
Received 12 October 2024, accepted 18 November 2024, date of publication 22 November 2024, date of current version 4 December 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3504483

Automatic Selection of Machine Learning Models
for Armed People Identification
ALONSO JAVIER AMADO-GARFIAS ,
SANTIAGO ENRIQUE CONANT-PABLOS , (Member, IEEE),
JOSÉ CARLOS ORTIZ-BAYLISS , (Member, IEEE),
AND HUGO TERASHIMA-MARÍN , (Senior Member, IEEE)
School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico

Corresponding author: Santiago Enrique Conant-Pablos (sconant@tec.mx)

ABSTRACT This research aims to improve the automatic identification of armed people in surveillance
videos. We focus on people armed with pistols and revolvers. Furthermore, we use the YOLOv4 to
detect people and weapons in each video frame. We developed a series of algorithms to create a dataset
with the information extracted from the bounding boxes generated by YOLOv4 in real-time. Thereby,
we initially developed six-armed people detectors (APD) based on six machine learning models: Random
Forest Classifier (RFC-APD), Multilayer Perceptron (MLP-APD), Support Vector Machine (SVM-APD),
Logistic Regression (LR-APD), Naive Bayes (NB-APD), and Gradient Boosting Classifier (GBC-APD).
These models use 20 predictors to make their predictions. These predictors are computed from the bounding
box coordinates of the detected people and weapons, their distances, and areas of intersection. Based on our
results, the RFC-APDwas the best-performing detector, with an accuracy of 95.59%, a recall of 94.51%, and
an F1-score of 95.65%. In this work, we propose to create selectors for deciding which APD to use in each
video frame (APD4F) to improve the detection results. Besides, we implemented two types of APD4Fs, one
based on a Random Forest Classifier (RFC-APD4F) and another in a Multilayer Perceptron (MLP-APD4F).
We developed 44 APD4Fs combining subsets of the six APDs. Both APD4F types outperformed most of
the independent use of all six APDs. A multilayer perceptron-based APD4F, which combines an MLP-APD,
a NB-APD, and a LR-APD, presented the best performance, achieving an accuracy of 95.84%, a recall of
99.28% and an F1 score of 96.07%.

INDEX TERMS Machine learning, armed people detection, computer vision, object detection, YOLO.

I. INTRODUCTION
Surveillance cameras are the primary tool against criminals
in public and private facilities. There are two types of
these systems, supervised and unsupervised. The first of
these relies on the efficiency of security personnel and
their capacity to detect crime and subsequent capture of
criminals rapidly. However, people tend to be affected by
fatigue and various distractions. Conversely, unsupervised
video surveillance camera systems are not helpful as a
crime prevention method. They will only serve to recognize
criminals after the offense is executed. Both types of video
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surveillance camera systems exhibit inefficiencies, as they
do not facilitate the early identification of criminals. Thus,
we propose automating the detection of armed people
by applying computer vision techniques, object detection,
and machine learning (ML) models. The proposed system
can identify armed people and extract their facial images.
This provides a timely alarm in the event of an incident
involving weapons, as well as being a tool that facilitates
the identification of those involved. Therefore, it reduces the
reaction time to the occurrence of a crime. It makes it a novel
research, as it does not focus on detecting handguns but armed
people.

Considering the variety of types of weapons used by
criminals, we wanted to focus on the most commonly used
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to commit crimes. Whence, we have based on the report
carried out by the United Nations Office on Drugs and
Crime (UNODC). It developed a report containing informa-
tion from 81 countries about the most firearms seized [1].
It concluded the following: pistols (39%), shotguns (25%),
rifles (18%), revolvers (14%), submachine guns (3%), and
machine guns (1%). According to this report, handguns are
the most common weapon used by criminals, which includes
two types of guns: pistols and revolvers. These represent 53%
of the weapons commonly used in crimes. For this reason,
we have focused on detecting armed people with handguns.

Detecting armed people has some challenges, such as
occlusion, hidden weapons, and people close to each other.
Occlusion occurs when some objects face each other in
the same direction as the camera. In this way, the camera
captures incomplete portions of the objects in the same
region. The concealed firearm situation occurs when a person
hides firearms between his body and clothing. People close
to each other happen when people are very near, and it is
difficult to realize who is carrying the gun. These challenges
encourage the search for new, reliable solutions. Hence, this
research applies the object detection model, YOLO, in its
fourth version (YOLOv4) [2]. We chose the model above
because it presents an optimal balance between frames per
second (FPS), mean average precision, and computational
cost. However, the main objective of this research is to
identify armed people and not just detect firearms. Although
some works have aimed to improve object detection models
to recognize weapons through video surveillance, little
research has aimed at identifying armed people. In our work,
we only use YOLOv4 to extract information related to each
class. That information then feeds the APDs to identify armed
individuals.

We propose six APDs to identify armed people. These
are Random Forest Classifier (RFC-APD), Multilayer Per-
ceptron (MLP-APD), Support Vector Machine (SVM-APD),
Logistic Regression (LR-APD), Naive Bayes (NB-APD),
and Gradient Boosting Classifier (GBC-APD). We trained
such APDs using a dataset with bounding box coordi-
nates, distances, and intersection areas between handguns
and the people in each video frame as main predictors.
However, we hypothesize that all APDs have strengths and
weaknesses. Therefore, we can train ML models to select
the optimal APD based on the specific features presented
in each video frame. Thus, we developed the APD4F.
We implemented with two ML models, MLP-APD4F and
RFC-APD4F. These models identify and apply the best
of the six APDs to each situation in the video. Further-
more, being aware that these algorithms can be refined,
we make the codes, models, videos, and datasets available
at https://github.com/AlonsoJAG/automatic_model_selector

The main contributions of this research are the following:
• Developed a methodology for creating Armed People
Detector selectors (APD4F) that leverage characteristics
of individuals and weapons in each video frame to
enhance armed individual identification.

• Designed and evaluated several APD4F models, notably
an MLP-based APD4F model MLPMLP+NB+LR which
achieved a performance of 95.84% accuracy, 93.07%
precision, 99.28% recall, and an F1-score of 96.07%.
This model offers reliable detection of armed indi-
viduals, providing stable performance metrics despite
varying characteristics within video frames.

• Compiled a dataset of 8,533 records derived from four
videos, three of which were specifically created for this
study, complemented by the dataset from Amado et al.
This combined dataset was used for training and testing
the APD4F models.

The remainder of this document is structured as follows:
Section II describes previous related work on object detection
models for recognizing weapons. Furthermore, it describes
research related to identifying armed people. Section III
presents the methodology for developing this research.
It contains the technical characteristics of the APDs and
the APD4F. Section IV describes and analyzes the results.
Finally, Section VI provides the conclusions and some ideas
for future work.

II. RELATED WORKS
This section reviews the literature related to our research
topic. However, there is little research on detecting armed
people. Current research mainly aims to modify or apply
techniques to improve firearm detection capabilities. Our
work investigates beyond, and we propose detecting weapons
and associating their belonging to the people in the video
frame. We revise the literature from two perspectives: the
detection of handguns and the detection of the people who
carry those guns —the armed people.

A. HANDGUN DETECTION
The object detection model is the most crucial part of the
research carried out for weapons detection. There is a wide
variety of models. However, we can classify them into two
groups according to the number of stages they use. Real-
time weapons detection requires a balance between speed and
precision. Most of the research experiments with YOLO (one
stage) [2], [3], [4], [5], [6], [7], [8], [9], [10] and R-CNN
variants (two stages) [11], [12], [13]. However, as can be
seen in the research detailed below, YOLO has stood out for
providing fast detection times, which is relevant in security
issues, such as armed people detection. Furthermore, despite
its velocity, it pays attention to its precision.

An example of research dedicated to improving the
performance of the object detector for detecting firearms
is that presented by Duran-Vega et al. [14]. They applied
a quasi-recurrent neural network architecture. Furthermore,
they used Temporal YOLOv5. It allows us to extract temporal
information from the video. Additionally, they used data
augmentation combined with mosaic and mixup to get
better performance. Likewise, Hashi et al. [15] worked on
weapon detection, comparing the efficiency of combining
different models and object detectors. The models used
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were VGG19, ResNet50, and Google Net v3, and the
object detectors were Faster R-CNN and YOLO. The
model with the best performance was the one presented
by ResNet50. YOLOv6 achieved the highest mAP and
inference speed compared to the faster R-CNN. Another
research that compares the effectiveness of different object
detection models for weapon detection is the one developed
by Boukabous and Azizi [16]. In addition, their proposal
identifies bladed weapons. They applied YOLOv5, faster
R-CNN, and Single-Shot Multi-box Detector (SSD). The
best object detector model was YOLOv5. It obtained optimal
results in mAP and inference speed for real-time predictions.
Likewise, Bhatti et al. [17] applied two approaches: sliding
window/classification and region proposal/object detection.
The models used were VGG16, Inception-V3, Inception-
ResnetV2, SSDMobileNetV1, Faster RCNN Inception-
ResnetV2 (FRIRv2), YOLOv3, and YOLOv4. The model
with the best performance was YOLOv4. Narejo et al. [18]
presented similar research. They usedYOLOv2 andYOLOv3
for weapon detection. Likewise, they applied their dataset to
train the object detectors.

Additionally, Mehta et al. [19] used YOLOv3 for fire and
handgun detection based on an anomaly detection system.
It presented a validation loss of 0.2864, with a detection
rate of 45 frames per second. It has been benchmarked on
datasets like UGR, FireNet, and IMFDB with accuracies of
82.6%, 86.5%, and 89.3%, respectively. Another application
that seeks to identify weapons in real-time is the proposal
by Jain et al. [20]. They applied two object detection models,
Faster R-CNN and single-shot multi-box detector (SSD).
Furthermore, Veranyurt and Sakar [21] developed research
for concealed handgun identification. They applied it to
thermal images in video surveillance cameras in real-time.
The experiments applied various models for classification
and segmentation. VGG-19 and YOLOv3 achieved the
best performance. Berardini et al. [22] proposed a framework
deployed on an NVIDIA Jetson Nano edge device connected
to an IP camera for handgun and knife detection. They applied
two CNNs, the first to detect people and the second to detect
handguns and knives. Another research dedicated to weapon
detection through the application of YOLOv5s and Faster
R-CNN is the one presented by Ashraf et al. [23]. In their
research, they additionally applied areas of interest. Their
model preprocesses the frames, removing the background
from the image using the Gaussian blur algorithm. YOLOv5s
presented better performance, achieving high recall and
detection speed. Lim et al. [24] presented a research example
of the faster R-CNN improvement in weapons identification.
They introduced an improved multi-level deep feature
pyramid network (M2Det). Their goal was to infer firearms
from a non-canonical perspective. Besides, González et
al. [25] applied Faster R-CNNwith Feature Pyramid Network
and ResNet-50 for weapon detection. The model was trained
with real and synthetic images generated from the research.
They focused on the results of the application of synthetic

data in the object detector. It resulted in a weapons detection
system with near real-time operation (90 ms inference time
with an NVIDIA GeForce GTX-1080Ti card).

Currently, some research uses pose estimation by generat-
ing artificial skeletons on the image of people’s bodies. These
skeletons are applied as tools. The goal is to predict various
situations, such as people’s behavior. Below is detailed
research on how this technique was used to predict armed
people. The research presented by Salido et al. [26] sought
to reduce false negatives in weapons detection by adding
information related to the pose of armed people. Adding
the pose of the people seeks to compensate for the small
size of the firearms. They verified that adding the skeleton
to the armed person images and then processing it by the
object detector improved the detection. This test was executed
with Faster R-CNN, YOLOv3, and Retinanet. YOLOv3
presented the best performance. Using their dataset (1220
images), he achieved with YOLOv3 an improvement in
average accuracy from 88.49% (without posing) to 90.09%
(with posing). Meanwhile, Velasco-Mata et al. [27] proposed
a combined method for verifying the existence of a weapon.
First, the object detector must detect the weapon. Then,
that weapon must match the person’s pose for the presence
of a gun to be considered a true positive. If this match
does not exist, the existence of a weapon is ruled out. The
authors achieved a 17.5% improvement in AP using the
combined method rather than applying YOLOv3 alone. Ruiz-
Santaquiteria et al. [28] aimed to overcome the problem
of the small size of the guns and proposed a combined
architecture that uses the estimation of the body pose
and the characteristics of the appearance of the weapon.
It developed through the application of architectures based
on transformers and CNNs. Another similar research is
presented by Ruiz-Santaquiteria et al. [29], where they
proposed the application of the weapon’s appearance and
the human pose’s information on the same platform. The
architecture recognizes and extracts people’s wrists and
contrasts them with their poses. The results exceeded the AP
initially obtained from 4.23% to 18.9%. Likewise, Chatterjee
and Chatterjee [30] applied the poses, particularly in the
hands, to identify whether a person is holding aweapon. Their
research was carried out using various ML models to classify
the presence of guns. Another research that focuses on the
regions of people’s hands for weapon detection is presented
by Lamas et al. [31]. It estimates people’s body poses. The
innovative aspect of this research is applying the adaptive
pose factor, which allows optimal localization of the hand
regions. This technique relies on the distance between the
body and the camera.

Transformers have emerged as state-of-the-art in deep
learning, initially designed for Natural Language Processing
(NLP) tasks [32]. Recently, their application has expanded
into Computer Vision (CV) [33] throughVision Transformers
(ViT) [34], which excels in tasks such as image classification
and object detection. For instance, Tummala et al. employed
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Vision Transformers for brain tumor classification from
MRI images [35], while Zheng and Jiang applied ViTs
to traffic sign classification [36]. Furthermore, Yang et
al. introduced a modality fusion vision transformer for
collaborative classification using hyperspectral and LiDAR
data [37]. ViTs have also been explored for weapon
detection, as demonstrated by Son et al., who applied Swin
Transformer [38] alongside models such as Mask R-CNN for
detecting various weapon types [39]. Additionally, Singh et
al. compared CNN and ViT models for firearm classification,
where Swin-ViT achieved a precision of 97.55% [40]. Nayak
et al. proposed a weapon detection model using YOLOv8
with a GhostNet backbone, a C3 transformer module, and a
neck (YOLO-GTWDNet), designed for both image and live
video stream processing [41].

B. ARMED PEOPLE DETECTION
Agarwal et al. [42] proposed a model to detect explosives
hidden inside abandoned objects. This research classifies
abandoned objects with the aim of identifying the owner.
It also seeks to know the last known position of the owner.
This application works in real time. They applied short- and
long-term models to determine abandoned objects. Addi-
tionally, for person detection, they used MobileNet-Single
Shot Multi-Box Detector (SSD) and Histogram of Oriented
Gradients (HOG) with Support Vector Machines (SVM).
Besides, it employed region of interest (RoI) and excluded
undesirable regions. They obtained the features of all
the humans in a frame through Scale-invariant feature
transform (SIFT) [43]. Then, they matched these stored
features from consecutive frames in order to track the person
by applying Fast Library for Approximate Nearest Neigh-
bors(FLANN) [44]. Likewise,McPartlin and Lowe’s research
aimed to identify the owners of abandoned luggage [45].
In addition, to determine the location and the path followed by
the person. The research lines were based on image analysis
using three algorithms: object detection, object tracking, and
object classification. In addition, there was threat assessment,
which included two algorithms: observation and analysis and
threat classification. The criteria used to classify abandoned
luggage were that the owner was not within two meters for
at least 30 seconds. Furthermore, Moura et al. [46] proposed
to apply the Intersection Over Union (IoU) concept to two
classes of objects: people and weapons. The person who,
together with the weapon, shows the highest IoU in the same
video frame is the armed person. They applied YOLOv5 as
an object detector.

Amado-Garfias et al. proposed a method for identifying
armed individuals through heuristics and machine learning
models [47]. They extract information related to individuals
andweapons present in each video frame usingYOLO in real-
time, which subsequently informs their models and heuristics
[1]. The Random Forest Classifier demonstrated the best
performance, achieving an accuracy of 85.44%, precision
of 87.07%, recall of 88.68%, and an F1-score of 87.87%.

We utilized the same hyperparameters from this study for
our APDs, enabling us to benchmark the results between
the APDs and the APD4Fs, thereby enhancing the findings
presented in the previous work.

The task of detecting armed persons is more complex than
just identifyingweapons. It is a challenge due to different lim-
itations, such as the proximity between people, occlusions,
and hiddenweapons. Since little research addresses this topic,
it represents a significant opportunity for future work.

III. METHODOLOGY
This section describes the training, hyperparameters, and
operating processes of the APDs and APD4Fs. We have
divided the methodology into three stages. The first stage
explains the operation and characteristics of the APDs. The
second stage shows the procedure and features of the different
APD4Fs. The third stage describes the attributes of the
datasets used to train and test the APDs and the APD4Fs.

Figure 1 illustrates the workflow underlying our approach.
Specifically, it demonstrates how themodels developed in our
previous research by Amado et al., which serve as our Armed
People Detectors (APDs), are applied within this study. These
APD models were imported to support the 44 APD4Fs we
propose here. The APD4Fs were also trained and configured
to interface with YOLO for object detection. The detector,
whether used in real-time or not, provides the essential data
that the APD4Fs utilize for predictive analysis.

A. ARMED PEOPLE DETECTOR
We trained the APDs to identify armed people by analyzing
information from the video frame. They comprise six
ML models: RFC-APD, MLP-APD, SVM-APD, LR-APD,
GBC-APD, and NB-APD. The APDs receive 20 mea-
surements of the bounding boxes generated by YOLO in
real-time. We trained YOLOv4 from scratch to identify
three classes: handguns, people, and faces. The dataset
was randomly divided into 4,000 images for training and
1,000 images for testing, sourced from various internet
platforms. The images include close-ups of firearms, armed
and unarmed individuals, and actual crime scene footage.
Additionally, some gun images were obtained from the
Internet Movie Firearms Database (IMFDB) [48]. YOLOv4
was trained over 6,000 iterations, achieving a mean Average
Precision (mAP) of 89% and a loss of 2.1856. APDs process
the information and identify the armed people involved in
each video frame. Then, the information related to people and
faces is fed into the face ML model to recognize the faces
of the armed people. The training dataset for the APD was
originally created from three videos with a total duration of
three minutes and 28 seconds. The videos show up to four
people with up to five guns. We processed the videos and
then generated 12,652 records. The dataset has 20 predictors,
which include the corners and center coordinates of the
bounding boxes, areas, and distances between the handgun
and the person’s bounding boxes.

The predictors are detailed as follows.
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FIGURE 1. Description of the research methodology workflow.

• N◦Frame. The corresponding video frame number.
(measured in units).

• N◦People. The number of people in the frame. (mea-
sured in units).

• PerXcenter. The central coordinate of the X axis of the
person (measured in pixels).

• PerYcenter. The central coordinate of the Y axis of the
person (measured in pixels).

• PerXmin. Minimum coordinate of the X axis of the
person. (measured in pixels).

• PerYmin. Minimum coordinate of the Y axis of the
person. (measured in pixels).

• PerXmax. Maximum coordinate of the X axis of the
person. (measured in pixels).

• PerYmax. Maximum coordinate of the Y axis of the
person. (measured in pixels).

• N◦ Handguns. Number of handguns (measured in
units).

• HgXcenter. Central coordinate of the X axis of the
handgun. (measured in pixels).

• HgYcenter. Central coordinate of the Y axis of the
handgun. (measured in pixels).

• HgXmin. Minimum coordinate of the X axis of the
handgun. (measured in pixels).

• HgYmin. Minimum coordinate of the Y axis of the
handgun. (measured in pixels).

• HgXmax. Maximum coordinate of the X axis of the
handgun. (measured in pixels).

• HgYmax. Maximum coordinate of the Y axis of the
handgun. (measured in pixels).

• Center intersection. Predictor that expresses whether
the center of the handgun’s bounding box is inside the
person’s bounding box (binary measured).

• Intersection area. Intersection area between the hand-
guns’ bounding boxes and the people bounding box
(measured in pixels2).

• Handgun area. Handgun bounding box area (measured
in pixels2).

• Distance Per-Hg. Distances between the handgun
center bounding boxes and the people center bounding
boxes (measured in pixels).

• Intersection. Position of the handgun relative to the
people (categorical measured).

In addition, APDs are tested with test videos that last
2 minutes and 29 seconds. Processing this video generated
a dataset of 3,269 records.

Moreover, the hyper-parameters considered for the six
APDs are as follows: GBC-APD has 100 estimators and
a learning rate of 0.1. Likewise, it uses a maximum
depth of six, a subsample of 1.0, and Friedman-MSE as
a criterion. We trained MLP-APD through 500 iterations.
It employs four hidden layers of 25 neurons, each one.
Furthermore, it applies the Adam optimizer. For training
LR-APD, we used a maximum number of iterations of
10,000. It has one versus remainder (OvR) scheme, and the
inverse of the regularization strength C equals 100. The
solver is the limited memory Broyden Fletcher Goldfarb
Shanno (LBFGS). RFC-APD has ten estimators and ten folds
for cross-validation. It applies an entropy criterion and uses
a maximum depth of two. SVM-APD uses a regularization
parameter C equal to 1.0 and a linear kernel. NB-APD works
with the Bernoulli Naïve Bayes classification algorithm.

Furthermore, we have applied data standardization to
the MLP-APD and SVM-APD. We used the preprocess-
ing module from scikit-learn, called StandardScaler.
We developed the models in the Jupyter Notebook, where
standardization was applied. However, the models were
imported to receive the data generated by YOLO. These
data also had to be standardized in the case of MLP-APD
and SVM-APD. Consequently, standardization of input data
in real-time was necessary. Therefore, we use the formula
applied by the StandardScaler function, z = (x −

u)/s, where x represents the input data to be standardized,
u represents the mean, and s is the standard deviation of
the training samples. We have experimented with all APDs,
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with training and testing ratios in the following proportions:
75% 25%, 70% 30%, and 80% 20%. The data have been
distributed in different proportions to improve the results of
the models. The best results have been obtained, keeping the
proportions as detailed below: MLP-APD and SVM-APD
employed 75% (9,489 cases) for their training and 25%
(3,163 cases) for testing of the dataset (12,652 cases).
LR-APD, NB-APD, and GBC-APD handled their training
with 70% (8,856 cases) and testing with 30% (3,796 cases).
Finally, RFC-APD used 80% of the dataset for training
(10,121 cases) and 20% for testing (2,531 cases).

B. ARMED PEOPLE DETECTOR FOR EACH FRAME
The main goal of APD4Fs is to identify and apply the best
APDs to a specific situation presented in the video. APD4Fs
are designed by combining two or three APDs. We developed
44 APD4Fs using two ML models, Random Forest and
Multilayer Perceptron. As previously mentioned, the APDs
are RFC-APD, MLP-APD, SVM-APD, LR-APD, NB-APD,
and GBC-APD. We developed the APD4F dataset, taking the
APD with the highest probability of correctly predicting the
armed or unarmed person in each case of the training video
as the ground truth. The prediction probability is determined
through the scikit-learn function, predict_proba.
The ground truth is exchanged between two or three APDs
according to the APD4F configuration. The hyperparameters
of APD4Fs are as follows: RFC-APD4F presents ten
estimators and ten folds for cross-validation. It considers an
entropy criterion and a maximum depth of four. We used
80% of the dataset for training and the remaining 20% for
testing. MLP-APD4F works with four hidden layers, each
with 25 neurons. We trained it through 500 iterations by
applying the Adam solver to adapt the weights. MLP-APD4F
used 75% for training and 25% of the dataset for testing. As in
the APDs, the MLP-APD4F training data was standardized
using the scikit-learn preprocessing module called
StandardScaler. Therefore, it is also necessary to
standardize the real-time data that is delivered to the imported
model by applying the standardization formula detailed in
the previous subsection. The distribution of the records in the
dataset is illustrated in Table 1.

APD4Fs function in two distinct phases. The first phase
entails data extraction, during which an object detector
processes video surveillance signals to identify three classes:
guns, people, and faces. The algorithm then extracts informa-
tion from the bounding boxes and passes this data to the next
phase.

In the second phase, model selection and armed people
detection, the system receives the data from the previous stage
and inputs it into the APD4F. Based on the characteristics of
the various predictors, the system selects the most suitable
APD. Subsequently, the chosen APD processes the same
data to distinguish between armed and unarmed individuals.
Additionally, data pertaining to individuals and faces is
forwarded to a facial recognition model to identify armed
individuals. Both phases are visually represented in Figure 2.

The dataset used to train the APD4F differs for each of
the 44 model combinations. This is because each APD has
different probabilities of predicting each record in the dataset.
This way, when we combine the APDs through APD4F, the
APD with the highest probability becomes the ground truth.
Furthermore, records that could not be resolved by APDs
were removed from the dataset. Thus, the APD4F learns to
choose the APDs that correctly resolve each record in the
dataset. Thereby, the datasets for each APD4F have different
numbers of records. The dataset used to train the APD4Fs
consists of five videos that are five minutes and 18 seconds.
Using the processed videos, we generated 18,555 records.
The APD4Fs were executed on three test videos. These have
a total duration of two minutes and 29 seconds long. These
videos make up our test set with a total of 3,269 records.
A detailed view of the datasets used in this work is presented
in Table 2.

C. CHARACTERISTICS OF THE DATASET APPLIED TO THE
TRAINING AND TESTING OF THE APDS AND APD4FS
The dataset was created by processing each video frame.
We extracted data from each frame related to combining
all people with all weapons. Thus, the records are made
up by grouping the data of the first person with the data
corresponding to the first weapon. Then, the first person with
the second weapon, and so on, taking all the people and
handguns. Consequently, the number of records per frame
depends on the number of people and guns. The ground truth
used for APDs indicates whether the person is armed or
unarmed.Meanwhile, the applied ground truth for theAPD4F
is represented by the APDs with the highest probability of
correctly predicting the record. The datasets used for both
techniques, APD and APD4F, have the same predictors. They
only vary in the ground truth and the amount of data used for
training and testing.

The dataset for this research was created from several
videos for training and testing. The training set consists of
five videos. We developed four of them, and the remaining
one was downloaded from YouTube [49]. The training videos
have a total duration of five minutes and 18 seconds. All
training videos have a resolution of 1920 × 1080 pixels.
These videos were processed and generated 18,555 records.
Among the people in the videos, 7,203 is armed and 11,352
are unarmed. We trained the APD4Fs using all the videos in
the training set. However, the APDs used only three videos.
These three videos represent 12,652 records. The number of
armed people is 4,228, and the number of unarmed people
is 8,424. The test set consists of three videos, one created
by the authors. The other two videos were downloaded from
YouTube [49], [50]. All test videos have 1920 × 1080 pixels
of resolution, except for the one-minute and five-second
video downloaded from YouTube. It has a resolution of
854 × 480 pixels. The test videos have a total duration of
two minutes and 29 seconds. These videos represent 3,269
records. The number of armed people is 1,678, and the
number of unarmed people is 1,591. We tested the APD4Fs
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TABLE 1. Number of records assigned to each APD in the dataset for training the MLP-APD4Fs and RFC-APD4F.

TABLE 2. Characteristics of the datasets considered for this research.

and APDs on all the videos of the test set. Table 2 details the
datasets’ distinctive features.

All experiments were conducted on a Dell XPS 8930-2018
computer equipped with an Nvidia GeForce GTX 1050 TI
GPU and an eighth-generation Intel (R) Core I7-8700
processor operating at 3.2 GHz with six cores.

IV. EXPERIMENTS AND RESULTS
The results section is divided into two subsections. The first
consists of the detection of armed people using APDs. The
second describes the results of the APD4Fs to select the most
optimal APD model. In addition, it explains the results of the
APD4Fs for detecting armed people.

A. RESULTS OF THE ARMED PEOPLE DETECTOR
Table 3 depicts the metrics obtained during the training
of the APDs. The model with the best accuracy is the
GBC-APD with 99.31%. The next model with the best
performance is the MLP-APD, which achieved an accuracy
of 99.02%, followed by LR-APD, SVM-APD, and NB-APD,
with 92.78%, 91.65%, and 90.83%, respectively. Regardless
of the variation in performance in terms of accuracy achieved

by themodels, the general results are within what we consider
a reasonable range. From this, we can conclude that all six
models have learned efficiently from the training dataset.

Table 4 presents the results of applying each of the six
APDs to the test dataset. The RFC-APD exhibits the
best performance, reaching an accuracy of 95.59%. The
methods SVM-APD, LR-APD, NB-APD, and GBC-APD
were also competent with accuracies of 94.52%, 94.31%,
94%, and 93.66%, respectively. Conversely, MLP-APD
showed the worst performance with an accuracy of 78.43%.
All APDs, except for MLP-APD, exceeded 90% accuracy.
Experimenting with the test dataset, which contains videos
with features different from the training dataset, exhibits the
efficiency of the models. This experiment demonstrates the
capacity of the APDs to identify armed people.

Another experiment to evaluate the effectiveness of APDs
and APD4Fs is to measure the accuracy using distance
intervals between people.We obtain it bymeasuring the inter-
section area generated between the people bounding boxes in
square pixels. The intersection areas are extracted from the
videos in the test dataset, ranging from 0 to 91,605.8 pixels2,
and divided into 11 intervals. The number of intervals was
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FIGURE 2. APD4F phases: extracting data from a video frame, and model selection and armed people detection.

TABLE 3. Performance metrics obtained by APDs on the training set.

determined by Sturges’ rule, with the following formula:
k = 1 + 3.322 log(n), where n represents the experiment
sample. We decided to create an interval for the cases
where there were no areas of intersection between the

people. These represent 2,757 cases of the test set. For the
remaining 512 records, we applied Sturges’ rule, resulting
in 9.99 intervals. Therefore, we have 11 intervals, one for
those that do not have an area of intersection between
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TABLE 4. Performance metrics obtained by APDs on the test set.

TABLE 5. Performance of APDs through the areas of intersection between people in the test set. The best result per row has been highlighted using bold.

people and 10 for those that do have areas of intersection.
However, to maintain order in the graphs, we have tried
to keep the same amount of data in each interval where
there are areas of intersection. Likewise, the accuracy of
each interval is graphed in the arithmetic mean calculated
on the upper and lower areas of the intersection of each
interval. Note that a larger intersection area between people
makes it difficult to discriminate between armed and unarmed
people. Table 5 shows the accuracy of the eleven intervals
applied to APDs. In the first interval, when there are no
intersection areas, the APD presenting the best accuracy is
NB-APD, with 98.62%. The following models in terms of
accuracy were LR-APD, reaching an accuracy of 97.89%,
and RFC-APD, with 97.82%. In the interval that presents
the largest intersection area (56,662.43 - 91,605.8 pixels2),
the model with the highest accuracy is RFC-APD with 86%,
followed by SVM-APD, MLP-APD, and NB-APD, all with
50%. As expected, we can notice that some APDs perform
better when there is no intersection area between people,
others with a slight intersection area, and others with a large
intersection area. Then, the intersection area is not a criterion
that determines how well an APD performs.

Table 6 shows the errors made by each of the six
APDs. In addition, it shows us how many of the mistakes
made by one APD have been correctly predicted by the
other five models. The APD with the best performance
in predicting the cases from the videos in the test dataset
is the RFC-APD, which produced 144 wrong predictions.
From these 144 errors, the other methods correctly predicted,
at most, 87 cases: MLP-APD (87 cases), NB-APD (79 cases),
LR-APD (50 cases), GBC-APD (45 cases), and SVM-APD
(31 cases). These results confirm that, although the APDs can
become highly accurate, there are cases where they will fail,
but other models will succeed.

B. RESULTS OF THE ARMED PEOPLE DETECTOR FOR
EACH FRAME
The following experiment consisted of training the APD4Fs
and measuring their performance in choosing the most
appropriate APD. They learned to recognize the charac-
teristics of the predictors in each frame and to identify
the APD with the highest probability of predicting armed
people. We want to highlight that this experiment focuses
on recognizing the ability of the APD4Fs to select the
APD with the highest likelihood of identifying armed people
rather than on the effectiveness of the identification itself.
Table 7 presents the performance achieved by the APD4Fs
for videos within the training dataset. The model with the
best accuracy is MLPRFC+NB, which reached 99.9% of
accuracy. MLPSVM+NB is the next best-performing model
with 99.81% and followed byMLPLR+NB with 99.61%. Even
the worst model, RFCMLP+NB+SVM , showed an acceptable
performance, achieving an accuracy of 86.97%. So, the
evidence suggests that the models have learned the features
of the video frames, allowing them to predict, with acceptable
performance, the best APD for each situation.

This time, we evaluate the models’ performance on
unseen videos (those from the test dataset). So, we applied
each of the APD4Fs to the videos in the test dataset.
This experiment, unlike the one explained in the previous
paragraph, aims to measure the efficiency of the APD4Fs
in detecting armed people. The table shows the results of
the APD4Fs to identify armed people, through the joint
use of several APDs. The results of this experiment are
shown in Table 8. The model with the best performance is
MLPMLP+NB+LR, reaching an accuracy of 95.84%. The next
model with the best performance is the RFCMLP+NB with an
accuracy of 95.8%, followed by MLPMLP+LR with 95.53%.
The interesting thing about this experiment is that it shows
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TABLE 6. Errors and solutions generated by the APDs in the test dataset.

TABLE 7. Performance metrics obtained by APD4Fs on the videos from the training dataset.

that using APD4Fs we obtain a higher accuracy than applying
the APDs independently. Below are the APDs and their
respective accuracies, which integrate the configuration of
the three APD4Fs that presented the best performance: MLP
obtained 78.43%, NB reached 94% and LR achieved 94.31%.
These APDs showed lower accuracy than those delivered
when working together in the APD4Fs.

Furthermore, similar to the experiment performed with
APDs on the distance intervals between people described
in the previous subsection, Table 9 shows the results
of the same experiment but applied to the four best
performance APD4Fs. The best performance in the
first interval is RFCMLP+NB with 98.58%, followed by
MLPMLP+NB+LR with 98.54%,MLPMLP+LR reached 97.96%,
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TABLE 8. Performance metrics obtained by APD4Fs on the videos from the test dataset.

andMLPGBC+LR+MLP obtained 97.71%. However, in the last
interval, all four models received the same accuracy of 50%.
Figure 3 has been included to visualize the behavior of the
metrics provided by APD and APD4F through the variations
of the intersection areas of the test videos. In this experiment,
it is evident that the APD4F, unlike the APDs, does not
present as much variation in the accuracies presented in the
different intervals. Table 10 shows the standard deviation
calculated from the accuracies reached by the APDs and
the best four APD4Fs in intervals of the intersection areas.
The total standard deviation obtained by the APDs is 1.47,
while the APD4Fs obtained 0.17. These results prove that
there is much more variation in the APD’s accuracy than in
those shown by the APD4Fs. It is positive since it allows the
APD4Fs to obtain more uniform results, maintaining optimal
accuracies.

Figure 4 represents the importance of the predictors in
the blue bars and their standard deviation in the black

line of the four RFC-APD4Fs with the best accuracies
obtained in this research. We obtained these results through
the feature_importances_ attribute. Unfortunately,
this attribute does not apply to MLPs. This experiment
was performed to analyze the importance of the pre-
dictors in APD4F when predicting the APD applied in
each frame. This experiment shows that RFCMLP+NB and
RFCMLP+NB+LR prioritize determining the location of people
in the video frame. Therefore, it attaches relevance to
PerYmax, PerXmin, or PerXcenter predictors. Conversely,
RFCSVM+LR and RFCRFC+SVM prioritize weapon-related
predictors, such as intersection_area between people and
weapons and Intersection_No_intersection, indicating that
there is no intersection between the person and the gun.
Despite the top priority of RFCRFC+SVM is PerXmin, its
subsequent four priorities are geared toward weapon position.
It allows us to understand how APD4Fs manage predictors to
select the most suitable APD.
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TABLE 9. Performance of the best APD4Fs through the areas of intersection between people in the test dataset.

TABLE 10. Standard deviation calculated from the intervals of the intersection areas.

V. DISCUSSION
This research highlights the advantages of using APD4Fs
over APDs. This section explains the reasons behind the
APD4F’s superiority, benefits, and applications. We divide
the discussion into two parts. Firstly, we analyze the results
presented by the APDs in the detection of armed people.
Secondly, we describe the outcomes of the APD4Fs for
selecting the most adequate APD model. Furthermore, the
results of the APD4Fs in detecting armed people are detailed.

A. DISCUSSION ON ARMED PEOPLE DETECTOR
APDs performed well on the videos of both the training
and test datasets. Overall, the accuracy range within the
training set was between 99.02% and 90.79%. Meanwhile,
the experiments with the test set yielded results between
95.59% and 93.66%, except for MLP-APD, which obtained
78.43%. When we analyze the errors made by APDs,
we realize that models do not always make mistakes in the
same cases given in the database. Moreover, in most cases,
there is an APD that correctly predicts the error presented by
another model. This effect is illustrated in Table 6. It means
that each model has certain advantages in making predictions
for specific features of the video frame. To demonstrate
this, we experimented to evaluate the accuracy in different
intervals of intersection areas applied to the videos in the

test dataset. These experiments showed us that some APDs
perform better than others in certain intervals despite not
presenting the best accuracy in general.

An example of these advantages is the one presented by
NB-APD, which has the best accuracy in the interval where
there are no intersection areas between people. However,
it had one of the lowest general accuracy of the APDs.
It achieved, for the first interval, an accuracy of 98.62%.
Furthermore, the SVM-APD, GBC-APD, and LR-APD
presented the best accuracy in the second interval, reaching
98.03%. It covers 58.73 to 834.51 pixels2. The best accuracy
in the interval of 874.63 to 1,062.41 pixels2 was 100%,
reached by SVM-APD. NB-APD and LR-APD achieved
the best accuracy from 1,062.99 to 1,282.18 pixels2, with
98.07%. Similarly, GBC-APD reached the best accuracy
within the range of 1,283.4 to 2,802.23 pixels2, with
92.15%. GBC-APD and MLP-APD got 100% accuracy in
the range of 2,907.36 to 7,119.68 pixels2. MLP-APD and
LR-APD acquired an accuracy of 74.51% within the range of
7,188.75 to 22,987.57 pixels2. RFC-APD presented the best
accuracy in the last four consecutive intervals. It delivered
90%, 78.84%, 84.61%, and 86% respectively. These intervals
span from 23,017.87 to 91,605.88 pixels2.
In this experiment, we can see that all six models have

excelled in certain intersection area intervals. These results
support the hypothesis of the present research: the use of
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FIGURE 3. Metrics of the APDs and APD4Fs using intervals of intersection areas
between people on the test dataset.
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FIGURE 4. Importance of the predictors used by the four RFC-APD4Fs that presented the highest accuracies.

APD4Fs, for the analysis of the features of each video frame
and the selection of the best APD improves the accuracy of
the detection of armed people.

B. DISCUSSION ON ARMED PEOPLE DETECTOR FOR
EACH FRAME
The results of the APD4Fs training are fairly high in accuracy.
The accuracy range of the 44 APD4Fs is between 99.9% and
86.97%. The results with the test dataset are also satisfactory,
achieving accuracies that range from 95.84% to 79.84%.
These results show that APD4Fs learned the exiting patterns
within the video frames. APD4Fs are able to identify the APD
that performs the best under particular scenarios based on the
features of the video frames.

We have also shown the ability of the APD4F predic-
tors to prioritize predictors that identify the APD most
likely to predict the cases present in a video frame.
Figure 4 shows the importance of the predictors in the four
RFC-APD4Fs with the best performance. The two models
that contain MLP-APD and NB-APD, RFCMLP+NB+LR

and RFCMLP+NB, prioritize the PerYmax and then the
PerXcenter , which means that, to make their predictions,
they prioritize the people’s positions. On the other hand,
of the two models that contain SVM-APD, RFCRFC+SVM
givesmore importance toPerXmin, and the Intersection_Area
between the people and the weapons. Furthermore, it pri-
oritizes the Intersection_No_intersection, which indicates
that there are no weapons inside the bounding box of
the people. RFCSVM+LR gives greater importance to the
Intersection_Area and the Intersection_No_intersection. It is
similar to the results presented by RFCRFC+SVM . These last
two APD4Fs prioritize the weapon’s position in the video
frame. This experiment demonstrates that the APD4F has
inferred the most relevant characteristics that will allow them
to make the most optimal selection. APD4Fs prioritize the
predictors that increase the probability of correctly selecting
an APD. Therefore, there are similarities in the predictor’s
prioritization with the same APDs.

Another experiment that allows us to demonstrate the
qualities of the APD4Fs is the calculation of its performance
in the intervals of the intersection areas between the people
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in the test videos, whose results are shown in Table 9.
If we compare the best APD against the best APD4F,
we observe that MLPMLP+NB+LR obtained better accuracy
in six of the intervals, while RFC-APD only in five. If we
compare RFC-APDwith the second-best performing APD4F,
RFCMLP+NB and RFC-APD outperformed each other in
five intervals and obtained the same accuracy in one.
We performed the same experiment with the next best-
performing APD4F, resulting in MLPMLP+LR outperforming
RFC-APD in six intervals and equaling it in one of them.
Likewise, MLPGBC+LR+MLP outperformed RFC-APD in six
intervals out of five. APDs have variable performance; some
of them are better at predicting cases where the weapon is
very close to the person and others where it is not so close.
Therefore, using a single APD to predict all cases present in a
video can bias the results. The APD4Fs allow us to generalize
the predictions and not focus on the abilities of a single APD.
Proof of this is in the results obtained when calculating the
standard deviation by intervals and total in the accuracies
presented by the APDs and the four best APD4Fs. The
detailed results are provided in Table 10. The general standard
deviation of the APDs is 1.47, while that of the APD4Fs
is 0.17. Therefore, in addition to the fact that the APD4Fs
present a better accuracy, they also generalize the results
presented by the APDs that integrate them, maintaining a
minimum variation.

Furthermore, the experiment conducted with the APD4Fs
and the APDs with the videos from the test dataset showed
that the APD4Fs outperformed the APDs. However, to go
deeper into the results, it is necessary to analyze various
metrics. In this research, we have focused on using accuracy,
but other metrics also show the superiority of APD4F, such
as recall. This metric applies to what we require for this
automatic recognition system for armed people since it
evaluates the elements correctly identified as positive from
the total number of true positives (TP). Conversely, precision
evaluates the cases correctly identified as positive from a
total number of elements identified as positive. It means from
the number of cases predicted as positive and not from the
total number of positive cases, as recall does. Considering
that in this research, we want to evaluate the cases of armed
people from the total number of cases presented, the most
appropriate is recall. In addition, if we consider the slight
imbalance between the armed and unarmed classes in the test
dataset, it is also suitable to use the F1 score.

The best APD4F model was the MLPMLP+NB+LR, which
achieved an accuracy of 95.84%, a recall of 99.28%, and an
F1 score of 96.07%. The second-best metrics were achieved
by RFCMLP+NB with an accuracy of 95.8%, recall of 98.39%,
and F1 score of 96.01%. The two best APD4Fs outperformed
the best APD, RFC, which achieved an accuracy of 95.59%,
a recall of 94.51%, and an F1 score of 95.65%. The next
APD with the highest accuracy was the SVM-APD, with
94.52%, a recall of 92.32%, and an F1 score of 94.73%.
17 APD4Fs surpassed this. The other APDs performed even
lower, evidencing the superiority of the APD4Fs.

Based on our analysis, we conclude that the APD4Fs
surpass the conventional APDs in three critical areas. First,
the performance metrics—accuracy, precision, recall, and
F1-score—of the APD4Fs significantly exceed those of the
individual APDs, highlighting an enhanced capability in
detecting armed individuals. Second, the APD4Fs demon-
strate an ability to prioritize predictors effectively, optimizing
APD selection based on the characteristics within each
frame. This prioritization is evident in the strong correlation
observed between predictor relevance and the APD selection,
indicating that APD4Fs can adaptively identify and utilize
significant features across video frames. Third, the APD4Fs
maintain a high level of stability in their performance, unlike
the individual APDs, whose accuracy tends to vary with
changes in inter-individual distances within the frames. This
consistent use of the most effective APD by APD4Fs ensures
uniform detection accuracy across a range of scenarios,
making them a superior choice for real-world applications.

VI. CONCLUSION
The APD4Fs demonstrated superior performance compared
to the APDs. It was evident that each APD has specific
advantages for the specific situations presented in the video
frames. Although they have been trained with the same
dataset, due to the characteristics of each APD, some
have learned better how to resolve predictions according to
specific situations. This difference supports the need for a
model selector to identify the best APD for each situation.
This research proved that APD4Fs identify video frame
characteristics that are favorable for selecting each APD.

Likewise, APD4Fs avoid the generation of biases present
in the APD. Some APDs perform optimally with specific
videos and not with others. The APD4Fs generalize the
predictions using the most appropriate APD for each case.
It provides more stable and efficient results. The APD4Fs
presented in this research are combinations of two or three
APDs due to the small size of our dataset. The APD4Fs could
contain more combinations of APDs. However, a bigger
dataset would be necessary to avoid a class imbalance in
the APD’s ground truth. Consequently, the results can be
improved by increasing the number of cases in the training
dataset [51].

APD4Fs and APDs are effective for detecting armed
people. However, they work exclusively when the object
detector has identified a weapon in a video frame. These
results could be improved by migrating to a more modern
object detector, such as YOLOv9 [3]. It would allow us to
identify weapons with greater precision. Therefore, we could
detect armed people with better effectiveness.

The detection of armed people is limited to the identifi-
cation of the weapon by the object detector. However, this
task has some challenges, such as the small size of the guns,
occlusion, and the presence of people with hidden weapons.
Therefore, for future research, we plan to rely on recurrent
neural networks, such as Long Short Term Memory [52] and
Transformers [32], to predict the future position of the guns
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when it is not detected. Thus, we would have the armed
people identified permanently in real-time.
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