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ABSTRACT The Centralized Radio Access Networks (CRAN) decentralizes data and control planes by
separating the baseband unit (BBU) from the central office, enabling energy-efficient *“green networks”
through the shutdown of underutilized BBUs. Analyzing extensive Call Detail Records (CDR) as big data,
collected by service providers, has gained traction for extracting network features and studying activities.
Thus, big data analytics are deemed as potential techniques that various research proposed to analyze the
CDR. This paper introduces an energy-efficient CRAN network architecture based on the CRAN framework,
focused on an innovative remote radio head (RRH)-BBU assignment. The objective is twofold: minimizing
power consumption by deactivating underutilized BBUs and reducing inter-BBU handover rates based
on CDR insights. In literature, the problem of assigning RRH to BBU is described as hard nonlinear
programming (NLP) problem (bin packing, mixed integer), different suboptimal algorithms have been
proposed to offer suboptimal assignment. This study employs clustering techniques to divide the complex
NLP problem into simpler optimization tasks, achieving optimal RRH-BBU assignments. The proposed
algorithm’s effectiveness was assessed using Milan city CDR as a case study, and its performance was
validated against Milan’s land use map. The results indicated a remarkable 28.8% reduction in power
consumption, alongside improvements in inter-BBU handovers.

INDEX TERMS 5G communication systems, CRAN networks architecture, temporal databases, clustering
optimization algorithms, spatio-temporal clustering, RRH, BBU, green communications.

I. INTRODUCTION
The 5G network architecture is envisioned to support diverse

heads (RRH) that cover different cell sizes [3], [4]. The core
idea of CRAN is to separate the functions of a base station by

services with low latency and high reliability. This raises the
concept of software-defined networks (SDN), which is based
on decentralizing the data plane to support different quali-
ties of service over a common shared infrastructure [1], [2].
A heterogeneous centralized radio access network (HCRAN)
presents the fundamentals of decentralizing the data plane
by providing a baseband unit (BBU) pool and remote radio
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splitting it into a Base Band Unit (BBU) and a Remote Radio
Head (RRH). This approach centralizes the BBUs from mul-
tiple locations into a single site (pool), such as a cloud data
center, leveraging cloud computing and virtualization. The
BBUs handle baseband signal processing, while the RRHs are
responsible for signal amplification and modulation. RRHs
are installed with antennas at cell sites and connect to the
BBU pool via a fronthaul link. By centralizing baseband
processing in a virtualized BBU pool, the system can adjust
to varying traffic loads and optimize resource use. Multiple
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operators can share the same BBU pool by utilizing it as a
cloud service. Efficiently managing resources in CRAN to
meet user demand poses a significant challenge because of
user mobility and the dynamic nature of the environment [5].
CRAN architecture poses different challenges as the func-
tionality is split between the RRH and the BBU, the front-haul
networks, and the RRH-to-BBU mapping. In CRAN architec-
ture, efficiently allocating radio and computational resources
has become a challenge. Radio resources refer to the radio
frequency (RF) spectrum, while computational resources
include processing power, data storage, and time. The man-
agement of these computational resources, centralized at the
BBU pool, requires effective oversight of the BBU resources.
In this work, we present the RRH-BBU association as a
resource management technique that optimizes the resource
allocation process by turning off underutilized units over
time. The association problem is characterized as a clus-
tering challenge that effectively enhances the allocation of
computational resources. In the literature [6], The clustering
problem is categorized based on its objective function into
location-aware, load-aware, interference-aware, QoS-aware,
and throughput-aware RRH clustering. Various studies have
tackled each clustering approach. For example, in [7], the
author proposes location-aware clustering, which groups
RRHs in close geographical proximity to minimize handovers
between them. Other studies focus on load-aware clustering;
as in [8] dynamic RRH assignment algorithm is designed to
offload one or more RRHs from an overloaded BBU to a
less loaded one, framing the RRH clustering problem as a
generalization of the classical bin packing optimization prob-
lem. In this context, BBUs are treated as bins, while RRHs
represent the item sets to be packed. In another approach
proposed in [9], interference-aware clustering is discussed,
where the author first determines RRH reassociation with
a BBU when minimum throughput requirements per user
are not met, and then seeks to minimize the number of
active BBUs by relocating RRHs to those with moderate
throughput per user. Lastly, QoS-aware clustering is explored
in [10], where authors propose a self-optimizing algorithm for
dynamic RRH clustering in CRAN based on load predictions.
In the self-optimizing algorithm, traffic load in each cell is
forecasted using a Markov model, and the optimal BBU-RRH
mapping is determined through genetic algorithms, aiming
to maximize QoS. The RRH-to-BBU assignment is proposed
as an optimization problem, as it significantly influences the
CRAN network’s efficiency. Many researchers have proposed
ways of association based on maximizing certain objective
functions. They used a single objective clustering method,
while we implemented a joint load-aware and location-aware
RRH clustering approach to tackle the RRH-BBU association
issue. We then compared our method with a similar technique
described in the second paragraph.

In this paper, we build on the work presented in [11] and
propose a joint location-aware and load-aware for time RRH
clustering approach to address the RRH-BBU association
problem. The proposed clustering approach is a spatiotempo-
ral clustering algorithm that simultaneously does load-aware
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and location-aware clustering. While [12] introduces a joint
optimization problem aimed at further reducing power con-
sumption, it also presents an online optimization framework
as a game problem with potential functions among RRHs
for associating with active BBUs, which are centrally man-
aged by a central unit. However, their proposed algorithm
experiences signaling overload during the re-association pro-
cess. Alternatively, we propose an offline computational
resource management algorithm that employs location-aware
and load-aware RRH clustering. This clustering approach is
unsupervised learning to predict the switching load of the
CRAN networks based on the analysis of Call Detail Records.
We are optimizing the association between the computational
resources of the BBU and the RRH. While the online process
offers certain advantages over the offline method, it comes
with increased networks and processing loads. Our model is
based on the static locations of the installed RRHs for spatial
clustering, as well as the statistical behavior of network load
over time. We will discuss network load updates later in the
discussion, categorizing them into planned and unplanned
events.

We present the problem of RRH-BBU association with
the aim of minimizing network power consumption, as a
means for creating green communication networks in 5G
architecture. Power-saving constraints are reached by switch-
ing off underutilized RRHs and BBUs. We introduce an
RRH-to-BBU assignment that reduces power and handover
rates between the BBUs. The problem is formulated as a
hard NLP optimization problem. The proposed algorithm
first deploys a time series-based clustering technique on the
CDR data to study network utilization over time. Secondly,
it provides second-level spatial clustering that divides each
temporal cluster into geographical zones to enhance inter-
BBU handover rates. Finally, it computes the required BBUs
for each temporal-spatial cluster and efficiently optimizes
the number of active BBUs using a bin-packing optimization
algorithm. The task of assigning RRH to each BBU is framed
as a Bin Packing Problem (BPP), which can be addressed
using the Knapsack algorithm. In this context, the RRH are
treated as objects and the capacity of the BBU as the Knap-
sack. By clustering the BBU pool, we can transform this
single problem into several joint optimization problems. The
algorithm allocates one item (object) to each bin (knapsack)
to ensure that the total weights of all objects remain within
the knapsack’s capacity while minimizing the number of
knapsacks (BBUs) used.

The proposed algorithm simplifies the problem by dividing
it into clusters of joint RRH and BBU. Parallel processing,
enabled by dividing the resource allocation for each cluster,
divides the optimization problem into multiple simplified
optimization problems. The problem is divided into two lev-
els: in the first level, the RRH is clustered based on real
collected Call Detail Records (CDR) of the real networks.
In the second level, based on the clustered RRH, the BBUs
are assigned to each clustered group of RRH. The effec-
tiveness of the proposed algorithm was evaluated using the
CDR from Milan as a case study, with its performance val-
idated against the city’s land use map. The results showed
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a significant 28.8% reduction in power consumption, as well
as enhancements in inter-BBU handovers. The rest of the
paper is organized as follows: The literature review and
the contributions are highlighted in section II. Section III
proposes the system model and the problem formulation.
The simulation results and analysis of Milan City [13] are
proposed in Section I'V. The paper is concluded in Section V.

Il. LITERATURE REVIEW AND CONTRIBUTION

A. RELATED WORK

In this section, we discuss previous work that addresses the
RRH-BBU association problem. The problem is divided into
two parts. First, we examine research proposing solutions
to the BBU-RRH assignment problem, followed by research
focused on clustering the BBUs and RRHs.

1) RRH TO BBU ASSIGNMENT

The problem of RRH-BBU mapping has been the focus of
much recent research, aiming to maximize objective func-
tions such as energy saving and fulfill certain constraints
like quality of service (QoS). In [15], the author proposed
a CRAN architecture with separate computational resources
from the RRH, as the RRH is deployed as small cells with
only transmission functionalities. The allocation problem is
described as a two-level scheduling algorithm. In the first
level, resources are assigned from cells to each user while
satisfying QoS and service continuity. In the second level,
the problem of assigning resources from each BBU to RRH
is proposed as an optimization problem, maintaining power
consumption and minimizing computing resources. The map-
ping of each BBU to RRH depends on assigning a physical
machine (set of BBUs) to all RRH in its coverage area.
In [16], the author proposed a two-stage dynamic resource
allocation for CRAN, which assigns user equipment (UE)
to each RRH with power transmission constraints jointly
with RRH-BBU real-time association. The problem of RRH-
UE assignment is described as a Mixed Integer Non-Linear
Program (MINLP) with signal-to-interference noise ratio
constraints. Based on the UE-RRH assignment, the optimal
number of BBUs is computed in the second phase, and the
RRH-BBU association is described as a Multiple Knapsack
Problem (MKP) solved by linear solvers. In the work of [11],
the author proposed a BBU assignment that optimizes the
efficiency of the BBU pool, with the problem described
as bin packing. The assignment of RRH to BBU considers
the resource requirements and communication between the
RRH by representing the networks as a weighted graph. The
algorithm improves power consumption by up to 20% and
reduces handovers by 30% by decreasing communication
overhead.

In [22], the author proposed a spatial-based clustering
technique by grouping neighbor RRHs. The proposed model
minimizes the number of active BBUs and reduces the num-
ber of handovers. The problem is formulated as bin packing
with an NP-hard optimal solution, with the author proposing
a heuristic algorithm to drive the optimal solution in large
networks. It is illustrated that during periods of high networks
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load (15 Mbps), spatial clustering is less effective and results
in reduced networks QoS. In [23], the author proposed a
dynamic BBU virtualization scheme that packs the dynamics
of traffic load as bins with finite computing resources in
the BBU, targeting minimizing BBU power consumption.
Meanwhile, in [24], the author proposed a joint activation and
clustering scheme that maximizes networks coverage with
QoS constraints. Based on traffic analysis, in [8], the author
proposed a traffic-aware RRH-BBU assignment algorithm,
dividing the problem into two parts. First, clustering the RRH
based on the spatio-temporal variation model, as the author
modeled the traffic load of RRH as an exponential function
with a time-varying rate parameter. Then, the clustered RRH
association with the BBU is described as a bin-packing opti-
mization problem with the BBU as the bin and RRH as an
item set. The author proposed a dynamic RRH assignment
algorithm that offloads RRH from an overloaded BBU to a
less loaded BBU.

2) CLUSTERING ALGORITHMS

In this section, we present the related work on various cluster-
ing algorithms recently employed in the literature to address
the targeted problem, including spatial, temporal, and spa-
tiotemporal clustering. From the perspective of clustering
the RRH problem, predictive data analysis, data mining,
and Al for decision-making based on Call Detail Records
(CDR) have been proposed in different studies recently. Ref-
erences [18], [19], and [20] propose a supervised mobile
traffic signature trained using prior knowledge of ground
truth information for specific areas. Meanwhile, in [15], the
author suggests unsupervised cell classification based on a
mobile signature algorithm that efficiently classifies mobile
loads, verified by ground-truth information. This technique
has been applied to real mobile data collected from ten cities.
Additionally, in [21], the author introduces heat map draw-
ings of significant human activities based on mobile signature
characterization, without prior knowledge of ground truth
information. As geographical mobile signatures are primarily
driven by land use, this produces a common pattern of user
traffic in different cities and countries [19], motivating the
spatial clustering of CDR. Consequently, various research has
proposed dynamic RRH-BBU association based on the lon-
gitude and latitude of the RRH using spatial clustering [25].
Residential, entertainment, and work zones exhibit different
traffic loads during the week. Residential zones experience
the highest traffic during night hours, while work zones peak
during the day, and entertainment zones experience peaks on
weekends.

On the other side, the temporal clustering of the CDR has
been proposed in the literature, as human behavior under
stationary and normal circumstances is periodically repeated
and this influences the aggregated networks load over a cer-
tain period. The real collected CDR shows similar behaviors
over a certain period. The CDR supported by the mobile oper-
ator describes the traffic load at specific time stamps, usually,
the networks traffic load is captured every ten minutes. The
CDR is stored as a time series at a specific time and date.
Clustering this complex temporal data is a challenge, as the
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massive data points of CDR represent a single object. The
networks load temporal clustering has been proposed recently
in research considering certain events as planned [26] and
unplanned events [27]. The author of [28] extended this
work to include the fine-tuned clustering of snapshots of the
traffic demand over multiple periods. The clustering of the
time series is utilized to discover frequent and rare patterns
of the time series. Time series clustering proposes different
tasks as recognizing dynamic changes caused by planned and
unplanned events [26], [27], predicting future patterns, and
discovering, and classifying different patterns [29]. In liter-
ature, the time series clustering methods are classified into
three types of whole time series clustering, and the other two
categories target clustering single long time series based on
either subsequence clustering or time point clustering [30].

Different research extended the clustering to include
spatial-temporal clustering. As we described the CDR of
each cell over a week as a time series, this data is described
as a geo-referenced time series with spatial-temporal data
as it records time-changing values at fixed locations. The
traditional temporal and spatial clustering methods rep-
resent one-way clustering methods, we focus mainly on
co-clustering that clusters the data in two dimensions. The
concept of data matrix clustering was first proposed, later
this concept became used in data analysis of different fields
such as bioinformatics data mining and weather temperature
records. More researchers extended the co-clustering algo-
rithms to tri-clustering that considers all the values of the
recorded data at a certain time and fixed location represented
by a 3D data matrix. In [13] the author proposed a 2D cluster-
ing algorithm (BBAC_I) that deals with an average of the data
recorded over a year at a fixed position in a 2D matrix. And
extended the work to a 3D clustering algorithm (BACT_I)
that considers the recorded data at each time stamp over the
total considered time interval at a fixed position represented
by a 3D matrix.

B. CONTRIBUTION
Our contributions are concluded as

1) We propose a novel RRH-BBU assignment technique,
as we proved that dividing the BBU into two level clusters,
based on the same clustering algorithm of RRH, reduces
the system power consumption and decreases the inter BBU
handover rate. To our knowledge, this is the first research that
extended the RRH clusters to be applied to the BBU in the
RRH-BBU assignment phase.

2) We propose RRH clustering based on real collected
CDR. The RRH clustering algorithm is described as a time
series clustering algorithm that classifies RRH based on its
temporal activity. To our knowledge, this is the first research
to describe the CDR as time series.

3) We propose space-time series clustering that represents
two nested clustering levels based on the CDR and the latitude
and longitude of each cell.

4) We compute the optimum number of the BBU to accom-
modate the maximum real traffic load for each cluster.

5) We enhanced the system power consumption and oper-
ating cost minimization by extending the sleep mode to
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be applied to the BBU based on the assignment technique.
We reduce the power consumption by 28.8 %, while in litera-
ture the author of [17] proposed 20% power saving based on a
weighted graph that depends on user mobilities and neglects
the traffic loads.

IIl. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe the suggested CRAN architecture
for large cities and we study the effect of different clustering
algorithms for the CRAN architecture on the networks perfor-
mance. We propose a BBU to RRH mapping scheme based on
different clustering algorithms and compare their influences
on the power consumption and the backbone handover rate.
The proposed clustering can be applied to equipment from
any vendor. The vendor does not influence clustering perfor-
mance since comparisons are made against the vendor’s own
un-clustered networks.

BBU Pool

Opticaltranspy Y S
network /
& (i)
R () K

K e

(<) FB
A ((ce))

x

FIGURE 1. HCRAN (femto and micro base stations) architecture
connected via an optical transport networks to the BBU pool.

((,ﬁ)

.

A. CRAN-BASED NETWORKS ARCHITECTURE

The optical transport networks is considered the best candi-
date for the front-haul networks, as it connects the BBU and
the RRH with a reliable and energy-efficient networks that
provides low latency, high capacity as it connects a massive
number of RRHs, and scalability [3], [4]. On the other side,
the functionality split highly influences the system perfor-
mance and the front-haul networks capacity. As the BBU
performs baseband functionalities and is located at a remote
office while the RRH, provides the radio functionalities to the
end user scheme increases the rate of the front-haul links [14].
Whereas, the flexible functional split scheme, which loads
the RRH with more baseband functionalities, enhances the
capacity loaded on the front-haul networks and the power
consumption. In CRAN architecture with a separated BBU
pool and RRH and optical fronthaul transport networks,
we consider a decentralization scheme of all baseband oper-
ations at the BBU pool, as the RRH performs only the radio
operations for the attached user equipment (UE). Based on the
traffic analysis and user requests the resources of the BBU
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FIGURE 2. The proposed clustering model for temporal and spatial clusters in CRAN (TS11: spatial cluster 1 of temporal cluster 1).

pool must be allocated to each RRH. Mainly the allocation
algorithms aim to reduce the networks power consumption
and meet the quality of service.

In the proposed HCRAN architecture, the radio operations
in the coverage area of the Femtocells are supported by the
distributed RRH, while Macro base stations serve the cells
with offloaded RRH during sleep modes. As turning off
the underutilized units highly improves power consumption,
Macro base stations have been introduced to maintain the
radio operations in dead zones during low traffic loads as
shown in Fig. 1. The proposed clustering algorithm aims
to group some RRH based on specific features and assign
resources from the connected BBU to this cluster.

In the context of HCRAN with users experiencing high
mobility, frequent handovers between small cells can occur
due to the small size of these cells. Efficient handover man-
agement is therefore crucial and is handled within the BBU
pools [38]. In literature handovers between cells have been
analyzed for all mobile networks Generations. In 4G mobile
networks, handovers are necessary to sustain the Quality
of Service (QoS) for ongoing user sessions and to connect
users to the most optimal eNodeBs [39]. In LTE/LTE-A
networks, inter-eNodeB handovers are managed via the X2
interface when both eNodeBs are connected to the same
MME. Conversely, if the serving and target eNodeBs are
linked to different MMESs, S1-based inter-eNodeB handovers
are required. For a detailed explanation of X2 and S1-based
inter-eNodeB handovers, refer to section [40]. The same
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principles apply to inter-BBU handovers discussed in this
paper, with referring to inter-eNodeB as inter-RRH.

B. PROBLEM FORMULATION

In the proposed model, we assume M BBUs in the BBU pool
with equal physical resources and computing capabilities,
measured by million operations per time slot (MOPTS). The
assigned BBU performs all the baseband operations for the
attached RRHs. The required resources for baseband opera-
tions of RRH I depend on the traffic load and are noted as R;;
Assuming each BBU has C MOPTS and up to N RRHs can
be attached to each.

N
Cj = ZMi,jRi,j (1)
i=1

where ; ; is the assignment coefficient of RRH i to BBU j

| 1 RRH iattached to BBU j
| 0 Otherwise

The power consumption of each BBU represents the base-
band power, Ppynamic represents the dynamic power incurred

by the traffic load and can be expressed as a linear function
of it.

Mij )

Pgp = Ppynamic + Pstaric 3)
Ppynamic = Piter + Porpm + Pprp

+ Prec + Pcpu + Pcrer “4)

Ppynamic = BR (5
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B is the load—power coefficient and R is the traffic
load.

Where Pfirer, Porpm, Pppp, Prec, Pcpu, Pcrpr are the
consumed power of the filtering, the OFDM transceivers,
digital pre-distortion, CPU, encoder, and serial link to the
backbone networks, respectively [41], [42].

The problem of assigning RRH to each BBU is described
as a Bin Packing Problem (BPP). That can be solved using
the Knapsack algorithm, with the RRH as objects and BBU
capacity as the Knapsack. Clustering the BBU pool divides
this single problem into multiple joint optimization problems.
The algorithm assigns one item (object) to each bin (knap-
sack) such that the total weights of all objects do not exceed
the capacity of the knapsack and minimize the number of the
used knapsacks (BBUs).

The proposed networks architecture has N RRHs and M
BBUs, each RRH can be only associated with a single BBU.
The mathematical formulation of this problem, described
by equation (6), and (9), represent an optimization problem
that minimizes the number of active BBUs with capacity
constraint.

K
minimize z B; 6)
i=1

N
Subject to >~ wijni; < GBj je(l. ..k} (])

K
D=1 il N} ®)
where
1 if BBU iis used
= VBBU ©)
0 otherwise
W< C (10)

where C; represents the resources of the BBU i and w;
represents the weight of the resources assigned from each
BBU to all attached RRHs. The first constraint in (7) ensures
that the total assigned resources for all RRH attached to the
BBU i are less than the total available resources at this BBU.
In comparison, the second constraint verifies that each RRH
must be served and attached to a single BBU.

TABLE 1. Parameters of the algorithm.

Cj The resources of the BBU j

Wi,j The weight of the resources assigned from
each BBU j to all attached RRHs i.

pi,j The assignment factor of RRH Ito BBU j

C. THE PROPOSED ALGORITHM

The proposed problem is described as a multi-objective
optimization problem, that targets minimizing the networks
power consumption and the handover between the BBUs. The
algorithm depends on first temporally clustering the BBUs
and the RRHs based on the CDR, which enables switching
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Algorithm 1 Clustering Algorithm

RH;: i RRH where ie{l, ..., n}
BUj: j'" RRH where je(l, ..., k}
TCy: u™ temporal clustering
SC: t spatial clustering
Riw: The traffic load of i!" RRH over week w
NT: Number of temporal clusters
NSP: Number of temporal clusters
NOBBUUZ Number of BBUs of temporal cluster i and spatial
cluster j
BBU_RHH;;: RRH to BBU assignment of temporal
cluster i and spatial cluster j
Begin:
data processing Rjy to define:
Cell id;
Time interval;
Rjw = Total activity
For 3 <= n_clusters < 8
Apply DTW time series clustering ( Ry ).
Compute the distortion of each cluster.
End
NSP=min (distortion)
For1l <i < NT
NSP= DBscan(cluster(i))
End
For1 <i < NT
For 1 < j < NSP
Noggu BRjj = max (sum (Rjw))
BBU_RRH;; = Bin_packing (Rjw)
End
End

off the BBUs and RRHs of each cluster during the low
traffic periods and minimizing the power. Secondly, spatial
clustering is performed for each temporal cluster to ensure
serving all nearby RRH by certain BBUs to minimize the
handovers between the BBUs. Finally, the assignment pro-
cess is performed for each cluster individually with reduced
computational complexity as shown in the algorithm.

1) CLUSTERING THE BBU & RRH
In literature the tri-clustering algorithms have been proposed
to deal with geo-referenced time series, these algorithms
analyze the CDR at a certain instant over the time interval at
each RRH position. Although for the proposed application the
RRH needs to be clustered based on its total activity. Based
on this we proposed a two-level clustering that first clusters
the CDR of the RRH as a temporal clustering then clusters a
temporal cluster based on the location of the attached RRH.
Time Series-Based Clustering involves organizing seque-
nces of data points collected at consecutive time intervals. For
instance, clustering EEG signals can help identify patterns
associated with various brain states or conditions. Most time-
series clustering algorithms can be categorized into three
types whole time-series clustering, subsequence clustering,
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and time point clustering [29]. The Euclidean distance metric
has two key limitations that make Dynamic Time Warping
(DTW) more effective for time series classification. First,
it requires the time series to be of equal length, which poses a
challenge when there are missing readings, leading to unequal
lengths. Second, it compares the values of the two-time series
at each time point independently, only considering the mini-
mum Euclidean distances between the time series [43].

We describe the CDR as a multi-variant time series and
refer to the networks temporal clustering as time series clus-
tering. In which, the whole series clustering is considered
as a single object and classified based on its similarities.
These similarities are measured based on different distance
measurements such as discrete time Wrapping (DTW) and
Euclidean distance.

An agglomerative time series clustering algorithm, an up-
bottom approach, is proposed for clustering the CDR of RRH
as a temporal clustering. Temporal clustering is applied first
on the CDR of each RRH, we propose K-means discrete time
wrapping (DTW) time series clustering. First, the dataset is
divided into K clusters and randomly k centroids, then DTW
to assign each time series to the nearest cluster centroid and
update the centroid based on the newly assigned time series.
Where the DTW clustering finds all possible paths between
two-time series to provide a distance matrix with a camulative
minimum distance of the three neighbors. Then it selects
the minimum distance between the two series [11]. In the
proposed algorithm the number of clusters is determined by
measuring the distortion factors of each clusters number to
find the optimum number of clusters.

Spatial clustering can be categorized into five main types:
Partition clustering, Hierarchical clustering, Fuzzy cluster-
ing, Density-based clustering, and Model-based clustering.
Given that CDR represents a vast geographical dataset con-
taining latitude and longitude information for numerous RRH
locations, spatial clustering must identify arbitrary cluster
shapes, efficiently manage large quantities of points (ensuring
scalability) and detect and eliminate noise and outliers. These
requirements drive the adoption of density-based clustering
algorithms [44].

The proposed spatial clustering algorithm divides the
RRH of the CRAN architecture into clusters based on the
longitude and latitude of each RRH. DBSCAN, K-means,
and many different clustering algorithms are defined to
cluster geographical data based on longitude and latitude.
DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) is a dense-based clustering technique that forms
a cluster based on dense connectivity analysis. BDSCAN is
based on identifying the radius of the connected area with a
minimum number of objects for each object in a cluster. There
are two main parameters for the DBSCAN, as for each point
of a cluster the neighborhood of a distance (R) must contain
at least the number of points equals (Minpts) [11].

2) RRH TO BBU ASSIGNMENT

As mentioned, various RRH to BBU assignment techniques
with different objectives have been proposed in the litera-
ture. The objective of power reduction in the communication
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networks arises as an application for green networks with
reduced power consumption. We introduce an RRH to BBU
assignment with power reduction and reducing handovers
between the BBUs. The problem is formulated as a bin
packing optimization problem that is considered an NP-hard
problem. The proposed algorithm simplifies the problem by
dividing it into clusters of joint RRH and BBU. Parallel
processing, enabled by dividing the resource allocation for
each cluster, divides the optimization problem into multiple
simplified problems. The best-fit bin packing optimization is
proposed, in which the item is packed into a bin by leaving
the smallest residual space.

The complexity order of the optimization problem is
O(nlogn), where n is the number of the available bins (BBUs).
The complexity order of the optimization problem based on a
clustered model with M temporal clusters, Pj spatial clusters
in temporal cluster j, and njk BBU in temporal cluster j and
spatial cluster k is given by (11).

M P;
O(ZJ=1 D ik log i) (11)

IV. RESULTS AND ANALYSIS USING REAL TRAFFIC:
MILAN CITY

In this section, we present simulation results of the proposed
RRH-BBU assignment based on the clustering algorithm.

0.0375
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0.0325 1
0.0300
0.0275

Distortion

0.0250

0.0225

0.0200

0.0175 1

3 2 5 6 7 8
Number of clusters

FIGURE 3. Distortion of different clustering numbers (With 7 clusters
optimal due to constant distortion level at 7 clusters).

A. DATA

The CDR of Milan City is used as a case study area to
simulate the proposed algorithm using big data analytics of
collected real mobile traffic. The Italian telecom operator
shared a CDR record for 10,000 cells with 235 x 235 m
spatial resolution covering the area of Milan city [31]. The
data records mobile activities sample every 10 minutes over
2 months from the first of November till the end of December
2013. The recorded activities are divided into call activities,
SMS activities, and internet activities. The data has been
processed and stored as data frames with multiple columns
representing the square ID, time interval, and total activity
(aggregated call, SMS, and internet activity). Each RRH is
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FIGURE 4. The Normalized traffic load of different clusters and cluster centers over week (Monday - Sunday).

served with only BBU and multiple RRHs can share the same
BBU based on the aggregated traffic load. Each cell is served
by multiple RRHs, and the proposed CDR is considered as a
load of a single RRH.

B. SIMULATION RESULTS

The procedure of the applied algorithm on the CDR is shown
in Algorithm 1, the data is processed using big data analytics
as Dask data frames [32], [33], [34], [35], [36]. The total
activity of the cellular mobile user is studied to classify and
study the nature of the geographical area.

First, the data is grouped by the square ID and time inter-
vals to analyze the traffic of each cell over the total period.
We propose the observations of a week from Monday (4th
November) to Sunday (10th November) as a first training set,
the time samples representing this period are 1008 samples.
The samples of each cell are treated as a time series producing
10,000 time series to be clustered. The values of the traffic to
ensure accurate measurements, as the cells show records with
enormous variations. The time series clustering is based on
the K-Means algorithm that uses DTW as a similarity metric
between different time series. As stated in the algorithm,
the number of clusters is determined in an iterative manner,
and the best number of clusters is chosen based on the first
minimal distortion level among different numbers of clusters.

For the proposed data the cells are clustered into 7 clusters,
and at 7 clusters the distortion level begins to be constant as
shown in Fig.3. In Fig. 3, we plotted the distortion level in
relation to the number of temporal clusters. The results show
that as the number of clusters increases, the distortion level of
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the data assigned to each cluster decreases up to an optimal
point. Beyond this point, further increases in the number of
clusters lead to a rise in the distortion level. For the proposed
dataset, this optimal number of clusters is found to be 7.

Fig. 4 shows the clusters center of the seven clusters
and the activity of the cells belonging to each one. Each
cluster center can indicate the nature of the geographical
area, as clusters 2, and 6 show pure workspace areas with
low traffic during the weekends and high traffic during the
weekdays. Whereas cluster 3 represents the residential area
with high traffic load during night hours. Some clusters show
different behaviours composed of the basic classifications
(residential, entertainment, transportation, and work area).
These different combinations produce different clusters as
shown in clusters 5, and 7. Cluster 5 shows moderate activities
during all the hours of day and night, which shows the mixed
area of workspace and entertainment area. Moreover, it is
noticed that some cells show low traffic records compared
with other cells as in clusters 1, and 4. The low traffic load
cells are distributed over the total area of Milan and represent
areas with low population ratio and transportation.

The results of the clustering system have been verified by
comparing the results of the clustering algorithm and the land
use of Milan City. Fig. 5. A show the published land use map
of Milan city, while Fig. 5. B shows the proposed simulated
temporally clustered cells of Milan using the cell location
givenin Fig. 6. As shown in Fig. 5, the agriculture area and the
green areas are represented by cluster 1 with low normalized
traffic at the city edges. Whereas the city center has the
highest traffic load represented by Cluster 3 as a residential
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FIGURE 5. A. Published Milan land use map/ B. The land use map based on the time series clustering.

area and Cluster 2 as a workspace. Moreover, various clusters
are shown at the city center representing entertainment and
other activities as clusters 4, 5, and 7.

The second phase of clustering represents a spatial cluster-
ing for each temporal cluster, this cluster phase reduces the
handover between different BBUs by assigning near RRHs to
the same BBU. The accurate handover rate can be computed
using the mobility of each user between different RRHs,
in this work, we proposed the algorithm without computing
the handover rate due to lack of user mobility data. The
DBSCAN proposes a spatial clustering based on connectiv-
ity with minimum distance between different objects [33].
In Milan CDR data the square id represents the cell position
as telecom Italy shared a map for the distribution of the cell
over the covered area as in Fig. 6. The DBSCAN algorithm
is applied on each temporal cluster individually to produce
inner spatial clusters. Changing the radius highly affects the
number of the produced spatial clusters, so this radius must
be carefully studied and picked according to the case.

The cell id is translated into cartesian coordinates based on
the published cell map given in Fig. 6, as shown the distance
between two adjacent cells in the vertical axis is 100 and 1 in
the horizontal axis. According to the Euclidian distance, the
radius of the connected area, for the used data, is adjusted to
the +/2 after normalizing the vertical distance to 1. A min-
imum number of points of each cluster (Minpts) parameter
of DBSCAN needs to be computed carefully, as it highly
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influences the number of formulated clusters and causes some
random points to represent the un-clustered points.

9901 9902 9999 10000
9801 9899 9900
101 102 200

1 2 3 100

FIGURE 6. Milan cell grid.

As shown in Fig. 7, increasing the Minpts decreases the
number of the used BBUs. As the Minpts increase the random
points, which will be ignored in the BBU assignment process.
This tradeoff, between neglecting some points and increasing
the installed BBUs, is resolved by measuring the required
BBUs for the traffic of the neglected point and comparing
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it with the corresponding number of saved BBUs from the
neglect.
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FIGURE 7. The effect of the Minpts of the DBSCAN algorithm on the
number of the spatial clusters.

As shown in Fig. 8, for 3 Minpts the neglected random
points save 42 BBUs, while it can be served by assign-
ing 21 BBUs. The optimum point is at 3 as it verifies the
tradeoff between saving the number of BBU while serving
all the cells. On the other side, at 3 Minpts the additional
BBUs cannot be included in the turning off BBU algorithm,
as they serve random points with different temporal behavior.
Consequently, this scheme decreases the power efficiency of
the networks, so the performance metrics have been studied
at 1 Minpts. Fig. 9 shows the spatial clustering for the single
temporal cluster (cluster 1), all the near-connected cells are
grouped in a single spatial cluster.
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FIGURE 8. The effect of the Minpts of the DBSCAN algorithm on the
number of the added and reduced BBUs to serve the neglected.

Table 2 shows the number of the inner spatial cluster,
number of RRHs, and number of required BBUs of each tem-
poral cluster. The number of the required BBUs is computed
based on the normalized traffic required by computing and
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the ceiling the traffic of each spatial cluster TRk, according
to (12).

M
BBU =¢£

=1 [21?_1 TR"—‘ 2)

where £ is the mapping ratio between the traffic IJoad and the
number of the required BBUs.

TABLE 2. Number of spatial clusters and RRHs in each temporal cluster.

Temporal Clusters  No. of BBU  Spatial No. of

Cluster RRHs

1 3 1 3 1 3

Cluster 1 51 31 24 16 6657
Cluster 2 15 9 13 5 36
Cluster 3 56 49 66 27 613
Cluster 4 75 71 64 32 2319
Cluster 5 40 31 43 14 249
Cluster 6 7 2 5 2 10
Cluster 7 32 22 26 10 116
Random Cells - 21 - - - 168

Table 3 shows the total number of BBUs and the power
consumption of 1, 3 Minpts clustered system and the un-
clustered system. The required BBUs for an un-clustered
system use the traffic load of all the RRHs by adding the
traffic load and ceiling it according to (13).

BBU = £ [ZL] TRM—‘ (13)

where V is the number of RRHs in the system.

As expected, the number of the clustered system is higher
than the un-clustered system due to the multiple ceiling func-
tion used in the clustered system, as the assigned number of
each temporal cluster must be integer.

TABLE 3. Number of BBU in each cluster.

Clustered system UN- Clustered

system
1 3
No. of BBU 276 255 226
Power savings 28.8% 26.89% 0%

Finally, the RRH-BBU assignment is a bin packing prob-
lem assignment. The assignment problem is divided into
multiple problems based on the number of temporal and spa-
tial clusters. The proposed algorithm computes the required
number of BBUs for each cluster based on the maximum
value of the RRH’s total traffic. Then, as mentioned, the
algorithm performs nested loops over the temporal and the
inner spatial clusters to assign the RRHs to the proposed
BBUs. For the study case of Milan, we propose the number
of active BBUs over time.

The proposed bin packing assignment is performed every
hour based on the maximum traffic load over this time inter-
val, as the maximum traffic load is computed and the required
number of BBUs to serve the required traffic load using the
bin packing algorithm. Fig. 10 shows the number of required
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FIGURE 9. Spatial clusters distribution of temporal cluster 1.

active BBUs to serve the load demand based on DBSCAN
with 1 Minpts, the required objectives are achieved in two
phases.

First, each spatial cluster is treated as a single entity to
ensure the objective of minimizing inter-BBU handover. The
accurate handover enhancement rate is computed with the
user movement scheme between different cells. As this data
is not shared from the operator, we depend on decreasing
the total handover rate with grouping all the nearby cells.
Then, the algorithm is performed separately on each temporal
cluster to decrease the power consumption by turning off
the under-utilized BBUs over the monitoring time interval
(1 week). The power saving of the DBSCAN algorithm with
1 and 3 Minpts are compared using the average power saving
in each scheme according to (14).

Zttme_pomts(lﬁS) BBU_CLUt
BBUun

. BBUun —
Power_saving =

(14)

where BBUyn represents the total BBUs of the un-clustered
system, and BBU_CLUt represents the total active BBU of
the clustered system at time t. As shown in Table 2, DBSCAN
with 1 Minpts saves 28.8% of the total power consump-
tion of the un-clustered system, while the 3 Minpts scheme
saves 26.89%. taking into consideration, the higher number
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of installed BBUS in the 1 Minpts scheme. Turning off
underutilized BBUs reduces active power consumption over
time. As indicated in Equation (14), increasing the number
of active BBUs at any given moment leads to higher power
consumption and lower power savings.
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FIGURE 10. The number of active BBUs over one hour using clustering
and traditional schemes.

Fig. 10 illustrates that power savings are calculated by
subtracting the number of active BBUs in a standard un-
clustered networks from the number of active BBUs using
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the proposed models, thereby determining the reduced power
consumption achieved by switching off BBUs.

V. CONCLUSION

In this paper, we proposed an RRH-BBU assignment based
on a clustering algorithm that targets minimizing the power
consumption and the inter-BBU handover. The proposed
algorithm computes the required number of installed BBUs
to accommodate the maximum traffic load, deploys time
series clustering as a temporal clustering method, and applies
the DBSCAN algorithm to divide each temporal cluster into
several spatial clusters based on the cell location. Then the
problem of assigning RRH of each cluster is described as
a bin packing optimization problem to find the optimum
number of BBUs for each cluster [45].

The proposed algorithm has been validated using real-
world CDR of Milan city and it is verified by the published
Milan land use map. The inter-BBU handover signals have
been enhanced by assigning near RRHs to the same spa-
tial cluster and same BBU, to avoid inter-BBU handover.
The accurate handover rate can be computed using the user
mobility between different RRHs, as stated we provide the
algorithm without computing the handover rate due to a lake
of user mobility data. It is shown that the algorithm reduces
the total power consumption of the current deployed networks
by 28.8 %, by assigning all the active RRHs to certain BBUs
based on the traffic load and switching off the unassigned
BBUs. This research could be expanded to include diverse
CDR datasets, as each city exhibits unique temporal and
spatial traffic load patterns influenced by its cultural behav-
iors. We encourage service providers to share CDR datasets
of different cities, which would enable researchers to apply
and extend this work to various cities, taking into account
different traffic load distributions and cultural behaviors.
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