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ABSTRACT The continuous growth of mobile traffic and limited spectrum resources limits the capacity
and data rate. Heterogeneous Networks (HetNet) is a solution with multiple radio interfaces in smartphones
to realize such demands. Simultaneous data transfer on Long Term Evolution (LTE) and WiFi has gained
attention for data offloading in 5G HetNet. Maintaining the average throughput and minimum delay for
LTE users is still a challenge in data offloading owing to the mobility and load in the network. This study
explores the benefits of Software-Defined Networking (SDN) based multipath for data offloading schemes
for LTE-WiFi integrated networks to maintain the user’s average throughput based on channel quality
classification.We classify future link qualities using deep learningmodels such as Long Short-TermMemory
Networks (LSTM) and Bidirectional Long Short-Term Memory Networks (BLSTM). The received signal
strength indicator (RSSI) and packet data rate (PDR) are parameters used in BLSTM. The results of the
prediction were compared with those of state-of-the-art methods. We obtained a 2.1% better prediction than
the state-of-the-art methods. The predicted results were used to offload the data using LTE and WiFi. The
performance of HetNet was compared with the state-of-the-art method for average throughput, and with the
proposed method, a 6.29% improvement was observed.

INDEX TERMS Software-defined network, HetNet, mininet, floodlight, deep learning, LSTM, BLSTM.

I. INTRODUCTION
A cellular network is used everywhere, supporting various
data-rich services such as multimedia applications, and video
streaming, demanding more data rates. Due to the limited
spectrum, it is difficult for service providers to manage
such QoS and huge traffic demand. Investing in spectrum
acquisition and buying devices is one of the solutions to this
problem. Nevertheless, according to [1], it is expected that
service providers will soon face the challenge of low revenue
growth. Therefore rather than investing in the spectrum, most
service providers are working intelligently to remunerate the
traffic demand. Many techniques have been proposed by
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service providers and User Equipment (UE) manufacturers
to fulfill these requirements.

Coordinated Multi-Point transmission (CoMP) [2] has
been proposed to improve the reception performance of a
UE at the edge of the cell. The surrounding cells cooperate
with a specific UE to improve the performance by reducing
interference. However, coordinating with neighboring enodB
is only sometimes possible. To support CoMP, machine
learning-based schemes such as Long Short-Term Memory
Networks (LSTM) [3], which learns the characteristics of
the network to predict coordinate information that maintains
the average throughput of the UE, have been proposed.
A behavior-aware beam forming technique [4] was proposed
to increase data throughput in cellular networks. MIMO uses
beamforming technology wherein multiple data streams are
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transmitted through multiple antennas under the same carrier.
The coexistence of radar and communication systems, which
operate in overlapping frequency bands involves cooperative
spectrum management. These strategies allow both systems
to share the same resources efficiently without compromising
their performance [5]. Despite these, challenges remain,
particularly in scenarios with high traffic demands, such as
video gaming or ultra-high-definition video streaming (e.g.,
4K/8K). In these cases, the current technologies may not
fully meet the user requirements for seamless and high-
quality service, indicating the need for further research and
innovation in the field.

Data offloading is one of the solutions to overcome the
spectrum shortage problem [6]. Offloading refers to the use
of complementary networks to deliver data initially targeted
to cellular networks [7]. Most modern smartphones are
equipped with Heterogeneous Networks (HetNet) interfaces;
therefore, HetNet is cost-effective for offloading data.

Many HetNet concepts have been explored using Indus-
trial, Scientific, and Medical (ISM) bands with LTE [8] for
capacity enhancement. However, these techniques only use
WiFi to offload data whenever both options are available.
Similarly, it is observed that the average throughput of the
user associated with WiFi reduces with the load in the
network after a certain level [9]. Therefore, offloading partial
data through both LTE and WiFi would be a better solution
for maintaining the average throughput.

Network link quality also plays a vital role in QoS and
decision on data offloading. Using low-quality connections
would result in multiple re-transmissions. It can contribute
to delivery delays and may also be unable to hide the
unreliability of wireless connections, resulting in message
losses. Consequently, the quality of experience (QoE) is
affected, and the user can face some issues. Proactive
optimization of wireless communication systems can be
enabled by prior knowledge of channel quality with high
precision and low overhead. For example, Channel Quality
Prediction (CQP) has been proposed for optimal resource
allocation. The objective is to classify the link quality using
deep learning models with link quality metrics to precisely
determine data offloading.

There are two types of metrics to estimate link quality
in networks: hardware and software-based metrics [10].
One hardware-based metric is the Received Signal Strength
Indicator (RSSI), which estimates the received signal power
in a channel. The RSSI range describes the relationship
between the transmitted power, received power of wireless
signals, and distance between nodes. The register records the
background noise in dBm when there is no transmission. The
second parameter in the hardware-based metric is the Signal
to Noise Ratio (SNR). It is a signal quality/strength measure
or the difference in decibels (dB) between the received signal
and background noise. It is used to compare the desired
signal to the background noise level. The third parameter
is the Link Quality Indicator (LQI). This metric indicates
how well the data packets received by the receiver are. This

statistic is used to determine the routing metric at the network
layer.

The parameters used in software-based metrics are the
Packet Delivery Ratio (PDR), Requested Number of Packets
(RNP), and score-based parameters. The PDR is the ratio of
packets sent by the source to the number of packets received
by the destination. This is also called the Packet Reception
Ratio (PRR). The RNP is a metric that calculates the number
of transmissions/re-transmissions before successful packet
reception. Score-based metrics assign a score or label to a
link’s quality without referring to a physical phenomenon.
Some examples include the Fuzzy Link Quality Estimator,
and Channel State Information (CSI).

The accuracy provided by hardware-based metrics is
insufficient due to two primary issues. First, packets that
are successfully transmitted are evaluated, and second, the
assessment does not include the entire received packet, but
simply its first symbols. RSSI is a hardware-based metric
providing a quick and accurate estimate of whether a link is
good quality or not [9]. However, it is inappropriate for use
as a stand-alone metric for quantifying link quality because
it does not capture the amount of destructive interference
on the links. Due to the challenges associated with MAC
coordination [11], machine learning approaches have been
employed to predict channel quality. It is challenging, if not
impossible, to accurately compute SNR in practice. We focus
on the RSSI as a channel quality indicator and hardware
component. The measurements and calculations involved in
RSSI are less complicated, and the RSSI values are readily
available from the chipsets. Therefore, we consider one
hardware and one software metric for predicting the channel
quality.

The network dataset comprises time-series data. Time-
series data are a collection of observations obtained through
repeated measurements over time. It comprises a multivariate
time series augmented with a network structure. It describes
the evaluation of a set of observations at the network nodes
over time. Machine Learning (ML) and Deep Learning (DL)
help in understanding and predicting link quality. LSTM [12]
is mainly used for the classification and prediction of channel
quality. LSTMs promise to learn the context required to make
predictions in time series forecasting problems; they often
do not require RNNs because a few recent events within
a few small time windows convey all relevant information
about the next event. Bidirectional Long Short-TermMemory
Networks (BLSTM) are used for predictions by using
information from the past and future via forward and
backward sequencing. In this situation, the current infor-
mation depends on past information and is linked to future
data.

The main contributions of this paper are
1) Propose an LSTM and BLSTM-based channel qual-

ity prediction architecture using single and multiple
parameters.

2) Flowlet-basedmultipath data offloading scheme for LTE
and WiFi networks using link quality.
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We implemented channel prediction and data offloading
using a Software-defined Network (SDN), an emerging
technology that separates data from the control plane. The
data plane processes packet forwarding at the switch, and an
SDN controller performs network control with a total view
of the network using the most popular protocol, OpenFlow.
OpenFlow defines the rules for communication between the
controller and the switches. With SDN, the network operator
can apply routing protocols and applications to the network
quickly and flexibly. Utilizing the aforementioned advantages
of SDN technology, we implemented an LTE-WiFi offloading
system. This provides a high efficiency in data control traffic.

The remainder of this paper is organized as follows.
Section II discusses related progress in the proposed research
area. Section III provides details of about the proposed
method. Section IV provides details of the experimental
setup. SectionV provides the experimental results. SectionVI
discusses the results and Section VII concludes the paper.

II. RELATED WORK
We divide the related work into channel quality prediction
and data offloading.

A. CHANNEL QUALITY PREDICTION
Several CQP approaches have been extensively researched in
various network contexts to allow for future channel improve-
ments or prevent adverse conditions from affecting wireless
communication systems. Liu and Cerpa [13] provided one
of the earliest models for the Link Quality Estimator (LQE),
in which they proposed three machine learning algorithms:
naive Bayes, neural networks, and logistic regression, each
of which provides a multi-class output. However, time
information was not incorporated to predict link quality;
therefore, dynamic link quality prediction was impossible.

Sindjoung and Minet [14] proposed the prediction of
link quality using two metrics, RSSI and PDR, using ML
algorithms such as logistic regression, linear support vector
machine (SVM), and Random Forest classifier. One of the
first deep learning approaches was to estimate link quality.
The limitation was that the overall accuracy was low.

One of the most recent link quality classification models
by Boucetta et al. [15] compared the KNN and LSTM-based
models to classify the link quality into five classes using
RSSI and PDR metrics. Diouf et al. [16] proposed channel
prediction using LSTM and RNN-the validity of the proposed
deep learning approach based on the root mean square error
(RMSE). The performances in terms of RMSE with the
same dataset for each of the models used in this study were
compared to those of other models. It is observed that LSTM
provides a low RMSE.

Schuster and Paliwal [17] presented a bidirectional LSTM
(BLSTM) as an extension of the conventional LSTM.
Nsaif et al. [18] used BLSTM for the Link-State Prediction
for Software-Defined DCN Power Optimization. The goal is
to reduce link utilization. However, the link state is predicted
based on bandwidth utilization in the network.

Depending on the type, existing metrics often assure either
stability or accuracy, but seldom both. Previous research
has attempted to classify links and address link asymmetry.
The intermediate connections are highly unreliable. In this
context, we use hardware and software-based indicators, that
is RSSI and PDR, to classify connection quality into good,
intermediate, and bad classes, similar to some of the previous
works [14], [15], but with improved prediction accuracy and
performance. We used deep learning algorithms to achieve
the same.

B. DATA OFFLOADING
The integration of LTE-WiFi can be classified into two
types: network selection and network aggregation. The first
approach can be performed without upgrading the LTE and
WiFi networks. The complexity is the selection of the best
network for data offloading. The second approach uses both
networks to increase the data offloading capacity. Therefore,
more sophisticated changes are required for both the LTE and
WiFi.

Wang et al. [19] proposed an Intelligent Data Uploading
Selection Mechanism for cellular networks. The authors
reported that data offloading reduces cellular usage by 50%
through the experiments. However, this work was performed
without SDN, and the load on WiFi was not considered for
offloading.

Network selection provides interfaces and intelligence to
switch data between the two networks. Lee et al. [20] studied
the economic aspects of data offloading using WiFi. They
used a game-theoretic approach for data offloading. This
scheme waits until the network is congested before the
offloading is initiated.

Saliba et al. [21] explore strategies for leveraging WiFi to
offload traffic from LTE networks within 5G environments,
with the goal of enhancing overall network performance
and user experience. The study emphasizes dimensioning
techniques that account for user density and data demand to
optimize WiFi deployment for efficient traffic management.
However, it is important to note that this work does not
incorporate SDN.

Deng et al. [22] proposed the Delphi method, which is
a data offloading method based on best network selection.
Delphi is a network selection protocol for the transport
layer. This protocol selects the best network to fulfill
user objectives. Anbalgan et al. [23] proposed a novel
data offloading scheme called the SDN Assisted Learning
Approach (SALA) for data offloading. They used multiple
SDN controllers, one at LTE and another at WiFi. Controller-
to-controller communication was proposed in this approach.
However, it uses a single network at a time to offload data.

Ford et al. [24] proposed an MTCP, that uses multiple
TCP flows into the transport layer. This method controls
sub-flows and congestion in the network. Handover in a
mobile scenario for anMTCPwas proposed in [25]. However,
all these proposals depend on the scheduler, which has a local
network view. A global view of the network avoids greedy
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traffic scheduling and reduces the delays. Therefore, MTCP
requires a control plane with a global view. Moreover, these
ideas were built without SDN in their networks.

To optimize resource utilization and distribute process-
ing across CPU cores using SDN, Biersack et al. [26]
demonstrated how traffic management can be combined with
load- and traffic-aware power management to reduce power
consumption without compromising the ability to satisfy
application requirements. It has an edge server connected to
a network card, that maintains a holistic view and runs an
algorithm to adapt to changes in network traffic.

An SDN-based control plane for the MTCP was proposed
in the SD-MTOP [27]. This solves mobility issues between
the two technologies. Adding control at the control plane
helps the SD-MTOP configure the network flow. It uses
a traffic steering method to offload data. The offloading
solution determines the network that is connected to a
given set of users. in this study, a throughput maximization
problem was addressed using multipath. However, MPTCP
cannot adaptively control subflows. The disorder of data
packages caused by differences between paths leads to
poor performance compared with single-path transmission.
It assumes that aWiFi network is always available and 50%of
the data are offloaded throughWiFi. The load onWiFi affects
the performance of the network [28], which is not addressed
in this paper.

Chen et al. [29] proposed a new MPTCP subflow control
algorithm (MSCA) based on a SVM prediction model. The
SDN controller is used to continuously monitor the network
status and predict the impact factor of the network based on
the monitored path parameters. Subsequently, according to
the impact factor, the subflow configurations are dynamically
adjusted by the system for each user to improve the average
throughput.

Most proposed methods for data offloading using LTE
and WiFi use a network selection scheme. This means that
they try to offload the data using WiFi whenever the WiFi
range is available, because of the high data rate available at
WiFi. However, it is observed that the average throughput
of the user associated with WiFi decreases with the load in
the network after a certain level [9]. Therefore, the WiFi
load must be tested before data offloading or offloading
through both the networks. Only a few works such as [27],
use the network aggregation method in which the data are
offloaded using both LTE and WiFi. However, this approach
requires a multipath data transfer. Multipath data transfer
such as Equal Cost Multipath (ECMP) [30], is well studied at
data centers. The distance between different paths is smaller
in the data center; therefore, packet reassembly is not a
problem. However, for use cases such as LTE and WiFi, the
advantage of multipath transmission is nullified owing to
packet reassembly issues at the receiver. There is a need for a
multipath scheme for data offloading using LTE and WiFi to
address packet reassembly delays.

Similarly, due to the mobility of the users, there is a
variation in the channel quality, which affects the user

throughput. To maintain the user throughout, it is necessary
to offload the data through WiFi and LTE whenever the
channel condition is poor. Many studies have been conducted
on the prediction of channel quality. However, channel
quality-based multipath data offloading is yet to be explored.

III. PROPOSED METHOD
The proposed method consisted of two parts. First, machine
learning predicts channel quality for a given application.
Second, based on the predicted channel quality, a network
architecture was provided to offload the data using LTE and
WiFi. Table 1 lists the acronyms and notations used in this
study.

TABLE 1. Acronyms and notations used.

A. CHANNEL QUALITY PREDICTION
We used LSTM and BLSTM to classify and predict the
channel quality. We investigated the parameters affecting
the prediction of channel quality and explored the results
obtained using LSTM and BLSTM.

1) DATA SET
We used the dataset available in the IoT-LAB [14] for the
study. These data were collected from 50 nodes in 48 hours
and linked over 16 channels. The sample dataset is as
given in Table 2. First, we perform data pre-processing,
which includes eliminating redundancy by downsizing and
removing outliers. In addition, the missing values were
filled with the mean values. Next, we calculated the
standard deviation, mean, minimum, and maximum of each
parameters, as shown in Table 3. As shown in Table 3, the
standard deviation (std) and mean do not vary for the last
parameter, Tx_count (the number of packets sent). So, we
drop it.
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TABLE 2. A sample dataset.

TABLE 3. Description of dataset.

TABLE 4. RSSI-based classification threshold.

TABLE 5. PDR-based classification threshold.

TABLE 6. RSSI and PDR-based threshold for classification.

2) DATA CLASSIFICATION
Three classes were defined: good (G), intermediate (I), and
bad (B). We compared the classification based on hardware,
software, and the combined parameters. Hardware classifica-
tion was performed using only the RSSI. Furthermore, PDR
was used for the software. The classification thresholds for
RSSI and PDR are given in Table 4 and 5, respectively,
and were adopted from [14]. We also studied the effect
of the combined components of RSSI and PDR hardware
and software metrics to compare the model’s prediction.
In combination, we have given PDR the first preference here
because it considers all the packets sent, unlike RSSI, which
only considers the received packets, as listed in Table 6.

3) FEATURE ENGINEERING, LEARNING, AND PREDICTION
Because the dataset is a time-series data, we considered
daytime as the index. The date were split the data into 80%
for training and 20% for testing. Table 2 shows that the RSSI
and PDR have different ranges. For our model to accurately
predict without giving preference to one of the variables
with a higher range value, feature scaling [14] is required.
In this study, we used Standard Scaler from scikit-learn
[31], which is a machine learning library in Python to scale
our variables. The Standard Scaler obtains a standardized
distribution with a zero mean. It standardizes features by
removing the feature’s mean value and dividing the result by

FIGURE 1. BLSTM-based RSSI and PDR quality prediction model.

the standard deviation of the feature. Therefore, if we have
a parameter that varies significantly, we scale it in a certain
range, for example, [−1 1]. This was applied to both the
training and test sets. A sample of the scaled training set is
presented in Table 7.

TABLE 7. Cleaned dataset.

After defining the classification parameters and, splitting
the data into training and testing datasets, and scaled/cleaned
datasets, we used bidirectional LSTM. We compared our
results with those obtained using LSTM [15].

The Bidirectional LSTM (BLSTM) model used in this
study has two parallel LSTM layers to produce a forward
and backward loop, as shown in Fig.1. The BLSTMs connect
two hidden layers to the same output layer. The forward layer
output sequence, h⃗, is iteratively calculated using inputs in a
positive sequence from time T −n to time T −1. By contrast,
the backward layer output sequence,

←−
h , is calculated using

the reversed inputs from time T − n to T − 1. The BLSTM
layer generates an output vector, YT , in which each element
is calculated using the following equation:

Yt = σ (h⃗t ,
←−
ht ) (1)

where the σ function was used to combine the two output
sequences. It can be a concatenating function, summation
function, average function, or multiplication function. Simi-
lar to the LSTM layer, the final output of a BLSTM layer can
be represented by a vector, Yt = [Yt−n, . . . ,Yt−1] in which
the last element, Yt−1, is the predicted network quality for the
next iteration when considering network quality prediction.

For both models, we created sequences of T time steps,
as this is a time-series dataset, and we need to predict the
future quality.We considered a T value of 30; we looked back
at 30 previous data values to predict the next value in the time
sequence. Empirically, we observed that setting T = 30 was
ideal for providing good accuracy for our data set. Setting a
small value for T will restrict the LSTM to generalize the next
prediction on a small set of values, while setting larger than
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30 will provide more accuracy but consumes more time in
training the model.

The architecture of the LSTM is defined with three hidden
layers, eight neurons per layer, and an output layer with three
neurons. Because there are three classes that we need to
classify the link quality 13 epochs, as the loss converged after
these many epochs. We also used Batch Normalization [32]
after every LSTM layer to normalize the outputs of previous
layers, reducing the number of epochs, making the learning
more efficient, and avoiding over-fitting.

For bidirectional LSTM, we have two LSTMs in parallel;
that is, two LSTMs are trained on the input sequence
instead of one. Therefore, in this model, instead of the
time-distributed layer receiving 30 timesteps (T = 30) of
eight outputs, which we defined earlier, it will receive
30 timesteps of 16 (8 units + 8 units) outputs. Therefore, the
three hidden layers will have 16 neurons, and the number of
neurons in the output layer remains unchanged. To compile
the model, we used categorical cross-entropy as a loss
function, which is given by

J (w) = −
1
N

N∑
i=1

[
yi log(ŷi)+ (1− yi) log(1− ŷi)

]
(2)

where w is the weight of the neural network, yi is the true
label and ŷi is the predicted label. Using these weights,
we calculated the categorical loss using Equation 2 for
each input feature. We updated the weights for each feature
to minimize the error/loss for the predicted value using
backpropagation and the Adam optimizer [32]. The predicted
result was used to determine data offloading.

B. SDN ENABLED ARCHITECTURE FOR DATA OFFLOAD
We assume that the HetNet environment has a cellular
network and WiFi, and there is mutual agreement between
them or theWiFi network of the cellular network. In addition,
we assume that the UE has multiple interfaces to support Het-
Net communication. We used two SDN controllers, one on
the cellular side, which controls the operation of the cellular
network, and another to control the WiFi operation as shown
in the architecture (see Fig 2). This is because a single SDN
controller has several disadvantages in terms of scalability
and performance. However, the use of multiple controllers
increases the complexity. We must establish communication
between the controllers.We used Opendaylight controllers on
both sides, which is an open-source platform that supports
clustering. To offload the data, we need specific information,
such as the capacity of theWiFi and the cellular network. This
information is obtained using [33]. The controller application
of the LTE will have an authentication and charging module
for identity verification and to maintain the charging account.
We included a Data Offloading (DO) module to track data
rates in WiFi and cellular networks. There is an application
identification module [34] that provides the characteristic
features of the application, such as the IP addresses, QoS
information bit rate, and port number used as per the

traffic flow template (TFT) [35]. Once the authentication is
successful, resources are allocated to the user.

The resource monitoring component continuously mea-
sures the LTE network’s RSSI and PDR and predicts the class
of the network as discussed in Section III-A. The measured
result was used to determine the data offloading given in the
next section.

TRAFFIC OFFLOADING
We aggregated the spectrum by sharing data between the
WiFi and the cellular network. Our approach uses LTE as the
primary option to offload data. If sufficient channel quality is
unavailable or the network is congested for the application,
we use WiFi and LTE for offloading using multipaths. This
means that we offload the maximum amount of data using
LTE and the remaining data using WiFi. It is observed that
the average throughput of the user associated with WiFi
decreases with an increase in the network load after a certain
level [28]. Therefore, it is necessary to consider the load on
theWiFi network before offloading the data to ensure that the
average data remain within a specific level.

WiFi follows a Distributed Coordinated Function (DCF),
which means that when all users have a similar amount
of traffic, they have fair, medium access, that is, a max-
min fairness system. Therefore, we have adequate capacity
sharing for all users within a single WiFi network. Let Li
be the link throughput for the ith WiFi user, and the average
throughput DWiFiavg per user, assuming K simultaneous users
are accessing the network, is given by

DWiFi
avg =

1
K

K∑
i=1

Li. (3)

Let RLTE be the data rate for a given LTE user, which
depends on the bandwidth B of a channel and is given by

RLTE = B ∗ log(SNR+ 1) (4)

where SNR is the signal-to-noise ratio measured over the
entire bandwidth B. In LTE, the capacity of the user depends
on the number of physical resource blocks (PRB), NPRB, and
the channel bandwidth assigned to an individual user. The
transmission rate of a new user is given by

R = RLTE ∗ NPRB (5)

Because the standard is not specified in LTE, and if we
assume that LTE also provides fair access to every user, a user
with worse channel conditions is provided with more PRB.
The average throughputDLTE

avg available to the user is given by

DLTE
avg =

1
K

K∑
i=1

Ri (6)

where Ri denotes the maximum link throughput for ith user.
Therefore, the total time required to transfer the V number of

VOLUME 12, 2024 176559



S. Kamath et al.: SDN-Based Multipath Data Offloading Scheme Using Link Quality Prediction

FIGURE 2. SDN-based heterogeneous network architecture.

data packets at LTE alone is given by

TLTE =
V

DLTE
avg

(7)

Let us assume TWiFi is the time required to transmit data
in WiFi at a given throughput DWiFi

avg and Tc is the threshold
for sending the data to the ith user. Tc is obtained based
on the SLA or by predicting the application behavior using
the application identification module (Fig 2). If Tc > TLTE,
then complete data cannot be transmitted over the LTE. The
amount of data that LTE can transmit, assuming maximum
utilization of LTE, is given by

VLTE = DLTE
avg ∗ (T

′

LTE) (8)

where

T ′LTE = Tc − TLTE (9)

The remaining data needs to be offloaded through theWiFi,
which is given by

VWiFi = V−VLTE (10)

Based on DLTE
avg , TLTE and Tc our architecture decides on

data offloading. If Tc < TLTE, WiFi offloading will not
occur. The data rate depends on the number of PRBs, the

TABLE 8. RSSI and PDR-based threshold for video classification.

bandwidth assigned, and the RSSI. Due to the mobility of the
nodes, the signal strength varies. Hence, RSRP varies, which
is calculated as

RSRP = RSSI − 10log(12 ∗ NPRB) (11)

It is necessary to offload the data through WiFi to maintain
the required data rate for a given application. The controller
collects information about the RSSI and PDR of the cellular
networks at regular intervals. If the value falls into the
threshold class, WiFi offloading is initiated. We updated the
classification parameters given in Table 6 for the video signal
as per [36], and the updated values are listed in Table 8.
Section VI provides a detailed discussion of the threshold
selection.

Algorithm 1 is written to offload the data from LTE under
two cases:
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FIGURE 3. Data offloading message exchange between LTE and WiFi controllers.

i) If TLTE < Tc, then it initiates the data offloading through
both LTE and WiFi.

ii) If TLTE > Tc, then offloading takes place through LTE
only. It measures the RSSI and PDR and predicts the
channel quality. If the predicted channel quality falls
within the bad threshold as per Table 8, then in addition
to LTE, it also initiates the data offloading via WiFi.

1) COMMUNICATION BETWEEN CONTROLLERS
The message exchange between the two controllers is
illustrated in Fig 3. The LTE-SDN controller controls all
components of the LTE and collects information such as
traffic status, PDR, and RSSI. When Algorithm 1 initiates
traffic offloading, the process is initiated by activating WiFi
radio to the UE. The UE identifies the nearest WiFi access
point and forwards this information to the LTE controller.
Upon receiving this information, the LTE controller initiates
a request to the WiFi controller and requests the current
load in the WiFi. Subsequently both controllers exchanged
the credentials of the UE. The LTE controller determines
the amount of data offloading through the WiFi using
Equation 10, as given in Algorithm 1, which requires data
splitting. Traffic splitting for multipaths is presented in
Section III-B3. The LTE controller pushes the group Table for
data offloading, as listed in Table 9. The WiFi controller

selects theWiFi gateway, allocatesWiFi radio to the activated
WiFi interface for the selected UE, and assigns an IP address
to the UEWiFi interface. Once the connection is established,
data offloading occurs through WiFi and the UE. Finally,
upon completion, the WiFi controller releases resources and
acknowledges the LTE controller.

2) FLOW DETECTION
The total file size can also be obtained during the HTTP
handshake using a header called Content-Length from the
HTTP response if the network has access to the L7 protocol.
However, our study was limited up to the L6 protocol.
We polled the flow entries in the edge switch to determine the
sent byte counts. Each polling flow entry is uniquely defined,
and consists of four tuple fields: source IP, destination IP,
source transport port, and destination transport port. Using
this, we calculate the rate at which it arrives by reading the
count for every second at the edge switch and compare it with
Equation (4). If it is above threshold (Tc), we fetch the HetNet
offloading and assign it to V .

3) TRAFFIC SPLITTING
If TLTE > Tc, then data must be offloaded through LTE
and WiFi; for that, we must split the traffic between two
paths at the edge switches. Randomly splitting the traffic
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Algorithm 1 Data Offloading Algorithm
Input: Fetch RSSI, PDR, Bad-class Threshold, V , Tc

1: while end of the data volume do
2: Average WiFi load← DWiFi

avg using (3)
3: Calculate TLTE using (7)
4: Calculate VLTE, VWiFi using equation (10) and (8)
5: if TLTE < Tc then
6: Goto step 11
7: end if
8: Offload the data V using LTE networks.
9: Channel_quality= Read RSSI and PDR and predict the

quality of the channel using BLSTM
10: if Channel_quality = BAD class (Ref Table 8) for a

given application then
11: Enable Controller to controller communication
12: Initiate UE to connect to WiFi and offload VWiFi

amount of data and update V
13: Calculate flowlet using Algorithm 2
14: Deploy the bucket action at the edge switch
15: end if
16: end while

leads to a packet reordering problem at the receiver; thus
the expected QoS cannot be achieved. We used flowlet [37]
based routing at the edge switch, which can be measured
using piggybacked packets. A flowlet is characterized by 1,
the minimum inter-flow spacing between the packets. The 1

value is 1 ≥ |t1 − t2|, where t1 and t2 are the delays on
two different paths to reach the destination. Due to the flowlet
concept, consecutive flowlets can be switched independently
without the risk of packet reordering. The value of 1 can
be assigned by taking the difference between the maximum
and minimum path delays. Algorithm 2 was used to split the
traffic in an SDN-based edge switch.

The traffic splitting algorithm applies to the packet that
matches with the application identified by the Application
Identification (AI) module (see Fig 2). First, it calculated the
flowlets based on the 1. It calculates the time gap between
two consecutive packets (new_time to last_time). If the time
gap is greater than 1, Algorithm 2 considers it to be a
new flowlet. Next, if there is a change in the flowlet, the
algorithm calculates the forward path. In our case, we only
have two paths: one through LTE and the other throughWiFi.
We generate a random number between 0 and 1 based on
the data rate and find the flowlet’s frequency (a1 and a2 are
some intermediate variables in Algorithm 2). A packet is
transmitted over the previous link if there is no change in the
flowlet.

For example, the data rate must be split into two parts:
LTE (with 3 Mbps) and WiFi (with 2 Mbps). We calculated
the frequency as a1 (0, 0.4] and a2 (0.4, 1] and generated a
random number between 0 and 1. If the number falls within
the a1 range, the flowlet is transmitted to the selected path

based on the flowlet value. Over time, the packets were
divided into a 3:2 ratio.

Algorithm 2 Traffic Splitting Algorithm
Input: Number of outgoing paths n = 2 and PathIDs

{p1, p2} its capacities for the selected flow{DLTE
avg ,DWiFi

avg }

respectively.
D = DLTE

avg + D
WiFi
avg

last_time← 0
packet_id← hash(packet)
Output: PathId
1: for Every packet enters into the ingress switch do
2: if Packet_id matches then
3: new_time← get_time()
4: if (new_time-last_time )> 1 then
5: flowlet=1
6: end if
7: last_time = new_time
8: calculate the frequency of the flowlet to be sent

a1 =

(
0,
DLTE
avg

D

]
, a2 =

(
DLTE
avg

D
,
DWiFi
avg + D

LTE
avg

D

]

9: if (flowlet==1) then
10: flowlet=0
11: r = random()
12: if r ≤ a1 then
13: new_PathID= p1
14: end if
15: if a1 ≤ r ≤ a2 then
16: new_PathId=p2
17: end if
18: forward packet to the link new_PathId
19: end if
20: end if
21: end for

The flowlet detection module is implemented in OpenFlow
switches and the controller pushes the multipath decision as
a group table [38]. Table 9 presents the bucket actions for
the group table. The bucket action in the table is selected
based on Algorithm 2. The flow table in OpenFlow is defined
as a pipeline of stages. Each stage has a match and a
corresponding action. It is forwarded to the controller if
no instructions are available or if it reaches its destination.
A group table can be used when there is a need for one
of several sets of last minute actions to be applied to a
packet or several copies of the packet to be sent, each with
its last minute actions applied. For example, suppose it is
necessary to perform multiple actions, such as making two
copies of data and sending one to VLAN and another to
the network analyzer. In this case, each packet requires a
different encapsulation. To achieve this, it is necessary to
modify the rules in all flow tables to create copies. Instead,
create an ALL group to represent the destination and all of the
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TABLE 9. Group entry for HetNet at LTE edge switch.

relevant analysis, where each entry has the required actions
to apply to that particular copy, such as adding a VLAN and
setting the relevant VLAN-ID. Now, the flow tables are sent
to this group, and if the analyzer is added or moved, it is
not necessary to modify the flow tables; instead, modify the
group.

IV. EXPERIMENTAL SETUP
We implemented our proposed data offloading method using
a recent version of the Mininet-WiFi extension [27], which
has a virtualized WiFi interface on wireless devices capable
of emulatingWiFi mobile stations. It also models the wireless
physical channel characteristics and host movement. It also
supports mobility models such as customized movement,
random walking, and random waypoints. Our Open vSwitch
(OVS) is installed to emulate SDN edge devices that
communicate with the SDN controller using the OpenFlow
protocol. The parameter configured for remote radio heads
is given the Table 10. The experimental setup is shown in
Fig.4. The SDN controller interacts with the mininet WiFi
controller and collects information about the WiFi network.
A link with capacity of 1 Gbps is used to connect internal
components in WiFi and LTE respectively. Mobile hosts
are equipped with WLAN and LTE interfaces to support
the HetNet. Algorithm 1 was implemented using python
in the data offloading module and BLSTM in the controller.
The controller continuously monitors the network status and
computes data offloading using Algorithm 1.

For the simulation, we used one WiFi and one LTE base
station. Ten nodes, N1 to N10 are deployed. Randomly, they
connect to the LTE or WiFi networks. Node N2 has dual
interfaces, which means that it can connect to both WiFi and
LTE.We assume that UE (N2) is active, and only one 10MHz
bandwidth is available under ideal radio conditions. PRB
(NPRB) comprises 100 blocks, of which more than 80% of
the resource blocks are available for nodeN2. The other nodes
have only one interface: either LTE or WiFi. We consider the
application 1080p video, which requires 5 Mbps assuming an
RTT of 50ms at an RSRP of −90dBm [39]. To test the effect
of the load on theWiFi, nodesN5 toN9 communicate through
WiFi.
Iperf command was used for the throughput tests, which

measures the available bandwidth between two points of the
network.Wemeasured the average throughput of the network
for video by generating an input traffic of 10 Mbps from
the source (host) system to the destination N2 node and the
average output at different time intervals. Node N2 is made
to move away from position N2∗ to N2 as shown in Fig 4,
from 0 to 50 seconds. Between 30 and 40 seconds, it reached

FIGURE 4. Experimental topology.

the WiFi range. Due to a change in the RSSI and PDR, the
BLSTM module predicts and informs the data offloading
module regarding the need for data offloading. The offloading
data module at the LTE controller is then decided as per
Algorithm 1. We evaluated the average throughput for our
approach with SD-MTOP [27] in two cases. First, for a low
load at WiFi and second, for a high load at WiFi.

TABLE 10. Simulation parameters.

V. EXPERIMENTAL RESULTS
The link prediction and data offloading performance results
are given in this section.

A. RESULT FROM PREDICTION MODEL
We plotted the confusion matrix for both LSTM and BLSTM
for single and double variables. To compare our results,
we used one of the state-of-the-art methods given in [14]
using LSTM, and our approach using BLSTM. Fig. 5 depicts
the confusion matrix obtained with the traditional LSTM and
BLSTM models applied to PDR, which is a software metric
after labeling the classes based on Table 5. We obtained
accuracies of 99.25% and 99.5% with LSTM and BLSTM,
respectively. With BLSTM, only 0.15% of ‘true bad’ links
are predicted as ‘intermediate’ compared to the traditional
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LSTM, which is 0.26%. In addition, with LSTM, 0.3% of
‘truly good’ links were predicted as ‘intermediate’; however,
it was 0.0% with BLSTM. Moreover, both models predict a
4.2% error in intermediate class prediction.

Figure. 6 provides the confusion matrix using only the
RSSI. Here, we can notice that 8.2% of the ‘true bad’ links
were predicted as ‘intermediate,’ 0.0% of the proper inter-
mediate links were predicted as bad, and 0.0% of the ‘truly
good’ links were predicted as intermediate using LSTM.
We noticed that the prediction error has slightly decreased
in BLSTM. The 7.9% of ‘true bad’ links were classified
as ‘intermediate.’ Only 0.12% of ‘true intermediate’ links
were classified as ‘good,’ and 0.01% of ‘truly good’ links
were classified as ‘true intermediate.’ So overall accuracy and
performance of the BLSTMmodel for link quality prediction
is better when compared to the traditional LSTM model for
an RSSI component.

B. PREDICTION AND ACCURACY USING BOTH RSSI AND
PDR
We used both RSSI and PDR to predict the link quality of
the network to observe whether the combined effect yielded
a better result than the metrics used individually. Figure 7a
depicts the confusion matrix obtained with the traditional
LSTM using the RSSI and PDR as features after labeling the
links into three classes and classifying them. We obtained
99.73% accuracy. It is also noticeable from the confusion
matrix that only 1.2% of actual wrong links were predicted as
intermediate, which is better than the version using only RSSI
for prediction, where 8.2% of actual bad links were predicted
as intermediate. Additionally, only 1% of the intermediate
links were classified as harmful.

Figure 7b depicts the confusion matrix obtained with
BLSTM using RSSI and PDR as features after labeling the
links into the three classes and classifying them. We obtained
99.94% accuracy. It is also noticeable from the confusion
matrix that only 0.36% of the true bad links were classified
as intermediate, and only 0.28% of the true intermediate links
were classified as bad. Therefore, using the RSSI and PDR for
link quality prediction is better than using only one feature.

C. RESULT FROM DATA OFFLOADING
Intially, we tested the throughput performance of LTE only
with our approach, as illustrated in Fig.8. The results clearly
demonstrate that the multipath technique provides significant
advantages for high data rate application transfers. Figure 9
shows a throughput comparison for a low load. When the
node reaches the WiFi networks, our approach is capable
of offloading the data to maintain an average throughput
of 5 Mbps by offloading the data through WiFi and LTE
together, which can be observed between 35 and 48 seconds.
In contrast, SD-MTOP initiates offloading through WiFi
at 50%. Similarly, the MTCP requires time to learn and
use a single network. However, we could not find a
significant difference in throughput between the MTCP and
our approach at a low load. The only difference we can

FIGURE 5. Comparison of PDR-based confusion matrix.

observe between 40-50 seconds is that SD-MTOP andMTCP
take more time to decide the offloading and a small drop
in average throughput near 40 seconds. Similarly, we can
observe the variation when the output returns to normal
quicker (between 40 and 50 Seconds) in our approach than
MTCP. It is due to the prediction module we have used. For
a better understanding of the throughput, we have plotted the
cumulative distributed function (CDF) as shown in Fig. 10
shows that our approach is better due to the prediction, which
will not allow dropping the throughput below the threshold.

We also evaluated the throughput at a high load using
WiFi. We ensured that WiFi was loaded at more than 50%
of the load by communicating with other nodes using WiFi.
Furthermore, we repeated the same experiment for a low load,
and the results are shown in Fig. 11. Because our approach
considers the load on WiFi, it forwards data accordingly.
However, SD-MTOP splits 50% of the data.
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FIGURE 6. Comparison of RSSI-based confusion matrix.

Moreover, reordering TCP applications reduces the
throughput in SD-MTOP, and our model solves this using
a flowlet multipath. It can only guarantee the average
throughput if WiFi is lightly loaded, and the RSSI is below
the threshold. A throughput difference is observed in the
CDF, shown in Fig. 12. In MTCP, the reordering issue were
not considered. Therefore, our approach shows much better
performance than other state-of-the-art methods.

VI. DISCUSSION
Prediction using BLSTM results is much better than LSTM
for single parameters, as well as for combined parameters.
From Fig. 5 and Fig. 6, it can be seen that overall, BLSTM is
0.05% and 0.19% better for PDR and RSSI, respectively, and
from Fig 7, it is 0.21% for both the parameters in prediction
than LSTM.

Comparing Fig. 5 and Fig. 6, we can conclude that PDR
is a better metric to consider when compared to RSSI for

FIGURE 7. Comparison of confusion matrix for both parameters.

link quality prediction. The number of ‘true bad’ links
classified as ‘intermediate’ is only 0.26% when using only
PDR, and 8.2% when using only RSSI. There can be a
negative impact on the quality of experience (QoE) if more
bad links are classified as intermediate. We can also say
that PDR-based forecasts are more trustworthy than are
RSSI-based forecasts, because PDR evaluates all packets
delivered across the connection, whereas RSSI only examines
successfully received packets. It would be interesting to study
forecasts based on both the PDR and RSSI. By doing so,
we will also be able to address one of the issues raised
by Baccour in [9], who said that ‘‘forecasting link quality
requires finding an ideal trade-off between the estimator’s
stability and its capacity to cope with link quality dynamics.’’

We also estimated the time required to train these models.
The LSTM model took 1286.78 seconds without any GPU
to train using both parameters. We obtained an accuracy of
99.73%, which is better than that obtained using RSSI and
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FIGURE 8. Throughput comparison of LTE only with our approach).

FIGURE 9. Throughput comparison of SD-MTOP, MTCP with the proposed
method at low load (with minimum threshold throughput of 5 Mbps).

FIGURE 10. CDF comparison of SD-MTOP, MTCP with the proposed
method at low load.

PDR individually for classification. On the other hand, the
BLSTM model took 1618.70 Seconds to train without any
GPU, and we obtained an accuracy of 99.94% on the test set,
which is better than the traditional LSTMmodel’s prediction.

FIGURE 11. Throughput comparison of SD-MTOP, MTCP with the proposed
method at high load (with minimum threshold throughput of 5 Mbps).

FIGURE 12. CDF comparison of SD-MTOP, MTCP with the proposed
method at high load.

Figure 13 shows the number of misclassified links with
their channels for the LSTM [14] and BLSTM. A total of
(including I, B, G) 59 out of 21734 links were classified
incorrectly in LSTM, and from Fig. 13b, it is just 14 for
BLSTM. Most of the misclassified links belonged to either
the bad or intermediate classes. Most of the links in our
training set belong to the ‘good’ quality class, and there are
very few ‘bad’ and ‘intermediate’ quality class links for our
model to learn from and classify future data. Accuracy can
be improved by choosing a dataset with an equal number of
links in each class.

The observation shown in Fig.13 can be used as a threshold
for data offloading. If the link is ‘good,’ the chances of
predicting it as ‘bad’ or ‘intermediate’ are almost zero.
Therefore, we can use the ‘bad’ class as the threshold. That is,
if the PDR is between 0.75 and 0.3, and the RSRP is less than
−90 dB, means the network is either 30% or 75% congested,
with an RSSI equal to −87dBm, which is not suitable for
transferring high data rate applications such as video [36].
Even though PDR does not directly affect the user but affects
a provider, a low PDR indicates to the service provider that
the network is congested to make the offloading decision.
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FIGURE 13. Comparison of miss classified labels.

With the proposed approach, the average throughput result
obtained at low load is 1.73% (see Fig 9), and under high
load, it is 6.29% (see Fig 11) better than that of SD-MTOP
for the input of 10 Mbps.

VII. CONCLUSION
The rapid growth of data in mobile networks has lead to a
massive overloading of traffic in cellular networks. Network
congestion and channel quality are the essential components
of data transmission. This paper presents BLSTM-based
channel quality classification and prediction using software
and hardware-based parameters such as PDR and RSSI.
Using the predicted link quality, we provided a method to
offload LTE data for high data rate applications, such as video
using SDN, when channel quality and network congestion
fulfill a user’s QoS requirement. A flowlet-based multipath
algorithm is presented, which considers the quality of the
channel and the congestion in the network and offloads the
data when the data are vast, which cannot be sent only
via LTE because of congestion and poor network quality.
The proposed method performed better than state-of-the-art
methods.
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