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ABSTRACT Mobile Edge Computing (MEC) has the potential to provide computational resources to edge
devices. The Edge device (Ed) does not have enough computational resources, so it offloads its tasks to
nearby Mobile Edge Servers (MES), while sometimes offloading tasks to MES causes MES to overload.
The overload state of MES is when the data occupies all the CPU cores and memory of MES, so MES
rejects requests for data offloading from other Eds. In this research, we have considered a multi-server,
multi-device scenario, for which we have proposed an algorithm called CPU Memory Mobility Resource
Allocation (CMMRA) that does not reject Ed from providing computational resources and encourages them
to migrate the task to another MES in case the current MES is overloaded. The algorithm increases the
service rate of a communication area, the rejection rate of the devices is also reduced, the total processing
time of MES in this research is less as compared to others, and the migration in our proposed algorithm is
greater than others. As we consider the mobility of devices and many devices are requesting computational
resources, if the current MES is busy, it migrates the task to an underloaded MES for computation.

INDEX TERMS Mobile edge computing, resource allocation, mobile edge server, edge device.

I. INTRODUCTION
Mobile devices execute fewer tasks than traditional comput-
ers and are inherently limited by factors including minimal
memory, computing power, and battery life. However, mobile
applications, particularly those related to video gaming and
graphics processing are becoming increasingly sophisticated
every day [1], [2], [3]. Similarly, some applications such as
video games, biomedical imaging data processing, speech
recognition, and other applications need computing power
that even themost advancedmobile phones cannot deliver [4],
[5], [6].Offloading compute-intensive application processing
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to powerful remote servers is a solution to that problem. This
idea is known as cloud computing, Large latencies, however,
are caused by the distance between cloud servers and mobile
devices. When using a mobile device, the transmission,
execution, and reception times grow too long to provide a
satisfactory user experience device [7].

A more realistic approach is to bring the network of
cloud servers closer to the mobile device, to minimize the
overall application execution delays.MEC is a new model
that provides IT services and cloud computing to IoT devices
within the radio access network, improving user experience
by reducing network traffic and application delays [8].

As we know, a significant amount of data processing
occurs at the network’s edge in MEC [9],thus, moving the
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computation away from the remote cloud data centers. Some
edge devices are mobile devices, printers, sensors, desktops,
PCs, tablets, and IoT devices that can be used for different
purposes. These devices usually generate a large amount of
data. MEC servers are located close to the edge devices and
perform data processing, and the required data is transferred
to the cloud for storage or processing. This helps in reducing
the delay [10].The resources needed for processing the tasks
in the edge servers can be physical resources like memory,
CPU, or any network device or virtual resources like virtual
machines (VM).

In a multi-device scenario, mobile devices request CPU
cores and memory from the MES for computational tasks.
When the MES allocates all its CPU cores to these tasks,
it may become overloaded. In such cases, any new incoming
requests for computational resources are redirected to other
underloaded MESs to balance the load and prevent system
overload [11]. Memory plays a vital role in assessing whether
a MES is overloaded or underloaded, working alongside
CPU core usage in this evaluation. It’s crucial to manage
these resources effectively to avoid pushing the MES into
an overloaded condition. Ideally, device migrations to other
MES should take place onlywhen a server is completely over-
loaded, which helps maintain optimal resource distribution
throughout the network. Additionally, migrations may occur
if a device’s position changes, requiring a handover. Both
CPU cores and memory need to be closely monitored and
factored into the evaluation of the MES’s load status [12].

IoT workloads often require additional resources at MEC
servers for processing, but limited hardware resources make
resource contention an issue. To address this, we propose
a distributed architecture where tasks are processed across
MEC servers when memory and CPU cores are completely
occupied, and further devices cannot be provided computa-
tional resources for processing, so, overloaded MES migrate
devices request to nearby underloaded MES. This reduces
time delay, increases service rate and will reduce the rejection
rate of the Ed.

A. NOVELTY AND CONTRIBUTION
The novelty of this paper can be highlighted as follows:

• To consider the CPU cores and memory for determining
the overloading state of MES.

• To calculate total computational time, the service
rate, total number of migrations and total number of
rejections in our proposed communication scenario.

• To proposed an algorithm which migrates the task to
other MES in a local network when the MES become
overloaded. The algorithm also rejects the Ed from
providing computational resources when the MES are
busy.

• To consider mobility of Ed in calculating the total
number of migrations of the Ed in a local area network.

To the best of our knowledge, for considering the
overloaded state of MES, no such model has been proposed
previously for MEC resource allocation for Ed. We present

our own algorithm that considers Ed requests and offloads
to underloaded MES rather than waiting and uploading to
overloaded MES.

The remainder of this paper is organized as follows.
Section II presents a summary of the related work. section III
describes the systemmodel and themathematical formulation
of the proposed algorithm, section IV discuss different bench-
mark techniques, proposed algorithm and its limitations,
section V provide the simulation results and discussion, and
section VI concludes the paper.

II. RELATED WORK
The deployment of edge devices for IoT networks faces
numerous challenges. The number of MEC servers required
depends on network traffic and wireless heterogeneity in the
area [13]. Resource management, data type comprehension,
and determining whether to shift tasks to the cloud are
the primary obstacles. It involves making prudent use of
resources, understanding the data we are working with, and
determining when it would be most effective to move some
jobs to the cloud [14].Due to limited storage, computation
capacity, battery power, mobility, energy management, and
bandwidth allocation considerations, MEC presents several
issues, such as resource management, data identification, and
cloud offloading decision-making [10].

Researchers are using strategies from a field called game
theory to help decide when to shift tasks from mobile
devices to the cloud. This helps in managing tasks more
efficiently [15].Researchers have found a newway to manage
tasks in MEC. They are using something called game theory
to decide when to move tasks from mobile devices to the
cloud [16].The reinforcement learning technique has been
used for offloading the data of the users for computation
to surpass a given threshold [16].A new method has been
suggested that considers delays in task graphs and chooses
the best virtual machine. This method is used to lighten
the load on IoT devices while maintaining the necessary
service quality [17]. A strategy based on game theory has
been suggested for transferring data in a MEC setting.
In this scenario, the operator is responsible for managing the
computing and wireless resources of the MEC servers [18].

Optimization of the system’s utility has been regarded
as the goal of the resource allocation and computation
offloading challenge in MEC servers [18]. In [15] and [19]
gaming models have also been used for the management of
resources in the MEC servers. The work proposed in [20]
explained a strategy for offloading the data by considering
multiple parameters like computational complexity, radio
resources, and security of data using the algorithm called
the Advanced Encryption Standard (AES). A proposal
was presented to use the Markov Decision Process as a
decision-making technique to enhance the offloading time in
MEC [21], [22].

A crucial area of cloud security dedicated to protecting
cloud computing systems. As organizations increasingly rely
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on cloud services for data storage and processing, concerns
regarding data confidentiality and integrity arise, particularly
when sensitive information is processed remotely. The review
emphasizes the importance of data encryption as a key
strategy for securing critical data, such as financial and
medical information, which are particularly vulnerable to
breaches. Despite the development of various methods aimed
at enhancing data privacy during transmission, significant
challenges remain in securing data that is stored in the cloud.
This study comprehensively examines existing approaches to
establishing data security in cloud environments, highlighting
the need for continued research and innovation to address
these ongoing vulnerabilities [23].

Research in Artificial Intelligence (AI) has enabled
learning at the edge, which means making decisions based
on the importance of data when allocating resources [24].
Different AI techniques, such as reinforcement learning [25],
deep reinforcement learning, clustering [26] and federated
learning, have also been used to optimize the resource
allocation process [27].

CloudSec, a lightweight encryption method for securing
medical images. Combining hashing, chaotic mapping, and
genetic algorithms, CloudSec enhances data authentication
and security by generating a unique key DNA image
that disrupts pixel correlations. It offers fast encryption,
a large key space, and strong resistance to attacks, making
it suitable for real-time cloud computing applications and
integration in IoHT frameworks for secure medical image
transmission [28].

The Dynamic Energy-Efficient Offloading Algorithm
(DEEO) for mobile devices in aMobile Edge-Cloud Comput-
ing (MECC) environment, enhancing secure medical image
transmission. DEEO enables devices to offload intensive
tasks to nearby servers, reducing energy use, improving
resource efficiency, and ensuring data security [29].

An analysis has been conducted on energy consumption-
aware mobile edge computing, encompassing the current
research on task framework computation offloading as
well as the many approaches that have been explored in
MEC [30].An energy-efficient algorithm has been proposed
for the reduction in operation costs by excellent use of
energy in Ed [31].Additionally, a type-classification and
priority-based assignment method for energy-efficient com-
pute offloading for smart devices has been developed [32].To
minimize power consumption by offloading among all users
while taking latency and power limits into account, a Sequen-
tial Convex Approximation Algorithm (SCA) has been
suggested for energy-efficient conscious resource allocation
in MEC [33].

The techniques for organizing and the management
of location-based services in MEC have been proposed
in [34].In MEC, virtual machines (VMs) were assigned
according to user mobility, communication resources, and
processing resources [35].

The linear regression technique [36] has been used to
predict future CPU utilization. The lasso and ridge regression

have been applied in multi-dimensional resource allocation
for an auction-based application in a cloud computing
environment [37]. The Root Mean Squared Error (RMSE)
of the lasso and ridge regression was less when compared
to linear regression. The utilization of CPU and storage
was good when lasso and ridge regression were used in
resource allocation [37].Several studies have used linear
regression [36], multiple linear regression [37], and a hybrid
approach based on ensemble empirical mode decomposition
and Autoregressive Integrated Moving Average (ARIMA)
to categorize the hosts as overloaded or underloaded [37].
VM migration was performed from overloaded hosts to
underloaded hosts [36]. The CPU Utilization Prediction
(LIRCUP) in Linear regression has reduced the power
consumption and SLA violation [36].

In [11], an edge computing technique is presented to track
the utilization of MES using a Dynamic Markov model for
Resource Contention Prediction (DMRCP) model in Edge
Cloud. When an offloaded task is anticipated to utilize all
of its available CPU cores, the question determines whether
it will overflow. This usage data was entered into a history
matrix. The transition probability was then revised once
again. If a given VM is identified by the model as creating
overload on a particular server, the workload is moved to a
different server.

Cloud computing makes it possible to provide a number of
resources, including databases, storage, memory, CPU, and
network bandwidth, in virtual machines (VMs). Allocating
those VMs still presents a significant difficulty because it
takes time. Dolphin Partner Optimisation (DPO) is therefore
a security-enhancing algorithm that has been optimized [12].
Using energy and memory considerations, this approach
selects virtual machines (VMs) and adds an extra layer
of hypervisor protection. After that, the Dolphin Partner
Optimization narrows down the options to get the top virtual
machine (VM) in each group. A highly secure virtualmachine
is the outcome of applying simplified security methods to
further improve security.

The previous studies only considered the utilization of
CPU cores to determine the overloading state of MES.
However, in our study, we consider both CPU cores and
memory to accurately determine the overloading state of
the MES as well as we considered the mobility of Ed.
If the CPU and memory of an MES are fully utilized, any
other devices requesting computational resources will be
migrated to another nearby underloaded MES for providing
computational resources. In addition, we have taken mobility
into consideration in our work since it might cause migrations
of devices between servers that depend on necessity and
the right allocation of resources and maintenance of optimal
performance.

III. SYSTEM MODEL
We consider a multi-user, multi-server scenario. The system
model consists of several edge devices Ed = {1, 2, . . . ,n}
and several mobile edge servers S = {1, 2, . . . ,n} in a local
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TABLE 1. Symbols description.

FIGURE 1. System model.

area network as shown figure 1. Initially, the servers are idle,
but whenever a device sends a request for the computation
of a task, one of the servers gets activated and will serve the
request of the edge device. The server will serve the requests
of edge devices until it becomes overloaded, and all its
CPU cores and memory are utilized completely. In that case,

it will not serve the requests of other devices for computation
and will migrate the task to another server to perform the
computation of the task assigned to it. If all the servers in a
local area network are overloaded, the servers will reject the
incoming request for computation services. The devices are
dynamic as they are changing their positions.

The distance between Ed and MES is represented in the
form of distance matrix.

D =


d11 d12 · · · d1n
d21 d22 · · · d2n
...

...
. . .

...

dm1 dm2 · · · dmn

 (1)

A. COMMUNICATION MODEL
The edge device will request the resources, and if its request
is accepted, then the device will upload its data to the
server. We will calculate the uploading time, and the server
will process the task, or the amount of data uploaded to
it. We will calculate the processing time, and then the data
will be downloaded to the Ed. We will now calculate the
downloading time. After this, we will calculate the total
amount of data processed by all the servers in a local area
network, and we will calculate the total time that the MES
takes to process the data.

The Ed can upload a task to MES for execution. We con-
sider that the network deployment utilizes the orthogonal
frequency division multiple access (OFDMA), then we can
assume that the Bandwidth B for transmission is divided
into N number of sub-carrriers, the Ed will request for the
available sub-carriers, if the sub-carriers are available then
the device will be allowed to upload as well as to download
a task. ‘‘n’’ is the number of subcarriers that are asssigned
to an edge device. M is the total number of CPU cores of
a MES, m is the number of CPU cores used in execution of
task. If m= 0 it means theMES is busy, and all the CPU cores
are assigned for the execution of tasks, we also consider the
memory in a MES, if space or memory is available Ed data
is stored in a MES, the data will be executed as soon as the
CPU cores are available, the Ed is not rejected from providing
computational services by the MES.

For transmission process, the maximum achievable uplink
and downlink data rates for an additive white Gaussian noise
(AWGN) can easily be derived as in [38].

rul = n
B
N

log2

(
1 +

Pu|hul |2

0(gul)diβNo

)
(2)

rdl = n
B
N

log2

(
1 +

Ps|hdl |2

0(gdl)diβNo

)
(3)

We assume that there is the same noise behavior in the
transmission of uplink and downlink. Here, B represents the
bandwidth, N is the total number of sub-carriers, n denotes
the sub-carriers allocated to the Ed for transmission. Pu and
Ps refer to the transmission power of the Ed and the MES,
respectively. hul and hdl are the channel fading coefficients for
uplink and downlink, β represents the path loss component,
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while gul and gdl are the required bit error rates for uplink
and downlink, respectively. The 0(gul) =

−2 log(5gul )
3 and

0(gdl) =
−2 log(5gdl )

3 represent the SNR margin to meet the
required bit error rate with a QAM (Quadrature Amplitude
Modulation) array.

B. COMPUTATIONAL MODEL
The total time taken for processing the task on MES is:

Total time = uploading time + processing time +

downloading time.

T = Tul + Tp + Tdl (4)

The uploading time can be calculated from equation;

Tul =
d
rul

(5)

where, Tul is the uploading time, d is the data size in
megabytes, rul is the maximum achievable uplink data rate
for an additive white Gaussian noise (AWGN), the equation is
taken from [38].The uploading scenario is shown in figure 2.

FIGURE 2. Uploading scenario.

The processing time can be calculated from equation..

Tp =
Wc

mfs
(6)

where, Tp is the processing time, Wc is the workload (Wc =

d × C), C is CPU clock cycle per byte, d is the data size
in megabytes, m is the number of CPU cores allocated for
execution of task, fs is CPU rate of MES, the equation is
taken from [38]. The downloading time can be calculated
from equation;

Tdl =
λd
rdl

(7)

FIGURE 3. Downloading scenario.

FIGURE 4. Step-wise representation of proposed algorithm.

where, Tdl is the downloading time, d is the data size in
megabytes, lambda is any constant that has value 0.1, rdl is
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the maximum achievable downlink data rate, the equation
is taken from [38]. The downloading scenario is shown in
figure 3.

The service rate in a local area network can be calculated
from equation:

Sr = (
Nrs
NrT

) × 100 (8)

where, Sr is the service rate,Nrs is the number of edge devices
requests that are served byMES in a local area network,NrT is
the total number of edge devices requests that are received by
MES in a local area network, this equation is taken from [39].

IV. ALGORITHM DESCRIPTION
In this section, we will discuss the proposed algorithm and
its limitations, we will also discuss benchmark techniques
that are implemented in this paper for comparison with the
proposed algorithm.

A. PROPOSED ALGORITHM (CMMRA)
The CMMRA (CPUMemory Mobility Resource Allocation)
algorithm is designed to manage computational resources
effectively across MES while accommodating the mobility of
Ed. As devices may move over time, the algorithm dynam-
ically updates their locations by generating new random
positions periodically. For each new position, it calculates
the distance between the Ed and the MES. If the device
falls within the MES’s communication range, it is allowed to
upload its data for computational processing; however, if the
device is out of range, it is rejected for computational services
due to the inability to maintain an efficient connection.

Since the algorithm continuously updates each device’s
position, it recalculates distances at every step to adapt to their
new locations. If the device reappears within the MES range
after moving, data can be downloaded back to it based on
this updated distance. This dynamic tracking of distance and
connectivity ensures that the devices can exchange data as
their positions change.

Once a device is within communication range, the
algorithm performs a series of resource checks on the MES
to confirm whether the device’s task can be processed
immediately. First, it checks if communication sub-carriers
are available to support data transfer. Following that,
it verifies whether there are any free CPU cores to handle the
device’s request. If there are available CPU cores, the data
is processed promptly. However, if all CPU cores are busy,
the data is stored in the MES’s memory until a CPU core
becomes available. This two-tiered check ensures efficient
resource allocation by utilizing memory as a backup when
processing resources are temporarily limited.

If an MES is overloaded, meaning that both CPU cores
are fully utilized and memory is also full, the algorithm
activates its task migration mechanism, where it attempts
to offload tasks to other MES within communication range.

Algorithm 1 CMMRA
1: Initialize number of servers, edge devices, communica-

tion range, edge devices positions, server position.
2: Calculate distance between devices and servers.
3: Random data, required space for saving data, required

cores for processing.
4: n ∈ [1, 512],m ∈ [1, 32], d ∈ [1000, 4000], Ed = 100,
s = 3.

5: for Edge device i = 1, 2, . . . ,Ed do
6: for Server j = 1, 2, . . . , s do
7: if the Ed is in range,the sub-carriers available

then
8: if CPU cores are available then Assign CPU

cores.
9: else if memory is available then Save in

memory and wait for CPU cores to free.
10: else. Migrate to other MES.
11: end if
12: else. Reject Ed from Computation.
13: end if
14: end for
15: end for
16: Find the new Ed Position, calculate distnace between Ed

and Server.
17: for Edge device i = 1, 2, . . . ,Ed do
18: for Server j = 1, 2, . . . , s do
19: if i is <= total Ed - migrations - rejections then
20: Calculate Uplink rate from equation 2,Uplink

time from equation 5, Proceesing time from equation 6.
21: if new distance equals to old distance then

Calculate downlink rate from equation 3 and downlink
time at old distance from equation 7.

22: else. Calculate downlink rate from equation 3
and downlink time at new distance from equation 7.

23: end if
24: use equation 4 to calculate all time and also

calculate all data processed.
25: else if i > total Ed - migrations - rejections then
26: Calculate Uplink rate from equation 2,Uplink

time from equation 5, Proceesing time from equation 6.
27: if new distance equals to old distance then

Calculate downlink rate from equation 3 and downlink
time at old distance from equation 7.

28: else. Calculate downlink rate from equation 3
and downlink time at old distance from equation 7.

29: end if
30: use equation 4 to calculate all time and also

calculate all data processed.
31: end if
32: end for
33: end for
34: Calculate Service Rate from equation 8, Rejection Rate,

Migrations.
35: Plot the results.
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By redistributing tasks to nearby MES with available
resources, the CMMRA algorithm minimizes the risk of
overloading any single MES, thereby improving overall
system efficiency. This resource sharing capability allows
tasks to be transferred to alternate servers, preventing device
rejection due to the unavailability of resources on one server.
However, if all MES within range are also overloaded and
have neither free CPU cores nor memory, the device’s task
is ultimately rejected as there are no available resources to
meet its requirements.The whole algorithm is step by step
discussed in Algorithm 1 and in Figure 4.

1) LIMITATIONS
In the proposed CMMRA algorithm, improvements are
shown in detecting and managing the state of overloading
in MES. There are several limitations identified in the
implementation of the algorithm; correction can serve to
improve efficiency further in resource allocation in MEC.

First, the existing algorithm, in fact, does not really take
into account the Ed specific computational time required by
it to finish its task. In quite a number of cases, when the
involved processing time taken by a particular Ed exceeds the
time slot allowed, the corresponding Ed hogs the computation
resources for longer without being released, which could
lead to a probable bottleneck and less efficient resource
utilization by the device. The time that is left will then be
checked for each Ed and, in the event of exceeding the
specified timeslot, should be forwarded to an underloaded
MES node or declined if not possible due to available
resources. Such an optimization can also benefit management
by cutting service interruptions and device rejection because
of overload.Another thing would be to have a time slot
management mechanism in the algorithm, which would
significantly improve the efficiency of the whole process.
This would involve assigning a time slot for computation to
every device beforehand. If any device completes its tasks
within the end of the time slot, then the remaining time
can be dynamically reallocated to another waiting device in
the queue. This would minimize idle time slots and serve
waiting Ed very effectively so that use of MES resources is
optimized and queue times reduced for devices that instant
computational support.

B. BENCHMARK TECHNIQUES
1) DMRCP
An algorithm, DMRCP: Dynamic Markov Model for
Resource Contention Prediction [11], designed for edge
computing environments in the context of predicting and
managing CPU usage on MES, tracks offloaded tasks on the
servers and identifies instances of overload when all CPU
cores are occupied. Such instances are logged in a history
matrix that is used to update a transition probability matrix
for predicting the server’s future state. The model moves
the task to a different server if it finds a risk of server
overload in order to keep resources balanced. In DMRCP,

the key indication of server load is the usage of CPU cores,
while the mobility of edge devices (Ed) is also taken into
account. With every need for computational resources by a
device, it generates a random location and requests the MES.
The model calculates the distance between the MES and the
device. If this device is in the communication range, the
CPU cores can be allocated for the computation. Otherwise,
the device is migrated to the underloaded MES that falls
within the communication range. If all the MES resources are
occupied so that eachMESCPU core is used, then the request
of the device for the computational services is rejected.
Device mobility is monitored all the time; the computational
services being provided are cancelled if a device goes out of
communication range. Through these mechanisms, DMRCP
tries to predict overload situations in advance and canmanage
them. It distributes the load effectively and makes optimum
use of resources.

2) DPO
Cloud computing provides a pool of resources, such as virtual
machines, which are equipped with CPU, storage, memory,
network bandwidth, and databases. The allocation process
of such VMs into the system in an efficient as well as
secure manner has proved to be quite demanding in terms
of time requirements. To overcome this, DPO, an advanced
algorithm for security optimization, is proposed in [12].
This method selects VMs based on factors such as energy,
memory, and even CPU usage. In doing so, it provides the
additional layer of hypervisor security.In the DPO approach,
when an Ed demands computational resources, the algorithm
calculates the distance between the edge device and theMES.
If the device is in communication range, DPO allocates the
required number of CPU cores and memory according to the
device’s demand and the available resources of the MES.
The algorithm re-evaluates the VM selection if an MES is
prone to overloading due to high CPU or memory demand.
It differentiates itself from others, which do not consider
Eds’ mobility but focus instead on preventing overloads
for MES by also accounting for CPU and memory use.
In case the MES is fully loaded, having exhausted all its
CPU cores as well as memory, either a request from the Ed
is directed to a underloaded MES or the request is turned
away. It further implements streamlined security protocols
whereby chosen VMs are extremely secure and reliable.
All of these mechanisms optimize the usage of resources,
distribute load, and maintain security on edge and cloud
computing environments.

3) ARCES
TheAutomated Resource Controller for Energy-aware Server
(ARCES) [40] is an approach to the management of
computing and communication processes within virtualized
computing platforms of theMEC framework. ARCES has the
purpose of optimizing energy efficiency without degrading
quality of service (QoS). It predicts demand of servers,
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handles the process of VM scaling, distributes workload,
processes a rate allocation of transmission, and makes an
adjustment in transmission drivers by scheduling location-
aware traffic.When an Ed requires computational resources,
ARCES calculates the distance from the Ed to the MES
and determines if the device is in the communication range.
If the device is within the communication range, ARCES
assigns its CPU cores to the MES based on the processing
required by the device and the available CPU capacity
of the MES. Unlike other algorithms, ARCES does not
consider memory as a factor in determining overloaded
states, although it considers CPU core utilization when
detecting MES overload. Therefore, the MES is overloaded
in case the CPU core capacity is fully utilized and thus
ARCES either scales available VMs or it redirects requests
to another suitable server if possible. Location-aware traffic
scheduling further improves resource allocation as it changes
the transmission drivers based on network conditions to
efficiently manage data transfer. In contrast, ARCES adapts
to theMEC environment through CPU core and energy-aware
VM scaling, missing Ed mobility, and memory utilization.

TABLE 2. Parameters for simulations.

V. SIMULATIONS AND RESULTS
We use MATLAB 2021a on core i5 CPU @1.3GHz for
simulations. We have considered 100 devices and 3 servers,
and random data for each device is generated. The commu-
nication range of the area is 500 m. Total sub-carriers in the
communication area are N = 512. Subcarriers required for
edge devicemay range from n= 1 to 512. CPU cores required
for processing are m = 1 to 32. The loop is run 5 times to get
the service rate, migrations and rejection rate results.

The parameters discussed in table 2 are taken based on
realistic network scenarios.The total frequency range that the
edge server can use to send data to mobile devices is known
as the bandwidth, or B. To provide fair data rates with little
interference, a bandwidth of 0.5 MHz can be used. Because
of the bandwidth restriction, such a scenario is helpful for
replicating real-time resource management systems that are
sensitive to system throughput and latency.The path loss
exponent (β) gives the rate at which the signal attenuates with
distance. In an urban or suburban environment, interference
is present but not as extreme as in a dense metropolitan
environment; thus, it is appropriate to set β = 2. The value is
used to model the signal attenuation realistically; this affects

the efficiency of resource allocation in edge networks.The
MES’s CPU rate C indicates how many cycles it takes to
process a byte for each calculation. It indicates how many
CPU cycles are needed to process each byte. The important
role of low latency and high throughput necessitates a
comparable influence on the system’s processing speed and
overall responsiveness in jobs close to the network edge,
making this characteristic applicable in MEC settings.The
parameter fs is the CPU rate of the MES, measured in cycles
per second, or Hertz. A value of 109 would mean that the
server can carry out a billion processing cycles per second.
With this high CPU rate, the MES could easily manage
and process tremendous amounts of data workloads without
delays to respond accordingly to the users’ demands. In a
MEC environment, such responsiveness is critical because
the applications are sensitive to delays and require rapid, real-
time data processing for the optimization of resources and
maintaining low latency.

The uplink and downlink communication BERs are
denoted by the parameters gdl and gul respectively. Values
of 10−5 suggest that there may be data transport errors.
In order to simulate the dependable communication channels
required for steady and effective data transfers between
Ed and the MES, BER low values are chosen. In order
to guarantee data integrity, lower retransmission cost, and
improve system speed and responsiveness, edge computing
in mobile networks should minimize bit error rates.In MEC,
fading coefficients of the downlink and uplink channels are
denoted by hdl and hul , representing the strength and quality
of signals that are exchanged between Ed and MES through
downlink and uplink channels, respectively. Channel fading
coefficients are very important in MEC since they reflect the
real effects of signal degradation in a channel due to reasons
such as distance, interference, and obstacles between devices
and servers. The value of the channel fading coefficients is
taken as 5 for moderate fading conditions because it has
been observed that most of the real MEC environments are
moderate.A crucial part of this procedure is the value N ,
which stands for the number of subcarriers and is set to 512.
Instead of directly competing for the same frequency, each
sub-carrier functions as a distinct ‘‘lane’’ in the bandwidth,
enabling numerous users to send data simultaneously. With
512 sub-carriers, the bandwidth is sufficiently finely divided
to enable resource allocation based on OFDMA. Noise power
density (No) is assumed to model the background noise.
A 5 × 10−5 value creates a real noise floor affecting the
quality of data and becomes one of the bottlenecks in resource
optimization when channels are not perfect. The Ps and Pu
represent the powers of MES and Ed respectively, which
is used to denotes that both the MES and Ed operated
under some power constraints.In this research paper, we have
introduced the concept of overloading of both CPU cores
and memory. In a realistic scenario, memory should have
some value. So, for simulation purposes, we have to consider
32,678 MB of memory for one server.M = 32 represents the
total number of CPU cores of single MES.
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A. TIME
In Figure 5, the computational time graph has been plotted.
The time taken has been taken on the y-axis, and the total
data processed by the MES is taken on the x-axis. As shown
in figure 5, our proposed algorithm, CMMRA, has taken
less time and processed more data as compared to DMRCP,
DPO, and ARCES. The time plotted is the total time that
all the MES take to process the data from all the Eds.
By considering the CPU cores, memory, and mobility of
devices, our proposed algorithm presents the best realistic
scenario and reduces the time taken to process the data.

FIGURE 5. Computational time of mobile edge servers.

B. SERVICE RATE
In Figure 6, the service rate of the communication area
has been plotted. The results have been produced by
taking different iterations in a loop. As shown in figure 6,
by increasing the number of MES in a communication area
our proposed algorithm CMMRA has a better service rate
than all the proposed schemes. It shows that our proposed
algorithm will provide more computational services to Eds.

FIGURE 6. Service rate of communication area.

C. REJECTIONS
In Figure 7, the rejection rate in a communication area
has been plotted. As discussed in the previous result, the
service rate is maximum because computational services
are provided to maximum Eds. So, the maximum number
of devices are getting computational services, and fewer
rejections will be given to edge devices when all MES are
busy. By considering CPU cores and memory both for the

overloading state of MES, it reduces rejections and increases
the service rate.

FIGURE 7. Rejections of computational services to edge devices.

FIGURE 8. Migrations of edge devices.

D. MIGRATIONS
In Figure 8, the total number of VM migrations of devices is
plotted. In our proposed algorithm, CMMRA, as shown in 7,
we have the maximum number of VMmigrations, as we have
considered the mobility of Eds. Another factor that is causing
more migrations is that many devices are sending requests
for computational services, and when the MES is overloaded,
it automatically migrates the required data to be processed on
an underloaded MES in a communication range.

VI. CONCLUSION
In this paper, we proposed an algorithm CPU Memory
Mobility Resource Allocation (CMMRA). We consider CPU
cores, memory, mobility of devices and multi sever multi
devices scenario in our algorithm. The algorithm did not
prevent the Eds from providing computational resources and
encourage to migrate the devices to other underloaded MES
for computation. This reduces computational time, increases
service rate, and decreases rejection rate in a local area
network. Our proposed algorithm performs better than other
algorithms in the same scenario.

In future work, we can concentrate on three main areas
to enhance resource management in MEC: predictive load
balancing, task prioritization, and memory optimization.
First, predictive load balancing will leverage machine
learning to anticipate incoming demands, enabling the
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relocation of tasks before a MES reaches its capacity.
Second, by prioritizing tasks according to their significance
and resource requirements, we can ensure that urgent tasks
receive the necessary CPU power and memory promptly.
Lastly, memory optimization strategies, such as caching and
data normalization, will help minimize unnecessary memory
consumption, freeing up more resources for processing
active tasks. These enhancements can result in improved
performance and efficiency in managing resources across
MES.
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