achieve
high reliability with the proposed message-passing decoder.
For energy-efficient solution, the hybrid access protocol
proposed in [16] combines contention-based and scheduled-
based access, addressing energy efficiency, bandwidth, and
delay optimization. Furthermore, Kim et al. [17] introduced
spatial group-based preamble allocation to enhance preamble
detection probability. Configured Grant (CG) with explicit
Acknowledgment (ACK) is introduced in [18] to enhance
uplink URLLC transmission scheme to improve reliability.

Several grant-free based approaches have been introduced
in the literature. Collisions are a major obstacle such that
grant-free scheme cannot stand alone to support mMTC.
While the number of preamble sequences is very large, the
probability that two or more users choose the same test
sequence is non-zero. In this case, a collision is said to
have occurred because these devices cannot be detected by
the base station. To address collisions, work [19] introduced

a distributed layer allowance-free Non-Orthogonal Multiple
Access (NOMA) framework, dividing the cell into layers with
different power levels to minimize interference. However,
collisions within each layer remain severe. Additionally,
in [20] a priority-enabled grant-free access is proposed
to dynamically adapt the number of slots within a sub-
frame based on traffic load estimation. Furthermore, the
NOMA-based multichannel ALOHA scheme introduced
in [21] demonstrates the potential of NOMA for non-
coordinated transmissions, where devices select predeter-
mined power levels to reduce collisions. However, their focus
is primarily on improving throughput by varying power levels
and the number of subchannels. Additionally, methods to
determine the number of preambles for collision reduction
have been proposed [22], [23], [24], with focusing on achiev-
ing high success probability while minimizing single-user
failure probability [22]. For the problem of active user in
grant-free, study [25] introduces an innovative deep learning
architecture designed to tackle the Active User Detection
(AUD) problem in GF-NOMA under frequency-selective
fading channels without needing Channel State Information
(CSI) or user sparsity information. Joint device activity
detection, channel estimation and data recovery considered
in [26], [27], [28], and [29]. Regarding optimization,Machine
Learning (ML), particularly Reinforcement Learning (RL),
is frequently employed as optimization tool across various
studies. However, RL encounters scalability issues in large
networks due to extensive exploration time, while DRL,
encompassing techniques like Deep Q-Network (DQN) [30],
[31], [32] and Deep Deterministic Policy Gradients (DDPG),
aims to address the RL limitations. Zhang et al. [33] proposed
a deep reinforcement learning approach to mitigate collisions
in grant-free NOMA systems by clustering access resources
and user equipment into separate subsystems.

Several studies have focused on Semi-Grant-Free (SGF)
transmission to balance resources between grant-free and
grant-based methods. Study [34] explores the outage per-
formance of a Rate-Splitting Multiple Access (RSMA)-
aided SGF transmission system, optimizing power allocation
and decoding order to maximize grant-free user’s rates
while preserving the grant-based user’s outage performance,
supported by analytical and simulation results. For outage
exploring, [35] proposed a fair CS-SGF method to address
admission fairness. Theoretical analyses reveal limitations in
achieving full diversity orders, prompting the introduction
of a distributed power control strategy. Additionally, a joint
channel assignment and power allocation approach for
semi-grant-free NOMA systems is introduced in a separate
study [36] maximizing network throughput while meeting
individual device requirements. Furthermore, Double Deep
Q Networks (DDQN) techniques are applied in [37] to
optimize transmit power in SGF-NOMA IoT networks,
achieving significant throughput gains, while [38] proposes
a RB-oriented power pool design for SGF-NOMA, address-
ing residual errors using Multi-Agent DRL (MA-DRL)
algorithm.
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Table 1 provides a summary of the related works discussed
in this section.

Existing research has predominantly focused on enhancing
either pure grant-based or pure grant-free schemes to address
their respective challenges, often neglecting the potential
benefits of leveraging both approaches. Furthermore, most
studies in grant-based access emphasize methods such as
Aggregated Channel Bandwidth (ACB), device aggregation,
or clustering, while those in grant-free access primarily
focus on resource allocation, channel estimation, and active
data detection, without adequately considering the access
protocols themselves. The issue of sporadic traffic has
also been largely overlooked, revealing a gap in improving
random access protocols. Even in semi-grant-free scenarios,
where resources are shared, the access protocol typically
remains constant across the network. Additionally, many
recent learning-based solutions treat devices as agents,
leading to increased energy consumption without addressing
this concern. This highlights the need for our approach, which
aims to integrate access protocols and develop DRLMA.

III. SYSTEM MODELING
This section is divided into three parts: Traffic Modeling,
access mechanism and problem Formulation.Wewill explore
the underlying traffic patterns influencing the system,
detail the access mechanisms followed by a comprehensive
formulation of the problems related to energy efficiency
and throughput, highlighting the dependencies of access
protocols. For better comprehension, we report in Table 2 all
the parameters that are used in the following.

A. TRAFFIC MODELING
We consider uplink transmission for a cellular network
consisting of a single BS and n MTC devices. We assume
Rayleigh fading where channel gains follow a distribution
characterized by exponential randomness. We use a power-
law path-loss model, and devices use full path-loss inversion
power control to address the ‘‘near-far’’ problem, adjusting
signal power based on downlink path-loss estimation to
maintain a consistent received signal power at the BS,
meeting a threshold ρ. We assume that in each time slot,
packets that failed to transmit will retry in subsequent time
slots, even if new packets arrive during those times. Each
device maintains a queue for packet transmission, managed
by the arrival of new packets and the presence of undelivered
ones. We use a First Come First Serve (FCFS) scheduling
scheme, where newly arrived packets are placed at the end
of the queue. For simplicity, we assume each device has a
sufficiently large buffer size, allowing for an infinite number
of RACH attempts, ensuring no packet is dropped until
successfully received by the BS.

For packet generation, we consider a sporadic traffic
model where the arrival rate, denoted as λ, is a random
variable uniformly distributed between 0 and λmax (λ ∼

Uniform(0, λmax)). This approach reflects the unpredictabil-
ity of real-world scenarios, allowing the arrival rate to

vary dynamically within a defined range. In each time
slot, a device is deemed active if it has non-empty buffers,
which is defined as N active

t = N new
t + N cum

t > 0.
Here, N new

t represents the number of newly arrived packets,
modeled as a Poisson random variable with an intensity of λ.
Specifically, N new

t follows a Poisson distribution defined by
the probability mass function (PMF):

P(N new
t = n) =

λne−λ

n!
, n = 0, 1, 2, . . . (1)

The term N cum
t accounts for previously failed packets that

were not successfully transmitted in prior time slots. Thus,
the total number of packets in the buffer can be influenced by
both the sporadic nature of new arrivals and the accumulation
of previously failed attempts.

To express the combined effect of new and cumulative
packets mathematically, we define the PMF of the number
of active devices in each time slot as follows:

P(N active
t = k) =

∞∑
n=0

P(N new
t = n) · P(N cum

t = k − n) (2)

where P(N new
t = n) follows the equation (1), and

P(N cum
t = m) represents the distribution of accumulated

packets from previous time slots.

B. ACCESS MECHANISMS
The BS has a preamble pool of ξ non-dedicated preambles
known to the devices, each chosen with equal probability.
We focus on Small Data Transmission RA (SDT RA)
proposed by 3GPP [39] for both grant-based and grant-free
access, as depicted in Figure 1. In the grant-based approach,
devices transmit data with Msg3 without transitioning to the
Radio Resource Control (RRC) Connected state. Devices
initiate the process by selecting a preamble and transmitting it
asMsg1 on the RA subframe. If the preamble is successfully
detected, the BS grants a larger Physical Uplink Shared
Channel (PUSCH) resource for bothMsg3 and data transmis-
sion. Assuming the packet size is smaller than the maximum
Transport Block Size (TBS), the data can be sent along with
Msg3 in one slot. In the last step, the base station sends
an acknowledge in Msg4. In the grant-free method, devices
send data in MsgA, comprising both preamble and PUSCH
data, transmitted separately over time with independent
channels. If there is no collision during preamble or PUSCH

FIGURE 1. Grant-based and grant-free SDT RA schemes.
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TABLE 1. Summary of related works.

decoding, the base station acknowledges with a message.
Early preamble collision detection [40] is considered in
grant-based access, it allows the base station to identify
collisions when multiple devices select the same preamble
during the initial message (Msg1). This mechanism works by
detecting overlapping preambles, allowing the base station

to recognize that multiple devices are attempting to access
the network simultaneously, thereby facilitating prompt
collision resolution. In our system modeling, we incorporate
NOMA for grant-free access, allowing multiple devices
to share the same resource. To manage interference, the
Base Station employs Successive Interference Cancellation
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TABLE 2. Parameters list.

(SIC). SIC decodes the strongest signal, subtracting it, and
iteratively decoding the subsequent strongest signals. This
iterative process enables the recovery of weaker signals
based on the Signal to Interference and Noise Ratio (SINR),
facilitating the retrieval of multiple packets. The SINR for
PUSCH transmission in the tth time slot is formulated as [41]:

SINRt = ρ(|h0|)2/(I tintra + σ 2
n ) (3)

where ρ is the full path-loss inversion power control
threshold, h0 is the channel from a typical device to the BS,
σ 2
n is the noise power and Iintra is the aggregated intra-cell

interference, which is the interference generated by other
users within the same cell. The SIC decoding process follows
the descending order of received power. Given that the power
control is constant, we have |h1|2 > |h2|2 > . . . > |hn|2.

Thus, the interference Iintra can be expressed as:

Iintra =

n∑
j=1

1{
N t
Newj

+N t
Cumj

>0
}ρ ∣∣hj∣∣2 . (4)

The above equation implies that the strongest signal is
decoded first, and its impact on the overall interference is
eliminated before decoding the next signal. Consequently, the
remaining interference for the subsequent signals is reduced.
In our system modeling, we utilize the downlink channel
typically employed by the base station for granting access and
sending acknowledgments. This channel is used to broadcast
notifications to devices, ensuring they receive information
about any changes in their random access method.

C. PROBLEM FORMULATION
In the context of mMTC, accommodating a large number of
devices accessing the network with sporadic traffic presents
a significant challenge. All the devices execute the same
random access procedure during a given time slot by selecting
one of the available RA methods. In this study, considering
the battery-powered nature ofMTCdevices, we operate under
the constraint that none of the devices have their batteries
depleted, as

∀i : Bi ≥ ϵ (5)

where Bi represents the battery level of device i and
ϵ represents a very small positive value. Metrics such as
throughput and energy efficiency are crucial for enhancing
the performance of short-packet transmission, especially
for battery-driven MTC devices in massive environments,
providing valuable guidance for optimization endeavors.
Our goal is to concurrently enhance these two metrics.
This approach directs our optimization strategies towards
achieving a balance betweenmaximizing data throughput and
enhancing energy efficiency within the MTC environment.
An outline of the energy efficiency and throughput for each
access type is further described.

1) ENERGY EFFICIENCY
It is calculated as the ratio of the number of packets
successfully transmitted within the network to the total
energy consumed during m time slot. It is expressed as

Emeff =

∑m
t=1 P t

succ∑m
t=1 E

t (6)

However, the number of successful transmissions and
energy consumption varies across different access protocols.
We will discuss the calculation method for each protocol.

a: GRANT-BASED
• Psucc: In our scenario we assume that early collision
detection has been considered. It means that probability
of successful transmission is the probability of selecting
a unique preamble [42] of active devices in equation (2).
Suppose that all n active devices randomly choose
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preambles in {1, 2, . . . , ξ}, therefore, the probability of
the number of successful transmission in each time slot
is

Psucc = P(N active
t = k)n

(
1 −

1
ξ

)n−1

(7)

• E : For ease of description, we illustrate the energy
consumption of each packet transmission in Figure 2.
As depicted, there are two devices that are trying
to send date to the base station. Ts is the slot time
length which is time duration for sending preamble
in Msg1 NRAR is the number of slots that Random
Access Response (RAR) window occupies. NCRT is
the number of slots that Contention Resolution Timer
(CRT) occupies. TK is the PUSCH scheduling parameter
defined in the standards [43] and TD is the time that
Dth device sleeps until its data sending slot. Ps,Pr
are the power consumption when the device is in
the sleep and receiving states separately, which are
constants for all devices. The transmit power, Pt is
considered a constant because, despite each device’s
radiated power depending on its distance to the BS
due to full-path power control, the power consumed
by the amplifiers and Radio Frequency (RF) hardware
is significantly higher and nearly independent of the
radiated power [44]. Therefore, the energy consumption
of successful transmission can be written as:

E = PtTs + PrNRAR + (i− 1)TKPs + NCRTPr (8)

where i is the number of devices that successfully
transmit a preamble and are granted allocation forMsg3.
In equation (i−1), the first device transmits data without
queuing, while the remaining devices must wait for their
turn.

FIGURE 2. Timing relationship of Grant-based RA procedure.

b: GRANT-FREE
• Psucc: In grant-free access protocols, a packet’s success
depends on both the probability of success during the
preamble phase and the SINR during the data phase.

As a result, the number of successful transmission in
each time slot is

Psucc = P(N active
t = k)n

(
1 −

1
ξ

)n−1

× (1(ρ(|h0|)2/(I tintra+σ 2
n ))>γth

) (9)

• E : In grant free, once devices have transmitted the
preamble, they send data in another slot. Then they wait
for Ack from base station at RAR windows. If their
transmission is successful they receive Ack from base
station. As shown in Figure 3, devices send preamble
and data in each state of failure and success. Therefore
energy consumption is constant as

E = (2 × PtTs) + PrNRAR (10)

FIGURE 3. Timing relationship of Grant-free RA procedure.

2) THROUGHPUT
Throughput, denoted by S, can be derived by the number
of successfully transmitted packets during a period in the
mth time slot, as shown below.

Sm =

∑m
t=1 P t

succ∑m
t=1 T

t (11)

where T can be determined as follows by referring to
figures 2,3 for different access protocols.

a: GRANT-BASED

T = Ts + NRAR + (i− 1)TK + NCRT (12)

b: GRANT-FREE

T = Tdata = (2 × Ts) + NRAR (13)

Referring to equations (10) and (13), while grant-free
protocol exhibits lower energy consumption and time delay,
based on the (9), its success probability decreases with
increasing interference from other devices due to SINR
effects. Optimizing both energy efficiency and through-
put entails choosing the suitable random access method,
especially in an environment marked by sporadic packet
arrivals and fluctuating rates within each time slot. These

178696 VOLUME 12, 2024



N. Ravi et al.: Deep Reinforcement Learning-Based Multi-Access in Massive MTC

irregularities in packet arrival rates present a significant
challenge, complicating the ability to identify and track
consistent trends within the network’s operational patterns.
In our system, the BS operates in an environment where
it has incomplete information about the current network
state, such as the number of active devices in a given
time slot or the real-time channel conditions. This lack of
full observability requires the BS to make decisions based
on partial observations of the system, making the problem
well-suited to be modeled as a POMDP. The state of the
system in each time slot is derived from the previous time
slot. Based on this historical information, the BS estimates
the likely number of active devices in the upcoming slot
and selects the appropriate access protocol. This process is
essential for maximizing long-term throughput and energy
efficiency. We emphasize long-term because the decision
made in the current time slot can affect future time slots,
as failed devices retry the same data in the next time slot,
leading to buffer extension. As demonstrated earlier, energy
efficiency and throughput are influenced by access protocols.
As a result, our primary goal is to maximize both energy
efficiency and throughput by identifying the most suitable
actions for all devices. This objective can be formulated as:

max
{a1,a2}

Emeff , S
m (a1, a2)

s.t. constraint(5). (14)

where a1 and a2 are the action of sending based on GF and
GB, respectively.

IV. DEEP REINFORCEMENT LEARNING-BASED
MULTI-ACCESS
A POMDP model is represented by a tuple (S,A, p, r,O),
where S denotes the set of states, A represents the set of
actions, p is the transition probability from a state s ∈ S
to a state s′ ∈ S after executing action a ∈ A, r is the
reward received after taking action a, andO includes both the
observation set and the observation probability set. At each
time step, the system is in a particular state s. After the
agent selects an action a, it receives an observation o with a
probability O(o|s, a, s′). Subsequently, the system transitions
to a new state s′ and provides a reward r to the agent.
To address the POMDP problem, we employ DRL.

This method, highlighted for its capabilities in solving
intricate sequential decision-making challenges, has show-
cased exemplary performance, even when dealing with
partially observable environments. When the state and action
spaces are large, RL algorithms can become computationally
expensive and memory-intensive, making it challenging to
converge to an optimal solution. To address this issue, DQN
was introduced, combining Q-learning with Deep Neural
Networks (DNNs) to efficiently train an accurate state-action
value function for problems with high-dimensional state
spaces. In this section, we propose employing a DQN-based
algorithm to address the problem described in (eq 14). The
rationale for adopting DQNwithin our framework stems from

multiple considerations. One key reason is the demonstrated
success of DNNs in addressing partially observable problems
through function approximation. Given the continuous and
dynamic nature of our state space, characterized by a wide
range of numerical values due to the varying number of active
devices in each time slot, the state space becomes too complex
for a Q-table to handle effectively. DNNs, however, offer the
flexibility and capacity to discern intricate patterns from the
observed states, facilitating robust learning in such complex
environments [31]. As our environment evolves dynamically,
DQN’s adaptive nature ensures its applicability across varied
problem scenarios, making it a compelling choice for our
research objectives.

A. RL FRAMEWORK
In our RL framework, to accurately calculate the energy
consumption of devices in a real environment, an RL-agent
is deployed at the BS to interact with the environment
and progressively choose appropriate actions. However, this
increases the power consumption and operational costs of
the BS, which is assumed to be plugged in and has a constant
power supply. AnRL agent is defined by the tuple (S,A, p, r),
where S is the set of states, A is the set of actions, p is a
transition probability from state s ∈ S to state s′ ∈ S after
taking action a ∈ A and r is the reward after taking action
a. In each step, the system is at state s. After the agent takes
an action a, transitions to a new state s′, receiving a reward r .
Based on our original problem, we define the action, state,
and reward as follows:

• Action Space: The action space consists of an array of
two elements, [A1,A2], representing grant-based and
grant-free actions, respectively. However, only one type
of access protocol is used in each time slot. Devicesmust
follow the random access protocol broadcasted by the
base station and cannot perform both actions at the same
time. They continue using their assigned access method
until they receive a new random access alert from the
base station, indicating a change in protocol.

• State Space: The state space is defined as an array
encompassing three elements [Sdevices, Sfailure, Senergy].
Sdevices is the count of devices that both executed an
action and had packets queued in their buffer during
the preceding time slot. Sfailure represents the count of
devices among the active ones in the last time slot
whose packet transmission attempts ended in failure.
Senergy encapsulates the total energy consumed during
the previous time slot. These specific states serve as
indicators, furnishing the agent with information to
inform its decision-making process for subsequent time
slots.

• Reward Function: A weighted summation function,
r(s, a), is employed to compute the reward for each
configuration, defined as

r(s, a) = w1.Emeff + (1 − w1).Sm (15)
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where, Emeff represents the energy efficiency as (6), and
Sm stands for throughput as (11). Furthermore, w1 serve
as weighting factors for each variable, allowing flexibility
based on the specific requirements of the application. In our
approach, we consider w1 = 0.5 to treat them equally,
providing a balanced optimization perspective.

The POMDP framework allows the agent to map partial
observations (states) to optimal actions, such as selecting the
most appropriate access protocol for the current time slot. The
selection of an access protocol (grant-based or grant-free)
influences the network’s future state by reducing the number
of queued packets and, thus, the number of active devices in
subsequent time slots. This approach maximizes long-term
throughput and energy efficiency, aligning with the goals of
our optimization problem.

B. RL TRAINING
The DNN architecture of proposed DQN (Figure 4) incor-
porates a single neural network comprising of input layer,
a LSTM layer, three Fully Connected (FC), and an output
layer. The input sequence layer comprises state elements in
the current time slot (t).

FIGURE 4. Architecture of the neural network used for the
implementation of the DRLMA algorithm.

In the sporadic environment, the base station receives
partial observations, leading to uncoordinated scenarios
where decisions are made without information exchange.
Traditional layers in neural networks struggle in these
scenarios due to limited knowledge of the contention status
from current network inputs. The LSTM layer, with its ability
to retain and process information from previous time steps,
is particularly well-suited for handling sequences of states
in environments where the state is partially observable. This
capability is crucial for making informed decisions based
on historical context, which is often missing in traditional
neural network layers. By integrating the LSTM layer with
FC layers, the network not only captures these temporal
dependencies but also refines and transforms the extracted
features into actionable insights. This combination allows the
network to effectively learn about the contention status in the
system and generate accurate resource access probabilities,
thereby reducing the likelihood of collisions. Here, the
Q-function input encompasses both the current state and
historical state, expressed as s(t) = {s(t) ∪ H (t)}.

The choice of three FC layers balances the model’s ability
to capture complex patterns with computational efficiency.
This structure allows for progressive refinement and abstrac-
tion of features from the LSTM, enabling the network to cap-
ture hierarchical relationships essential for evaluating action
trade-offs. With the output dimensionality from the LSTM
being manageable, three FC layers effectively reduce and
transform this dimensionality into Q-values for binary actions
(grant-based and grant-free) determining the optimal action.

During training, the DNN is updated using experiences
collected by the RL agent, represented as tuples (S,A, r, S ′),
where S is the current state, A is the action taken, r is the
reward received, and S ′ is the next state. These experiences
are stored in an experience replay buffer and sampled to
train the DNN. The DNN approximates the Q-value function
Q(S,A; θ ), where θ represents the weights matrix of a
multiple layers DNN. Hence keeping a large storage space
for state-actions pair (Q-values), DRL agent only memorize
θ weights in its local memory that reduces the memory and
computation complexity. The Q-value function is defined as:

Q(S,A; θ ) = E
[
r + γ max

A′
Q(S ′,A′

; θ−) | S,A
]

. (16)

This equation computes the expected cumulative reward r
when taking action A in state S, followed by selecting the
optimal future action A′ in the next state S ′, with γ as
the discount factor. The term θ− represents the parameters
of the target network, which helps stabilize the training
process [45].

The DNN is trained by minimizing the loss function,
which quantifies the difference between the predicted Q-
values Q(S,A; θ ) and the target Q-values in eq (16). The loss
function is given by:

L(θ ) = E

[(
r + γ max

A′
Q(S ′,A′

; θ−) − Q(S,A; θ )
)2

]
.

(17)

Loss function measures how far the DNN’s current
predictions are from the target Q-values. By iteratively
minimizing this loss, the DNN updates its parameters θ ,
improving its ability to accurately estimate Q-values and
make better action decisions. This process allows the DQN to
progressively refine its policy through the agent’s interactions
with the environment, optimizing long-term rewards.

When the agent selects an action with a higher Q-value,
it is anticipated that the environment will encounter fewer
collisions, leading to the agent receiving increased rewards
as a result.

C. RL ALGORITHM
Similar to [31], we consider online training and the process
of DQN is summarized in Algorithm 1. In the initializa-
tion procedure, several training parameters are configured,
including the discount factor γ , batch size Nb, ϵ-greedy
probability ϵ, copy frequency of network weights Ts, Tp for
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smooth and periodic respectively, and experience replay
size. In the beginning of each episode, all buffers are set
to 0 and the battery capacities reset to full capacity. In each
tth slot, buffers are allocated with 0 or 1 packet. Value
of 0 indicates that there is no packet in the buffer, while
value of 1 indicates that there is a packet in the buffer
ready for sending. Agent inputs current state s(t) into the
primary Q-network and obtains Q-values for all actions. The
action a(t) is determined using ϵ-greedy policy and the agent
collects states s(t) and receives reward r(t + 1) from the
environment. Following this, the environment transitions to
a new state denoted as s(t + 1). The agent then generates a
new training data point (s(t), a(t), r(t+1), s(t+1)) based on
these observations and stores it in its memory. We consider
the application of minibatch training, instead of a single
sample, for training the primary Q-network which improves
the convergent reliability. Therefore, the expectation is taken
over the Nb minibatch randomly selected from the experience
replay. In each slot, the primary Q-network is trained with the
gradient descent method and using RMSProp optimizer [31].
Periodic smoothing was employed for the target network in
this study. This technique involved gradual updates of the
target network’s weights towards the Q-network’s weights,
contributing to enhanced stability and convergence during the
training process.

Algorithm 1 DLRMA Training Process
1: Initialize training parameters γ, ϵ,Nb,Ts,Tp and experi-

ence replay size;
2: Initialize primary Q-network and target Q-network with

random weights;
3: for episode = 1 to MaxEpisodes do
4: Reset environment, device battery and device buffer;
5: while All (battery > 0) do
6: Generate random packets for each device [0, 1];
7: BS choose an action using ϵ-greedy and broad-

casts it to the devices;
8: BS observes the number of failures and energy

consumption based on active devices in St+1;
9: Calculate reward based on Eq.15;
10: Store transmission (St , at , rt−1, S(t + 1) in the

memory;
11: Sample random Nb mini-batch of transmission

(St , at , rt−1, S(t + 1);
12: Perform gradient descent step and update primary

network using RMSProp optimizer;
13: Update target network periodically Tp with

smoothing Ts and copy primary network weights
to target Q-network weights;

14: end while
15: end for

D. COMPUTATIONAL AND TRAINING COMPLEXITY
The computational complexity of the proposed DRL algo-
rithm can be expressed in two distinct aspects: the complexity

associated with the model architecture and the complexity
related to the training process. The computational complexity
is primarily a function of the number of connections through
the deep neural network, defined as O(U ), where U is given
by U = Ku1 +

∑G−1
g=1 ugug+1 + MuG [46]. Here, K is the

size of the input layer, equivalent to the length of the state,
M is the size of the output corresponding to the length of the
action set, and ug is the number of neurons in the g-th layer.
The computational complexity is a linear function directly
proportional to the number of connections, highlighting the
need for a well-structured network architecture to manage
computational demands effectively. Furthermore, the training
complexity is determined by the number of agents, episodes,
and time steps involved in the learning process. For N
agents during one mini-batch of E episodes and F time-steps
until convergence results in computational complexity of
order, the training complexity can be expressed asO(NEFU ).
This implies that the training complexity grows linearly
with the number of agents and the number of time-steps,
indicating the importance of efficient training strategies.
However, our DRL model mitigates these concerns by
using three hidden layers with decreasing neurons, balancing
expressiveness and computational efficiency. With just two
actions as output and three states as input, the complexity is
further reduced. Additionally, employing a single agent for
network-wide decisions limits agent interactions, facilitating
efficient learning and ensuring scalability can be managed
effectively.

The computational efforts required for decision-making
and inference in production remain manageable even as the
number of connected devices scales up. This stability is due
to our model’s use of an aggregated state representation–
[Sdevices, Sfailure, Senergy]–which condenses key information
across all devices. Instead of tracking each device individu-
ally, the base station processes only the total number of active
devices, overall energy consumption, and total failed attempts
within each time slot. This approach means that regardless
of how many devices are present, the system operates on
these three collective metrics, ensuring that computational
complexity does not increase with more devices. This design
choice allows the model to efficiently support massive IoT
environments without escalating inference demands.

V. EXPERIMENTAL STUDY
The proposed approach was evaluated using a MATLAB
simulation environment with comparisons with random GF,
traditional GB, the DSA method [6] and the fallback method
mentioned in [39]. In DSAmethod, a threshold is determined
based on the arrival rates for switching from grant-free to
grant-based. The fallback method involves devices switching
to grant-based access by receiving a grant from the base
station if they send a successful preamble but experience data
transmission failure. The impact of device number, maximum
arrival rate on the performance of DRLMA, as well as on
system throughput, energy efficiency and battery lifetime is
investigated.
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A. SYSTEM HYPER-PARAMETERS AND SIMULATION
SETUP
The simulations consider the effect of the frequency band,
assuming it only impacts the duration of the slot. Channel
inversion power control is employed by each device, and a
buffer is simulated on each device to track the arrival and
accumulation of new packets over time.

TABLE 3. Simulation parameters.

The parameter values used are listed in Table 3 but in
the training phase, to make the training feasible and reduce
complexity, we assume an initial training battery level of 5J.
As learning parameters we trained agent in 10000 episodes
and the learning rate, discount factor and batch size are
η = 0.001, γ = 0.95, Nb = 32, respectively. The ϵ-greedy
probability ϵ decreases from 1 to 0.001.
To account for the diverse nature of the mMTC environ-

ment, we took into consideration varying arrival rates that
are not consistent across different time slots. Furthermore,
to ensure the robustness of our findings, we conducted five
independent runs, each initialized with different random
seeds. These repetitions contribute to the reliability and
generalizability of our results. It is noteworthy that the
standard deviation associated with these simulations is
very small, signifying the stability and consistency of our
outcomes.

B. CONVERGENCE OF THE DLRMA TRAINING
Figure 5 illustrates the training process of the agent, depicting
the system convergence of the proposed DRL learning
framework through a plot of the average received reward
(dark blue) based on (15). In the initial training phase, reward
increases from 1 to almost 2.5 and the agent learns lots of
experiences in action selection, and begins to exploit the
potential better action selection probability that can improve
the reward. After that, the agent learns from good memory
samples resulting from the new action selection probability.

Figure 5 presents the convergence behavior of our DRL
model during the training process. The rapid convergence
observed, with the system reaching satisfactory performance
in as few as 200 episodes, illustrates the effectiveness of our
complexity-reducing strategies. This visualization highlights
the low computational burden of our proposed scheme,

FIGURE 5. Training process of the DRLMA agent. Light blue indicates the
reward for each episode, the dark blue shows the average reward over
the last 10 episodes.

making it suitable for an agent with limited computing
resources.

C. PERFORMANCE OF DRLMA
We conduct a separate analysis focusing on the variation in
arrival rate of packets with determining the maximum bound-
ary specific to individual numbers of devices. This method
aims to provide insights into device-specific behaviors,
allowing for a more granular understanding of performance
factors and variations in the system.

Figure 6 illustrates the performance of the proposed
DRLMA across different arrival rate boundaries based on the
number of devices, focusing on energy efficiency, throughput,
and battery lifetime. When the number of arrival rate bound-
aries increases, the number of active data also rises. Based
on Figures 6a and 6b, when there are 75 devices, the energy
efficiency and throughput are nearly the same. However,
as the number of active devices increases with higher arrival
rate boundaries, the difference in performance becomes more
pronounced. This is due to the rise in collisions, which
reduces the number of successful transmissions and increases
both energy and time consumption. Consequently, based on
equations (6) and (11), the performance of energy efficiency
and throughput declines. For battery lifetime, the scenario
differs slightly; here, energy consumption directly impacts
the number of RA cycles. As energy consumption rises with
the increase in active data due to higher arrival rates, there is
an initial difference between the various arrival rates. After
reaching a specific device number, such as 175, the number
of active devices becomes significantly higher, leading to a
substantial increase in collisions. As a result, the performance
of throughput and energy efficiency approaches zero.

This behavior is typical for all access protocols as the
number of active data increases. In the following sections,
we compare our proposed DRLMA with other access
protocols based on the number of devices and arrival rate
boundaries separately.
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FIGURE 6. Performance of DRLMA based on number of devices for
different maximum arrival rates.

D. IMPACT OF THE NUMBER OF DEVICES
In this section we compare our proposed DRLMA with
pure grant-free and grant-based as well as other access
protocols in the literature. Figure 7 illustrate the average
energy efficiency, average throughput and battery lifetime
concerning the number of devices. we consider a sporadic
traffic which there are not a constant arrival rate in each RA
cycle. Different packet arrival rates arementioned in Figure 6,
and we calculate the average of these rates for each number
of devices.

FIGURE 7. Comparison of different access protocols based of number of
devices for (a) energy efficiency, (b) throughput and (c) battery lifetime.

Based on the figures, with fewer devices, the grant-free,
fallback, and DRLMA methods outperform the grant-based
and threshold approaches. This is because, with fewer
devices, collisions are less frequent, and grant-free methods
can manage successful transmissions with low energy
consumption as shown in equations (10) and (13). However,
as the number of devices increases, the performance of
grant-free methods declines due to heightened collision rates
in an uncoordinated environment. The threshold method
shows improved performance with an increasing number of
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devices by switching from grant-free to grant-based access.
However, due to sporadic traffic, it cannot switch back to
grant-free based on the traffic state, so its performance
remains below that of DRLMA.

Fallback also performs better than some other protocols
but declines as the number of devices increases because in
the network state of high active data, it initially attempts
grant-free access and then switches to grant-based, causing
a waste of time and energy. As seen from figure 7a, DRLMA
shows a 48% gain in energy efficiency, from figure 7b a 49%
gain in throughput, and from figure 7c a 52% gain in battery
lifetime.

Hence, DRLMA demonstrates prowess in swiftly learn-
ing and seamlessly adapting between access protocols,
responding dynamically to the ever-changing network status.
Our method surpasses other access protocols, affirming its
selection of a suitable access type. This not only prevents
network congestion but also optimizes resource efficiency,
leading to noticeable improvements in energy efficiency,
throughput, and battery lifetime.

E. IMPACT OF ARRIVAL RATE BOUNDARIES
We analyzed our results based on the arrival rate diversities
for a specific number of devices to focus solely on the variety
in the number of active devices.

Figure 8 illustrates the impact of different arrival rates on
energy efficiency, throughput, and battery lifetime by com-
paring different access protocols. To account for variations
in the number of devices, we considered all device numbers
shown in Figure 7. We calculated values for each device
number based on different arrival rate boundaries separately
and then averaged the results. It is worth mentioning that the
arrival rates in each time slot are not constant and vary tomeet
sporadic traffic, with boundaries set to a maximum arrival
rate corresponding to active devices. As arrival rates increase,
the number of active devices also rises, leading to increased
congestion. This causes a sharp decline in the performance
of grant-free and fallback methods. Another contributing
factor to this decline is that, with each failed transmission,
the buffer extends, increasing access requests. The threshold
method also experiences a performance decrease, though
not as severely as grant-free and fallback methods, due to
its switch to grant-based access after reaching a threshold.
Grant-based access maintains almost constant performance
as it manages access by allocating resources for a specific
number of active devices.

Based on Figures 8a and 8b, DRLMA shows a gain of
49% in energy efficiency and 40% in throughput. These gains
are significant as they indicate that DRLMA can effectively
manage the transmission power and resource allocation,
leading to more efficient use of energy and higher data
transmission rates, which are crucial in scenarios with a high
number of devices and limited power resources. As shown
in Figure 8c, in terms of battery lifetime, grant-free initially
performs better due to lower energy consumption. However,
as the arrival rate boundary increases, our proposed DRLMA

FIGURE 8. Comparison of different access protocols based on the arrival
rate boundaries for (a) energy efficiency, (b) throughput and (c) battery
lifetime.

outperforms the other access protocols with a gain of 45%.
This improvement is particularly important in massive MTC
environments, where extending the battery life of devices is
critical to maintaining long-term, reliable operation without
frequent battery replacements.

VI. CONCLUSION
Multiple access schemes are pivotal in facilitating exten-
sive connectivity within mMTC and future network
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advancements, particularly given the sporadic traffic and
battery-driven devices characteristic of mMTC. To mitigate
collisions in massive and heterogeneous environments
and enhance both throughput and energy efficiency, this
paper introduces an intelligent RL-based access switching
mechanism employing a DQN within a single neural
network architecture. Initially, we model energy efficiency
and throughput based on different access protocols to
demonstrate these objectives as functions of the access
protocols. Adopting a POMDP approach due to the irregular
and uncoordinated nature of the vast environment, we address
this through the proposed DRLMA algorithm. Comparative
evaluations against pure grant-based, grant-free, threshold-
based switching protocol and fallback reveal that our RL
agent, which selects the appropriate access type based
on varying arrival rates and device numbers, outperforms
others. Results show that with a specific number of devices,
throughput increases by up to 49%, allowing the network
to handle more data efficiently. Energy efficiency improves
by 48%, reducing power consumption and extending battery
life for IoT devices. Additionally, a 52% increase in battery
lifetime means devices can operate longer without frequent
recharging, enhancing the sustainability and reliability of
large-scale massive MTC deployments.

DRLMA framework is a novel model and in networks
with high heterogeneity–where devices vary in power levels,
high interference or traffic surges, our model’s performance
may be affected. We recognize these as potential limitations
and opportunities for further development. Moving forward,
we plan to integrate power level allocation and interference
management techniques into the DRLMA framework. This
enhancement aims to optimize access protocols and resource
management, ultimately improving the performance and
scalability of mMTC networks.
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