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ABSTRACT The growing complexity of cellular networks makes it harder for network operators to control
and manage the system. To ease the management and automatically detect network problems, unsupervised
techniques have been put to use. This work proposes a novel method that combines Multi-Resolution
Analysis (MRA) by wavelet transforms and unsupervised clustering with pre-initialized Gaussian Mixture
Models (GMMs) for the totally unsupervised grouping of cellular network behaviors using different metrics.
The application of multi-resolution decomposition, allows the much simpler clustering technique to take
into account temporal information that would require of a much complex method otherwise, being useful
for cluster analysis by experts as different duration issues are now segregated and automatically labeled. The
generated labels are indicative of the intensity and duration of the anomalies, such labeling can be linguistic
or visual, providing faster issue identification. The proposed approach has been tested with real network
data, successfully separating different behaviors analyzed in the evaluation section of the manuscript.

INDEX TERMS Anomaly detection, cellular networks, clustering, multiresolution analysis (MRA),
Gaussian mixture model (GMM).

I. INTRODUCTION
Cellular networks have constantly evolved in capabilities and
complexity from the beginning of 2G to the current 5G. Due
to this increasing complexity, it is necessary to study and
develop methods that allow the rapid detection and clustering
of anomalies in the network. A common approach to tackle
this is to use Machine Learning (ML) or Artificial Intelli-
gence (AI) techniques, these help simplify the issue detection
and understanding. Some of the main challenges when using
cellular network metrics are: the necessity to analyze the

The associate editor coordinating the review of this manuscript and

approving it for publication was Miguel López-Benítez .

temporal correlation between multiple metrics to discover
complex behaviors, data granularity, or the strong seasonality
caused by the users. These issues make it difficult for cluster-
ing algorithms to detect and classify problems accurately.

However, other problems arise when trying to evaluate
the results of such automatic methods. If the methods are
supervised, a set of network experts need to analyze and label
the data, whereas if the methods are unsupervised, the issues
present in the data need to be well identified to generate an
accurate evaluation of the method.

This poses the requirement of many hours of expert
knowledge just to get to know your data and characterize the
different issues that are contained within.
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For the previous reasons, this manuscript focuses on the
issue of cellular network anomaly detection and classification
in cellular network datasets where several network behaviors
or anomalies are present.

As stated previously, in works like [1], where supervised
methods are applied, the issue of first facing a new or
unknown dataset requires great knowledge, experts need to
analyze it in order to identify the multiple issues or behaviors
contained in it. Supervised methods are not adequate for new
datasets due to label requirement.

Due to this, unsupervised methods are a better option
to work with new datasets, since they do not need the
anomalies to be labeled prior to their execution. However,
the best performing methods, like Variational AutoEncoder
(VAE)-based methods, require a great effort to be put into
hyperparameter tuning, generating big models that also take
a lot of time and resources to tune and train.

Here, and to the best of our knowledge, this is the first
work that applies the combination of wavelet decomposition
plus simple clustering, not requiring expert knowledge nor
hyperparameter tuning, to the issue of cellular networks
anomaly detection and classification. Specifically, using the
wavelet decomposition values and not just as a denoising
agent.

Then, the key contribution of this work lies in going
beyond the denoising capacities of wavelet decomposition [2]
and its applications in anomaly management, which has
been primarily detection-centric [3], thus contributing to
the current literature related to network issue detection and
classification. Besides, the present work proposes a new
dual automatic labeling, both visual and linguistic, providing
insight about the duration and intensity of the detected
anomalies.

The proposed framework is completely automatic and has
been tested over an unlabeled cellular dataset containing
16 different metrics, proving capable of identifying the
most common behaviors found in the data while providing
insight on the duration of such issues thanks to the wavelet
decomposition. This framework is useful in the exploratory
phase of a new dataset, providing experts with insight on
the most common issues found in the network, accelerating
analysis. This way, a network operator that may be trying
to create an anomaly detection and classification tool, fine-
tuned to new data from his network, can use this method to
accelerate the understanding of experts of the issues found in
such new dataset.

The structure of the paper is as follows: Section I
presents a brief introduction to network anomaly detection
and classification, as well as this manuscript contribution
and structure. In Section II different works related to the
current paper are presented and commented. Section III
presents the current framework, in order to later describe
the different steps in detail throughout the following four
sections, Sections IV, V, VI and VII, where the Multi-
Resolution Analysis (MRA), the automatic algorithm for
the selection of the number of groups, the clustering, and

the automatic dynamic method for the linguistic labeling of
samples are described. Finally, Section VIII summarizes the
results obtained closing the manuscript with Section IX with
the achieved conclusions.

II. RELATED WORKS
The field of ML/AI anomaly detection in cellular networks
has been extensively explored during the last years with a
variety of methods. In [4] there is a wide bibliography on
methods that are classified in groups based on the selected
approach, clustering-based methods, statistical methods,
classification-based methods or information theory based
methods.

From this body of knowledge, we will focus on those
works related to network anomaly detection and classification
based on the usage of cellular metrics and Key-Performance
Indicators (KPIs). Inside this set of works, there are mainly
two investigation lines based on the ML/AI classifier
nature, mainly, supervised classification or unsupervised
classification is used.

Among the most recent supervised network anomaly
classification works we find [1], where five different
supervised methods are applied on a dataset with the purpose
of identifying the best performing one. The importance of
exploratory data analysis and prior expert labeling is clearly
stated in the article, since the efficiency of the supervised
algorithms is strongly dependent on such information. One
issue of this work is that it focuses on a single metric, the
Paging Success Rate, greatly simplifying the classification
problem with a binary classification (anomalous or regular
behavior).

Other works like [5], based on a Support Vector Machine
(SVM), or approaches that use different types of Neural
Networks (NNs) like [6] or [7] achieve good results,
but being supervised techniques they still require a huge
amount of labeled data for their training, as well as proper
hyperparameter tuning for the NN-based methods. Some
other supervised techniques, try context information, like
location in [8] or social events in [9], to improve results and
facilitate failure management and prediction.

In [10] an unsupervised method based on transfer learning
and VAEs is used, techniques based on this approach prove
to have very good results, but the amount of hyperparameters
to define are huge compared to the approach presented here,
since the possible implementations of a VAE are immense.
In [11] and [12] a combination of much simpler techniques is
used. In [11], feature extraction and density-based clustering
are combined to determine whether a sample presents normal
or anomalous behavior (though it does not deep into the
classification of such behavior). In [12] a rather similar
scheme is applied, but instead of grouping metric samples
directly it applies Density Based Spatial Clustering of
Applications with Noise (DBSCAN) to the regular daily
shapes of the dataset to differentiate regular daily behavior
from anomalous ones, once again not describing the different
anomalies found.
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FIGURE 1. Diagram of iterated 2-band filter banks representing the
results of multiresolution decomposition by wavelets.

About the usage of MRA, it has been greatly explored in
multiple fields like energy grid failure analysis [13], imaging
techniques [14], image analysis [15]. . .But to the knowledge
of the authors, the only two related works that apply this
decomposition for cellular network anomalies use it as a way
of denoising the metrics [2] or uniquely as a detector of
anomalies [3], without going deeper into the classification of
the multiple anomalies or behaviors present in the data.

Other more recent works, but in this case focused on the
Internet of Things (IoT) scenario, are [16] and [17]. In [16]
the Haar wavelet transform is used to do feature extraction
prior to the application of an AutoEncoder (AE), suffering
from the same issues as [10]. In [17] an even more complex
network is presented, achieving very good results on anomaly
detection, but without any classification of the anomalies or
issue labeling as proposed here.

This manuscript introduces an innovative methodology
based on MRA and wavelet decomposition for unsupervised
classification of anomalies based on the wavelet decom-
position of cellular network metrics. MRA decomposes
a metric into a multitude of sub-metrics, each of which
encapsulates information spanning different temporal and
frequency spectrums, like shown in [3]. The methodology is
characterized by its ability to identify a variety of patterns,
taking into account their temporal aspects and the changes of
metric values over different time frames.

III. GENERAL FRAMEWORK
The algorithm presented in this work, delineated in Fig. 2
and Algorithm 1, introduces an innovative approach to the
detection and clustering of cellular metrics. It integrates sev-
eral computational methods into a single, coherent procedure
designed to improve the first approach to unlabeled data
by experts, providing groups representing different network
issues.

In the first place, a series of steps are applied to ensure
the accuracy of the data by identifying and removing
measurement errors (data imputation via interpolation of
lacking or invalid samples). This steps are followed by a
min-max normalization procedure to standardize the range of

Algorithm 1 Process Steps
Input:Metrics data
Output: Clusterized metrics (with labels)

1) Filter measuring errors
2) Apply Min-Max normalization
3) MRA decomposition of metrics in levels
4) Execution of the ACNSFDP algorithm
5) GMM clustering
6) Result analysis
7) Label generation (optional)

values in the dataset. Then, MRA is used for decomposition,
to further refine the data. After the application of the
MRA, the Automatic Cluster Number Selection by Finding
Density Peaks (ACNSFDP) algorithm is used to initialize the
grouping technique and establish the number of clusters. The
next stage involves the application of a Gaussian Mixture
Model (GMM) to enable effective clustering of the data. The
final stage of the algorithm is the analysis of the results along
with textual label generation, where insights are extracted and
interpreted.

IV. WAVELET DECOMPOSITION FOR MULTIRESOLUTION
ANALYSIS (MRA)
MRA, specifically using wavelet transforms, provides a
powerful method for analyzing a wide range of cellular
behaviors considering their temporality [3]. This approach
enables the decomposition of time series at multiple levels,
capturing effects of different duration at each level. This
differentiates between transient issues (of 1-2 hours) from
more prolonged ones (8-16 hours). Deeper decomposition
levels correspond to longer event duration.

To elucidate this concept, a comparison can be drawn with
the Short-Time Fourier Transform (STFT). The continuous
form of the STFT equation is given as:

X (τ, ω) =

∫
∞

−∞

x(t)w(t − τ )eiωtdt, (1)

where x(t) represents the signal to be transformed, w(t − τ )
is the selected window function shifted in time and eiωt is
the complex exponential term, which represents oscillations
at a particular frequency ω. Although STFT is widely used
for analyzing a signal’s frequency behavior, its time and
frequency resolutions are determined by the width of the
analysis window (w(t− τ )). Enhancing the resolution in time
invariably leads to a decrease in frequency resolution.

Otherwise, MRA involves transforming the signal using
wavelets [18]. The continuous wavelet transform is given by
Eq. (2) as:

X (9) =

∫
∞

−∞

x(t)9∗
a,b(t)dt, (2)

where x(t) represents the signal to be transformed and9∗
a,b(t)

is the chosen wavelet function with scale a and translation
b.The latter determines where the wavelet is applied along
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FIGURE 2. Scheme of the implemented algorithm depicting the different steps: wavelet decomposition, center selection, clustering and automatic
visual and linguistic labelling. The original metric is decomposed using a wavelet (in this case the Haar wavelet) into multiple subcomponents,
these subcomponents are then fed to the clustering steps (centers selection and GMM) and then automatically labeled, visually (heatmap style
table) and linguistically.

the time axis, whereas the scale sets the wavelet frequency,
a larger a corresponds to a broader (low-frequency) wavelet,
and a smaller a corresponds to a narrower (high-frequency)
wavelet.

Contrary to the STFT, the wavelet transform utilizes
wavelets, enabling an analysis where the frequency and time
resolutions can vary. For signals of lower frequency, the time
resolution decreases whereas frequency resolution improves.
In the case of higher-frequency signals, the time resolution
increases whereas frequency resolution decreases.

This approach is ideally suited for analyzing metrics
exhibiting persistent daily and weekly patterns along with
rapid, non-periodic changes (anomalies). While a variety of
wavelets can be chosen for the transform, the D2 or Haar
wavelet is preferred for this application as it allows for more
effective detection of rapid transitions in the signal. After the
MRA, the absolute maximum value for each component is
selected to reduce the dimensions of the features.

Consequently, each transform component encapsulates
the maximum values with different duration and frequency
windows. If a 64-sample signal undergoes five levels of
decomposition, events of the shortest duration and highest
frequency (1-2 samples) are analyzed at level 1, slightly
longer events (2-4 samples) at level 2, and so on, increasing
consecutively in powers of 2 (4-8, 8-16, 16-32 samples and
>32 samples). To illustrate this idea, a comparison can be
done with a bank filter as depicted in Fig. 1, where each step
of the system segregates the signal in two, one containing
the high frequency elements, and the other containing the
lower frequency elements. As indicated, the subsequent
higher frequency portions will correspond with the discrete

components, whereas the low frequency remainder is left as
the approximation component.

V. AUTOMATIC SELECTION OF THE NUMBER OF GROUPS
As indicated in the algorithm steps, once the metric signals
have been decomposed in their different levels, the next
step is to automatically group the samples based on the
MRA results. One of the issues of unsupervised classification
when the number of existing classes is not known a priori,
is the selection of the number of groups to be generated.
In order to make the generated algorithm as automatic as
possible, the ACNSFDP [19] algorithm, based on [20], has
been implemented to solve this issue.

This algorithm selects the optimal number of clusters by
analyzing the local density (ρ) of each sample and their
distances (δ). It is based on the supposition that cluster centers
are highly dense points that are relatively separated from
others. With these two parameters, a Cluster Selectivity score
(CS) is obtained for each sample. Using this score, a graph is
generated where the samples are sorted according to the score
obtained.

To compute the mentioned parameters the distance
between samples must be calculated first. In this case the
euclidean distance is being used. After this step, the local
density (ρ) of each sample is calculated by Eq. (3) as:

ρi =

n−1∑
j=1

e
−dij
dc , (3)

using different distances and a gaussian kernel.
• dij is the distance between point i and point j and i ̸= j.
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• dc is the cut-off distance.
• n is the total of samples.
This equation requires a cutoff distance (dc). Generally,

(dc) can be automatically set as percentile five of all dij values.
As stated in [19], the method results are not really sensitive
to this value setting.

After computing ρ, δ follows by applying Eq. (4) as:

δi =

{
max(dij), if ρi = max(ρ)
min(j:ρj>ρi)(dij), otherwise,

(4)

where, for each sample, the formula of δ changes depending
on whether the sample has the maximum local density (ρ)
or not. On one hand, if the local density (ρ) of a point is
maximum, its δ value equals the maximum distance found
to any other sample. On the other hand, if local density (ρ) is
not maximum, δ is equal to the minimum distance to a sample
with greater local density (ρ).

As the final parameter computation step of the ACNSFDP
algorithm, the CS is computed via Eq. (5) as:

CSi = ρi · δi, (5)

The generated score is sorted from highest to lowest.
To select the optimal number of groups the elbow of the

score must be located. This is achieved by fitting two least
squares lines to the data and sequentially modifying the cutoff
point. The pair of lines that minimize the fitting error are
selected, using the highest scoring samples as centers.

Fig. 3 shows an example where the optimal number of
groups is found after the sequential adjustment at k=5. The
point where the elbow is located is marked with a vertical red
line. On the left are the five samples with the highest scores,
which are the center candidates when applying GMM or any
other clustering method.

FIGURE 3. Cluster selectivity score of the best scoring 300 samples with
the elbow marked in red.

VI. CLUSTERING VIA GAUSSIAN MIXTURE MODEL (GMM)
GMM has been chosen as the clustering algorithm for this
task due to its superior performance compared to k-means,
despite a higher computational overhead [21]. GMM, paired
with its adjustment stage, the Expectation-Maximization

(EM) algorithm, facilitates the automatic selection of the
number of clusters. If an excessively high number of clusters
is selected, some clusters will simply remain vacant, thereby
avoiding the generation of extremely small or singular
clusters.

The principle of GMM revolves around fitting a set of
gaussian distributions to the dataset. Consequently, each
sample is attributed to the gaussian distribution where it
has the maximum likelihood of membership. When dealing
with multidimensional data, the gaussian distributions are
expressed as:

p(x|µ, 6) =
1

(2π )
D
2 |6|

1
2

exp
(

−
1
2
(x − µ)T6−1(x − µ)

)
,

(6)

which models the probability of x occurring, given µ and 6,
where x is a D-dimensional vector representing a point in the
space, µ represents an D-dimensional vector encompassing
the mean values of the gaussian (center of the distribution)
and6 denotes theD×D-dimensional covariance matrix. The
value |6| is the determinant of 6 and D is the number of
dimensions x ∈ RD. When there is a modification of µ, the
gaussians are shifted on the D-dimensional plane, whereas
changing the covariance matrix 6 changes the shape of the
gaussian.

The EM algorithm is an iterative method that determines
the mean and covariance matrix for each gaussian distri-
bution. The initialization of these values is non-trivial and
significantly impacts the results [22]. In our implementation,
the means are set to the parameter values of the samples
selected by ACNSFDP as cluster centers. The covariance
matrix is set diagonal with random initial values to ease
convergence.

The fitting procedure consists of two iterative steps:
• Expectation, where the probability that each gaussian
assigns to each sample is calculated, allowing the
estimation of each sample’s group membership based on
similarity.

• And maximization, where the coefficients for each
gaussian are recalculated using the newly assigned
group memberships.

After several iterations of these two steps, a point of
minimum deviation is reached where the coefficients from
the maximization step no longer differ from their previous
values. The results are then obtained and subject to further
analysis.

VII. AUTOMATIC VISUAL AND LINGUISTIC LABEL
GENERATION
As a last step, to facilitate the understanding of the behavior
or issues found in the different samples, a labeling system is
applied based on the analysis of the different decomposition
level values.

These labels are a composition of 3 elements, an intensity
label, a time label and the name of the metric.

179510 VOLUME 12, 2024



J. Cantizani-Estepa et al.: Transform-Based Multiresolution Decomposition

FIGURE 4. Intensity level of the label based on the number of deviations
from the mean for the fastest level of decomposition of a measured
metric.

The intensity label is created dynamically by the analysis
of the deviation of the maximum value, separately in each
level of degradation, for each 24 hours of measures. Taking
the mean plus the standard deviation of a certain metric
throughout the dataset as baseline, four intensity labels are
possible based on the strength of the deviation. This four
deviation strengths are labeled as follows:

Strength label =


‘‘Very Low’’, if ∈ [µ + σ, µ + 2σ )
‘‘Low’’, if ∈ [µ + 2σ, µ + 3σ )
‘‘High’’, if ∈ [µ + 3σ, µ + 4σ )
‘‘Very High’’, if ≥ µ + 4σ.

(7)

In Fig. 4, the four different ranges are displayed along with
the value of the metric for multiple consecutive 24h samples
in the case of the fastest decomposition level, whereas in
Fig. 5, the same is represented for the slowest decomposition
level. It is clearly seen how the dynamic thresholds are
changed for each decomposition level while being the same
metric. Also, the duration of the changes can be noticed
between the decomposition levels, notice the flat tips in Fig. 5
in contrast to the fast level.

The time label is really simple to assign thanks to the
decomposition of the MRA, since each level is related to a
certain duration, the label is directly selected based on the
level of the detected degradation of the previous intensity
label. In this case, three duration labels have been set: peaks,
for degradation found in the fastest levels comprising one
to four samples in duration; series, for degradation found in
medium levels, comprising four to 16 samples in duration; or

FIGURE 5. Intensity level of the label based on the number of deviations
from the mean for the slowest level of decomposition of a measured
metric.

tendency, for those anomalies found in the slowest level, with
effects between 16 and 32 samples.

TABLE 1. Example of linguistic labels generated for a random sample
describing the intensity, duration period and associated metric of the
degradation.

Colors are also assigned to each label to facilitate a faster
understanding of the labels, as an example, a label assigned
to a random portion with drops caused by an excess in user
connections results in Table 1.

Such as the sample labels, generic labels could be
generated for each cluster taking the most repeated labels in
its portions, serving as a textual representation of the cluster
behavior.

To keep a reduced number of labels, high intensity changes
are prioritized over lower intensity ones, having chosen in this
case to prioritize peaks over long duration issues, although
this priority could be easily modified. This way, a single label
per metric is the maximum number of labels per sample or
group.

VIII. EVALUATION
To test the proposed method, a dataset encompassing
16 unique network metrics collected from 1000 cells over
a 30-day span was utilized. The list of metrics is presented
in Table 2. Annoyingly, the Signal to Interference and Noise
Ratio (SINR) of the Downlink (DL) was not available in the
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dataset which would have been useful to analyze compared
to the packet loss in the DL.

The setup used for the implementation and testing of the
system was a computer with an AMD Ryzen 5 5600X CPU
with 12 threads, a NVIDIA RTX 3070 and 32GB of RAM.
The system has been tested in python 3 making use of
multiple libraries the most relevant ones being pywavelets,
sklearn, scipy, numba, numpy and pandas.

TABLE 2. Set of measured metrics for the evaluation of the system.

To such metrics, normalization and wavelet decomposi-
tion were applied. Undertaken at five levels, it generates
5 parameters per metric, creating a total of 80 classification
parameters differentiated by the value of the decomposed
metric throughout a certain time period. As an example,
the first metric would produce the following 5 parameters
presented in Table 3, hence the numeration of the metrics on
the previous table, Table 2.

TABLE 3. MRA 5 level decomposition of metric n◦1 (Downlink packet
loss rate).

After these steps, the 80 parameters were processed by
the ACNSFDP algorithm, looking for the number of clusters
to generate. After computation, eight key samples were
considered as initial group centers and proposed to the GMM
clustering algorithm.

To facilitate a three-dimensional visualization of the
results, Principal Component Analysis (PCA) [23] was
employed for data dimensionality reduction. This technique
reduces the number of variables whilst preserving the maxi-
mal amount of information. New variables, termed Principal
Components (PCs), are constructed as linear combinations
of the initial variables. These PCs account for the maximum
variance in orthogonal directions. By selecting a subset of the

FIGURE 6. Principal Component Analysis of the resulting clustering.

most significant PCs —three in this instance— information
loss in data representation is minimized.

FIGURE 7. Mean of the parameter values of each group generated in the
clustering process. There are eight different groups represented in
different colors and 80 different parameters (n), result of the 5 level
decomposition of the 16 available metrics.

In Fig. 6, the eight resulting clusters are shown, providing
a visual representation of the groups’ PCA. To understand the
clustering algorithm’s separation, the parameter values were
analyzed by the mean of each cluster values, as depicted in
Fig. 7. Upon examining the various groups, the following
characteristics were noted thanks to the MRA five level
decomposition:

1) Group 1 (in red), is composed by samples where the
Uplink (UL) and DL packet loss rate are high, and,
in the case of the UL packet loss, maintained during
whole days (series and trend degradation). This could
be explained by the higher traffic in the DL.

2) Group 2 (in magenta), is similar to the next group, but
has slightly less users, with more traffic, and higher
SINR in the UL. It does not have packet loss.

3) Group 3 (in blue), comprises samples with a medium
number of connected users but with low traffic, there
are no degradations except for a lower SINR in the UL.
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FIGURE 8. Results of the silhouette score of the generated groups and
closest group indicated via a color map. (The represented points per
cluster is limited to a maximum of 250 samples per cluster).

4) Group 4 (in green), represents samples with the biggest
SINR values in the UL, with a duration of multiple
hours and with high traffic, specially in the DL (similar
to that of the first group). Spectral efficiency of this
samples is the highest of all groups.

5) Group 5 (in yellow), comprises a group characteristic of
this dataset with huge peaks of users of great intensity
and short duration, in this case no issue is caused by
these users since activity is kept low. A summary of the
labels can be seen in Table 4.

6) Group 6 (in cyan) is the other user peak related group,
but in this case the peak of users is maximum, with
great activity (active users), causing clear degradation
in the network, incremented packet loss rate in both UL
and DL, drops, connection failures, huge increment in
latency, etc. . .This group labels are also summed up in
Table 4.

7) Group 7 (in black), contains samples characterizedwith
big fluctuations in SINR of both channels of the UL
(control and shared).

8) Group 8, (in orange) is composed by samples with
intense use of the cell UL, with medium SINR
fluctuations and typical values in the rest of metrics.

Note that in Table 4 only groups 5 and 6 are graphically
represented, the underlying motivation of this representation
is to remark the simplification of analysis achieved thanks to
the resulting labels between an anomalous case (group 5), and
a similar anomalous case with degradation (group 6), either
graphically, as in this table, or linguistically.

In order to analyze the quality of the generated groups,
Fig 8 is included. This figure shows the silhouette score
(based on the squared euclidean distance) for the different
clusters. A color mapping is used for the indication of the
closest gaussian to each one of the samples based on the
Mahalanobis distance as a second quality measurement.

In this quality analysis it can be appreciated that there
are multiple low-scoring samples, this is probably due to the
gradualness of the samples. For example, group six could
be contemplated as an extreme case of group five due to
the extreme number of connections evolving into drops and
connectivity degradation. As such, many of the samples from
group six score low, since they may be really close to group
five. A similar thing happens with group one in relation to
groups two and four, to whom it shares a traffic increase
compared to, for example, group three (in Fig. 6 group one
is actually behind these two groups).

The color also helps understand how the clustering is
working. We can clearly notice the gradualness from groups
three to two and two to four. Overall, the different groups
characterize different situations but the boundaries of many
of the groups are not clear due to the mentioned gradualness
of metrics.

TABLE 4. Heatmap table of visual labels of metrics mean values in group
5 and 6. Metric and duration of the anomalies are presented with the
color indicating anomaly intensity.

Information can be extracted just by analyzing the mean
values of the metrics of the different groups. But a more
complete and faster interpretation can be achieved by looking
at the tables presented here, which are the direct results of the
labeling process explained in Section VII.
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This label can either be visually represented, like in
Table 4, or based on text. As an example, in this case, the
labels of groups 5 and 6 would result in Table 5 and Table 6.

TABLE 5. Resulting linguistic labels containing the intensity, duration
period and corresponding metrics of the detected degradations of
group 5.

TABLE 6. Resulting linguistic labels containing the intensity, duration
period and corresponding metrics of the detected degradations of
group 6.

On the one hand, regarding the presented labels of group 5,
it is easily observed that there is a really high number of user
connections per cell (‘‘Estab attemps’’, ‘‘Estab successes’’
and ‘‘Peak of users’’) in samples contained in this group, and
this vast amount of users is maintained over periods of more
than 4h. Besides, the average number of connected users is
really high during even longer periods of more than 16h, and
the DL activity is slightly higher than usual for a similar time.
The interesting thing of this group is that no issues are found
due to this user anomaly, cells keep handling the large number
of users without drops or connectivity interruptions.

On the other hand, we find group 6, whose labels clearly
indicate the issues caused by a similar, yet greater, user
anomaly. An immense peak of users of short duration (less
than 2h) that causes packet loss in both UL and DL, drops
and latency, all of this due to the increase in users and
their activity in both UL and DL. The previous group also
presented an increase in user amount, but not in user activity,
which occurred over a longer period of time, avoiding service
interruption or degradation.

IX. CONCLUSION
A system capable of identifying and classifying different
daily network behaviors autonomously has been introduced
in this work. The evaluation was carried out on real network
metrics, leading to the classification of cell data into eight
groups based on the behavioral patterns manifested in their
metric values.

The algorithm that has been implemented affords a
preliminary filtering of the samples, enabling a focused

examination of groups demonstrating network degradation
by experts. Moreover, just analyzing the mean values of each
group of the different components generated, the expert can
obtain information on the duration of the degradation based
on the degraded level of the metric in question.

The system also allows the generation of linguistic
labeling, thanks to the decomposition levels, that shows the
duration and intensity of the degradation or changes in the
metrics.

As future work, the implemented algorithm could be joined
or applied with more complex detection and classification
algorithms, for example those that work with labeled data
(VAEs, NNs. . . ), to see if the application of the decomposition
and the generated labels facilitates the task of classifying
different issues.

REFERENCES
[1] M. R. Ahasan, M. S. Haque, and M. G. R. Alam, ‘‘Supervised learning

based mobile network anomaly detection from key performance indicator
(KPI) data,’’ in Proc. IEEE Region 10 Symp. (TENSYMP), Jul. 2022,
pp. 1–6.

[2] S. Wang, M. Lu, S. Kong, J. Ai, J. Wang, and W. E. Wong, ‘‘Anomaly
detection via kpis for software performance failures,’’ SSRN, 2022.
Accessed: Mar. 11, 2023, doi: 10.2139/ssrn.4054805.

[3] S. Fortes, P. Muñoz, I. Serrano, and R. Barco, ‘‘Transform-based
multiresolution decomposition for degradation detection in cellular net-
works,’’ Sensors, vol. 20, no. 19, p. 5645, Oct. 2020. [Online]. Available:
https://www.mdpi.com/1424-8220/20/19/5645

[4] M. Ahmed, A. Naser Mahmood, and J. Hu, ‘‘A survey of
network anomaly detection techniques,’’ J. Netw. Comput.
Appl., vol. 60, pp. 19–31, Jan. 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804515002891

[5] Y. Lu, J. Wang, M. Liu, K. Zhang, G. Gui, T. Ohtsuki, and F. Adachi,
‘‘Semi-supervised machine learning aided anomaly detection method
in cellular networks,’’ IEEE Trans. Veh. Technol., vol. 69, no. 8,
pp. 8459–8467, Aug. 2020.

[6] B. Hussain, Q. Du, and P. Ren, ‘‘Deep learning-based big data-
assisted anomaly detection in cellular networks,’’ in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2018, pp. 1–6, doi: 10.1109/GLO-
COM.2018.8647366.

[7] B. Hussain, Q. Du, A. Imran, and M. A. Imran, ‘‘Artificial intelligence-
powered mobile edge computing-based anomaly detection in cellular
networks,’’ IEEE Trans. Ind. Informat., vol. 16, no. 8, pp. 4986–4996,
Aug. 2020.

[8] S. Fortes, C. Baena, J. Villegas, E. Baena, M. Z. Asghar, and R. Barco,
‘‘Location-awareness for failure management in cellular networks: An
integrated approach,’’ Sensors, vol. 21, no. 4, p. 1501, Feb. 2021. [Online].
Available: https://www.mdpi.com/1424-8220/21/4/1501

[9] J. Villegas, E. Baena, S. Fortes, and R. Barco, ‘‘Social-aware forecasting
for cellular networks metrics,’’ IEEE Commun. Lett., vol. 25, no. 6,
pp. 1931–1934, Jun. 2021.

[10] S. Zhang, Z. Zhong, D. Li, Q. Fan, Y. Sun, M. Zhu, Y. Zhang, D. Pei,
J. Sun, Y. Liu, H. Yang, and Y. Zou, ‘‘Efficient KPI anomaly detection
through transfer learning for large-scale web services,’’ IEEE J. Sel. Areas
Commun., vol. 40, no. 8, pp. 2440–2455, Aug. 2022.

[11] G. Yu, Z. Cai, S. Wang, H. Chen, F. Liu, and A. Liu, ‘‘Unsupervised online
anomaly detection with parameter adaptation for KPI abrupt changes,’’
IEEE Trans. Netw. Service Manage., vol. 17, no. 3, pp. 1294–1308,
Sep. 2020.

[12] N. Zhao, J. Zhu, Y. Wang, M. Ma, W. Zhang, D. Liu, M. Zhang,
and D. Pei, ‘‘Automatic and generic periodicity adaptation for KPI
anomaly detection,’’ IEEE Trans. Netw. Service Manage., vol. 16, no. 3,
pp. 1170–1183, Sep. 2019.

[13] K. Buthelezi, M. Kabeya, and M. Leoaneka, ‘‘A review of fault
location algorithms utilising travelling wave, wavelet transform and multi-
resolution analysis techniques,’’ in Proc. 30th Southern Afr. Univ. Power
Eng. Conf. (SAUPEC), Jan. 2022, pp. 1–6.

179514 VOLUME 12, 2024

http://dx.doi.org/10.2139/ssrn.4054805
http://dx.doi.org/10.1109/GLOCOM.2018.8647366
http://dx.doi.org/10.1109/GLOCOM.2018.8647366


J. Cantizani-Estepa et al.: Transform-Based Multiresolution Decomposition

[14] A. M. Molaei, S. Hu, V. Fusco, and O. Yurduseven, ‘‘A multi-resolution
analysis-based approach to accelerate data acquisition for near-field
MIMO millimeter-wave imaging,’’ in Proc. SPIE, Jun. 2022, pp. 90–101.

[15] A. Gudigar, U. Raghavendra, T. R. San, E. J. Ciaccio, and U. R. Acharya,
‘‘Application of multiresolution analysis for automated detection of brain
abnormality using MR images: A comparative study,’’ Future Gener.
Comput. Syst., vol. 90, pp. 359–367, Jan. 2019.

[16] X. Xie, X. Li, L. Xu, W. Ning, and Y. Huang, ‘‘HaarAE: An unsupervised
anomaly detection model for IoT devices based on Haar wavelet
transform,’’ Int. J. Speech Technol., vol. 53, no. 15, pp. 18125–18137,
Aug. 2023, doi: 10.1007/S10489-023-04449-Z.

[17] S. Xie, L. Li, and Y. Zhu, ‘‘Anomaly detection for multivariate time series
in IoT using discrete wavelet decomposition and dual graph attention
networks,’’ Comput. Secur., vol. 146, Nov. 2024, Art. no. 104075.

[18] D. B. Percival and A. T. Walden., Wavelet Methods for Time Series
Analysis (Cambridge Series in Statistical and Probabilistic Mathematics).
Cambridge, U.K.: Cambridge Univ. Press, 2000.

[19] J. Wang, Y. Zhang, and X. Lan, ‘‘Automatic cluster number selection by
finding density peaks,’’ in Proc. 2nd IEEE Int. Conf. Comput. Commun.
(ICCC), Oct. 2016, pp. 13–18.

[20] A. Rodriguez and A. Laio, ‘‘Clustering by fast search and find of density
peaks,’’ Science, vol. 344, no. 6191, pp. 1492–1496, Jun. 2014. [Online].
Available: https://www.science.org/doi/abs/10.1126/science.1242072

[21] E. Patel and D. S. Kushwaha, ‘‘Clustering cloud workloads: K-
means vs Gaussian mixture model,’’ in Proc. 3rd Int. Conf. Comput.
Netw. Commun. (CoCoNet’19), 2020, pp. 158–167. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050920309820

[22] T. Su and J. G. Dy, ‘‘In search of deterministic methods for initializing K-
means and Gaussian mixture clustering,’’ Intell. Data Anal., vol. 11, no. 4,
pp. 319–338, Jul. 2007.

[23] J. Lever, M. Krzywinski, and N. Altman, ‘‘Points of significance: Principal
component analysis,’’ Nature Methods, vol. 14, pp. 641–642, Jul. 2017.

JUAN CANTIZANI-ESTEPA was born in Lucena,
Andalucía, Córdoba, Spain, in November 1997.
He received the B.Sc. degree in electronics,
robotics and mechatronics engineering and the
M.Sc. degree in mechatronics engineering from
the University of Málaga (UMA), in 2019 and
2020, respectively, where he is currently pursuing
the Ph.D. degree in communications engineer-
ing. His main research interests include mobile
communication networks and machine learning

techniques as well as the IoT networks.

SERGIO FORTES (Senior Member, IEEE)
received the M.Sc. and Ph.D. degree in telecom-
munication engineering from the University of
Málaga. He began his career being part of main
European space agencies (DLR, CNES, and
ESA) and Avanti Communications plc, where he
participated in various research and consultant
activities on broadband and aeronautical satellite
communications. In 2012, he joined the University
of Málaga, where his research is focused on

self-organizing networks for cellular communications, the IoT, and
aerospace applications. He is currently an Associate Professor with the
University of Málaga.

JAVIER VILLEGAS received the degree in
telecommunications systems engineering and the
M.Sc. degree in telecommunication engineering
and in telematic engineering from theUniversity of
Málaga, Spain, where he is currently pursuing the
Ph.D. degree with the Department of Communica-
tions Engineering. He is a Research Assistant with
the Department of Communications Engineering,
University of Málaga.

JAVIER RASINES received the bachelor’s degree
in electrical and computer engineering from the
Universidad Politécnica de Madrid and the M.Sc.
degree in embedded systems, robotics, control
theory, AI, and software development from the
Kungliga Tekniska Högskolan (KTH). He began
his career as an Embedded System Engineer with
CSIC. He joined Ericsson, in 2018, with a focus
on the development of AI systems. He is currently
a Data Scientist with Ericsson with more than five
years of experience.

RAÚL MARTÍN CUERDO began his career as
an Access Network Engineer. In 2008, he joined
Ericsson with a focus on RAN design and
optimization. He is currently a ML and AI Product
Development Leader with Ericssonwithmore than
20 years of experience in the sector. He holds the
title of a Telecommunications Engineer with the
Universidad Politécnica de Madrid.

RAQUEL BARCO is currently a Full Professor
of telecommunication engineering with the Uni-
versity of Málaga. Before joining the university,
she was with Telefonica and the European Space
Agency (ESA). As a Researcher, she is specialized
in mobile communication networks and smart-
cities, having led projects funded by several
million euros, published more than 100 papers in
high impact journals and conferences, authored
five patents, and received several research awards.

VOLUME 12, 2024 179515

http://dx.doi.org/10.1007/S10489-023-04449-Z

