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ABSTRACT This paper presents a systematic approach to enhancing ISO 26262, a widely adopted standard
for automotive functional safety, by integrating Machine Learning (ML)-specific life cycle phases and
testing methods for Automotive Safety Integrity Level (ASIL) A/B. With the increasing incorporation
of ML techniques in automotive systems, the current ISO 26262 framework reveals significant gaps in
addressing ML-specific safety requirements. While ISO/DPAS 8800 provides an approach for developing
AI systems that meet some safety properties, it does not provide a mapping concept for ASIL classification
of ML systems. Furthermore, given the complexity of ML techniques in automotive systems, issues such
as interpretability—critical for transparency and accountability—along with robustness and uncertainty
handling, pose significant challenges that are not fully addressed by ISO 26262 and ISO/DPAS 8800. This
study identifies and addresses these gaps by defining three additional life cycle phases: prepare data, trainML
model, and deploy ML model. For each life cycle phase, we establish desired properties such as robustness,
uncertainty handling, and interpretability, and propose suitablemethods to achieve these properties.We adopt
a rigorous evaluation framework inspired by IEC 61508 to assess the effectiveness of these methods. Since
the method recommendations of ISO 26262 for ML-based products are incomplete, the approach presented
in this paper provides critical guidance and room for expert assessment and independent certification,
ensuring solid and reliable recommendations. This systematic, clear, uniform development procedure not
only supports product teams in achieving their safety goals but also facilitates the certification process,
reducing ambiguity and enhancing the overall safety and reliability of ML-based automotive systems.

INDEX TERMS Artificial intelligence (AI), data model, automotive functional safety, certification process,
embedded systems, evaluation framework, interpretability, ISO 26262, life cycle phases, machine learning
(ML), method recommendations, model deployment, robustness, safety-critical systems, software life cycle,
systematic approach, testing methods, V-model.

I. INTRODUCTION
The rapid advancements in automotive technology have
led to an increased integration of Machine Learning (ML)
techniques into safety-critical systems. ISO 26262 [1], the
international standard for functional safety of electrical and
electronic systems in production automobiles, has been the
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key in guiding the development of safe automotive systems.
It addresses various aspects of vehicle development, from
item definition to system-level, hardware, and software
implementation, as well as various supporting and manage-
ment processes. However, when it comes to using ML as
a software development technology, the standard does not
provide specific guidelines for ML-based systems. As ML
becomes state-of-the-art, its integration into functional
safety contexts requires new design and testing concepts
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that differ significantly from traditional code-centric or
model-based approaches. In contrast, the ISO/DPAS 8800
[2] draft proposal, currently under development, defines a
general safety framework for Artificial Intelligence (AI)
and ML in the automotive industry but lacks specific
guidelines for various Automotive Safety Integrity Levels
(ASIL). For a broader understanding of functional safety
beyond software development, ISO/IEC TR 5469 [3], which
addresses AI-functional safety and ML systems, offers a
comprehensive view, including management activities, tool
usage, and hardware integration. However, it does not provide
ML-specific life cycle phases, testing methods, or mapping
to various ASILs. Thus, despite the recent developments,
that attempt to provide frameworks for AI and ML in
safety contexts, they do not fully address the gaps left by
ISO 26262, particularly in defining ML-specific life cycle
phases and testing methods. This highlights the need for a
comprehensive extension of ISO 26262 to accommodate the
unique challenges posed by ML. This paper aims to address
these gaps by proposing a systematic approach to enhance
ISO 26262, integrating ML-specific life cycle phases and
testing methods, from a software perspective.

Nevertheless, inputs from higher levels of development
are also crucial for understanding their impact on ML safety
and the potential derivation of the respective ASIL. Two
important considerations include:

• Considering input from Hazard Analysis and Risk
Assessment (HARA) regarding sensor faults and limi-
tations, as these directly implicate insufficiencies in the
ML software components.

• Considering input from the Software Safety Analysis
conducted at the software architecture level to under-
stand the relationship between ML components and
other traditional software components. This relationship
can mean that the ML component may benefit from
monitoring or fault detection by other software, or con-
versely, that the ML component might need to handle
faults generated by other software parts.

Other aspects of functional safety, such as management
activities, overall requirements management, and hardware
integration, are equally critical but are out of the scope of this
study. ISO/IEC TR 5469 [3] can be referenced for a more
comprehensive understanding of these areas in the broader
context of AI-based systems.

A. IDENTIFIED GAPS
As stated above, this paper proposes a systematic approach
to extend ISO 26262 by integrating ML-specific life cycle
phases and testing methods from a software perspec-
tive. Through a systematic literature review, discussed in
section II, several critical gaps have been identified in
integratingML into the ISO 26262 framework. The gapsw.r.t.
ML development relate (but are not exclusively restricted) to:

• Software requirements
• Data Aspects

• Training Processes
• Model Deployment

Details regarding the identified gaps can be found in
section II. These gaps highlight the necessity for an updated
approach that incorporates ML-specific considerations to
ensure the safety and reliability of modern automotive
systems.

B. CONTRIBUTION
This paper leverages existing standards IEC 61508 [4]
and ISO 26262 [1] to establish a robust framework for
incorporating ML-specific life cycle phases and testing
methods. The approach includes identifying gaps in these
standards, defining new life cycle phases, and mapping and
evaluating test methods. This paper introduces several key
innovations, to address the aforementioned identified gaps
in ISO 26262 for ML-based automotive systems, which are
listed below:

1) Extended life cycle phases: We propose three addi-
tional life cycle phases specific to ML:

• Prepare data
• Train ML model
• Deploy ML model

These phases are seamlessly integrated with the exist-
ing ISO 26262 framework, ensuring comprehensive
coverage of ML-specific requirements.

2) Desired Properties and Methods: For each newly
defined life cycle phase, we establish critical desired
properties, such as robustness, uncertainty handling,
and interpretability. Additionally, we propose suitable
methods to achieve these properties. In this paper,
we ensure that each desired property is covered by at
least one test method across the three life cycle phases.
While additional test methods may be explored in
future work, the priority in this study was to guarantee
comprehensive coverage of the key properties, aligning
with our testing methods-centric focus.

3) Systematic and Rigorous Evaluation Framework:
• We adopt a systematic and rigorous evalua-
tion framework inspired by IEC 61508 (Part 3,
Annex C) to assess the effectiveness of the
proposed methods.

• This framework assigns rigor levels (R1 and R2) to
different methods, providing a structured approach
that ensures ML models meet the required desired
safety properties, which in the end support the
overall product safety.

• This approach facilitates expert assessment and
independent certification, paving the way for these
methods to be integrated into future versions of
ISO 26262.

4) Mapping and Evaluation of Methods:
• Adapt methods from existing standards.
• Evaluate which desired properties are supported by
each method.
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• Evaluate the effectiveness of each method
(e.g. by assigning rigor levels R1 and R2) to fulfill
the assigned desired properties, thereby creating
mapping tables to align desired properties with test
methods.

5) Outputs and Recommendations:

• Defined inputs, methods, and objectives for each
life cycle phase, similar to the structure used in
ISO 26262.

• Provide method recommendations for ASIL A/B
based on rigorous evaluation.

By addressing these gaps, our contributions provide a
clear, systematic approach to incorporating ML-specific
requirements into ISO 26262. This not only supports
product teams in achieving their safety goals but also
streamlines the certification process, offering reliable and
expert-backed recommendations. Ultimately, this work con-
tributes to systematically considering the characteristics of
ML-based automotive systems in the development, fostering
greater confidence not only in their functionality but also
in achieving the overall goal for software development
w.r.t ISO 26262, i.e. reducing the probability of systematic
errors.

Please note that since the method recommendations of
ISO 26262 for the development of ML-based products are
incomplete, there is some room for interpretation regarding
the suitability of methods for the ML-specific life phases.
In our opinion, if the introduced ML life cycle phases and
the novel ML testing concept are assessed and accepted
by an independent certification body, a solid and reliable
recommendation is created. A clear recommendation reduces
the room for interpretation and can establish a uniform testing
concept that supports product teams in achieving their safety
goals.

Additionally, this paper introduces a novel systematic ML
testing concept, which enables the release of ML products
that conform to ASIL A and ASIL B (a gap that is not
addressed in [1], [2] and [5]). Please note that ASIL C and
ASIL D are out of scope for this paper. A brief background
on ASIL levels is available in Section II-A.

Furthermore, this study focuses on the most widely
used and applied ML technologies in automotive systems,
specifically Neural Networks (NN). This includes Con-
volutional Neural Networks (CNN), Feed-Forward Neural
Networks (FFNN), and Recurrent Neural Networks (RNN).
It considers both supervised learning and transfer learning
methodologies. Thus, the usage of the term ML through-
out the paper reflects the study’s specific focus on ML
technologies used in automotive systems, particularly the
ones mentioned above. Broader AI concepts and other ML
methods, such as decision trees or Bayesian networks, as well
as reinforcement and unsupervised learning approaches,
are out of the scope of this study. However, future
work may extend the framework to cover these additional
ML categories.

C. ORGANIZATION
Following this introduction, the remainder of this paper is
organized as follows. Section II deals with background and
related work. Section III outlines our proposed systematic
approach. Sections IV, V and VI deal with the evaluation
and results for ML data model, trained model and deployed
model respectively. Section VII provides a discussion and
conclusion.

II. BACKGROUND AND RELATED WORK
In this section, a brief background is provided on
ISO 26262 and the current gaps in ISO 26262 pertaining to
ML development are elaborated. Following this, an overview
of the existing standards relevant to ML is provided, along
with a mention of the gaps that are pertinent to the scope of
this paper. Related work is presented next, with a literature
review and summary of the gaps identified. This section ends
with a list of definitions for some of the relevant terms used
in this paper.

A. ISO 26262
ISO 26262 [1] is an international standard for functional
safety in the automotive industry. It provides a comprehensive
framework for the development and production of safety-
critical systems, ensuring that they meet stringent safety
requirements throughout their life cycle. Part 6 of ISO
26262 focuses specifically on the software development
process, outlining a V-model that defines development
activities, verification, and validation steps.

The V-model in Part 6 (cf. Fig. 1) guides the development
from software requirements specification to design, imple-
mentation, integration, testing, and release. This structured
approach helps in identifying and mitigating potential safety
risks at each stage of the software life cycle. However,
this model primarily addresses traditional software systems
and does not accommodate the complexities and unique
requirements of ML-based systems. As automotive systems
increasingly incorporate ML, the limitations of ISO 26262 in
addressing these advanced technologies become more
apparent.

ISO 26262 introduces the concept of ASIL to classify
safety requirements based on the severity, exposure, and
controllability of potential hazards. These levels range from
ASIL A (the lowest) to ASIL D (the highest), and each
level helps determine the necessary rigor in development and
validation.

• ASIL A corresponds to systems with minimal
safety impact, where failure might lead to minor
disruptions.

• ASIL B indicates a moderate safety risk, necessitating
more stringent safety measures than ASIL A.

• ASIL C and ASIL D apply to systems where fail-
ure could result in severe or life-threatening conse-
quences, requiring the highest levels of verification and
validation.
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FIGURE 1. Life cycle phases of ISO 26262 [1].

As the ASIL level increases, so does the rigor in the
design, verification, and validation processes, ensuring that
more critical systems are developed with more robust safety
mechanisms. Please note that, in ISO 26262, the concept of
rigor levels such as R1 and R2 are not formally introduced or
explicitly defined. However, the standard inherently imple-
ments a rigor-based approach through ASIL levels (ASIL A-
D), which dictate the level of effort, thoroughness, and safety
measures required for different system components based on
the potential hazard they present. It should be noted that the
concept of different rigor levels has been introduced by IEC
61508. Further details on this can be found in section II-C5.

B. CURRENT GAPS IN ISO 26262 PERTAINING TO ML
DEVELOPMENT
Despite its comprehensive nature, a detailed analysis of the
ISO 26262 standard reveals several notable gaps regarding
ML-based systems, including:

1) Software Requirements: The standard does not ade-
quately cover ML-specific safety properties such as
robustness, uncertainty handling, and interpretability.
These properties are critical for ensuring that ML
models operate safely and reliably under diverse and
unpredictable conditions.

2) Data Aspects: Effective ML functionality relies
heavily on the quality and management of data.
ISO 26262 lacks guidelines on handling various
data aspects, including data collection, preprocessing,
labeling, and validation. These steps are crucial for
training ML models that are both accurate and reliable.

3) Training Processes: ML training processes involve
stochastic methods and iterative optimization, often
using frameworks like TensorFlow or PyTorch. The
existing ISO 26262 framework does not provide
guidance on how to manage and document these
processes to ensure that the resulting models meet
safety standards. Emerging technologies such as Large
Language Models (LLMs) and Large Multimodal

Models (LMMs) represent significant advancements
in the ML field and are increasingly influencing ML
practices. These foundational models introduce new
complexities in terms of scale, interpretability, and data
dependencies. While our current focus is on traditional
ML processes, future work will need to address the
implications of these cutting-edge models, particularly
regarding their integration with safety standards such
as ISO 26262.

4) Model Deployment: Transforming trainedMLmodels
from high-level programming languages like Python
into embedded C/C++ code for deployment in automo-
tive systems is another area not covered by the current
standard. This transformation is critical for ensuring
that the deployed models maintain their integrity
and safety properties in a real-world operational
environment.

C. OVERVIEW OF EXISTING STANDARDS RELEVANT TO ML
Several other standards and guidelines provide valuable
insights into developing and testing ML models, although
they are not specifically tailored to automotive applications.
These include:

1) ISO/IEC 29119-11
ISO/IEC 29119-11 [6] is a part of the ISO/IEC 29119 soft-
ware testing standard series, which focuses on the testing of
AI systems. This standard provides comprehensive guidelines
for testing ML-based systems, covering various aspects of
verification and validation of ML models. It emphasizes
the importance of testing for properties such as robustness,
interpretability, and bias, which are crucial for ensuring the
reliability and safety of AI systems.

In the context of automotive applications, these properties
are particularly important due to the safety-critical nature of
automotive systems. Robustness ensures that the ML models
can handle unexpected inputs and operate reliably under
diverse conditions. Interpretability is vital for understanding
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the decision-making process of the ML models, which is
essential for debugging and validating the system’s behavior.
The ISO/IEC 29119-11 standard also addresses the need
for systematic testing approaches that can be adapted to
the specific requirements of ML models used in automotive
systems. By integrating the principles and methods from
ISO/IEC 29119-11 into the ISO 26262 framework, we can
enhance the testing and validation processes for ML-based
automotive systems.

2) ISO/IEC TR 5469
ISO/IEC TR 5469 [3] provides a comprehensive framework
for addressing functional safety in AI systems. It focuses
on the properties, risk factors, and methods associated with
AI systems, particularly in safety-critical functions. This
standard explores three key areas: the use of AI to realize
safety-related functions, the use of non-AI safety functions
to ensure the safety of AI-controlled equipment, and the
application of AI systems in the design and development of
safety-related functions.

In the context of automotive applications, ISO/IEC TR
5469 is particularly relevant as it provides methods for
integrating AI into safety-critical systems while ensuring
functional safety. The standard emphasizes managing risks,
transparency, validation, and safety assurance, which are
crucial for AI-driven automotive systems where failures
could have severe consequences. Integrating these principles
into the ISO 26262 framework enhances the safety and
reliability of ML-based automotive systems by addressing
gaps in risk assessment, validation, and testing, and ensuring
robust, transparent, and safe AI deployment in automotive
environments.

3) ISO/IEC 5338
ISO/IEC 5338 [7] defines a comprehensive set of life cycle
processes for AI systems, building upon existing standards
like ISO/IEC/IEEE 15288 [8] and ISO/IEC/IEEE 12207 [9],
while adding AI-specific processes derived from ISO/IEC
22989 [10] and ISO/IEC 23053 [11]. This standard provides
guidelines for managing AI systems throughout their life
cycle, addressing key aspects such as system definition,
control, execution, and improvement.

In the context of automotive safety, ISO/IEC 5338 is
particularly relevant as it offers a structured approach for
integrating AI-specific life cycle processes into safety-critical
systems. These processes align with the gaps identified in
ISO 26262, such as model training, data handling, and
deployment. By incorporating the systematic management
of AI systems into safety frameworks like ISO 26262,
we can better address challenges related to robustness,
transparency, and traceability of ML models in automotive
applications. Leveraging the principles and methods from
ISO/IEC 5338 will enhance the development, testing, and
validation of AI-based systems, supporting our proposal
for extending ISO 26262 to include ML-specific life cycle

phases. Thus, the gaps pertaining to the definition of life cycle
phases are intended to be closed by introducing three new
life cycle phases inspired by [12] and compatible with those
defined in ISO/IEC 5338 [7].

4) ISO/DPAS 8800
This is a Draft Publicly Available Specification (DPAS)
that provides principles and methods for the development
of reliable AI systems. It emphasizes key aspects such
as transparency, explainability, and robustness, offering
guidelines that can be adapted to ensure the safety and
reliability of ML models in various applications, including
automotive systems.

Transparency and explainability are critical in the auto-
motive context, where understanding the behavior and
decision-making process of ML models is essential for
validating their performance and ensuring safety. Robustness,
on the other hand, ensures that the ML models can maintain
their performance and reliability across a wide range of
operating conditions and scenarios.

ISO DPAS 8800 outlines a systematic approach for
developing AI systems that meet these critical properties.
This approach includes methodologies for data management,
model development, and testing, which can be tailored to the
specific requirements of automotive applications. By incor-
porating these methodologies into the ISO 26262 framework,
we can address the unique challenges posed by ML models
in automotive systems, ensuring that they meet the stringent
safety standards required for ASIL A/B conformance.

Standards like ISO 26262 and ISO PAS 8800 address
functional safety in AI systems but lack focus on validating
ML models in real-world conditions. ASAM OpenSCE-
NARIO [13], while not AI-specific, offers a framework
for simulating driving scenarios to test ML models in
autonomous vehicles. Scenario-based testing complements
the proposed ML life cycle phases by enabling real-time
validation of model robustness and uncertainty in safety-
critical environments.

ISO 15288 [8] forms the basis for many key systems
engineering processes, offering a comprehensive frame-
work for managing the life cycle of systems. Recent
developments, such as [14], emphasize the potential of
leveraging model-based approaches to formalize processes
and standards. This concept of modeling can serve as an
extension of our work, where life cycle phases for ML
systems can be formalized and integrated into established
systems engineering frameworks like ISO 26262. Such an
approach would provide enhanced traceability, rigor, and
consistency, thereby ensuring the effective application of ML
in safety-critical automotive systems.

5) IEC 61508
Known as the ‘‘mother’’ of functional safety standards, IEC
61508 provides a comprehensive framework for ensuring the
functional safety of electrical, electronic, and programmable
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electronic systems. It is a crucial standard that serves as
the basis for numerous sector-specific functional safety
standards, such as those used in the automotive, process, and
machinery industries. The standard is structured into seven
parts, each addressing different aspects of functional safety.
Part 1 to Part 3 cover the general requirements, requirements
for electrical/electronic/programmable electronic (E/E/PE)
systems, and software requirements, respectively. Parts 4 to
7 provide supporting information, including definitions,
the use of safety integrity levels (SILs), guidelines on
the application of IEC 61508 for specific industries, and
examples of methods and techniques.

Part 3, Annex C of IEC 61508 is particularly relevant
for the work discussed in this paper as it offers a detailed
methodology for evaluating the effectiveness of safety
measures. This annex outlines the safety life cycle, detailing
the activities and tasks necessary to achieve functional
safety. It provides a systematic approach to assessing safety
functions, assigning safety integrity levels, and ensuring that
all safety-related systems and components meet the required
safety standards. The safety life cycle includes phases such
as concept, overall scope definition, hazard and risk analysis,
overall safety requirements, safety-related system design and
development, and operation and maintenance.

The evaluation framework provided in Annex C can
be adapted and tailored to assess ML-specific methods
within the ISO 26262 framework. This involves a systematic
approach to defining and validating ML-specific life cycle
phases and testing methods. By assigning rigor levels (R1
and R2) to different methods, the framework ensures that the
methods are evaluated for their effectiveness in supporting
the achievement of desired safety properties. Rigor level 1
(R1) indicates a lower level of rigor, suitable for less critical
functions, while rigor level 2 (R2) indicates a higher level
of rigor, suitable for more critical functions. This rigorous
evaluation process helps in establishing clear and reliable
recommendations, reducing the room for interpretation and
ensuring that ML-based systems meet the stringent safety
requirements necessary for ASIL A/B conformance.

Thus, by leveraging the methodology outlined in IEC
61508, particularly Part 3, Annex C, we can develop a
more robust and comprehensive approach to integrating
ML-specific life cycle phases and testing methods into ISO
26262. This integration enhances the applicability of ISO
26262 to modern automotive systems, ensuring that ML-
based safety-critical systems are developed and assessed with
the highest levels of rigor and effectiveness.

6) SUMMARY OF GAPS IDENTIFIED
In addition to the gaps in ISO 26262 pertaining to ML
development summarized in section II-B, a thorough analysis
of related standards such as ISO/IEC 29119-11, ISO/IEC TR
5469, ISO/IEC 5338, and ISO DPAS 8800 provides valuable
insights into ML development but reveals several critical
gaps concerning the integration of ML into automotive safety
systems.While these standards offer guidance on general ML

development, they do not address the unique safety-critical
requirements of automotive applications, particularly in terms
of life cycle phases, testing, and deployment.

First, these standards do not adequately cover ML-specific
software requirements, including key safety properties such
as robustness, uncertainty handling, and interpretability.
Additionally, there is insufficient guidance on dataset valida-
tion and inadequate coverage of the stochastic nature of ML
training processes. Furthermore, the transformation of ML
models from high-level programming languages like Python
to embedded C/C++ code or specific hardware configurations
remains under-addressed. In terms of validation and testing,
although standards like ISO/IEC 29119-11 provide testing
methodologies for AI systems, they fall short of addressing
the unique challenges of testing ML models in safety-critical
automotive contexts. Lastly, while standards like ISO/IEC
5338 provide general life cycle processes for AI systems,
they do not fully account for the specific life cycle phases
required for ML development in automotive applications.
Thus, an analysis of these ML-related, non-automotive-
specific standards offers key insights into the broader
challenges of ML integration. Leveraging these insights
enables the development of a more comprehensive approach
to incorporating ML-specific life cycle phases and testing
methods into ISO 26262.

D. RELATED WORK
This section discusses related work in industry projects
and literature pertaining specifically to integrating ML
technologies into the ISO 26262 framework. We carried out
a Systematic Literature Review (SLR) focusing on works
that cover the critical aspects of ML integration. Please note
that these are the main aspects pertain to the main topic of
our paper, namely, a systematic approach to enhancing ISO
26262 withML-specific life cycle phases and testingmethods.
The SLR followed the steps outlined below:

1) Search Strategy: A comprehensive search strategy
was defined to retrieve relevant studies from academic
databases and industry reports. The search terms
included combinations of keywords, such as: (a) ‘‘ISO
26262’’ AND ‘‘ML safety’’, (b) ‘‘AI/ML automotive
standards’’ AND ‘‘functional safety’’ and (c) ‘‘machine
learning life cycle’’ AND ‘‘automotive safety’’. The
databases searched include IEEE Xplore, ACMDigital
Library and Google Scholar, as well as relevant
industry white papers.

2) Inclusion and Exclusion Criteria: The literature
review focused on studies that specifically address
the application of ML technologies within auto-
motive safety-critical systems. Research that delved
into standards such as ISO 26262, PAS 8800, and
SOTIF, particularly in the context of integrating ML,
was prioritized. Additionally, papers proposing exten-
sions or adaptations to these functional safety stan-
dards to accommodate AI/ML-specific requirements
were included. Studies that discussed general-purpose
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AI/ML without a clear focus on the automotive domain
were excluded from the review. Furthermore, papers
that lacked empirical validation or did not address
safety-related aspects in their discussions were also
omitted to ensure relevance to the scope of enhancing
automotive safety standards.

3) Study Selection and Screening: After conducting
the initial search and the application of the inclu-
sion/exclusion criteria, 19 studies were shortlisted for
further analysis. The selected studies were primarily
from the past 5 years, ensuring the review was focused
on recent developments.

4) Data Extraction and Synthesis: The data extrac-
tion process involved capturing key details from the
selected studies, such as, (a) Identified gaps in the
existing safety frameworks for ML in automotive
systems, (b) Proposed solutions or extensions to safety
standards and (c) any specific methodologies or life
cycle phases tailored to ML integration in functional
safety. The extracted information was then synthesized
to identify common themes and gaps in the literature
related to software requirements, data aspects, training
processes, and model deployment.

5) Gap Identification: The systematic review revealed
four key gaps, which are central to the contributions
of this paper. Those gaps are in line with the gaps
identified during the review of ISO 26262, for details
see section II-B.

The SLR results were grouped into two categories: industry
projects, discussed in section II-D1, addressing AI and ML
safety in automotive applications, and research papers in
section II-D2, which explore the integration of ML into the
ISO 26262 framework.

1) INDUSTRY PROJECTS/INITIATIVES
Recent advancements in ensuring the safety of AI-based
function modules for highly automated driving have been
significant. Notable projects and standards have emerged to
address the unique challenges posed by AI in automotive
safety, specifically in the context of pedestrian detection and
other critical functions. The integration of AI in automotive
systems, particularly for highly automated driving, presents
significant safety challenges. Various initiatives have been
undertaken to address these challenges, focusing on develop-
ing robust safety frameworks and methodologies. However,
notable gaps remain, which this paper aims to address by
proposing a comprehensive approach tailored to the unique
needs of ML-based systems in the automotive industry.

The KI Absicherung project [15] focussed on addressing
the insufficiencies of existing safety processes for AI-based
systems, specifically targeting the verification and validation
of AI modules, such as pedestrian detection, in automated
driving to ensure their safe integration into vehicles, which
cannot be addressed using established safety processes.
The project aimed to develop a joint safety argumentation
methodology and foster industry consensus on safe AI.

Over 36 months, this project involved various stakeholders,
including OEMs, technology providers, research institutes,
universities, and external partners, with a substantial budget
of 41million euros. However, the project highlighted the need
for more comprehensive safety processes tailored specifically
for AI technologies, which remain a gap in current practices.
The Literature Repository KI Absicherung1 provides a com-
prehensive collection of research and publications related to
the KI Absicherung project. This repository includes valuable
insights and methodologies that have been developed and
can be referenced to understand the current state of AI
safety research in automotive applications. By leveraging the
findings and recommendations from these sources, we can
better inform the development of extended life cycle phases
and robust testing methods for ML models.

Leading automotive companies such as Bosch have been
working on the AI safety landscape, developing methodolo-
gies to ensure the safety and reliability of AI in automated
driving systems.2 Bosch’s efforts focus on creating safety
frameworks for autonomous driving, but specific aspects of
ML model deployment and training processes in automotive
contexts are not comprehensively addressed, leaving room for
further development as proposed in this paper.

Waymo’s detailed Safety Framework for its autonomous
vehicles emphasizes a multilayered approach to safety,
including the hardware layer, ADS behavioral layer, and
operations layer, each with specific safety verification and
validation methods. Waymo’s transparency in publishing its
safety methodologies and performance data aims to foster
trust and accountability in autonomous driving technology.
However, like other initiatives, it does not fully cover the
integration of ML-specific life cycle phases and rigorous
testing methods proposed in this paper.3

CARIAD has been actively working on enabling the
development of safety-critical AI functions through various
initiatives such as safety first for automated driving4 and
contribution to development of standards for safety for
automated driving systems such as [16]. Their involvement
in AI safety research and the development of tools and
processes underscores the growing industry focus on safe AI
deployment in automotive systems.

Last, but not the least, a study on the application
of AI in functional safety,5 conducted by a panel of
working groups across various industry sectors, identifies
significant gaps in the current approach to AI safety in
critical systems. The study highlights that traditional system
development practices, which are deterministic in nature, are
insufficient for AI-driven systems, which inherently involve

1https://www.ki-absicherung-projekt.de/en/news/news-detail/literature-
repository-published

2https://www.bosch.com/stories/artificial-intelligence-in-cars/
3https://www.telematicswire.net/waymo-sharing-safety-framework-for-

fully-autonomous-operations/
4https://group.mercedes-benz.com/documents/innovation/other/

safety-first-for-automated-driving.pdf
5https://electrical.theiet.org/media/ifbjt25i/the-application-of-artificial-

intelligence-in-functional-safety.pdf
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non-deterministic components. Further, it identifies that the
existing safety standards, such as IEC 61508 do not fully
address unique AI challenges like bias and explainability,
requiring the development of alternative safety arguments
tailored to AI. Moreover, AI systems require additional
activities during design, implementation, and testing stages,
particularly regarding specialized verification and validation
techniques that extend beyond traditional methodologies.
Further, it identifies that ethical considerations, such as
governance, trust, and fairness, emerge as crucial in the AI
development process, and necessitate new frameworks to
ensure responsible use. Understanding the behavior of AI
systems, particularly in their interaction with human opera-
tors, is also identified as critical for ensuring safe operation.
Finally, the study underscores the lack of consensus on
managing the AI life cycle in safety-related applications,
stressing the need for evolving standards and practices as AI’s
role in critical systems continues to grow.

Thus, an analysis of industry projects and initiatives
reveals several key gaps in addressing the integration of
ML into automotive safety frameworks. The identified gaps
focus on main areas such as inadequate consideration of
ML-specific software requirements, insufficient guidance on
data management for ML models, limited coverage of the
stochastic nature of ML training processes, and a lack of
clear strategies for deploying MLmodels safely in embedded
automotive systems. While projects like KI Absicherung and
efforts by leading automotive companies havemade progress,
they do not fully address these challenges. Moreover,
despite several other initiatives contributing to AI safety,
significant gaps remain in adapting ML life cycle phases,
testing methods, and deployment strategies within the ISO
26262 framework.

2) LITERATURE REVIEW
Apart from industry projects, the literature review focusing
on recent research works on enhancing ISO 26262 with
ML-specific life cycle phases and testing methods remains
limited. The following discussion highlights key contribu-
tions in this area and summarizes the identified gaps.

The work presented in [12] discusses a novel concept
for the systematic development of Deep Neural Networks
(DNN) in automotive applications, addressing the gap in
current standards like ISO 26262 and SOTIF, which do
not fully accommodate DNN-specific characteristics. Their
work focuses on developing systematic V-models for data
management, the training process, and DNN integration into
embedded hardware. These insights directly inspired our
approach to extending ISO 26262 with ML-specific life
cycle phases, particularly in addressing challenges around
robustness, traceability, and training data uncertainties. This
paper supports the need for new life cycle phases and
standards, reinforcing our argument for an enhanced safety
framework for ML-based systems in automotive safety-
critical applications. Similarly, [17] investigates the integra-
tion of ML into automotive safety standards, particularly

ISO 26262. The authors identify critical gaps in the standard
regarding ML applications and suggest three key adaptations
to bridge these gaps. However, the study primarily initiates
the discussion and highlights the necessity for more com-
prehensive solutions. The work introduced by [18] presents
a comprehensive assessment of ISO 26262 in the context
of supervised ML and proposes modifications to better
align the standard with the needs of ML-driven automotive
systems. They highlight significant gaps in ISO 26262, partic-
ularly regarding the handling of non-deterministic behaviors
inherent in ML models used for advanced driver assistance
systems (ADAS) and automated driving systems (ADS).
By systematically analyzing Part 6 of ISO 26262, the authors
suggest new process requirements specifically designed to
address these gaps. Their work underscores the critical need
for an extended safety framework that accommodates ML-
specific challenges, such as robustness, data management,
and model verification, which directly align with the gaps
identified in our research on software requirements and ML
life cycle phases. This paper strengthens the case for adapting
safety standards to ensure the safe deployment of ML in
automotive systems.

In [19], the authors address key issues in ML safety such
as interpretability, robustness, and verification of ML models
in autonomous vehicles. The paper discusses gaps in ISO
26262 and provides algorithmic techniques to improve ML
safety. It emphasizes the challenge of interpretability and
transparency in ML models, which is crucial for safety-
critical systems, directly linking to the gap in software
requirements. While the authors successfully address key
gaps such as interpretability, robustness, and error detection
in ML models, they fall short in fully addressing the
gap related to the life cycle management of AI systems
in compliance with ISO 26262. Additionally, the authors
in [20] survey techniques to build confidence in ML systems,
highlighting the lack of a cohesive framework for integrating
thesemethods into the ISO 26262 life cycle. Their findings on
challenges like robustness, uncertainty, and interpretability
align with the gaps identified in our research, particularly in
software requirements, data aspects, and training processes.
The absence of standardized guidelines for managing these
ML-specific issues supports our call for extended life cycle
phases and a more comprehensive framework within ISO
26262. This survey further underscores the need to address
these gaps to ensure the safe deployment ofML in automotive
systems.

The work discussed in [21] explores the potential of
incorporating ML technologies in enhancing compliance
with the ISO 26262 safety standard in automotive systems.
One of the primary gaps identified in the paper is the lack
of established norms and guidelines for applying ML and
AI within the framework of ISO 26262. This echoes broader
gaps in the application of AI to functional safety, where
traditional methodologies for safety assurance struggle to
account for the non-deterministic and probabilistic nature
of AI systems. The paper also points to the stochastic
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nature of ML algorithms, aligning with challenges identified
in other research on interpretability and transparency in
AI models. However, the paper falls short of providing
practical methodologies for resolving these gaps. In [22], the
authors propose a new approach to quantify ML failures in
autonomous vehicles, treating them not only as systematic
but also as random faults. The paper highlights challenges
like training data uncertainties and the ‘‘black box’’ nature
of ML models, aligning with the gaps identified in our
research on software requirements and data aspects. Their
focus on real-time failure rate assessment supports our
call for enhanced life cycle phases and robustness metrics
within ISO 26262, further validating the need for updated
safety frameworks for ML-based systems in autonomous
vehicles. Additionally, [19] discusses gaps in the ISO
26262 framework regarding the testing and validation of ML
training processes, particularly in dealing with the stochastic
nature of ML training, which introduces challenges not
adequately covered by current standards.

In [23], the authors address the unique safety concerns
posed by DNNs in automated driving systems, emphasizing
the alignment of these concerns with standards like ISO
21448 (SOTIF) and ISO PAS 8800. Their work highlights
the importance of adapting safety frameworks to manage
DNN-specific issues such as uncertainty, robustness, and
explainability, aligning with gaps in our research related
to software requirements and model deployment. However,
their approach primarily focuses on perception components,
lacking a full life cycle framework for ML systems. The work
presented in [24] proposes adapting ISO 26262 to address
ML-specific challenges, focusing on dataset requirements
and hazard analysis for autonomous driving. However,
they do not fully address key gaps such as robustness,
explainability, and the safe deployment of trained ML
models. While the paper offers initial insights, further work
is needed to systematically integrate ML-specific life cycle
phases and testing methods.

Another recent work in [25] deals with a survey on AI
for safety-critical systems in industrial and transportation
domains. The paper identifies, among others, the need for
standardization and certification of ML systems in alignment
with ISO 26262 and the importance of integrating AI-specific
methods into existing standards such as ISO 26262. [26]
highlights the advancements in AI applications for auto-
motive sectors like predictive maintenance, vehicle security,
and Vehicle-to-Vehicle (V2V) communication, but it doesn’t
address some key areas. Notably, gaps related to ISO 26262,
such as specific software requirements for AI/ML safety, the
handling of training processes for robustness and uncertainty,
and challenges in deploying AI models in embedded systems,
remain unexplored.

In [27], the authors introduce AI Safety Integrity Levels
(AI-SILs), an extension of traditional SIL frameworks like
ISO 26262. Their approach incorporates task complexity,
using input entropy and output non-determinism, to better

assess the risks posed by AI systems in safety-critical appli-
cations. This method addresses gaps in existing standards,
which often fail to account for AI system complexities.
By highlighting the need for more precise differentiation
of AI risks, the paper supports our argument for extending
ISO 26262 with AI-specific life cycle phases and risk
assessments tailored to the unique challenges AI systems
present. Similarly, [28] proposes methodologies to ensure the
trustworthiness of high-risk AI systems in compliance with
the European Union’s AI Act. It introduces the Operational
Design Domain (ODD) and Behavior Competencies (BC),
borrowed from the automated driving domain, to assess
risks across the AI life cycle. The paper emphasizes the
role of standards and ethical considerations in shaping the
certification of AI systems, aiming to foster human-centric
and trustworthy AI. The methodology addresses gaps related
to robustness, uncertainty handling, and interpretability
but does not fully address life cycle phases specific to
ML. Last, but not least, in [29], the authors conduct a
comprehensive SLR of 329 key references, highlighting five
main approaches for ensuring AI safety: black-box testing,
safety envelopes, fail-safe AI, white-box explainable AI,
and life cycle-based safety assurance. They emphasize the
importance of integrating safety considerations throughout
the life cycle of AI systems and propose future research
areas such as dataset safety analysis and hyperparameter
justification. This review aligns with our identified gaps in
software requirements and verification processes, reinforcing
the need for more structured approaches for AI safety
assurance across industries.

The literature review highlights several key gaps in
enhancing ISO 26262 for ML-based automotive systems.
Current standards lack specific life cycle phases tailored
to ML, particularly in areas like robustness, traceability, and
systematic development [12], [17], [18]. Certification and
validation guidelines remain underdeveloped, especially for
handling the stochastic nature of ML algorithms and ensuring
explainability [21], [27]. Critical ML safety properties
such as robustness, uncertainty, and interpretability are not
sufficiently addressed [19], [20], [30]. Further, there is limited
guidance on managing ML training processes, particularly
when using frameworks like TensorFlow or PyTorch [19],
[22]. The standard also lacks structured processes for dataset
validation and data management, which are crucial for ML
model development [25]. Additionally, there is a gap in
deploying ML models, especially when transitioning from
high-level languages like Python to embedded C/C++ envi-
ronments while maintaining safety properties [23].Moreover,
several works highlight the necessity of risk assessments and
tailored life cycle phases for ML-specific systems [28], [29].
The AI Safety Integrity Levels (AI-SILs) framework is also
proposed as an extension to address AI risks [27]. Last but
not least, the comprehensive assessment of ISO 26262 in
the context of supervised ML carried out in [18] and SLR
in [29] provides a strong foundation and supports the need
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FIGURE 2. Example of a ML Unit [31].

for enhancing ISO 26262 to address ML-specific challenges,
which is the focus of our work. Thus, these gaps underscore
the need for a comprehensive integration of ML-specific
life cycle phases, safety properties, testing methods and a
rigorous evaluation framework to assess the effectiveness of
these methods, into ISO 26262. Details regarding the specific
properties of each life cycle phase are available in Section IV.

E. DEFINITIONS
In this section, we define key terms essential to our study’s
contributions and to addressing specific gaps in current
standards. While we assume readers possess a foundational
understanding of AI and ML-including familiarity with
common terms, we provide explanations for specialized
concepts such as ML unit and ML-in-the-Loop. These
terms are pivotal to our work, particularly in the context
of automotive systems and ML model deployment and
testing.

1) MACHINE LEARNING (ML) MODEL
A mathematical construct that generates an inference based
on input data or information and comprises functionality that
is created by machine learning (cf. section 3.1.32 in [2]).

2) ML DATA MODEL
A ML Data Model consists of data subsets used for different
purposes in the context of ML like training, validation and
test datasets (cf. section III-B1 / 3.2.2 / 3.2.8 in [2]).

3) TRAINED ML MODEL
A ML model with a set of model parameters as a result of
model training (cf. section 3.1.40 in [2]).

4) DEPLOYED ML MODEL
A ML model that has been optimized after the training
process and deployed into a format compatible with the target
platform, like embedded hardware. This corresponds to the
interpretation of the deployed ML model given by ISO 8800
[2] and ASPICE 4.0 [32], although an explicit definition is
not mentioned there.

5) ML-IN-THE-LOOP
Similar to the HW-in-the-Loop testing concept from ISO/IEC
TR 5469 [3], theML-in-the-loop testing concept enables test-
ing of a deployed MLmodel in a real-operating environment.
The ML model as well as the direct pre- and post-processing
steps should be implemented on the target hardware to enable
testing in an operation-like environment.

6) ML UNIT
A ML Unit is the smallest entity of code that encapsulates
the essential components required to generate predictions.
It includes only the minimal code necessary to process
input data and produce output predictions, excluding the
code used to load the model or data. For the example of
(feed-forward) neural networks, the ML Unit is composed
of various layers, interconnections between them, which all
together build up the desired functionality. This definition is
designed to be flexible, allowing the ML Unit to encompass
future ML architectures and hardware developments. Please
note that in the context of ASPICE 4.0 [32] an ML Unit
can be compared with ML Element and ML Architecture,
which similarly encapsulates the essential components of
an AI-based function, but it is not limited by specific
programming paradigms or hardware requirements. Figure 2
shows a typical neural network architecture of an image
classification task. For products in the automotive industry,
typical image classification tasks are traffic sign or traffic
light classification. For the example architecture in Fig. 2,
all elements in the figure would be considered part of the
ML Unit. The final work product of ML development is an
embedded ML function, which runs on the target hardware.
The embedded ML function, and therefore the ML Unit,
consists of:

• Diverse layers, which are given as e.g. C/C++ code,
• Weights, which are e.g. concrete integer 8-Bit values.

For the example of neural networks, (SW) layers of an ML
function might be interpreted as SW units regarding ISO
26262-6. Because of the limited scope of ISO 26262 and gaps
related to ML technology, a new test level for an ML Unit
shall be introduced and defined. The definition includes not
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FIGURE 3. Steps involved in the development of a systematic ML testing concept for ASIL A/B conformance.

the single (SW) layer of an ML function, but the overall ML
model with all parts that are directly related to the task of the
ML model (e.g. layers and weights). The definition of an ML
Unit will allow to:

• Address ML specific aspects that are not covered by
ISO 26262,

• Perform requirements-based and interface tests,
• Introduce new testing methods to prove ML specific
safety properties (e.g. robustness, uncertainty and
interpretability).

III. SYSTEMATIC APPROACH
Fig. 3 illustrates our applied approach for the definition
of the novel, systematic ML testing approach for ASIL
A/B conformance introduced in this paper. Since expert
judgement was an important aspect in performing the steps
mentioned in Fig. 3, this section provides further insights into
the expert judgement performed. The approach is inspired by
the 61508 (Part 3, Annex C), whichmakes use of the so-called
‘‘desired properties’’ and ‘‘rigor’’. This section of the paper
provides more details on how those terms have actually been
used by the authors in developing the concept and can be split
into the following steps;

• Identifying missing, ML-specific life cycle phases
• Defining desired (safety) properties for the outcomes of
each life cycle phase

• Designing test methods that support the achievement of
the desired properties

• Evaluating the test methods for the desired properties
• Determining the test methods’ rigor
• Assigning test methods to ASIL

A. EXPERT JUDGMENT PROCESS
To ensure the scientific rigor and validity of our study,
a structured expert judgment process was employed. This
multi-step evaluation involved professionals (including the

authors of this paper) with expertise in classic functional
safety and AI standards integration and AI Auditing6,7,.8

The process aimed to systematically assess the proposal’s
applicability in the context of safety-critical AI systems,
ensuring alignment with relevant industry standards.

• Expert Selection and Preparation: Experts were
selected based on their extensive experience in AI
auditing, functional safety, and standards such as ISO
29119 and ISO PAS 8800. Their collective expertise
provided a solid foundation for evaluating the proposal
from multiple perspectives, ensuring a comprehensive
review.

• Evaluation: An initial proposal of the study was
created by the authors of this paper, following the
steps outlined in Fig. 3. This proposal was subject
to evaluation by experts. The experts were tasked
with evaluating the proposal’s alignment with existing
safety standards, particularly ISO 26262, as applied
to AI/ML applications. This focused on several key
areas, including robustness, uncertainty handling, and
identifying gaps in current safety frameworks.

• Questions Asked: Experts were asked to assess the
proposal’s alignment with safety standards and the
adequacy of the testing methods and desired properties.
Key questions included (a) do the selected test methods
comprehensively address the identified safety proper-
ties?, (b) are the proposed life cycle phases and testing
methods appropriate for ML safety assurance? and
(c) how effectively does the proposal handle various
desired properties?

• Structured Feedback and Collaborative Assessment:
Using methodologies similar to those outlined by [33]
and [34], the experts engaged in a structured, col-

6https://innotecsafety.com/
7https://cariad.technology/
8https://www.trustifai.at/
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laborative evaluation process. This process involved
discussions that highlighted inconsistencies across stan-
dards, identified gaps in current practices, and provided
recommendations for improvement based on empir-
ical insights. These insights were derived from the
experts’ practical experience and real-world applications
ensuring that the recommendations were grounded in
evidence from actual implementations in safety-critical
AI systems.

• Data Collection and Analysis: Expert feedback was
systematically gathered, documented, and analyzed
using various qualitative techniques. The method used
was the use of an Excel sheet to collect, categorize,
and track review comments from evaluation, enabling
systematic revisions and ensuring that all feedback was
addressed. Thismethod ensured a comprehensive review
process, allowing for the iterative refinement of the
proposal by addressing identified gaps. Feedback was
assessed qualitatively across two rounds of discussions.
The first round included four experts, and the second
included six. While no formal statistical tests were
conducted, the consistency of expert feedback was
noted, and qualitative agreement was achieved.

• Synthesis and Application of Feedback: The expert
feedback was synthesized into recommendations, which
were incorporated into the proposal to improve its
overall robustness and ensure better alignment with
relevant industry standards.

By applying this method of expert judgment, we have derived
conclusions that are documented in our approach. The main
benefit of our approach is the thorough development of the
concept. The second benefit is that we systematically set up
the expert group which supports the maturity of the results.

B. DEFINITION OF LIFE CYCLE PHASES
In comparison of the life cycle phases of ISO 26262 with the
activities of ML product development, three major gaps can
be highlighted:

• Prepare data
• Train ML model
• Deploy ML model

In this paper, these life cycle phases are referred to as ML
life cycle phases, as illustrated on the bottom side of Fig. 4.
As an extension to Fig. 4, Fig. 6 in Appendix A provides an
elaboration on how these life cycle phases are embedded into
the traditional V-Model and aligned with the life cycle phases
of ISO 26262.

To perform these life cycle phases, artifacts (e.g. inputs
and outputs of each life cycle phase) as defined by ISO
26262 need to be provided as input. It needs to be specified
upfront, what the requirements are for the functionality
of the ML model. These requirements need to cover the
functionality of the ML model as well as the syntactic and
semantic requirements for the data, and should be derived
following the requirements engineering life cycle of ISO
26262. Necessary adaptations of this life cycle phase to cover,

FIGURE 4. Interfaces to existing life cycle phases of ISO 26262-Part 6.

for example, the specification of data requirements are not
part of this document.

In addition to the requirements, a detailed design specifi-
cation as defined by ISO 26262 is a relevant input to the life
cycle phases of this document. The deployed ML model as
output of the life cycle phase deploy ML Model is considered
to be an AI Unit, which needs to be specified with other
SW Units in the detailed design specification. Information
such as specified interfaces to other SW Units needs to be
considered in the life cycle phase deploy ML model, which
makes the detailed design specification a mandatory input to
this development step.

1) DATA HANDLING
There is an important separation between ML-specific data
handling andML-agnostic data handling. This document only
focuses on ML-specific data handling. The data life cycle
phase that is part of this document requires quality-assured
data and metadata as input, which is not defined in the
existing life cycle phases of ISO 26262. Aspects such as
data acquisition, data storage, and data labeling/annotating
are not considered specific to ML since these activities are
also relevant for verification and validation purposes in non-
ML products. These activities are crucial for ensuring the
quality of the data, and we assume that measures are in
place to maintain this quality, although they are not described
in detail in this paper. These quality assurance measures
might be derived from performing a Process Failure Mode
and Effects Analysis (P-FMEA) [35] on the aforementioned
aspects—acquisition, storage, and annotation/labeling—as
recommended by the Safety of the Intended Functionality
(SOTIF) standard [5].

For example, the following steps might be undertaken to
ensure data quality:

• Reviewing the requirements for the target data acqui-
sition to ensure they are comprehensive and meet the
necessary standards.

• Verifying that the hardware used for capturing the data
is configured correctly and operates reliably.

• Performing tool classification and qualification of the
labeling tools to ensure they are suitable for the task and
produce consistent, high-quality results.
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These measures are assumed to be in place to provide a
solid foundation for the ML-specific processes described in
this paper.

2) TRAINING OF ML MODEL
The training of an ML model is part of the second life
cycle phase of the approach outlined in this paper. For many
applications, the outcome of the training process will not
be the product that is used during operations. Therefore,
this paper provides a third life cycle phase that describes
the deployment of the ML models after training. For those
applications, the quality of the ported or deployed version
of the ML model is the most critical, since this version will
be used during operations. Due to this criticality, the testing
activities on the deployed ML model should be prioritized
over the testing of the trained ML model. We assume
that a systematic development and testing approach for the
trained ML model also supports the quality of the deployed
ML model and the identification of systematic issues, and
therefore demands the application of test methods on the
trained ML model.

3) DEPLOYMENT OF ML MODEL
The third life cycle phase (model deployment) consists of the
test methods of the second life cycle phase (model training)
and extends those with deployment-specific test methods
(e.g., related to hardware restrictions that are not relevant
to the trained model). Since the deployed ML model is
considered as a ML Unit, integration steps with other SW
Units and SWComponents are necessary before the deployed
ML model can be used in operations. At this point, the
interface to the existing life cycle phases of ISO 26262 comes
into play again. The interfaces to the existing life cycle phases
of ISO 26262, as described above, are also illustrated in Fig. 4
and Fig. 6.

C. DEFINITION OF DESIRED PROPERTIES
For each life cycle phase, there is a significant outcome
artifact that serves as the foundation for subsequent phases.
For example, the trained ML model is a key input for
the deploy ML model life cycle phase. Each of these
major outcomes has clearly defined desired properties.
These desired properties represent the essential nonfunctional
requirements that should be prioritized during development
and testing to ensure high-quality results. Examples of
these desired properties are completeness and consistency.
The desired properties outlined in this paper focus on the
most critical aspects, carefully selected based on expert
judgment. This targeted approach ensures that the most
relevant and impactful properties are emphasized, facilitating
a thorough and effective evaluation process. By concentrating
on key properties such as robustness, explainability, and
uncertainty handling, this framework aims to improve the
current practices in ML model development and testing,
addressing gaps in existing standards. The purpose of this
approach is to lay the groundwork for systematic testing of

MLmodels, contributing to the development of more reliable
and safe automotive systems.

D. DEFINITION OF TEST METHODS
There are several standards that provide robust test methods
for developing and testing ML models, each contributing
valuable insights and methodologies. For this paper, we con-
sidered ISO 29119 (Part 11) and ISO PAS 8800. The selection
of both the standards and the test methods was based on
expert judgment, acknowledging that many of these methods
are complementary, which enhances their effectiveness in
ensuring safety.

In the initial step, we thoroughly analyzed the test methods
in these standards for their applicability to the ML life cycle
phases. This analysis resulted in a detailed mapping of test
methods to the specific phases of the ML life cycle. For each
test method, we developed a concise definition and provided a
concrete and pragmatic description to ensure clarity and ease
of implementation.

It is important to emphasize that while specification and
design are crucial activities in the life cycle phases discussed
in this paper, our primary focus is on testing methods. These
methods are essential for ensuring the robustness, reliability,
and safety of ML models. By leveraging the comprehensive
guidelines and methodologies from ISO 29119-11 and ISO
PAS 8800, we aim to establish a solid foundation for the
systematic testing of ML models, ultimately contributing to
the advancement of safety-critical automotive systems.

E. EVALUATION OF TEST METHODS, RIGOR DERIVATION
AND ASIL ASSIGNMENT
In this step, all test methods that have been mapped to the
ML life cycle phases are evaluated with respect to their
effectiveness in supporting the achievement of the desired
properties. A single test method can support the achievement
of several desired properties; we assumed that there is a
main and potentially several minor desired properties that are
supported by a test method.

1) RATIONALE BEHIND RIGOR ASSIGNMENT
In the first step, the test methods have been mapped to the
desired properties they support in general, and then the major
desired property for the test method has been defined. The
degree to which a desired property is supported by the test
method is defined with a rigor, similar to IEC 61508 (cf.
Fig. 5). For this paper, there was a separation between Rigor
Level 1 (R1) and Rigor Level 2 (R2). The rationale behind
the assignment of R1 and R2 for each test method and desired
property is based on the effectiveness and thoroughness of the
test methods in addressing the specific desired properties.

R1 (Rigor Level 1): Indicates that the method is effective
and suitable for safety-related aspects with lower criticality,
such as those classified under ASIL A in functional
safety standards like ISO 26262. Methods assigned R1
provide adequate assurance for functions where safety
measures are necessary but the required rigor is moderate.
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R2 (Rigor Level 2): Indicates that the method is highly
effective and suitable for critical aspects where thoroughness
is essential, such as those classified higher than ASIL A in
functional safety standards like ISO 26262.Methods assigned
R2 offer a higher level of confidence in achieving the desired
properties and are often more comprehensive and resource-
intensive.

Please note that, on a fine granular level, test methods
can be executed in several ways. Therefore, two test method
variants have been defined for each test method. The test
method variants vary in their effectiveness to support a
desired property.

FIGURE 5. Rigor assignment.

After the rigor R1 and R2 have been assigned to
the test method variants, recommendations for the test
method application have been derived, considering the ASIL.
In general, the paper differentiates betweenASILA andASIL
B. For ASIL A, all test methods that have an R1 assigned are
highly recommended (HR), and the test methods with R2 are
recommended (R). For ASIL B, all test methods that have R2
are HR, and the test methods with R1 are R.

IV. EVALUATION AND RESULTS FOR ML DATA MODEL
In this section, the systematic approach defined in section III
is applied to the first ML product life cycle phase, namely
prepare data. Similar to ISO 26262, the objectives and inputs
of the respective life cycle phase are defined. This is followed
by a definition of the set of desired safety properties for
the prepare data life cycle phase and the selection of test
methods for this phase. The mapping of desired properties
and test methods for the ML data model is subsequently
outlined. Following the rigor assignment, a mapping of the
ASIL level (A or B) and test methods for this life cycle
phase is described. Thus, the presented approach provides
a comprehensive framework for evaluating and ensuring
the safety of ML data models in automotive systems. This
framework includes:

• Objectives: Clearly defined goals to ensure the data
model meets operational and safety requirements.

• Inputs: Necessary data and metadata, system require-
ments, and architectural specifications.

• Desired Properties: Identification of key safety prop-
erties such as completeness, consistency, correctness,
representativeness, and independence.

• Test Methods: Selection of appropriate methods to
verify the data model.

• Mapping of Properties to Methods: Aligning desired
properties with specific test methods to ensure a
comprehensive evaluation.

• Rigor Assignment: Assigning rigor levels (R1 and R2)
to test methods based on their effectiveness in achieving
desired properties.

• ASIL Mapping: Recommendations for test methods
based on ASIL A or B to guide their application in
safety-critical contexts.

By following this structured approach, the framework not
only enhances the robustness and reliability of ML data
models but also aligns with established safety standards,
facilitating their integration into automotive systems.

The purpose of the prepare data life cycle phase is to
enable the development of data-driven, safety-critical, and
quality-managed products by providing verified datasets for
ML model training, validation, and testing.

A. OBJECTIVES
• Provide evidence that the implemented ML data model
fulfills the allocated Operational Design Domain (ODD)
to enable the fulfillment of the system and software
requirements.

• Verify that the defined safety measures resulting from
safety-oriented analyses are properly implemented.

B. INPUTS
• Labeled data and metadata that achieved the safety
goals/quality criteria.

• ODD definition, part of system requirements.
• Functional/logical architecture of the system.
• Functional/logical architecture of the software.

C. DESIRED PROPERTIES FOR THE LIFE CYCLE PHASE
PREPARE DATA
In the following, the safety desired properties for the first
life cycle phase, namely prepare data, are discussed. Each
property is introduced with a brief description and a simple
example. The examples, based on a Traffic Sign Recognition
(TSR) classifier use case, provide representative scenarios
demonstrating how these properties apply in practice.

• Completeness: The goal is to ensure that the data
comprehensively covers all relevant aspects of the
problem domain, including temporal aspects. This
involves capturing all necessary elements, attributes,
and relationships to meet the system and software
requirements (ODD). Completeness requires the dataset
to include all necessary elements and scenarios that the
ML model will encounter in real-world applications,
ensuring it is thorough and accounts for all variations in
the ODD, including a wide range of features, variations,
and edge cases relevant to the intended application
domain.
Example: For a TSR classifier, completeness would
mean having a dataset that includes images of all
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possible traffic signs under various conditions such as
different lighting, weather, and occlusions.

• Consistency: The objective is to maintain consistency
within the data to avoid contradictory or conflicting
information. Consistency in the data ensures uniformity
and coherence in the representation and interpreta-
tion across different components. It maintains align-
ment with the system requirements (ODD) and the
functional/logical architecture, facilitating accurate and
reliable inference and decision-making. This means
that data should be represented in a coherent and
standardized format, avoiding discrepancies that might
confuse the ML model.
Example: For a TSR classifier, consistency would
entail ensuring that all traffic sign images are captured
in similar resolutions and formats, with annotations
following the same labeling conventions.

• Correctness: The aim here is to verify the correctness
of data to minimize errors and inaccuracies during
model training and evaluation. The data should cor-
respond to the phenomenon they intend to capture,
including features and metadata that help characterize
the phenomenon [2]. This involves checking for errors,
mislabeling, and inaccuracies within the dataset.
Example: For a TSR classifier, correctness would
require that each image is correctly labeled with the right
traffic sign and that there are no mislabeled or incorrect
entries in the dataset.

• Representativeness: The goal here is to guarantee
that the data accurately represents the underlying
distribution of real-world data to avoid bias and ensure
generalization. This property is crucial for training
models that generalize well to unseen data. Repre-
sentativeness ensures that the data adequately reflects
the characteristics, structures, and relationships inherent
in the real-world domain it represents. It involves
capturing a diverse and representative sample of data
that accurately represents the variability and complex-
ity of the operational environment, supporting robust
AI model training, validation, and testing.
Example: For a TSR classifier, representativeness would
involve having a dataset with traffic sign images from
various geographical locations, different road types, and
varied environmental conditions.

• Independence of datasets The objective here is that
the datasets sufficiently avoid leakage of information
amongst themselves with respect to data sources
and the methods used to capture, gather, generate,
and process the data. By ensuring the independence
of data sets, one can avoid leakage of information
between the three datasets (training, validation, testing).
In other words, independence refers to the necessity
for data samples to be distinct and not overly redun-
dant. This property helps in avoiding overfitting and
ensures that the model learns to generalize rather than
memorize.

Example: For a TSR classifier, independence would
mean ensuring that the same samples aren’t contained
in different datasets, which could lead to the model
overfitting to those specific examples.

D. TEST METHODS FOR THE LIFE CYCLE PHASE PREPARE
DATA
This section presents a list of test methods for the life
cycle phase prepare data. Each test method includes two
variants, providing flexibility and comprehensiveness to
address different testing requirements effectively.

• Consistency Testing: Ensures that the data used for
training, validation, and testing is consistent in format
and content.
– Random Data Consistency Testing: Randomly

selects data entries to check for consistency. This
involves checking random samples of data entries
to ensure they meet the predefined consistency
criteria, e.g. verify that they conform to predefined
formats and standards. For example, in a TSR
classifier, this would mean randomly checking
images to ensure they have consistent resolutions
and correct labeling.

– Systematic Data Consistency Testing: Systemat-
ically checks all data entries for consistency.
This method involves a thorough and systematic
review of the entire dataset to ensure all entries
are consistent with each other and the defined
standards. In the TSR example, this would involve
systematically verifying that all images meet the
necessary format and labeling standards across the
entire dataset.

• DistributionAnalysis:Analyzes the distribution of data
to ensure it is representative of the target environment.
– Key Features Data Distribution Analysis: Focuses

on key features to ensure their distribution is repre-
sentative. This method analyzes the distribution of
key attributes in the dataset to ensure they match the
expected distribution patterns. For a TSR classifier,
this would mean ensuring that the dataset has a
balanced distribution of traffic sign types (e.g., stop
signs, yield signs) under various conditions.

– All Features Data Distribution Analysis: Analyzes
the distribution of all features to ensure overall
representativeness. This comprehensive approach
checks the distribution of all attributes to confirm
they are representative of the operational design
domain. In the TSR example, this would include
verifying that images are representative of different
times of day, weather conditions, and levels of
occlusion

• Data Augmentation: Enhances the dataset by adding
modified versions of existing data to increase diversity.
– Random Data Augmentation: Randomly augments

data entries to increase variability. This involves

179614 VOLUME 12, 2024



P. Iyenghar et al.: Systematic Approach to Enhancing ISO 26262

randomly modifying data samples to create new,
varied examples. For example, in a TSR classifier,
this could involve randomly applying transforma-
tions such as rotation, scaling, and color adjust-
ments to traffic sign images.

– Systematic Data Augmentation: Systematically
augments data entries based on specific rules. This
method applies predefined rules to systematically
create new data samples from existing ones. In the
TSR use case, this might involve systematically
generating variations of traffic sign images to
cover different scenarios like lighting changes and
weather conditions

• Representativeness Testing: Ensures the data repre-
sents the operational design domain accurately.

– Representativeness Testing Key Attributes: Focuses
on key attributes to ensure representativeness. This
method checks whether key attributes in the dataset
accurately reflect the target environment. For a TSR
classifier, this would involve testing to ensure that
the dataset includes a representative sample of all
critical traffic sign types.

– Representativeness Testing All Attributes: Tests all
attributes to ensure comprehensive representative-
ness. This involves evaluating all attributes in the
dataset to ensure they represent the operational
design domain. In the TSR example, this would
include verifying that the dataset accurately reflects
all relevant environmental conditions and scenarios

• Independence Testing: Checks that data samples are
independent and not duplicates or overly similar.

– Independence Test on Duplicates: Identifies and
removes duplicate data entries. This method
ensures no duplicate entries exist in the dataset,
maintaining data integrity. For a TSR classifier, this
would involve checking for and removing identical
traffic sign images.

– Independence Test with Similarities: Ensures data
entries are sufficiently different from each other.
This involves checking data samples to ensure they
are independent and not overly similar, preserving
the diversity of the dataset. In the TSR use case,
this would mean verifying that traffic sign images
are not overly similar, preventing redundancy in the
dataset.

• Review: Involves stakeholders in reviewing the data and
methods to ensure completeness and correctness.

– Review with Some Stakeholders: Involves a subset
of stakeholders in the review process. This method
includes selected stakeholders in the review to
validate the data and methods. For a TSR classifier,
this might include experts from the development
team reviewing the dataset for accuracy and com-
pleteness.

– Review with All Stakeholders: Involves all relevant
stakeholders in the review process. This compre-
hensive review process ensures all relevant parties
validate the data and methods. In the TSR example,
this could involve a review by the entire project
team, including developers, testers, and domain
experts.

E. MAPPING OF DESIRED PROPERTIES, METHODS FOR AI
DATA MODEL AND RIGOR ASSIGNMENT
The desired properties for the AI data model outlined in
section IV-C are mapped to specific test methods mentioned
in section IV-D to ensure they are effectively achieved and
presented in Table 1. The methods are evaluated for their
ability to support each desired property, with rigor levels
assigned to indicate their effectiveness. Please note that the
general rationale behind rigor assignment (i.e., R1 or R2) is
outlined in section III-E. In this section, we detail how each
method supports the desired properties.

Table 1 and the descriptions above illustrate how each
method supports key desired safety properties such as
completeness, consistency, correctness, representativeness,
and independence for the ML data model. The rigor levels
(R1 and R2) indicate the method’s effectiveness, with R2
representing a higher level of rigor.

F. MAPPING OF ASIL LEVEL AND TEST METHODS FOR ML
DATA MODEL
The assignment of ASIL levels to test methods is based on the
rigor and criticality of each method. The assignment of ASIL
levels (A or B) follows this rationale, and the overall approach
is based on expert judgment. Experts assess the methods by
considering factors such as the criticality of the function,
comprehensiveness, and confidence required to meet safety
standards. For ASIL A, methods that provide sufficient
assurance for non-critical functions are highly recommended
(HR) if they are moderately rigorous (R1). For more
critical aspects requiring higher confidence, the methods
are recommended (R). Conversely, for ASIL B, methods
assigned with high rigor (R2) are highly recommended
(HR), while those with moderate rigor (R1) are simply
recommended (R).

Table 2 presents the mapping of ASIL to the various
test methods used for the life cycle phase prepare data.
This table details how each method and its variants are
recommended for different ASIL levels, specifically ASIL A
andASILB.A variety ofmethods such as consistency testing,
distribution analysis, data augmentation, representativeness
testing, independence testing, and review processes are
provided in the table. For each method, Table 2 indicates
whether it is highly recommended (HR) or recommended (R)
for ASIL A and ASIL B, helping guide the application of
these methods based on the required safety integrity level.

V. EVALUATION AND RESULTS FOR TRAINED ML MODEL
In this section, the systematic approach described in sec-
tion III is applied to the second ML product life cycle phase,
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TABLE 1. Mapping of desired properties and methods for ML data model.

TABLE 2. Test methods for the life cycle phase prepare data with ASIL mapping.

namely train ML model. Similar to ISO 26262, the objectives
and inputs of the respective life cycle phase are defined. This
is followed by a definition of a set of desired properties for the
train ML model life cycle phase, and then a selection of test
methods for this phase. The mapping of desired properties
and test methods for the trained ML model is subsequently
outlined. Following the rigor assignment, a mapping of the
ASIL level (A or B) and test methods for this life cycle
phase is described. Thus, the presented approach provides
a comprehensive framework for evaluating and ensuring the
safety of trained ML models in automotive systems. This
framework includes:

• Objectives: Clearly defined goals to ensure the trained
model meets operational and safety requirements.

• Inputs: Necessary data and metadata, system require-
ments, and architectural specifications.

• Desired Properties: Identification of key safety proper-
ties such as functional correctness, accuracy, robustness,
explainability, and uncertainty handling.

• Test Methods: Selection of appropriate methods to
verify the trained model.

• Mapping of Properties to Methods: Aligning desired
properties with specific test methods to ensure a
comprehensive evaluation.

• Rigor Assignment: Assigning rigor levels (R1 and R2)
to test methods based on their effectiveness in achieving
desired properties.

• ASIL Mapping: Recommendations for test methods
based on ASIL (A or B) to guide their application in
safety-critical contexts.

The purpose of the life cycle phase train ML model is to
enable the development of data-driven, safety-critical, and
quality-managed products by providing a use-case-specific
ML model that has learned the required functionality and is
suitable to be deployed to the target platform.

A. OBJECTIVES
• Ensure the learning progress of the required function-
ality (specified in the software requirements) from data
(ML data model).

• Verify that the learned functionality/trained model
fulfills the allocated software requirements according to
the required ASIL.

• Ensure that the defined safety measures resulting from
safety-oriented analyses are properly implemented.

B. INPUTS
• ML data model (in accordance with the prepare data life
cycle phase).
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• Software requirements (including ML specifics).
• Software unit design specification.

C. DESIRED PROPERTIES FOR THE LIFE CYCLE PHASE
TRAIN ML MODEL
The following discusses the safety desired properties for
the identified second life cycle phase, namely train ML
model, are discussed. Each property is introduced with a
description and a simple example. The examples, based on
a TSR classifier use case, provide representative scenarios
demonstrating how these properties apply in practice.

• Functional Correctness: The aim here is to ensure that
the trained model (e.g. Neural Network (NN)) correctly
implements the desired functionality and produces
accurate predictions. Functional correctness refers to
the ability of the trained NN model to accurately learn
and perform the required functionality specified in
the software requirements. It ensures that the model
behaves as intended and produces correct outputs for
given inputs, meeting the functional expectations of the
system.
Example: For a TSR classifier, functional correctness
would mean that the model accurately identifies and
classifies traffic signs in various images, correctly
recognizing the sign type and any associated actions.

• Accuracy: The objective here is to make sure that the
model produces accurate predictions or classifications
on unseen data, meeting specified performance metrics.
Accuracy in the context of the NN model pertains
to the model’s ability to produce correct and reliable
predictions or classifications for input data. It involves
verifying that the learned functionality or trained model
achieves a high level of accuracy in fulfilling the
allocated software requirements, as well as meeting the
required ASIL level.
Example: For a TSR classifier, accuracy would be
measured by the percentage of traffic signs correctly
classified out of the total number of signs in the test
dataset.

• Robustness: The goal here is to design the model to be
robust against variations in input data and perturbations,
enhancing its resilience in diverse environments. The
robustness of the NN model refers to its ability to
maintain performance and reliability across diverse and
challenging conditions, including variations in input
data, environmental factors, and operational scenarios.
A robust model can generalize well to unseen data and
handle uncertainties or perturbations without significant
degradation in performance.
Example: For a TSR classifier, robustness would
involve testing the model’s ability to correctly recognize
traffic signs under varying lighting conditions, partial
occlusions, and different weather scenarios.

• Explainability: The aim here is to develop models
that are explainable and transparent, enabling one to

understand the reasoning behind predictions and deci-
sions. Explainability refers to the transparency of theNN
model’s decisions and predictions. It involves ensuring
that the model’s internal workings are understandable
and interpretable, enabling to assess its behavior,
identify potential biases or errors, and make informed
decisions based on its outputs [2].
Example: For a TSR classifier, explainability would
involve providing insights into why the model classified
a particular image as a stop sign, potentially highlighting
the features or patterns that influenced the decision.

• Uncertainty Handling: The aim here is to implement
safety mechanisms to handle uncertainty to mitigate the
impact of erroneous predictions, especially in critical
applications. Uncertainty handling involves the model’s
ability to recognize and communicate the confidence
or uncertainty associated with its predictions. This is
important for understanding the reliability of themodel’s
outputs.
Example: For a TSR classifier, uncertainty handling
would involve themodel providing confidence scores for
each classification, indicating how certain it is about the
identification of each traffic sign.

• Generalization: The aim here is to ensure that the
model is able to generalize well to unseen data or
scenarios beyond the training dataset, demonstrating its
ability to capture underlying patterns and make reliable
predictions beyond the training dataset. It involves
assessing the model’s capacity to learn meaningful
representations from the data and apply them effectively
to new inputs, ensuring robust performance in real-world
applications.
Example: For a TSR classifier, generalization can be
evaluated by testing the model on images of traffic
signs not included in the training dataset. This includes
signs that differ in some semantic dimensions, but
within the same classes. The TSR classifier should
accurately recognize and classify these unseen signs,
demonstrating its ability to generalize learned patterns
to new inputs.

D. TEST METHODS FOR THE LIFE CYCLE PHASE TRAIN ML
MODEL
This section outlines the test methods selected for the
train ML model life cycle phase. Each method is carefully
chosen to ensure the model meets functional correctness,
accuracy, robustness, explainability, and uncertainty handling
requirements. The methods are categorized and detailed
to provide a comprehensive framework for evaluating the
trained model.

The selection of these methods corresponds with guide-
lines provided in ISO 29119, Chapters 7, 8, and 9 [6].
Specifically, Chapter 7 covers Testing and QA of ML
systems, including adversarial examples, benchmarks, and
hyperparameter optimization (Sections VIII and 7.9). Chap-
ter 8 emphasizes black-box testing approaches, including
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combinatorial and metamorphic testing (Sections 8.1 and
8.4), while Chapter 9 focuses on white-box testing for neural
networks, particularly neuron coverage (Section 9.2.2).
Additionally, Annex A.8 in [6] provides guidance on machine
learning performance metrics, which is highly relevant for
assessing the overall performance of ML models.

• Requirements-Based Testing: Ensures that the ML
model adheres to the specified software requirements.
– No variants: This involves verifying that the trained

model meets all the requirements specified in the
software design documents. For example, in a TSR
classifier, this would mean ensuring that the model
accurately detects and classifies traffic signs as
specified in the requirements (e.g. classification
accuracy 99 percent, no false positives).

• Initial Performance Evaluation: Assesses the perfor-
mance of the ML model to ensure it meets initial
performance criteria.

Specific tasks could include:
∗ Evaluating the accuracy of the neural network

model in correctly classifying input data samples
into their respective categories or classes.

∗ Measuring the proportion of correctly predicted
outcomes compared to the total number of test
samples.

∗ Evaluating the model’s performance against
ground truth labels or expected outputs to
measure its precision and correctness.

∗ Conducting quantitative analysis of accuracy
metrics such as classification accuracy, pre-
cision, recall, and F1 score to assess model
performance.

∗ Conducting accuracy testing using a sepa-
rate validation and test dataset or through
cross-validation techniques to assess the model’s
generalization ability and performance under
unseen data.

– Without Evaluations onData Subsets:Evaluates the
model’s performance on the entire test dataset to
ensure overall functionality. This involves measur-
ing the accuracy and other metrics of the model’s
predictions to create a performance baseline for
other tests like robustness testing. This method
evaluates the model’s overall performance without
breaking down the test dataset into subsets. For
a TSR classifier, this would involve assessing the
model’s accuracy across the entire test dataset.

– With Evaluations on Data Subsets: Evaluates the
model’s performance on specific subsets of the test
dataset to identify performance variations across
different data segments. This approach allows for a
more detailed analysis of how the model performs
under various conditions and data distributions.
In the TSR use case, this might involve testing
the model separately on subsets of the test dataset

representing different weather conditions or times
of day.

• Robustness Testing: Ensures that the ML model
performs reliably under various conditions. This method
evaluates the model’s performance under different
perturbations and edge cases to assess its robustness,
ensuring it can handle reasonably expected conditions
and environments.
– Simple Input Perturbations: This method tests the

model’s robustness by introducing simple perturba-
tions to the input data like noise or perturbations
within the ODD. For example, in a TSR classifier,
this could involve slightly altering the brightness or
contrast of traffic sign images to test the model’s
robustness.

– Complex Input Perturbations: This method intro-
duces more complex perturbations to test robust-
ness. Test the model’s performance under extreme
conditions, including varied lighting, outliers, and
inputs that significantly deviate from the training
data distribution or include substantial changes in
input parameters. In the TSR example, this might
include adding noise or occluding parts of traffic
sign images to see how the model handles these
challenges.

• Adversarial Testing: Evaluates the model’s robustness
against adversarial attacks.
– Without Physical Attacks: Tests the model’s robust-

ness against digital adversarial inputs. This method
tests the model’s resistance to adversarial attacks
that do not involve physical alterations. Generate
adversarial examples using techniques such as
gradient-based optimization or evolutionary algo-
rithms to find input perturbations that result in
incorrect predictions (e.g., generate perturbations
from legitimate inputs to evaluate the model’s
robustness). Assess the effectiveness of defense
mechanisms or adversarial training techniques in
mitigating the impact of adversarial attacks on
model performance. For a TSR classifier, this could
involve generating adversarial examples digitally to
test the model’s resilience.

– With Physical Attacks: Assesses the model’s
resilience against physical world adversarial sce-
narios. In the TSR example, this might involve
placing stickers or marks on traffic signs to test if
the model can still correctly classify them.

• Neuron Coverage Analysis: There are no variants
envisaged for this method. This method analyzes the
coverage of neurons during the model’s operation.
Assess and increase the coverage of activated neurons
during inference to find model weaknesses. The cover-
age target should be 100% with the constraint to only
use in-ODD data to increase the coverage. If a coverage
of 100% is not achievable with in-ODD data or not
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desired in a specific use case, a justification needs to
be provided. For a TSR classifier, this would involve
examining which neurons are activated by different
traffic sign images to ensure the model uses its network
comprehensively.
In the author’s point of view, dropout and pruning do
not conflict with neuron coverage analysis. Dropout and
pruning aim to optimize the network architecture, while
neuron coverage is a test method to check if the test cases
are sufficient.

• Explainability Testing: Ensures that the decisions
made by the ML model can be understood and
interpreted.
– Simple Techniques:Uses basic explainability meth-

ods to interpret model decisions. Evaluate the inter-
pretability and explainability of the neural network
model’s predictions to facilitate understanding
and trust in its decision-making process. Conduct
thorough manual review or automated analysis of
the data model, datasets, and associated metadata
to understand the data and identify potential issues
or deficiencies. Use interpretability techniques such
as feature attribution methods, saliency maps,
or attention mechanisms to visualize and explain
the model’s internal representations and decision
boundaries. For a TSR classifier, this might involve
using feature importance scores to showwhich parts
of an image influenced the classification.

– Advanced Techniques:Applies sophisticated explain-
ability techniques to provide deeper insights into
model behavior. Employ techniques such as SHAP
values, LIME, and deep learning interpretability
tools to analyze and explain complex model
behaviors. Assess the robustness of the model’s
explanations under different scenarios and input
variations to ensure they remain meaningful and
accurate. In the TSR example, this could include
using techniques like LIME9 or SHAP10 to provide
detailed explanations of the model’s predictions

• Confidence Testing: Assesses the model’s ability to
handle and communicate uncertainties in its predictions.
– Simple Input Data: This method tests the model’s

confidence using simple input data. Evaluate the
model’s confidence level to ensure it aligns with
the model’s performance and predictions. Measure
the calibration of the model’s confidence scores
with respect to prediction accuracy, particularly for
probabilistic classifiers. This can be done using
the Calibration Error metric (defined as Confidence
Score − Observed Accuracy [2]). Evaluate the
model’s ability to provide meaningful confidence
intervals or uncertainty bounds to indicate the reli-
ability of its predictions under different conditions.

9https://towardsdatascience.com/lime-explain-machine-learning-
predictions-af8f18189bfe

10https://shap.readthedocs.io/en/latest/

For a TSR classifier, thismight involve checking the
confidence levels for standard traffic sign images

– Complex Input Data: This method evaluates the
model’s confidence with more complex input data.
Analyze the model’s confidence estimates with
complex and noisy input data to ensure robustness
in varied conditions to assess the model’s ability to
maintain accurate confidence levels when dealing
with inputs that deviate from the training data
distribution. In the TSR use case, this could
involve assessing confidence levels for images with
multiple traffic signs or challenging environmental
conditions

It is important to note that, in our approach, it is
assumed that all test methods applied to the trained
model are also applied to the deployed model, in addition
to the specific test methods designed for the deployed
model itself. This ensures comprehensive validation through
back-to-back testing, confirming that the deployed model
retains the functional properties and safety integrity estab-
lished during the earlier phase. As such, the exist-
ing framework provides sufficient validation, and fur-
ther techniques are not considered necessary at this
stage.

E. MAPPING OF DESIRED PROPERTIES, METHODS FOR
TRAINED ML MODEL AND RIGOR ASSIGNMENT
The desired properties for the trained ML model outlined in
section V-C are mapped to specific test methods mentioned
in section V-D to ensure they are effectively achieved and
presented in Table 3. The methods are evaluated for their
ability to support each desired property, with rigor levels
assigned to indicate their effectiveness. Please note that the
general rationale behind rigor assignment (i.e., R1 or R2) is
outlined in section III-E. In this section, we detail how each
method supports the desired properties.

F. MAPPING OF ASIL LEVEL AND TEST METHODS FOR
TRAINED ML MODEL
The results from themapping of ASIL levels and test methods
for the trained ML model, and the recommendations are
shown in Table 4. The process of assigning ASIL levels
to different test methods for trained ML models is based
on the method’s rigor and its criticality in ensuring safety
standards. This assignment, guided by expert judgment,
carefully evaluates each method’s capacity to meet the
necessary confidence levels for safety. Methods categorized
under ASIL A are recommended as highly rigorous (HR)
for ensuring adequate assurance in less critical functions,
while those deemed moderately rigorous (R) are suitable
for more critical functions that demand heightened confi-
dence. Conversely, methods classified under ASIL B are
rated as highly recommended (HR) if they exhibit high
rigor (R2), whereas those with moderate rigor (R1) are
recommended (R).
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TABLE 3. Mapping of desired properties and methods for trained ML model.

TABLE 4. Test methods for the life cycle phase train ML model with ASIL mapping.

VI. EVALUATION AND RESULTS FOR DEPLOYED ML
MODEL
In this section, the systematic approach described in sec-
tion III is applied to the third ML product life cycle
phase, namely deploy ML model. Similar to ISO 26262, the
objectives and inputs of the respective life cycle phase are
defined. This is followed by a definition of a set of desired
safety properties for the deploy ML model life cycle phase
and a selection of test methods for this phase. The mapping
of desired properties and test methods for the deployed
ML model is subsequently outlined. Following the rigor
assignment, a mapping of the ASIL level (A or B) and test
methods for this life cycle phase is described. Thus, the
presented approach provides a comprehensive framework for
evaluating and ensuring the safety of deployed ML models in
automotive systems. This framework includes:

• Objectives: Clearly defined goals to ensure the
deployed model meets operational and safety require-
ments.

• Inputs: Necessary data and metadata, system require-
ments, and architectural specifications.

• Desired Properties: Identification of key safety proper-
ties such as functional correctness, accuracy, robustness,
explainability, and uncertainty handling.

• Test Methods: Selection of appropriate methods to
verify the deployed model.

• Mapping of Properties to Methods: Aligning desired
properties with specific test methods to ensure a
comprehensive evaluation.

• Rigor Assignment: Assigning rigor levels (R1 and R2)
to test methods based on their effectiveness in achieving
desired properties.

• ASIL Mapping: Recommendations for test methods
based on ASIL A or ASIL B to guide their application
in safety-critical contexts.

The purpose of the life cycle phase deploy ML model is to
transfer the learned ML functionality to the target platform,
enabling the integration of this functionality into the product
and ensuring it can be deployed alongside other software
units.

A. OBJECTIVES
• Ensure compatibility of the model with the target
platform.

• Verify that the deployed model fulfills the allocated
software requirements with the required ASIL.

• Ensure that the defined safety measures resulting from
safety-oriented analyses are properly implemented.

B. INPUTS
• ML data model (in accordance with the prepare data life
cycle phase).
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• Trained model (in accordance with the train ML model
life cycle phase).

• Software requirements (including ML specifics and
target platform specifics).

• Software unit design specification.
• ML unit test specification of the trained ML model.

C. DESIRED PROPERTIES FOR THE LIFE CYCLE PHASE
DEPLOY ML MODEL
In the following, the safety desired properties for the iden-
tified third life cycle phase, namely deploy ML model, are
discussed. Each property is introduced with a description and
a simple example. The examples, based on a TSR classifier
use case, provide representative scenarios demonstrating
how these properties apply in practice.

• Compatibility: The goal here is to ensure that the
deployed model is compatible with the target environ-
ment and retains the learned functionality. Compatibility
refers to the need to ensure that the deployed model
works seamlessly within the target hardware, software,
and operational environment, maintaining the functional
integrity of the trained ML model. This involves
verifying that the deployed model meets all relevant
system and software requirements.
Example: For a TSR classifier, compatibility would
mean that the model, when deployed from a develop-
ment environment to an in-vehicle platform, continues
to accurately recognize and classify traffic signs without
any degradation in performance.

• Portability: The aim here is to ensure that the model
can be efficiently migrated or adapted to different
target platforms. Portability involves the ability to
transfer the trained ML model to various hardware and
software environments without loss of functionality or
performance. This includes considerations of different
hardware configurations, operating systems, and soft-
ware dependencies.
Example: For a TSR classifier, portability would
involve ensuring that the model can be moved from a
high-performance server environment to an embedded
system in a vehicle while maintaining its accuracy and
efficiency. This includes evaluating metrics such as
speed, memory usage, and resource consumption in the
new environment.

D. TEST METHODS FOR THE LIFE CYCLE PHASE DEPLOY
ML MODEL
This section outlines the test methods selected for the deploy
ML model life cycle phase. Each method is carefully chosen
to ensure the model meets compatibility and performance
requirements on the target platform. The methods are cate-
gorized and detailed to provide a comprehensive framework
for evaluating the deployed model. The selection of these
methods corresponds with guidelines provided in ISO 29119,
Chapter 8 [6], which focuses on black-box testing of AI-

based systems, specifically Section 8.2, addressing back-
to-back testing. This technique is critical for ensuring that
the deployed model’s behavior remains consistent with the
original model’s behavior, particularly after deployment on
the target platform. Additionally, the methods align with
ISO/IEC TR 5469 [3], Chapter 9, which covers verification
and validation techniques. Section 9.4 emphasizes the
importance of both virtual and physical testing, ensuring that
the deployed model not only meets functional requirements
but also performs reliably in real-world environments.

• Compatibility Testing: Ensures that the deployed ML
model is compatible with the target platform’s hardware,
software, operating system, and other dependencies.
– Without AI-in-the-loop: Verify that the deployed

model is compatible with the NN model by testing
the desired properties of the NN model on the
deployed model and analyzing the comparison for
deviations. Perform extensive back-to-back tests
with the NN model by applying all applicable test
methods from the NN life cycle phase according to
the ASIL recommendations and analyze the results
for unexpected deviations. Use a simulated envi-
ronment or the target hardware to execute the tests
on the deployed model. Verifying that the deployed
model is compatible with the target platform’s
hardware, software, operating system, and other
dependencies without any compatibility issues
or conflicts. Testing the model’s compatibility
across different relevant versions, configurations,
and environments to ensure seamless integration
and interoperability. Measuring the consistency of
the model’s prediction across different relevant
platforms, e.g., comparing the deployed model’s
predictions with the NN model using back-to-back
testing

– With AI-in-the-loop:Verify that the deployedmodel
is compatible with the NN model by testing the
desired properties of the NNmodel on the deployed
model and analyzing the comparison for deviations.
Perform extensive back-to-back tests with the NN
model by applying all applicable test methods
from the NN life cycle phase according to the
ASIL recommendations and analyze the results for
unexpected deviations. Use an ‘‘AI in the loop’’
setup to perform the tests on the deployed model.
Testing real-time compatibility and integration
with other system components during active ML
operations. Evaluating performance metrics under
actual operating conditions to identify any issues
that may arise during real-world deployment.

• Portability Testing with Hardware-Related Perfor-
mance Evaluation: Assesses the performance of the
deployed ML model to ensure it meets the required
benchmarks on the target hardware.
– With Average Workload: Evaluates the model’s

performance under standard operating conditions.
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TABLE 5. Mapping of desired properties and methods for the deployed ML model.

TABLE 6. Test methods for the life cycle phase deploy ML model with ASIL mapping.

Evaluate the fulfillment of nonfunctional require-
ments like speed, efficiency, resource utilization,
and scalability as part of the system or software
requirements. Perform the evaluation for rele-
vant target platforms. Measuring key performance
indicators such as inference latency, throughput,
memory usage, and CPU/GPU utilization under
average workloads and conditions. Comparing
the performance of the deployed model against
predefined benchmarks and performance targets as
defined in the system requirements to assess its
effectiveness and suitability for deployment.

– With High Workload: Tests the model’s perfor-
mance under heavy load conditions to ensure
robustness and reliability. Evaluate the fulfill-
ment of nonfunctional requirements like speed,
efficiency, resource utilization, and scalability as
part of the system or software requirements and
evaluate the model behavior under high workload.
Measuring the impact of high workload conditions
on key performance indicators such as inference
latency, throughput, memory usage, and CPU/GPU
utilization. Ensuring the model remains stable
and performs efficiently even under maximum
operational stress. Perform the evaluation for all
target platforms.

Thus, the methods provided above ensure that the deployed
ML model is thoroughly evaluated for compatibility and
performance, enabling it can be effectively integrated and
deployed on the target platform.

E. MAPPING OF DESIRED PROPERTIES AND METHODS
FOR THE DEPLOYED ML MODEL AND RIGOR
ASSIGNMENT
The desired properties for the deployedMLmodel outlined in
section VI-C are mapped to specific test methods mentioned
in section VI-D to ensure they are effectively achieved and
presented in Table 5. The methods are evaluated for their
ability to support each desired property, with rigor levels
assigned to indicate their effectiveness. Please note that the

general rationale behind rigor assignment (i.e., R1 or R2) is
outlined in section III-E.

Table 5 and the descriptions above illustrate how each
method supports key properties such as compatibility and
portability. The rigor levels (R1 and R2) indicate themethod’s
effectiveness, with R2 representing a higher level of rigor.

F. MAPPING OF ASIL LEVEL AND TEST METHODS FOR
THE DEPLOYED ML MODEL
The results from themapping of ASIL levels and test methods
for the deployed ML model, and the recommendations, are
shown in Table 6. The process of assigning ASIL levels
to different test methods for deployed ML models is based
on the method’s rigor and criticality in ensuring safety
standards. This assignment, guided by expert judgment,
carefully evaluates each method’s capacity to meet the
necessary confidence levels for safety. Methods categorized
under ASIL A are recommended as highly rigorous (HR)
for ensuring adequate assurance in less critical functions,
while those deemed moderately rigorous (R) are suitable for
more critical functions that demand heightened confidence.
Conversely, methods classified under ASIL B are rated as
highly recommended (HR) if they exhibit high rigor, whereas
those with moderate rigor are recommended (R).

VII. DISCUSSION
This section provides a discussion of the results obtained
from the systematic approach applied to various life cycle
phases of ML models in automotive systems, as detailed in
the previous sections. The phases include prepare data, the
trained MLmodel, and the deployedMLmodel. In this work,
each phase’s objectives, inputs, test methods, and desired
properties were rigorously defined and evaluated to ensure
the safety and reliability of ML models.

A. PREPARE DATA
The evaluation of the ML data model highlighted the
critical importance of ensuring data completeness, consis-
tency, correctness, representativeness, and independence. The
systematic approach can be used to effectively identify and
mitigate data-related issues, providing a robust foundation
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for subsequent phases. By ensuring high-quality data, the
risk of biases and inaccuracies can be significantly reduced,
leading to more reliable and accurate ML models. This
phase’s results impact the entire ML life cycle by establishing
a solid data foundation essential for training effective and safe
models.

B. TRAIN ML MODEL
For the trained ML model, the evaluation framework
emphasized desired safety properties such as functional
correctness, accuracy, robustness, explainability, and uncer-
tainty handling. Employing the systematic approach would
enable the trained models to meet the specified software
requirements and perform reliably across various conditions.
The rigorous testing, including robustness and adversarial
testing, can be used to ensure that the models handle diverse
inputs and perturbations, thus enhancing their reliability in
real-world scenarios.

C. DEPLOY ML MODEL
The deployed ML model’s evaluation concentrates on safety
desired properties such as compatibility and portability
across different hardware platforms and environments. The
testing methods can be used to verify that the deployed
model maintains the learned functionality and performance
when deployed on the target platform. Further, employing
these methods would help us ensure that the deployed
model met the required ASIL levels and could be seam-
lessly integrated into automotive systems. These results
impact the final deployment phase, ensuring that the ML
models can be reliably transferred and operated in their
intended environments without loss of functionality or
performance.

D. CONSIDERATIONS FOR EXTENDING THE APPROACH
TO ASIL C AND D LEVELS
While this paper primarily focuses on enhancing ISO
26262 for ML-specific life cycle phases at ASIL A and B
levels, it is crucial to consider the implications and necessary
adaptations for higher safety integrity levels, such as ASIL C
and D. These levels represent a more stringent requirement
for safety-critical systems, where the consequences of failure
are more severe, potentially leading to significant harm or
fatality. Extending the proposed approach to these levels
requires additional rigor and verification steps to ensure the
robustness and reliability of ML models in more critical
applications. In the following, some of the challenges
foreseen and proposed adaptations in extending the approach
to ASIL C and D, at this juncture, are outlined. Please
note that, at this juncture, given the lack of field data and
real-world experience at ASIL C and D levels, this paper
presents a foundational step for future work. Key aspects such
as redundancy and fail-operational systems, which are crucial
at these higher levels, have yet to be fully evaluated but will
be prioritized in ongoing research.

1) CHALLENGES AT ASIL C AND D LEVELS
The primary challenges in extending the approach to ASIL C
and D include:

• Increased Rigor in Verification and Validation: ASIL C
and D demand higher levels of confidence in the safety
and reliability of the system. This necessitates more
rigorous verification and validation methods, including
exhaustive testing under a wider range of conditions
and scenarios. Techniques such as formal methods, fault
injection testing, and more comprehensive safety case
documentation would be required.

• Enhanced SafetyMeasures: At these higher ASIL levels,
the safety measures must be more robust. This could
include additional layers of redundancy, fail-safes, and
real-time monitoring systems to detect and mitigate
potential failures. The ML models would need to be
designed with these considerations in mind, ensuring
that they can operate safely even in the presence of
unexpected inputs or conditions.

• Stricter Requirements for Data Handling: The data
used for training and testing ML models must meet
stricter quality and traceability requirements at ASIL
C and D. This includes ensuring that data is not only
complete and consistent but also fully traceable, with
documented evidence of its provenance and processing
history. Any biases or anomalies in the data could have
more severe consequences at these levels, so rigorous
data governance practices would be essential.

• Increased Focus on Explainability and Interpretability:
For ASIL C and D applications, it is critical that the
decision-making processes of ML models are not only
accurate but also explainable. This is important for
gaining regulatory approval and for ensuring that the
system’s behavior can be understood and trusted by
human operators, especially in safety-critical scenarios.

2) PROPOSED ADAPTATIONS
To extend the systematic approach to ASIL C and D, the
following adaptations are proposed:

• Formal Verification Techniques: Incorporating formal
verification techniques, such as model checking and
theorem proving, could provide the additional assurance
needed for ASIL C and D. These techniques can
mathematically prove the correctness of certain aspects
of the system, which is particularly valuable at higher
safety integrity levels.

• Integration of Advanced Safety Mechanisms: The
inclusion of advanced safety mechanisms, such as
runtime verification, fault-tolerant architectures, and
real-time anomaly detection, would be necessary tomeet
the stringent requirements of ASIL C and D. These
mechanisms would help ensure that the system can
continue to operate safely even in the presence of faults
or unexpected conditions.
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• Stricter Data Governance and Management: Extending
the approach to higher ASIL levels would require stricter
data governance practices, including more detailed doc-
umentation and traceability of data sources, processing
steps, and validation results. This would help ensure that
the data used to train and testMLmodels is of the highest
possible quality and reliability.

E. IMPLICATIONS
The proposed approach significantly enhances the devel-
opment and deployment of ML models in automotive
systems. Rigorous testing and evaluation at each life cycle
phase improve overall safety and reliability, identifying
and mitigating potential issues early in development. The
approach supports standardization of AI testing practices
within the automotive industry, aligning with ISO 26262,
ensuring compliance, and promoting consistency in safety
assessments. It also provides clear guidelines for AI devel-
opers and safety engineers, fostering a culture of safety and
reliability, building trust among stakeholders, and enhancing
operational safety and efficiency in automotive systems.

F. THREATS TO VALIDITY AND LIMITATIONS
This section discusses potential threats or limitations of the
proposed approach, focusing on areas such as generaliz-
ability, quantitative measurement, flexibility, and practical
implementation.

1) GENERALIZABILITY
The TSR classifier is used solely as an illustrative example
to explain the approach, not as a comprehensive case study.
While helpful for didactical clarity, it does not account for the
range of conditions in real-world applications, which limits
generalizability. Additionally, empirical validation through
structured case studies, as outlined by [36], has not been
conducted. The absence of empirical evaluation presents
a limitation in assessing the practical applicability and
scalability of the approach. Future work should validate
the approach using diverse real-world scenarios and well-
designed case studies to provide stronger evidence for its
effectiveness and generalizability.

2) QUANTITATIVE MEASUREMENT CHALLENGES
A challenge arises from the difficulty in obtaining structured
quantitative metrics to evaluate aspects such as performance,
efficiency, and scalability. While qualitative insights are
valuable, developing concrete metrics for quantitative anal-
ysis will enhance the robustness of the approach in future
applications.

3) FLEXIBILITY AND COVERAGE LIMITATIONS
In this paper, the approach has only been applied to the level
of examples for the TSR. The approach’s flexibility needs to
be validated by e.g., applying the concept to several practical
use cases with different conditions like model size or model

architecture. Furthermore, the approach primarily addresses
testing activities, aligning with the right side of the V-model
in system development processes. It does not encompass
systematic development methods required for the left side
of the V-model for ML models. This includes the absence
of ASIL-suitable methods for requirements engineering,
architectural design, and other preliminary development
phases. Moreover, non-AI-specific data aspects, which are
highly relevant in safety-critical systems, are not covered by
our approach.

4) PRACTICAL IMPLEMENTATION CHALLENGES
Implementing the proposed approach in practical environ-
ments may require significant resources, including compu-
tational power and expertise. This could present challenges,
especially for smaller organizations. Additionally, the need
for continuous updates to align with evolving ML standards
poses long-term sustainability concerns. Future research
should focus on making the approach more resource-efficient
and adaptable to various organizational capacities. Thus,
the limitations identified, including those related to gener-
alizability, quantitative measurement, flexibility, and prac-
tical implementation, highlight areas for further research.
Addressing these issues will enhance the overall applicability
and robustness of the proposed approach across different
domains and use cases.

G. FUTURE DIRECTIONS
Future work should focus on integrating the approach into
the ISO 26262 framework and certification processes, devel-
oping clear certification protocols, and creating automated
tools to streamline testing and evaluation. For instance,
collaboration with the ISO 26262 working committee could
help to integrate these ML-specific life cycle phases and
testing methods into the standard. This collaboration aims to
standardize the approach and promote widespread adoption,
ultimately contributing to safer and more reliable automotive
systems. Additionally, incorporating Continuous Integra-
tion/Continuous Deployment (CI/CD) pipelines will further
streamline the testing and deployment process, ensuring that
updates and new models are seamlessly integrated while
maintaining rigorous safety standards. Last, but not the
least, applying the framework to diverse ML models and
automotive use cases will help validate its effectiveness and
adaptability.

VIII. CONCLUSION
The novel, systematic approach presented in this paper
identifies and addresses the gaps in the widely adopted
standard for automotive functional safety, namely, ISO 26262
[1]. While standards such as ISO PAS 8800 [2] provide an
approach for developing AI systems, it does not provide a
mapping concept for ASIL classification of ML systems,
revealing significant gaps. The approach elaborated in this
paper outlines ML-specific life cycle phases, desired safety
properties, and testing methods, supporting effectiveness
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FIGURE 6. Detailed interfaces of ML life cycle phases introduced in this paper with ISO 26262-Part 6.
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in ensuring the safety and reliability of ML models in
automotive systems. The structured, rigorous framework
provides clear guidelines for testing and evaluation, address-
ing critical aspects and prioritizing testing efforts based on
function criticality. A novel mapping concept for these testing
methods to ASIL A/B level classification is also outlined.
Moreover, this paper ensures that each desired safety property
is covered by at least one test method across all three
phases—data model, trained model, and deployed model.
While additional test methods can be introduced in future
research, our focus was to prioritize comprehensive coverage
of key safety properties. Thus, this comprehensive approach
offers a valuable tool for developers and safety engineers,
facilitating the safe and reliable integration of ML models
into vehicles and enhancing the safety and performance of
automotive systems. We aim to collaborate with the ISO
26262 working committee to incorporate these enhancements
into future iterations of the standard.
APPENDIX A
Fig. 6 provides more detail on how the introduced life cycle
phases are integrated into the traditional V-Model and aligned
with the life cycle phases of ISO 26262 Part 6, as an extension
to Fig. 4 in section III. In order to support the readability of
Fig. 6, not all life cycle phases of ISO 26262 are displayed.
From the two life cycle phases of ISO 26262 that are part of
this figure, only some of the defined outcomes are displayed.
Only those outcomes are displayed, which are considered the
most relevant interfaces to the introduced life cycle phases.
This figure assumes, that the MLmodel is part of the detailed
design and will be tested with other SW Units according
to ISO 26262-6-9. As seen in Fig. 6, the Software (SW)
Detailed Design Specification serves as the branching point,
where it is determined whether the specification contains ML
components or if the traditional SW Unit Design process is
followed. Please note that, while Fig. 6 is conceptual and
focused on readability, we acknowledge that formal system
modeling languages such as SysML ISO/IEC 19514 [37]
or OPM ISO 19450 [38] may provide a more structured
representation of the processes. The choice of a simplified
diagram in this case was made to ensure that the content is
easily understandable for a broad audience in the automotive
safety domain.
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